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ABSTRACT

In Android, communications between apps and system ser-
vices are supported by a transaction-based Inter-Process
Communication (IPC) mechanism. Binder, as the corner-
stone of this IPC mechanism, separates two communicat-
ing parties as client and server. As with any client–server
model, the server should not make any assumption on the
validity (sanity) of client-side transaction. To our surprise,
we find this principle has frequently been overlooked in the
implementation of Android system services. In this paper,
we try to answer why developers keep making this seem-
ingly simple mistake by studying more than 100 vulnera-
bilities on this attack surface. We analyzed these vulnera-
bilities to find that most of them are rooted at a common
confusion of where the actual security boundary is among
system developers. We thus highlight the deficiency of test-
ing only on client-side public APIs and argue for the ne-
cessity of testing and protection on the Binder interface —
the actual security boundary. Specifically, we design and
implement BinderCracker, an automatic testing framework
that supports context-aware fuzzing and actively manages
the dependency between transactions. It does not require
the source codes of the component under test, is compati-
ble with services in different layers, and performs 7x better
than simple black-box fuzzing. We also call attention to
the attack attribution problem for IPC-based attacks. The
lack of OS-level support makes it very difficult to identify
the culprit apps even for developers with adb access. We
address this issue by providing an informative runtime di-
agnostic tool that tracks the origin, schema, content, and
parsing details of each failed transaction. This brings trans-
parency into the IPC process and provides an essential step
for other in-depth analysis or forensics.

1. INTRODUCTION
Android is the most popular smartphone OS and domi-

nates the global market with a share of more than 82% [36].
By the end of 2015, the total number of Android devices
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surpassed 1.4 billion, and more than 1.6 million mobile apps
were available in Google Play for download [16, 28]. The
developers of these apps are not always trustworthy; many
of them might be inexperienced, careless or even malicious.
Therefore, proper isolation between apps and the system is
essential for robustness and security.

To meet this requirement, apps in Android execute in the
application sandboxes. They depend on Inter-Process Com-
munications (IPCs) extensively to interact with the system
and other apps. Binder, as the cornerstone of this IPC
mechanism, has long been believed as one of the most se-
cure/robust components in Android. However, during the
past year, there have been multiple CVE (Common Vulnera-
bilities and Exposures) reports discussing attacks exploiting
the Binder interface [6–9, 29]. Interestingly, none of these at-
tacks tries to undermine the security of Binder driver, but
instead use Binder only as an attack gateway (entry point).
A careful examination of the attack surface has led us to
the discovery of the fundamental cause of this attack vec-
tor: an attacker can directly inject faulty transactions into
system services by manipulating the Binder interface, and
hence bypass all client-side sanity checks. Theoretically, this
should not be an issue — a system service should not hinge
on the validity of client-side transactions, and should always
be robust on its own. However, we found that this princi-
ple has frequently been overlooked in the implementation of
many Android system services, which led us to the following
questions: why system developers keep making this seemingly
simple oversight, and what can we do to help mitigate this
problem?

To answer these questions, we conduct the first in-depth
analysis of this attack surface. Specifically, we studied more
than 98 generic system services (by Google) and 72 vendor-
specific services (by Samsung) in 6 Android versions, and
identified 137 vulnerabilities (already de-duplicated across
versions) on this surface. We analyzed 115 of them in An-
droid source codes and found that sanity checks are most ex-
tensive around client-side public APIs, and quickly become
sporadic/careless after this defense line. Specifically, RPC
parameters that are not exposed via public APIs are fre-
quently left unchecked and the underlying (de-)serialization
process of these parameters is often unprotected. This sug-
gests that there is a mis-conception of where the security
boundary is for Android system services — many seem to
assume the security/trust boundary to be at the client-side
public APIs, and whatever happens thereafter is free from
obstruction since they already belong to the system terri-
tory. This mis-conception is understandable since Android



provides convenient and automatic code generation tools
(AIDL) that at one side relieve the developers from writ-
ing their own IPC stack, but at the other side hide all the
details about RPC and Binder. Thus, we argue for the ne-
cessity of introducing automatic testing and protection at
the Binder surface, i.e., the actual security boundary.

All the vulnerabilities reported in this paper are identi-
fied by BinderCracker, a precautionary testing framework
we developed for Binder-based RPCs. BinderCracker is a
context-aware fuzzing framework that understands the in-
put and output structure of each RPC transaction as well
as the inter-dependencies between them. This is essential
because many transactions require inputs of remote object
handles which are output of other transactions and can-
not be recorded in the form of raw bytes. Before fuzzing a
transaction, BinderCracker will automatically replay all the
transactions it depends on and generate the correct context.
BinderCracker does not require source codes of the services
under test and works for services in both the Java and na-
tive layers. Thus, it is readily compatible with both Android
system services and vendor-specific services. BinderCracker
achieves effective vulnerability discovery — it identified 7x
more vulnerabilities than simple black-box fuzzing within
the same amount of time. Furthermore, since BinderCracker
understands the schema of each low-level RPC transaction,
we can easily configure it to test high-level abstraction or
protocol built on top of the Binder primitives, such as In-
tent communications or app-specific protocols.

To help mitigate this emerging attack surface, we need to
eliminate potential vulnerabilities as early as possible in the
development cycle. Specifically, we suggest the use of various
precautionary testing techniques (including BinderCracker)
before each product release. This can stop a large number
of vulnerabilities from reaching the end-users. In fact, many
severe vulnerabilities [6–9, 29] could have been avoided had
BinderCracker been deployed. Notably, 60% of the vulnera-
bilities identified by BinderCracker still remain unfixed. We
summarized these vulnerabilities and have already reported
them to AOSP. Many of the vulnerabilities we identified are
found to be able to crash the entire Android Runtime, while
others can cause specific system services or system apps to
fail. Some vulnerabilities have further security implications,
and may result in permission leakage, privileged code exe-
cution, targeted or permanent Denial-of-Service (DoS).

