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Abstract—Modern electric vehicles are equipped with an ad-
vanced battery management system, responsible for providing the
necessary power efficiently from batteries to electric motors while
maintaining the batteries within an operational region. Because
the discharge-rate and temperature affect battery health and
efficiency significantly, batteries should be managed to mitigate
their discharge and thermal stresses.

In this paper, we develop a real-time, efficient integrated
system for managing the discharge-rate and temperature of
batteries. To achieve this objective, we first construct a prognosis
system predicting the likely states of batteries’ capacity and
capability. Based on the prognostic estimation of the impact of
the temperature and discharge-rate on the performance, we solve
an optimization problem to search for efficient discharging and
cooling scheduling. Our experimentation and simulation results
demonstrate that the proposed management enhances system
performance up to 85.3%.

I. INTRODUCTION

Electric vehicles (EVs) powered by batteries are the key in
reducing global warming and rising fuel cost. However, they
have not fully replaced internal combustion engine vehicles
due mainly to their high price resulting from the high battery
cost and a risk of explosion under extreme conditions. For
instance, Tesla Motors plans to invest 2 billion dollars within
next three years to produce cheaper batteries for EVs via
mass production [1]. An effective battery management system
(BMS) is a must in addressing the challenges of EVs; efficient
charging/discharging can reduce the required number of battery
cells and the charging frequency [2–4]; thermal management
improves battery’s capacity while protecting batteries from fast
performance degradation and explosion [5–7].

The methods of controlling discharge-rate and temperature
are considered for deployment in EVs, since they are known
to improve the battery capacity and lifetime. However, there
are several obstacles to overcome in order to optimize and
deploy solutions in real vehicles. First, an accurate estima-
tion of battery behavior related to the battery performance
and its degradation is very complicated. While the battery
behavior varies non-linearly with temperature and the required
discharge-rate, their prediction requires the understanding of
entire battery electrochemical processes. This difficulty of
accurate prediction makes it harder to choose/control the
discharge-rate and temperature of batteries. Moreover, the
behavior and performance of batteries in a pack are not
homogeneous; battery packs’ performance and behavior are
not expected to be the same even during the manufacturing

stage. Enhancing one aspect of the performance (e.g., battery
lifetime) may also affect the other aspect (e.g., capacity). For
example, battery capacity improves temporarily at “instant
high temperature” due to the increased chemical reaction rate
and ion mobility. However, the “cumulative exposure to high
temperature” causes the permanent lifetime to decline because
of its acceleration of irreversible side reaction. Also, we should
consider the timely scheduling of charge/discharge as well as
thermal control, because batteries would otherwise be over-
heated or over charged, potentially leading to catastrophic ac-
cidents. This requires determination of deadlines to protect the
batteries from significant loss of performance and/or reliability.
These obstacles call for an integrated cyber-physical system
(CPS) in which batteries and energy management devices are
physical components. We should thus take all the entities into
account, and achieve effective and timely control to improve
battery performance based on physical properties of the system
components.

To this end, this paper proposes a prognosis scheme
and a real-time scheduling algorithm for controlling the
discharge/charge current and temperature to extend battery
operation-time within its warranty period. The operation-time
is defined as the “cumulative time for batteries to provide the
required power after a full charge” [2]; with a longer operation
time, we can drive farther or longer with the same amount
of energy. Note that battery capacity monotonically decreases
over time, because the performance of a battery degrades over
time. Therefore, the battery capacity at any time during the
warranty period is at least as much as that at the end of
warranty period. That is, an efficient BMS must provide the
required power for an extended operation time even at the end
of warranty period.

To control the battery discharge/charge current and temper-
ature efficiently to maximize battery operation-time, we must
first characterize the impact of discharge/charge current and
temperature on battery behaviors that affect battery operation
time and its degradation. To construct an accurate battery
behavior model for prognosis, we use two regression schemes:
symbolic regression for a generic form of battery behaviors
model and linear regression for tuning the generic model to
each battery pack. Based on the behavior model, we can then
schedule the discharge/charge and temperature of batteries to
maximize operation-time (to) within the warranty period. An
analysis of the optimal solution allows us to derive an efficient
real-time scheduling policy for controlling discharge-rate and
cooling of batteries so as to achieve our goal.



The main contributions of this paper are to:

• develop a prognosis system that constructs the model
form and its coefficients using symbolic regression,
which is the first attempt of applying the symbolic
regression to battery modeling;

• design a real-time scheduling framework to determine
both battery discharge/charge rate and temperature to
maximize battery operation-time during the warranty
period based on the model construction; and

• demonstrate the efficiency of the proposed system via
an in-depth, realistic evaluation.

The paper is organized as follows. Section II provides the
background of battery performance and our target BMS archi-
tecture. Section III formally states the problem from a cyber-
physical perspective. Section IV describes how we construct
battery behavior models for predicting batteries’ future states,
and Section V details how to schedule discharge/charge current
and battery temperature for improving battery performance
based on the battery behavior models. Section VI evaluates
the proposed battery behavior prediction using our behavior
models, and performance optimization. Finally, the paper con-
cludes with Section VII.

II. TARGET BMS ARCHITECTURE

This section introduces our target BMS architecture for
EVs. We first describe the requirements of a good BMS for
electric vehicles as shown in Fig. 1, and then our target BMS
architecture.
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Fig. 1. A good BMS allows electric vehicles (EVs) to drive longer distance
and time (longer operation-time) for given batteries.

A. What is a good BMS?

A battery pack in EVs supplies DC power to an inverter
which operates the electric motors in EVs. To operate motors,
a power inverter needs an applicable input voltage during the
vehicle’s operation. Therefore, a good BMS enables drivers to
use their vehicles for a long operation-time by maintaining
the output voltage no less than the applicable motor input
voltage as shown in Fig. 1. The operation-time should also
be kept long enough during the battery warranty period;
otherwise, the vehicle requires a larger battery pack and/or
more batteries must be recharged more frequently. Therefore,
we must consider battery degradation to meet the specified
warranty.

However, current battery systems still cannot achieve the
required performance and replace the internal combustion
engines mainly because they do not utilize batteries’ full
capacity and capability in real vehicle applications. The power
requirement of an EV is high and changes abruptly [8–10],
because drivers frequently accelerate/decelerate their vehicles

that weigh at least one ton during driving. It can also cause
inefficiency and/or damage to battery, potentially leading to
large energy losses and fast voltage drop within the warranty
period. Therefore, a battery management system (BMS) in an
EV is responsible for providing motors with the required power
while protecting the battery cells from damage, excessive
energy loss and life reduction caused by short bursts of power
transfer. To achieve such functions, a BMS is often comprised
of (i) a large number of battery cells that can supply the high
current (hundreds of amperes) with the high output voltage
(tens or hundreds of volts), and (ii) an auxiliary system to
mitigate thermal and discharge stresses.

B. Target BMS architecture

We consider a BMS architecture which consists of a
regenerative braking system (Section II-B1), a discharge-rate
management system (Section II-B2), and a thermal manage-
ment system (Section II-B3) as shown in Fig. 2. Although the
architecture is relatively simple, it is equipped with essential
functions and structures for efficient battery management, and
each component is widely studied in battery and automotive
industries. It allows batteries to save energy generated from
a braking system, mitigate the discharge/charge stress via
an energy buffer, and regulate the thermal condition for the
efficient battery operation, which are detailed next.
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Fig. 2. A target battery management architecture for EVs: a regenerative
braking system (RBS) enables a battery system to store dissipated energy
from the braking system, and discharge-rate and thermal management reduce
energy loss while mitigating the stress of batteries.

1) Regenerative braking system (RBS): To reuse the energy
dissipated in their braking system, most EVs are equipped
with a regenerative breaking system (RBS) in order to increase
operation-time. During braking, the RBS converts the vehicle’s
kinetic energy into electrical energy that can be stored in
batteries for reuse to power the vehicle. Its effectiveness has
been substantiated in terms of fuel economy [11–13]. Although
the RBS improves the utilization of energy, the high recharging
current for a very short period of time has a negative impact
on the battery’s health. Therefore, researchers introduced an
auxiliary system as described next.