In case vulnerabilities leak through precautionary testing
into the deployment phase, we need runtime defenses on
this attack surface. Here, we addressed the urgent prob-
lem of attack attribution for IPC-based attacks, which have
not received enough attention from the security community.
Due to the lack of OS-level support, it is extremely diffi-
cult to identify the culprit app even for developers with adb
access, let alone for average users. This suggests that an
attacker app can sabotage the system or crash other apps
without being accused of, or may even blame it on others.
For example, the attacker app can crash Android Runtime
whenever the user opens a competitor app, creating the il-
lusion that the competitor app is buggy. Similar attacks are
not rare between businesses with close competition [37]. We
addressed this issue by building an informative runtime di-
agnostic tool. It maintains the sender, schema, content and
parsing information for each ongoing transaction, in case
a failure/attack happens. Whenever a system service fails
when processing an incoming transaction, a detailed report

with the transaction information will be generated and a vi-
sual warning will be prompted to the user. The reporting
process can also be triggered by access to privileged APIs
or abnormal permission request, to catch attacks that do
not warrant a program crash. This brings transparency into
IPC communications and constitutes an essential first step
for other in-depth analysis or forensics.

This paper makes the following contributions: we

• Provide a systematic analysis of the attack surface by
conducting security and root cause analysis on 100+
vulnerabilities. We summarized the common mistakes
made by system developers and found the attack sur-
face persists largely due to a common confusion of
where the actual trust boundary is;

• Design and implement, BinderCracker, a context-aware
fuzzing framework for Android IPCs that actively man-
aged the dependencies between transactions. Binder-
Cracker is compatible with Android system services,
vendor-specific services and can be easily configured
to fuzz high-level abstractions or protocols. It iden-
tifies 7x more vulnerabilities than a simple black-box
fuzzing approach;

• Address the attack attribution problem for IPC-based
attacks by building a system-level diagnostic tool. By
tracking the origin, schema and content of ongoing
transactions, it brings transparency into Android IPCs
and provides an essential step towards in-depth run-
time analysis and defense.

The rest of the paper is organized as follows. Section 2
summarizes related work in the field of software testing and
Android security. Section 3 introduces Binder and AIDL
in Android, and describes how Android uses these to build
system services. Section 4 examines the attack surface and
focus on explaining what mistakes have the developers made
and why. Section 5 details the design and implementation
of our testing framework, BinderCracker. Section 6 gives
a comprehensive discussion on how to mitigate this attack
surface with a special focus on the attack attribution prob-
lem. Section 7 discusses the insight and other potential use
cases of BinderCracker, and finally, the paper concludes with
Section 8.

2. RELATED WORK
Discussed below is related work in the field of software

testing and Android security.

Software Testing. In the software community, robustness
testing falls into two categories: functional and exceptional
testing. Functional testing focuses on verifying the func-
tionality of software using expected input, while exceptional
testing tries to apply unexpected and faulty inputs to crash
the system. Numerous efforts have been made in the soft-
ware testing community to test the robustness of Android [1,
2, 19, 23, 26, 38]. Most of them focus on the functional test-
ing of GUI elements [1, 2, 19, 23]. Some have conducted ex-
ceptional testing on the evolving public APIs [26]. In this
paper, we highlight the deficiency of testing only on pub-
lic APIs and conduct an exceptional testing on lower-level
Binder-based RPC interfaces.



Android Security. Android has received significant atten-
tion from the research community as an open source oper-
ating system [4, 11, 12, 18, 25, 30, 34]. Existing Android se-
curity studies largely focus on the imperfection of high-level
permission model [13, 14, 27], and the resulting issues, such
as information leakage [11], privilege escalation [4, 30] and
collusion [25]. Our work highlights the insufficient protec-
tion of Android’s lower-level Binder-based RPC mechanism
and how it affects the robustness of system services.

There also exist a few studies focusing on the IPC mecha-
nism of Android [5, 10, 21, 24, 31]. However, they largely fo-
cus on one specific instance of Android IPC — Intent. Since
the senders and recipients of Intents are both apps, manipu-
lating Intents will not serve the purpose of exposing vulner-
abilities in system services. Some researchers also provide
recommendations for hardening Android IPCs [21, 24] and
point out that the key issue in Intent communication is the
lack of formal schema. We demonstrate that even for mech-
anisms enforcing a formal schema, such as AIDL, robustness
remains as a critical issue. There have also been some par-
allel attempts on fuzzing the Binder interface in the indus-
try [15, 17]. However, they focused on the technical details
of implementing Proof-of-Concept (PoC) exploits on this in-
terface and only tested simple fuzzing techniques. Our work
instead, focuses on understanding the origin of the Binder

attack surface and proposes practical defenses. We summa-
rized the common mistakes made by system developers by
studying 100+ real vulnerabilities and addressed the urgent
problem of attack attribution for IPC-based attacks. More-
over, our context-aware fuzzing framework, BinderCracker,
is sophisticated and performs much more effectively than a
simple black-box fuzzing.

3. ANDROID IPC AND BINDER
Android executes apps and system services as different

processes and enforces isolation between them. To enable
different processes to exchange information with each other,
Android provides, Binder, a secure and extensible IPCmech-
anism. Described below are the basic concepts in the Binder
framework and an explanation of how a typical system ser-
vice is built using these basic primitives.

3.1 Binder
In Android, Binder provides a message-based communi-

cation channel between two processes. It consists of (i) a
kernel-level driver that achieves communication across pro-
cess boundaries, (ii) a Binder library that uses ioctl syscall
to talk with the kernel-level driver, and (iii) upper-level ab-
stracts that utilize the Binder library. Conceptually, Binder
takes a classical client–server architecture. A client can send
a transaction to the remote server via the Binder frame-
work and then retrieves its response. The parameters of
the transaction are marshalled into a Parcel object which
is a serializable data container. The Parcel object is sent
through the Binder driver and then gets delivered to the
server. The server de-serializes the parameters of the Par-

cel object, processes the transaction, and returns a response
in a similar way back to the client. This allows a client to
achieve Remote Procedure Call (RPC) and invoke methods
on remote servers as if they were local. This Binder-based
RPC is one of the most frequent forms of IPC in Android,
and underpins the implementation of most system services.

interface IQueueService {
boolean add(String name );
String peek ();
String poll ();
String remove ();

}

Figure 1: An example AIDL file which defines the interface
of a service that implements a queue.

Figure 2: How does an app communicate with a system service
using Binder-based RPC (using Wi-Fi service as an example)?
The red shaded region represents the codes that need to be pro-
vided/implemented by the service developer.

3.2 AIDL
Many RPC systems use IDL (Interface Description Lan-

guage) to define and restrict the format of a remote invo-
cation [24], and so does Android. The AIDL (Android In-
terface Description Language) file allows the developer to
define the RPC interface both the client and the server
agree upon [3]. Android can automatically generate Stub
and Proxy classes from an AIDL file and relieve the devel-
opers from (re-)implementing the low-level details to cope
with native Binder libraries. The auto-generated Stub and
Proxy classes will ensure that the declared list of parameters
will be properly serialized, sent, received, and de-serialized.
The developer only needs to provide a .aidl file and imple-
ment the corresponding interface. In other words, the AIDL
file serves as an explicit contract between client and server.
This enforcement makes the Binder framework extensible,
usable, and robust. Fig. 1 shows an example AIDL file that
defines the interface of a service that implements a queue.

3.3 System Service
We now describe how the low-level concepts in the Binder

framework are structured to deliver a system service, us-
ing Wi-Fi service as an example. To implement the Wi-
Fi service, system developers only need to define its in-
terfaces as an AIDL description, and then implement the
corresponding server-side logic (WifiService) and client-
side wrapper (WifiManager) (see Fig. 2). The serialization,
transmission, and de-serialization of the interface parame-
ters are handled by the codes automatically generated from
the AIDL file. Specifically, when the client invokes some
RPC method in the client-side wrapper WifiManager, the
Proxy class IWifiManager.Stub.Proxy will marshall the in-



put parameters in a Parcel object and send it across the
process boundary via the Binder driver. The Binder li-
brary at the server-side will then unmarshall the parame-
ters and invoke the onTransact function in the Stub class
IWifiManager.Stub. This eventually invokes the service
logic programmed in WifiService. Fig. 2 provides a clear
illustration of the entire process.

4. BINDER: THE ATTACK SURFACE
The Binder driver serves as the boundary between two

communicating parties and separates them as client and
server. Existing attacks on this interface typically involve
directly injecting a crafted transaction via the Binder inter-
face. In theory, at which layer is a transaction injected at the
client-side should not affect the security of the Android sys-
tem — the server-side should always be robust on its own.
This is probably a best engineering practice for any sys-
tem that adopts a client/server model. However, as we will
show later, we found this guideline is frequently overlooked
in the implementation of Android system services. Here, we
review 100+ vulnerabilities found in six major Android ver-
sions and try to summarize what mistakes have the system
developers made that turn the Binder interface into a tempt-
ing attack surface, and why system developers keep making
these seemingly simple mistakes? All the vulnerabilities dis-
cussed in this section are discovered by BinderCracker, the
first context-aware fuzzing framework for Android IPCs. We
will detail the design of BinderCracker in the next section.

4.1 Attack Model
In this paper, we assume the adversary is a malicious

app developer trying to sabotage the robustness or the in-
tegrity of Android system services. A system service can
be generic, existing in Android framework base, or vendor-
specific, introduced by device manufacturers. The attacker
launch attacks by directly injecting crafted transactions into
the Binder interface. The resulted consequences can be from
Denial-of-Service (DoS) attack to privileged code execution,
depending on the payload and the target of the malicious
transaction. We assume the attacker has no root permis-
sion and cannot penetrate the security of OS kernel. Fig. 3
illustrates a typical attack scenario.

4.2 Overview of Vulnerabilities
We identified 137 vulnerabilities on the Binder attack sur-

face by testing 6 major versions of Android: 4.1 (JellyBean),
4.2 (JellyBean), 4.4 (KitKat), 5.0 (Lollipop), 5.1 (Lollipop)
and 6.0 (Marshmallow). Note that the number of discov-
ered vulnerabilities have already been de-duplicated across
versions. Specifically, we examined more than 98 generic
system services (by Google) and 72 vendor-specific services
(by Samsung), which covers more than 2400 low-level RPC
methods. The majority of the vulnerabilities are in An-
droid framework while 15 of them are in vendor-specific
(Samsung) services. All our experiments are conducted by
running BinderCracker on official firmwares from major de-
vice manufacturers (see Fig. 4). An official firmware went
through extensive testing by the vendors and is believed to
be ready for a public release. Each firmware is tested in the
initial state, right after it is installed. We didn’t install any
third-party app or change any configuration except for turn-
ing on the adb debugging option, ruling out the influence of
external factors.

Figure 3: A typical attack scenario. By injecting faulty trans-
actions via the Binder driver, an attacker can bypass the sanity
check on public API and AIDL enforcement, and directly chal-
lenge the server-side.

Version API Market Device Build #

4.1.1 16 9.0% Galaxy Note 2 JRO03C
4.2.2 17 12.2% Galaxy S4 JDQ39
4.4.2 19 36.1% Galaxy S4 KOT49H
5.0.1 21 16.9% Nexus 5 LRX22C
5.1.0 22 15.7% Nexus 5 LMY47I
6.0.0 23 0.7% Nexus 5 MRA58K

Figure 4: List of Android ROMs we tested using BinderCracker.