2) Discharge-rate management: Battery health and perfor-
mance are damaged by short bursts of discharging current
supplied to motors and recharging current generated from the
RBS. To remedy this problem, researchers proposed deploy-
ment of ultra-capacitors (UCs); a BMS equipped with UCs and
batteries is called a hybrid energy storage system (HESS). In
a HESS, UCs are used as an energy buffer to smooth rapid
power fluctuations in and out of the battery of an EV [3,
14–16]. Therefore, a HESS enables batteries to supply the
average power required for operating vehicles, while UCs
provide the sudden power surges required for acceleration and
also accommodate instantaneous regenerative energy from the
RBS.



3) Thermal management: Along with discharge-rate man-
agement, thermal management is one of the most important
factors for a reliable BMS, and existing BMSes have thus
employed thermal management policies so as to prevent battery
cells from very high and low temperatures which may likely
cause explosion and malfunction, respectively. Basically, the
BMS monitors the temperature of battery cells, and triggers
the thermal control when the temperature deviates from the
normal operational range through “thermal fins”, “air cooling
system”, or “liquid coolant system” [6, 7, 17, 18]. This control
includes both cooling and heating, and existing controls are all
or nothing, i.e., they cool/heat all the battery cells connected
in parallel. Active fine-grained thermal control has also been
proposed to reduce the safety margin, and then enhance the
system performance based on its thermo-physical characteris-
tics [5]. In principle, we increase the battery temperature for
accelerating its chemical reaction if a large amount of power is
required, and decrease the temperature when the battery needs
to rest.

III. PROBLEM FORMULATION AND SOLUTION

Thus far, we have discussed the requirements of a good
BMS and our target BMS architecture meeting the require-
ments. To develop a good BMS, we should extend operation-
time during the warranty period by maintaining both discharge-
rate and temperature of battery within an efficient operational
range. Presented below are a formal statement of our BMS
problem and and an overview of our solution approach.

A. Problem statement

We have already introduced the target BMS architecture
that can regulate battery temperature and discharge-rate for
efficient use of batteries. Specifically, the architecture regulates
the temperature and discharge rate during every time interval,
as described in Fig. 2 and the following matrix:

X =

 (Ibat, Tbat)
11 ... (Ibat, Tbat)

1n

... ... ...
(Ibat, Tbat)

m1 ... (Ibat, Tbat)
mn

 ,

where (Ibat, Tbat)
ij are the battery discharge current and tem-

perature during the jth time interval of cycle i. A row vector
consists of inputs (Ibat, Tbat) at every time interval from the
start to the end of the battery operation (consisting of n
intervals) in a cycle. Note that a charge/discharge cycle is
defined as the process of fully charging a rechargeable battery
and discharging it to a load. We need m input vectors for every
cycle in the warranty period (consisting of m cycles). There-
fore, battery temperature and discharge rate are the control
knobs that can be scheduled at every time interval to improve
the system performance in EVs as seen in Fig. 3. For instance,
if we scheduled to store much energy into UCs from batteries
and an RBS when the vehicle decelerates, we can supply
more power when it accelerates while maintaining the battery
discharge rate within an efficient operational range. Our goal is
to maximize system performance by making the battery supply
the required power to EV as long as possible by selecting the
control knob matrix X . To evaluate the system performance,
we introduced the operation-time (to) which measures how
long the battery provides the EV the required power (Preq(t)).
To increase the operation-time of battery, we should maintain
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Fig. 3. An example of discharge current (Ibat) and temperature (Tbat) controls
under a given power requirement (Preq(t))

battery output voltage (Vo) above the applicable voltage (Vapp)
of motors as long as possible because it is the minimum
required voltage for operating electric motors as shown in
the last graph of Fig. 3. We also study the performance
degradation of a battery, since it affects the operation-time (to)
at later cycles in the warranty period. We measure an internal
resistance (Rint) at the first interval of each cycle to see the
changes in the degradation. Note that the degradation depends
on how the battery is used in previous cycles. Therefore, we
should consider how battery degradation would change due
to the control knob matrix X . Fig. 3 shows an example of
their discharge-rate and temperature control over time (control
interval) within a cycle for the given power requirement. The
operation-time ends when the output voltage of battery reaches
a certain pre-determined voltage value (which is dependent
on the motors in EVs). During the cycle, battery degrades by
∆Rint.
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Fig. 4. The kth row of the control knob matrix X and the battery degradation
level (Rk

int) at the kth cycle affect battery operation-time at the kth cycle. Our
purpose is to find the control knob matrix X that maximizes the minimum
operation-time.