An RPC method is found to be vulnerable if testing it re-
sulted in a fatal exception, crashing part of, or the entire
Android Runtime. Each unique crash (stack traces) under
an RPC interface is further referred to as an individual vul-
nerability. For each vulnerability reported here, we followed
the process of: 1) identify it on an official ROM, 2) manually
confirm that it can be reproduced, and 3) inspect the source
codes for a root cause analysis. For vendor-specific vulnera-
bilities of which source codes are not available, such as many
of the customized system services provided by Samsung, we
only record the stack trace. Fig. 5 list the number of vulner-
abilities grouped by the exception types in the crash traces.
The security implications of the identified vulnerabilities will
be further reviewed in Section 6.

4.3 Root Cause Analysis
The direct causes of crashes are uncaught exceptions such

as NullPointerException or SEGV_MAPPER, but the funda-
mental cause behind them is deeper. For each crashed sys-
tem service of which source codes are available, we looked
into the source codes and analyzed the root causes of the vul-
nerabilities. We noticed that sanity checks are most exten-
sive around client-side public APIs, but are sporadic/care-
less after this line. This suggests that many system devel-
opers only considered the exploitation of public APIs, thus
directly injecting faulty transactions to the Binder driver
creates many scenarios that are believed to be ‘unlikely’ or
‘impossible’ in their mindset. Here, we highlight some of
the new attack vectors enabled by attacking the Binder in-
terface which contribute to most of the vulnerabilities we
identified.

First, an attacker can manipulate RPC parameters that



Level Exception Type Count

Java

NullPointerException 29
IllegalArgumentException 9
OutOfMemoryError 8
RuntimeException 8
IllegalStateException 4
StackOverflowError 4
UnsatisfiedLinkError 2
ArrayIndexOutOfBoundsException 2
OutOfResourcesException 1
SecurityException 1
StringIndexOutOfBoundsException 1
IOException 1
BadParcelableException 1

Native
SEGV MAPPER 31
SI TKILL 29
BUS ADRALN 4
SEGV ACCERR 1
SI USER 1

Figure 5: Vulnerabilities grouped by types of exception.

are not exposed via public APIs. For example, IAudioFlinger
provides an RPC method REGISTER_CLIENT. This method is
only implicitly called in the Android middleware and is never
exposed via public interfaces. Therefore, the developers of
this system service may not expect an arbitrary input from
this RPC method and didn’t perform a proper check of the
input parameters. In our test, sending a list of null parame-
ters via the Binder driver can easily crash this service. This
suggests that developers should not overlook RPC interfaces
that are private or hidden.

Second, an attacker can bypass sanity checks around the
public API, no matter how comprehensive they are. For
example, the IBluetooth service provides a method called
registerAppConfiguration. All of the parameters of this
RPC method are directly exposed via a public API and there
are multiple layers of sanity check around this interface.
Therefore, if there is an erroneous input from the public API,
the client will throw an exception and crash without even
sending the transaction to the server side. However, using
our approach, an attack transaction is directly injected to
the Binder driver without even going through these client-
side checks. This suggests that the server should always
double-check input parameters on its own.

Third, an attacker can exploit the serialization process
of certain data types and create inputs that are hazardous
at the server side. For example, RemoteView is a Parce-
lable object that represents a group of hierarchical views.
It contains a loophole in its de-serialization module which
can cause a StackOverflow exception. As shown in Fig. 6,
a bad recursion will occur if the input Parcel object follows
a certain pattern. By directly manipulating the serialized
bytes of the Parcel sent via the Binder driver, this loophole
can be triggered and crash the server. This suggests that
RPC methods with serializable inputs require special atten-
tion and sanity check is also essential in the de-serializaiton
process.

These common mistakes made by system developers indi-
cate there is a misconception of where the security boundary
is for Android system services — many may assume the se-
curity/trust boundary is at the client-side public APIs, and
whatever happens thereafter is free from obstruction since it
is already in the system zone. This mis-conception is under-
standable since Android provides the convenient abstraction

android.widget. RemoteViews

private RemoteViews (Parcel parcel ,
BitmapCache bitmapCache ) {

int mode = parcel.readInt ();

...

if (mode == MODE_NORMAL ) {
...

} else {
// recursively calls itself
mL = new RemoteViews (parcel ,

mBitmapCache );
// recursively calls itself
mP = new RemoteViews (parcel ,

mBitmapCache );
...

}

...
}

Figure 6: The constructor of the RemoteView class contains a
loophole which can cause a StackOverflow exception. Specifically,
a bad recursion will occur if the input Parcel object follows a
specific pattern.

of AIDL and automatically generate codes that serialize,
send, receive, de-serialize RPC parameters. This at one side
relieves the developers from implementing their own IPC
stack, but at the other side hide all the details about RPC
and Binder. In other words, even though Android system
services depend on IPC extensively, the developers are likely
to be agnostic of that. Therefore, we advocate the impor-
tance of introducing automatic testing and protection at the
Binder surface — the actual security boundary.

5. EFFECTIVE VULNERABILITY DISCOV-

ERY
In this section, we explain how to conduct effective vul-

nerability discovery through the Binder interface. A naive
approach is to issue transactions containing random bytes,
also known as black-box fuzzing. In our experiment, we
found that when using black-box fuzzing, almost all of the
vulnerabilities are found within the first few fuzzing transac-
tions, and a longer fuzzing time did not lead to the discovery
of new bugs. The deficiency of black-box fuzzing is largely
due to the extremely large and complex fuzzing space of this
attack surface, and drives us to develope more sophisticated
fuzzing techniques.

5.1 Unique Challenges
There are some unique challenges in fuzzing the Binder

surface. First, a Binder transaction may contain non-primitive
data types which result in complicated and hierarchical in-
put schema. This affects 48% of all Binder-based RPCs
and makes it difficult to fuzz according to parameter types.
Moreover, the list of parameters included in a transaction
is often dynamic instead of static. For example, when a
transaction takes a Bundle object as input, what this object



contains highly depends on the runtime status, and cannot
be simply captured by a static interface description. All of
these make it difficult to generate schemas of Binder-based
transactions in an effective and reliable way.

Second, inter-dependencies often exist between Binder trans-
actions. We found that 37% user-level RPC invocations
require an input parameter that is the output of previous
transactions. Note that, these input parameters are remote
handlers that cannot be recorded in the form of raw bytes
and can only be generated by executing the same transac-
tions. This process is extremely crucial if we want to fuzz dy-
namically generated system services. While we can directly
retrieve the handler of a statically cached system service and
start to fuzz it, the handler of dynamically generated system
services can only be retrieved by replaying the sequence of
transactions it depends on.

Besides these two challenges, our design options are also
restricted by the (un)availability of the source codes for the
system services under test. For example, in a typical Sam-
sung Galaxy device, there are more than 70 vendor-specific
system services, the source codes of which are clearly un-
available. Even for system services that are included in
the core Android framework, their source codes are typi-
cally proprietary when related to crypto or interactions with
OEM hardwares. The scenario becomes more exaggerated if
considering services exported by system or user-level apps.

5.2 BinderCraker: Design Overview
We present an overview of the design of BinderCracker.

Our design addresses the above challenges by adopting a
context-aware, replay-based approach which actively man-
ages the dependencies across transactions. Specifically, Binder-
Cracker includes a recording component, implemented as
an Android extension (custom ROM), and a fuzzing com-
ponent, implemented as a user-level app. The recording
component collects detailed information of different Binder
transactions and the fuzzing component tries to replay and
mutate each recorded transaction for fuzzing purposes.

The recording component constructs and records the schema
(parameter types and structure) of each transaction dur-
ing runtime by instrumenting the (de)-serialization process
of the Binder transaction. This is different from the ap-
proach that parses RPC interface (AIDL) files and does not
require access to the source codes. Specifically, it moni-
tors and records how each parameter is unmarshalled from
the Parcel object. This instrumentation works recursively
with the (de)-serialization functions, and thus can under-
stand and record complicated, hierarchical schemas and non-
primitive types. In additional to recording the transaction
schema, BinderCracker automatically matches the inputs
and outputs of adjacent transactions and constructs a de-
pendency graph among them. This dependency graph cap-
tures the sequence (tree) of transactions required to gener-
ate the inputs of a target transaction (see Fig. 7). This al-
lows BinderCracker to automatically manage the dependen-
cies between transactions and reconstruct the dynamic con-
text each transaction requires. For example, certain system
services, such as IGraphicBufferProducer, are dynamically
initialized instead of statically cached in the system_server.
Fuzzing it typically requires manually writing a code section
that first generates this service and then using reflections on
private APIs to retrieve the handler, which is tedious and
not scalable. BinderCracker greatly simplifies this process

Figure 7: When fuzzing a transaction, we need to replay the
supporting transactions according to their relative order in the
dependency graph. This way, all the remote objects this transac-
tion requires will be reconstructed during runtime.

struct binder_transaction_data {
union {

size_t handle; // (1).target service
void *ptr;

}target;
void *cookie;
unsigned int code ; // (2).RPC method
unsigned int flags;
pid_t sender_pid ;
uid_t sender_euid ;
size_t data_size ;
size_t offsets_size ;
union {

struct {

binder_uintptr_t buffer;
binder_uintptr_t offsets;

} ptr;
__u8 buf [8];

} data; // (3).transactional data
};

Figure 8: The data struct sent through the Binder diver via the
ioctl libc call. This struct contains three important pieces of
information we need to modify to send a fuzzing transaction.

since all the transactions that generate this service will be
replayed automatically before the actual fuzzing process.

After recording the seed transactions and their depen-
dencies, we need to utilize them to fuzz a system service.
The fuzzing component of BinderCracker has a replay en-
gine built-in and is implemented as a user-level app. Ba-
sically, it is manipulating (either directly or indirectly) a
binder_transaction_data struct sent to the Binder driver.
This data struct contains three important pieces of informa-
tion we need to modify to send a fuzzing transaction and
has the format as shown in Fig. 8. The target.handle field
specifies the service this transaction is sent to. The code field
represents a specific RPC method we want to fuzz. The data
struct contains the serialized bytes of the list of parameters
for the RPC method, which is inherently a Parcel object.
Parcel is a container class that provides a convenient set of
serialization and de-serialization methods for different data
types. Both the client and the server work directly with this
Parcel object to send and receive the input parameters.
Later in this section, we will elaborate on how to modify
the handle and code variables to redirect the transaction
to a specific RPC method of a specified service, and how
to fuzz the Parcel object to facilitate testing with different
policies.

5.3 Transaction Redirection
There is a one-to-one mapping from the handle variable



Figure 9: How does BinderCracker generate semi-valid fuzzing
transactions from seed transactions.

in the binder_transaction_data object to system service.
This mapping is created during runtime and maintained by
the Binder driver. Since the client has no control over the
Binder driver, it cannot get this mapping directly. For sys-
tem services that are statically cached, we can get them
indirectly by querying a static service manager which has
a fixed handle of 0. This service manager is a central-
ized controller for service registry and will be started before
any other services. By sending a service interface descriptor
(such as android.os.IWindowManager) to the service man-
ager, it will return an IBinder object which contains the
handle for the specified service. For system services that
are dynamically allocated, we can retrieve them by recur-
sively replaying the supporting transactions that generate
these services (see Fig. 7).

After getting the handle of a system service, we need to
specify the code variable in the binder_transaction_data

object. Each code represents a different RPC method de-
fined in the AIDL file. This mapping can be found in the
Stub files which are automatically generated from the AIDL
file. The code variable typically ranges from 1 to the total
number of methods declared in the AIDL file. For native
system services that are not implemented in Java, this map-
ping is directly coded in either the source files or the header
files. Therefore, we scan both the AIDL files and the native
source codes of Android to construct the mapping between
transaction codes and RPC methods.