With the above system model, assumptions and notations,
Fig. 4 depicts our problem, which can be formally stated as:

Given power requirement {Preq(t)}0<t<tmax , n maximum con-
trol intervals, m warranty cycles, battery temperature upper
bound (Tub) and lower bound (Tlb), and battery discharge
current upper bound (Iub) and lower bound (Ilb),

determine the control knob matrix X consisting of schedul-
ing vectors Xi = {(Ibat, Tbat)

i1, . . . , (Ibat, Tbat)
in} of battery



discharge current (Iijbat) and temperature (T ijbat) at each control
interval j ∈ {1, . . . , n} for each cycle i ∈ {1, . . . ,m} so
as to maximize the minimum operation-time min{t1o , . . . , tmo }
within the warranty cycles (m). The objective function of this
optimization can then be defined as

argmax
X

min{t1o , . . . , tmo },

subject to Tlb < T ijbat < Tub,

Ilb < Iijbat < Iub.

The reason for our focus on the minimum operation-time is
that we want to maximize the EV’s drivability during the entire
warranty period. By finding the minimum operation-time, we
can guarantee that the BMS is able to supply energy for the
operation-time at any cycle within the warranty period. We
also assume that the degradation in a cycle does not affect
the operation-time in that cycle to simplify the problem. This
assumption is reasonable because battery degrades very slowly
and its change has a negligible influence on battery capacity
within a cycle as seen in the supplementary file [19]. This
assumption allows us to consider the control knob’s impact on
the operation-time and battery degradation separately.

We exploit both discharge-rate and thermal management
to prevent the battery from a large voltage drop caused by
high required current. By pre-charging UCs and transferring
charges when the battery is required to supply large current,
discharge-rate management can relieve the battery from dis-
charge stresses while providing the required current to the
electric load. Also, we can increase battery output voltage tem-
porarily by increasing battery temperature, because it decreases
battery internal resistance [5]. Boosting the output voltage
via the discharge current and thermal management requires
power, which may reduce the available energy from the battery
for future usage. That is, we have to maintain battery output
voltage while consuming the least amount of energy (Etotal),
since the output voltage is approximately proportional to the
amount of the remaining energy in the battery. Therefore, to
efficiently maintain battery output voltage, we have to consider
the energy consumption as well.

B. Solution Approach from a CPS Perspective

Battery management requires understanding of chemical
reactions since generating electricity entails complex chemical
processes related to various physical conditions. Battery output
voltage is also affected by the physical conditions such as
battery temperature and discharge-rate. Therefore, we should
figure out the relationship between the output voltage and
controllable physical conditions (control knobs). However, it is
difficult to understand the electrochemical processes to capture
the relationship between them. Also, each type of a battery has
its own chemical reaction mechanism that generates energy.
To make matters worse, battery behaviors and its performance
are not the same even for the same type of batteries. To meet
these challenges, we model battery output voltage dynamics
adaptively.

Fig. 5 depicts our CPS-perspective approach. Instead of
using a pre-defined model, we first build a generic model
form that captures the battery behaviors related to measurable
physical quantities. To adaptively construct its generic model
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Fig. 5. Approach overview: Section IV describes how to refine a battery
behavior model, and Section V propose how to determine control knobs (Ibat
and Tbat) to maximize the performance based on the refined battery behavior
model.

form, we employ an efficient regression scheme utilizing
experimental data to distill online physical parameters that
affect the battery behavior significantly. The generic model
is then “customized” for each battery pack because each pack
in different vehicles has different characteristics. By using the
model constructed above, we solve the problems and choose
efficient control knobs while considering its performance. Fi-
nally, we propose a real-time scheduling policy that determines
the discharge-rate and temperature of battery via an analysis
of the solution.

IV. CONSTRUCTION OF MODELS FOR BATTERY
PROGNOSIS

As discussed in Section III-B, we should characterize the
impact of the control knobs on battery behaviors (Vo, Rint)
and system performance (min{to}). To this end, we first
explore measurable physical quantities that impact the system
performance, and then describe how to extract effective physi-
cal quantities and/or their combinations. Finally, we construct
battery behavior models based on these effective physical
quantities for prognosis of batteries as shown in Fig. 6.