5.4 Transaction Fuzzing
After being able to redirect a Binder transaction to a cho-

sen RPC method of a chosen system service, the next step is
to manipulate the transaction data and create faulty trans-
actions that are unlikely to occur in normal circumstances.
Here, BinderCracker utilize our context-aware replay engine
to generate semi-valid fuzzing transactions. A transaction
is said to be semi-valid if all of the parameters it contains
are valid except for one. Semi-valid transactions can dive
deeper into the program structure without being early re-
jected, thus is able to reveal more in-depth vulnerabilities.

In summary, BinderCracker maintains both the type hi-
erarchy and dependency graph when recording a seed trans-
action. These information capture the semantic and context
of each transaction and help BinderCracker generate semi-
valid fuzzing transactions. Specifically, it follows the process
illustrated in Fig. 9. For each seed transaction we want to
fuzz, we first parse the raw bytes of the transaction and un-
marshall non-primitive data types into an array of primitive
types (step 1). This utilizes the type hierarchy recorded
with the seed transaction. Then, we check the dependency
of the transaction (step 2) and retrieve all the supporting
transactions (steps 3, 4). This step utilizes the dependency
graph recorded with the seed transaction. After that, we
need to replay the supporting transactions (step 5) to gen-

erate and cache the remote IBinder object handles (steps
6, 7). Finally, the fuzzer can start to generate semi-valid
fuzzing transactions by mutating each parameter in the seed
transaction according to their data types (steps 8, 9). For
example, for numerical types such as Integer, we may add or
substrate a small delta from the current value or change it
to Integer.MAX, 0 or Integer.MIN; for literal types such as
String, we may randomly mutate the bytes contained in the
String, append new content at start or end, or insert special
characters at certain locations.

After sending a faulty transaction to a remote service,
there are a few possible responses from the server-side. First,
the server detects the input is invalid and rejects the transac-
tion, writing an IllegalArgumentException message back
to the client. Second, the server accepts the argument and
starts the transaction, but encounters unexpected states or
behaviors and catches some type of RuntimeException. Third,
the server doesn’t catch some bizarre scenarios, causes a Fa-
tal Exception and crashes itself. In this paper, we focus
on the last type of responses, as it is most critical and has
disastrous consequences.

5.5 Experimental Results
We collected more than one million valid seed transactions

by running 30 popular apps in two latest Android versions
(Android 5.1 and Android 6.0). For each RPC interface,
we sampled the transactions and selected those with unique
transaction schema/structures. Based on this seed dataset,
we performed fuzzing test on more than 445 RPC methods
of 78 system services. In total, we identified 89 vulnerabili-
ties in Android 5.1 and Android 6.0 which is 7x more than
simple fuzzing with the same time spent. Compared to the
vulnerabilities identified using simple black-box fuzzing, the
vulnerabilities exposed by context-aware fuzzing are more
interesting and have severer security implications — we start
to identify buffer overflow, serialization bugs in deeper layers
of the code, instead of just simple crashes or parsing errors
(see Section 6 for details).

Moreover, since the approach BinderCracker adopts is
generic, we can easily configure it to fuzz higher-level ab-
stractions or protocols. For example, Intent is a high-level
abstraction built on top of the Binder RPCs. It is used as a
user-level communication primitive to launch apps, services
or trigger broadcast receivers. With some simple configu-
ration, we can turn BinderCracker into an Intent fuzzer.
Specifically, we configure BinderCracker to only fuzz three
RPC interfaces that the Intent communication mechanism
is built upon, and only mutate the Intent parameter in
these RPC calls. This makes BinderCracker a useful In-
tent fuzzer that automatically tracks and utilizes the in-
ternal type hierarchy of Intent extras (Bundle). Fig. 10
illustrates the input structure of an example Intent we fuzz.
In total, BinderCracker identified more than 20 vulnerabil-
ities in the Intent communication, many of which exist in
the de-serialization process of Intent.

6. DEFENSES
New vulnerabilities are still emerging on the Binder at-

tack surface whenever there is a major upgrade of the An-
droid code base. This is because, considering the code size
of Android, it is almost impossible to prevent the develop-
ers from writing buggy codes. We discussed how to conduct
effective precautionary testing to help expose vulnerabilities



Figure 10: The internal type structure of a non-primitive data type, Intent, generated by recording the de-serialization process of each
non-primitive type. Note that this type structure is dynamic — it depends on what has been put into this Intent during runtime.

before releasing the new ROM, and also explained why it
is very difficult, if not impossible, to conduct runtime de-
fense in existing Android systems. The major obstacle in
developing runtime defenses is the lack of transparency/au-
diting on IPC transactions. When a system service fails, no
one knows why it crashed and who caused its crash without
proper OS-level support. Thus, a system-level IPC diagno-
sis tool is essential for any in-depth runtime analysis, such
as attack attribution and cross-device analytics.

6.1 Precautionary Testing
Before releasing a new ROM, developers can conduct pre-

cautionary testing. The defense can be done early, in the
development phase of each system service, or later, after the
entire ROM gets built.

Android has already adopted a static code analysis tool,
lint, to check potential bugs and optimizations for correct-
ness, security, performance, usability, accessibility and in-
ternationalization [20]. Specifically, lint provides a feature
that supports inspection with annotations. This allows the
developer to add metadata tags to variables, parameters and
return values. For example, the developer can mark an in-
put parameter as @NonNull, indicating that it cannot be
Null, or mark it as @IntRange(from=0,to=255), enforcing
that it can only be within a given range. Then, lint auto-
matically analyzes the source codes and prompts potential
violations. This can be extended to support inspections of
RPC interfaces, allowing developers to explicitly declare the
constraints for each RPC input parameter. This way, many
potential bugs can be eliminated during the development
phase. This defense is practical and comprehensive but re-
quires system developers to specify the metadata tags for
each RPC interface.