B. Searching mathematical expression 
describing battery models 

Vo = f1(Q, I, T, …)        Rint = f2(Q, I, T, …) 

A. Measurable physical values 

 
Operators  

 + - X ÷ Exp Log Q I V T 

Fig. 6. Building battery behavior models (output voltage and degradation
model) for prognosis of batteries

A. Candidate physical quantities

Operation-time is the most important performance metric
as it represents how long batteries can supply the required
power, while degradation rate captures how quickly the
operation-time deteriorates. So, we should figure out physical
quantities affecting the battery behaviors and performance
(operation-time and degradation rate) to prognose the batter-
ies. Based on existing studies, we have identified candidate
physical quantities affecting the battery operation-time and
degradation as summarized in Table I.

1) Physical quantities affecting operation-time: We iden-
tified three physical quantities that greatly affect battery
operation-times: battery discharge/charge current (Ibat(t)),
the amount of discharges (Qd(t)), and battery temperature
(Tbat(t)).

The discharge/charge current (Ibat(t)) is the most important
physical quantity influencing the system performance in vari-
ous ways [2, 20, 21]. A high discharge current reduces battery



System performance Physical quantity Description

Operation-time (to)

Ibat(t) Battery discharge/charge current
dIbat
dt (t)

The rate change of
battery discharge/charge current

dVbat
dt (t)

The rate change of
battery voltage

Qd(t) =
∫ t
0
Ibat(τ)dτ The amount of discharged charge

Tbat(t) Battery temperature

Degradation rate at
kth cycle (∆Rk

int)

1

tko

∫ tko
0 |Ibat(t)|dt

The average amount of
battery discharge/charge current

Qk
d =

∫ tko
0 Ibat(t)dt The amount of discharged charge∫ tko

0 Tbat(t)dt Accumulative temperature exposure

TABLE I. PHYSICAL QUANTITIES AFFECTING SYSTEM PERFORMANCE
(OPERATION-TIME (tO ) AND BATTERY DEGRADATION (∆RINT ))

operation-time because such a high discharge current causes
its output voltage to drop, and the battery to provide less
energy than the battery with a lower discharge current, called
the rate-capacity effect. On the other hand, during periods of
low or no discharge current, the battery voltage can recover
to a certain extent, which is termed the recovery effect. For
instance, a high load causes a temporary voltage drop, and
then a part of the cell voltage is recovered after a certain
period of rest as shown in Fig. 7. The figure also shows that
battery output voltage is dependent on the remaining charge
in the battery, or State-of-Charge (SoC) = 1 − Qd(t)

Qmax
[22].

Note that we can estimate the SoC based on the amount of
discharge current (Qd(t) =

∫ t
0
Ibat(τ)dτ ). Meanwhile, battery

temperature (Tbat(t)) affects its operation-time. A higher tem-
perature stimulates the mobility of electron or ion, temporarily
increasing its capacity [23] with a reduced internal resistance.
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Fig. 7. The output voltage (Vbat) and state-of-charge (SoC) when a battery
is discharged at 23 A/m2 of current and rested at 0 A/m2 repeatedly.
The results are extracted from evaluation tools/settings to be described in
Section VI.

2) Physical quantities affecting battery degradation: Dur-
ing the warranty period, the operation-time keeps on decreas-
ing due to battery degradation (∆Rint), and depends on the
average amount of discharge/charge current ( 1

tko

∫ tko
0
|Ibat(t)|dt),

the amount of emitted charges (Qkd ), and cumulative temper-
ature exposure (

∫ tko
0
Tbat(t)dt) at the kth cycle as shown in

Table I. The average charge/discharge current ( 1
to

∫ to

0
|Ibat|dt)

affects the degradation rate of a battery. The battery degrada-
tion is known to accelerate exponentially with an increase of
the discharge current density [24]. Also, performance degrada-
tion rate is closely related to how much energy is discharged
in a cycle (Depth-of-Discharge, DoD) [25], which can be
measured by SoC (|SoC|t=to ) at the end of the cycle. On the
other hand, the cumulative temperature exposure (

∫ to

0
Tbatdt)

affects the degradation rate as explained next. The level of
battery performance degradation depends on the time and
thermal stresses to which the battery has been exposed, and it
can be represented by a rise of battery internal resistance [26].
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weights of genes;

Step 4 : Check its fitness and jump to Step 2 if the fitness is

not satisfied.