We can also conduct precautionary testing during runtime
after the ROM has been built. Our system, BinderCracker,
is effective in identifying vulnerabilities and can be used as
an automatic testing tool. By fuzzing various system ser-
vices with different policies, a large number of vulnerabilities
can be eliminated before reaching the end-users. Actually,
many severe vulnerabilities [6–9, 29] could have been avoided
if a tool like BinderCracker had been deployed. Note that
the effectiveness of BinderCracker depends on the quality
and coverage of the seed transactions. Besides collecting
execution traces of a large number of apps, another poten-
tial way of generating a comprehensive seed dataset is to
incorporate the functional unit tests of each system service.

6.2 Security Implications
Most of the vulnerabilities BinderCracker discovered (more

than 90%) can be used to launch a Denial-Of-Service (DoS)
attack. Some of them are found to be able to crash the en-
tire Android Runtime, while others can cause specific system
services or system apps to fail. Fig. 11 shows the distribu-
tion of the affected services (apps). When launching a DoS

native_handle_t * native_handle_create(int
numFds , int numInts )

{
// numFds & numInts are not checked!
native_handle_t * h = malloc( ...

+ sizeof(int)*(numFds+numInts));

h->version = sizeof(native_handle_t );
h->numFds = numFds;
h->numInts = numInts ;

return h;
}

Figure 12: The constructor of the native_handle has an Integer
Overflow vulnerability that can cause a heap corruption on the
server-side. This can lead to privileged code execution in sys-

tem_server.

attack, the attacker can trigger a crash either consistently
or only under certain conditions, for example, when a com-
petitor’s app is running. This can create the impression that
the competitor’s app is buggy and unusable. We even iden-
tified multiple vulnerabilities (in the de-serialization pro-
cess of Intent) that can cause targeted crash of almost any
system/user-level apps, without crashing the entire system.
Specifically, an attacker can craft an Intent that contains
a mal-formated Bundle object and send to the target app.
This will cause a crash during the de-serialization process
of the Intent object before the target app can conduct any
sanity check. Moreover, it can be very challenging to iden-
tify the attacker app under these scenarios because the OS
only knows which service/app is broken, but cannot tell who
crashed it. We will discuss more about the attack attribu-
tion process in later sections.

We also discovered a few vulnerabilities that can cause
other serious security problems. We found that in several
RPC methods, the server-side fails to check potential In-
teger overflows. This may lead to disastrous consequences
when exploited by an experienced attacker. For example,
in IGraphicBufferProducer an Integer overflow exists such
that when a new NativeHandle is created, the server will
malloc smaller memory than it actually requested (see Fig. 12).
Subsequent writes to this data struct will corrupt the heap
on the server-side. This vulnerability has been demonstrated
to be able to achieve privileged code execution, and insert
any arbitrary code into system_server [7]. We also found
a vulnerability in IContentService that can lead to an infi-
nite bootloop, which can only be resolved by factory recov-
ery or flashing a new ROM. This is also classified as High
Risk according to the official specification of Android sever-
ity levels [32].

Besides RPC methods that are not well implemented, we
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Figure 11: Many of the vulnerabilities we identified are found to be able to crash the entire Android Runtime (system server), while
others can cause specific system services (mediaserver) or system apps (nfc, contacts, etc) to fail.

also discovered RPC methods that are not properly pro-
tected by existing Permission models. In official ROMs of
Samsung Galaxy 4 (Android 4.2.2 and Android 4.4.2), an
attacker can reboot the device by directly sending a transac-
tion to PackageManagerService via the Binder driver with-
out requiring the REBOOT permission. This is critical since
REBOOT is a sensitive permission only granted to system
apps. The other service is ICoverManager, a customized ser-
vice from Samsung. An attacker can invoke a certain RPC
method of ICoverManager and block the entire screen with
a pop-up blank Activity. The blank Activity cannot be re-
voked using any virtual or physical button and the only exit
is restarting the device.

6.3 Vulnerabilities: Fixed and Unfixed
We examined how many of the vulnerabilities discovered

by BinderCracker remain unfixed and are potentially zero-
day when they are found. Our analysis is based on the
public changes of the source codes across different Android
versions and revisions. We skipped the 15 vulnerabilities
in vendor-specific system services and 7 in generic system
services due to the unavailability of source codes. Note that
not all generic system services are open source, especially
when it is related to decryption/encryption or interactions
with OEM hardware.

Of the 115 analyzed vulnerabilities in Android code bases,
only 18 have been fixed by adding additional sanity checks of
input parameters. Another 12 vulnerabilities ‘disappeared’
during several major Android version upgrades either be-
cause 1) the corresponding source codes (or API) have been
deleted; or 2) new updates in other parts of the source codes
accidentally bypass the vulnerable source codes. For exam-
ple, some crashes are caused by a recursive call in the Re-

moteView class (see Fig. 6). Similar crashes disappeared af-
ter Android 5.0. We looked into the source codes and found
this is not because the bug has been fixed, but because in
new versions of Android a faulty transaction will create an
additional Exception before it reaches the vulnerable codes.
The additional Exception is properly caught and acciden-
tally avoids the fatal crash caused by the real vulnerability.
We do not consider this as a ‘fix’ since an attacker can still
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No Source Codes
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Figure 13: Number of the vulnerabilities that are fixed, disap-
peared and unfixed.

recreate the crash by manually crafting a transaction which
bypasses the new code updates. Fig. 13 illustrates the pro-
portion of vulnerabilities that are fixed, disappeared and un-
fixed. We have already submitted all unfixed vulnerabilities
to AOSP.