Fig. 8. Symbolic regression process

B. Construction of a battery behavior model via symbolic
regression with genetic programming

We have investigated physical quantities affecting battery
output voltage and degradation. Here we discuss a systematic
way to extract physical quantities and construct battery behav-
ior models describing how they affect the output voltage and
the rate of degradation from data. We first introduce symbolic
regression with genetic programming for constructing battery
behavior models. Then, we present the process of building
a battery behavior model via the symbolic regression while
addressing the issues in exploiting the regression scheme.

1) Symbolic regression with genetic programming: Sym-
bolic regression is a type of regression analysis. This regression
searches the space of mathematical expressions to find the
model that best fits a given data set, both in terms of accuracy
and simplicity [27, 28]. Unlike traditional linear and nonlinear
regression methods that fit parameters to an equation of a given
form, symbolic regression searches both parameters and form
of equations simultaneously. Searching for effective genes
is done by genetic programming, which is an evolutionary
algorithm-based method (inspired by biological evolution) to
find the best mathematical expression as shown in Fig. 8 [29].
The symbolic regression with genetic programming has al-
ready been substantiated as its effectiveness for automated
processes distilling the data into natural law model in the
form of analytic mathematical expression [30]. Therefore, we
exploit this regression scheme to construct accurate battery
models, because chemical reactions occurring in batteries
follow physical laws.

2) Battery behavior model construction process: Fig. 8
shows an example of the symbolic regression process to
generate the battery behavior model. For the first generation,
we generated genes (QI +I , I+T ·Q, QT + log T ) in a random
way based on measurable physical quantities and mathematical
operations. Then, we constructed the first battery behavior
model consisting of the random genes with their weights. The
model is tested in terms of its fitness, and then, if the fitness is
not satisfied, we should explore other models to find a better
one in a search space. In such a case, we generate genes for the
next generation via a mutation (QI +I → Q

I −I) and a crossover
(QT + log T → T + log Q

T ) based on the parents’ genes that
have low weights. We execute a reproduction (I + T · Q) of
genes with large weights to leave the genes that are likely to
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… … 

Step 1 : Execute symbolic regression 50 times and store the generated

genes from the regression;

Step 2 : Sort the generated genes in order of occurrence and select

genes that frequently occurs;

Step 3 : Construct generic behavior models based on the selected genes;

Step 4 : Check its fitness.

Fig. 9. Algorithm for constructing a battery behavior model

critically affect the model. We check its fitness and repeatedly
generate new generations until the fitness is satisfied.

In applications exploiting the symbolic regression, the
identification of nontrivial relations is a major challenge. For
example, x

1
100 can be selected for the gene because it may

improve its fitness even if it would not affect the results
much. Our key insight into identifying nontrivial genes is
that nontrivial genes would appear more than trivial genes. To
find the most effective nontrivial genes for modeling battery
behavior, we iterate the symbolic regression many times. Then,
we sort the genes in the order of occurrence, and select the
frequently appeared genes. For instance, at step 1, we executed
50 symbolic regressions and stored the generated genes. We
select dI

dt , T
I , log T and so on, because it was generated

frequently and thus likely to be nontrivial genes. Based on the
extracted nontrivial genes, we construct the battery behavior
model and repeat this process until the fitness is good enough
to use them. Fig. 9 shows the entire process for constructing
a battery behavior model.

V. SCHEDULING OF BATTERY TEMPERATURE AND
DISCHARGE/CHARGE CURRENT

So far, we have abstracted battery behaviors affecting its
operation-time and degradation rate. We now use this abstrac-
tion to systematically schedule the control knobs for solving
the problem described in Section III-A. Before presenting a
scheduling policy, we first determine the relationship between
performance metrics (to and ∆Rint) and control knobs (Ibat and
Tbat) to get an insight into efficient schedulings of the control
knobs.

UC usage (|IUC| = |Itot  - Ibat |) d
eg

ra
d

at
io

n
 r

at
e

 

o
p

er
at

io
n

-t
im

e 

Temperature (Tbat) d
eg

ra
d

at
io

n
 r

at
e

 

o
p

er
at

io
n

-t
im

e 

UC usage ↑  Degradation rate ↓ 
      Operation-time ↓ 

Temperature ↑  Degradation rate ↑ 
   Operation-time ↑ 

Fig. 10. The effects of the thermal and discharge-rate control on the system
performance.