6.4 Runtime Diagnostics and Defenses
It will be helpful if Android can provide some real-time

defense against potential vulnerabilities even after the ROM
has been deployed on end-users’ devices. Here, we focus on
specific defenses on the Binder layer, excluding generic de-
fenses such as Address Space Layout Randomization (ASLR),
SELinux, etc. They have been discussed extensively esle-
where [22, 33, 35] and are not specific to our scenario. Basi-
cally, there are two potential defenses one can provide on the
Binder surface during runtime: (i) intrusion detection/pre-
vention, identifying and rejecting transactions that are mali-
cious, and (ii) intrusion diagnostics, making an attack visible
after the transaction has already caused some damage. Un-
fortunately, both approaches are not applicable in existing
Android systems. Next, we explain why the first approach
is inherently challenging and then describe our efforts to en-
able the latter.

To provide runtime intrusion prevention, one needs to
perform some type of abnormality detection on incoming
transactions. This works by examining the input parame-
ters of valid/invalid RPC invocations and characterizing the
rules or boundaries. However, in our case, it is not prac-



Figure 14: An example report generated by our diagnostic tools.
This includes the system service under attack (0), transaction
sender (1 and 2), schema (3), position of the parsing cursor (4)
and raw content (5).

tical for the following reasons. First, Binder transactions
occur at a very high frequency but a mobile device has only
limited energy and computation power. Second, parame-
ters in Binder transactions are very diverse, codependent,
and evolving dynamically during runtime, and hence clear
boundaries or rules may not exist. Third, end-users are not
likely to accept even the smallest false-positive rate. One
can, of course, build a very conservative blacklist-based sys-
tem and hard-coding rules of each potential vulnerability in
the database. However, this seems unnecessary, especially
when Android nowadays supports directly pushing security
updates (patches) to devices of end-users.

An alternative solution is to diagnose, instead of prevent
problems. It would be helpful if we can provide more vis-
ibility on how malicious transactions actually undermine a
device. Even though this cannot stop the single device from
being attacked, we can still utilize the collected statistics
to develop in-time security patches, benefiting the vast ma-
jority of end-users. However, it is impossible to conduct in-
formative diagnostic on the Binder layer even for developers
with adb access. This is due to a lack of transparency/audit-
ing on IPC transactions. Essentially, when a system service
fails, no one knows why it crashed and who crashed it with-
out proper OS-level support. This, also known as attack
attribution, has not yet received enough attention from the
research community. To fill this gap, we propose a system-
layer diagnostic tool and demonstrate its use for more in-
depth analyses.

Our diagnostic tool provides three important functional-
ities: 1) when a service fails when processing an incoming
transaction, the sender of the transaction will be recorded
and the user will be warned with a visual prompt; 2) de-
tailed information of the failed transaction, including the
content, schema and parsing status will be dumped into a
report for future forensics; 3) a signature of the transaction
will be generated and the user can review it and choose to
block future occurrences of the same transaction. These,
together, capture a snapshot of the IPC stack in case of a
potential attack. This snapshot can be triggered by a crash,
for DoS attacks, or by access to sensitive/privileged APIs,
for privilege escalation attacks.

The diagnostic tool is implemented in a similar way as
the recording component of BinderCracker, by instrument-
ing the Binder framework and the Parcel class. We further
retrieve the sender of each transaction by calling Binder.

getCallingUid() in the victim system service, and get the
package name of the sender by querying the PackageMan-

Figure 15: User receives a visual prompt in case of transaction
failure and can choose to block it to counter continuous DoS at-
tack.

agerService with the retrieved uid. The same flow is also
used to support permission checks in Android system ser-
vices. The schema of each transaction is constructed and
maintained during runtime by tracking the de-serialization
process of the Parcel. Whenever an Exception is thrown
and not caught by any of the Exception handling blocks,
we will dump the transaction information we maintained
as a separate report. The parsing information will be ap-
pended, indicating which parameters the service is parsing
(have just parsed) when the failure/attack happens. The sig-
nature of the transaction will be recorded and the user will
be prompted with a Notification (see Fig. 15). End-users can
choose to block transactions with the same signature in the
future to mitigate continuous DoS attacks. Fig. 14 presents
an example report generated by our diagnostic tool. This
marks an essential step towards more sophisticated runtime
analysis, such cross-device analytics.

7. DISCUSSION
We have assessed a risky attack surface comprehensively

which has long been overlooked by the system developers
of Android. As our experimental results demonstrated, new
vulnerabilities are still emerging on this attack surface and
BinderCracker can help eliminate potential vulnerabilities
in future releases of Android. The lessons learned can tran-
scend to other platforms facing similar issues, such as ve-
hicular systems (CAN buses and ECUs), wearable devices,
etc. We highlight that, although many systems adopt a
client–server model in the design of their internal system
components, they rarely follow the security standards of a
real client–server model as in a networked environment. In
many scenarios, a component may fall into the wrong hands
and create serious security threats.

Our context-aware fuzzing is generic and not limited to
system services. In fact, it also works for services exported
by user-level apps. For example, Facebook alone exports
more than 30 services to other apps which forms a large at-
tack surface. By performing fuzzing on this interface, more
app-level vulnerabilities are expected to be unearthed. How-
ever, due to the unavailability of source codes, it is difficult
to analyze the root causes and security implications of the
identified vulnerabilities. Note that, although lack of source
codes won’t affect the discovery of vulnerabilities, it does
make it more difficult to understand their implications.

8. CONCLUSION
In this paper, we conducted an in-depth analysis on an

emerging attack surface in Android. We summarized the
common mistakes made by system developers that produces



this attack surface and highlight the importance of testing
and protection on the Binder interface, the actual trust
boundary. We designed and implemented BinderCracker,
a precautionary testing framework that achieves automatic
vulnerability discovery. It supports context-aware fuzzing
and performs 7x more effectively than a simple black-box
fuzzing approach. We also addressed the urgent problem of
attack attribution for IPC-based attacks, by providing OS-
level runtime diagnostics support. These mechanisms are
useful, practical and can be easily integrated into the devel-
opment/deployment cycle of Android.
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