A. Relationship between operation-time and degradation rate

Battery operation-time, degradation rate, and control knobs
are all closely related to each other. For example, old batteries
whose internal resistances are high, cannot operate longer to
power EVs than new batteries, recorded as follows:
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Given 𝑅int
1  

Target 𝑹𝒊𝒏𝒕
𝟐 (𝑹𝒖𝒃

𝟏 ) 

𝑡o
1  𝑿𝟏 = 𝑰𝐛𝐚𝐭

𝟏 , 𝑻𝐛𝐚𝐭
𝟏 , … , 𝑰𝐛𝐚𝐭

𝒏 , 𝑻𝐛𝐚𝐭
𝒏 𝟏

 

𝑡o
2 𝑋2 = 𝐼bat

1 , 𝑇bat
1 , … , 𝐼bat

𝑛 , 𝑇bat
𝑛 2

 

Target 𝑹𝒊𝒏𝒕
𝟑 (𝑹𝒖𝒃

𝟐 ) 

Target 𝑹𝒊𝒏𝒕
𝒎 (𝑹𝒖𝒃

𝒎−𝟏) 𝑡o
𝑚 𝑋𝑚 = 𝐼bat

1 , 𝑇bat
1 , … , 𝐼bat

𝑛 , 𝑇bat
𝑛 𝑚

 

Schedule { 𝐼bat
1 , 𝑇bat

1 ,…} in 𝑿𝒌  
 

to maximize 𝒕𝐨
𝒌 

Sec. V-B. scheduling algorithm in a single cycle 

Se
c.

 V
-C

. s
ch

ed
u

lin
g

 a
lg

o
ri

th
m

 in
 

th
e 

w
h

o
le

 w
a

rr
a

n
ty

 p
er

io
d

 

Fig. 11. The entire scheduling process. Section V-B presents an algorithm
determining a control knob vector (Xk) for maximizing the operation-time
(tko ) in a single cycle. Section V-C provides an algorithm of searching for the
target degradation levels (Rub) of each cycle for maximizing the minimum
operation-time (min{t1o , . . . , tmo }).

• Riint ↑ (↓) =⇒ tio ↓ (↑).

Also, the degradation rate depends on how the battery is used.
Fig. 10 presents a general trend of operation-time and degra-
dation rate related to the temperature and discharge/charge
current. For instance, excessive use of UCs degrades its
effectiveness because storing/extracting charge to/from UCs
causes additional energy dissipation due to their internal resis-
tance. In contrast, increasing use of UCs decelerates battery
degradation since it can reduce battery discharge/recharge
stress. Meanwhile, high temperature increases battery capacity
by reducing battery internal resistance during an operation
cycle. Unfortunately, continuous/frequent exposure to high
temperature accelerates battery degradations. In summary, the
following relation holds:

• tio ↓ (↑)⇐⇒ ∆Riint ↓ (↑).

These trends are used to maximize the minimum operation-
time during the warranty period. Basically, we use a different
control policy for a different cycle during the warranty period.
For example, during very early cycles, we increase use of
UCs at low temperature for future use of battery. In contrast,
during late cycles of the warranty period, we focus only on its
operation-time, rather than the degradation rate, because we do
not have to consider the degradation level after the warranty
period.

B. Scheduling algorithm in a single operation cycle

Fig. 11 shows the entire process of determining the control
knob matrix X . We first represent a scheduling policy to
maximize operation-time (to) for the target degradation level
(Rint) in a single cycle. Note that the target degradation
level (Rk+1

int ) is key in regulating the operation-time (to) of
each cycle so as to maximize the minimum operation-time.
Section V-C details how to determine the target degradation
levels (Rk+1

int ) to maximize the minimum operation-time during
the entire warranty cycle.

1) Scheduling requirement in one operation cycle: To
maximize the operation-time in a cycle, we should maximize
the time duration during which battery output voltage is within
an applicable range for motors’ operation while supplying
the required energy. In the example in Fig. 12(a), the battery
cannot supply the required power with an applicable voltage
after initial to, the operation-time of this scheduling, potentially



Algorithm 1 Algorithm for optimization in a cycle
1: procedure PROC1(Rub,Rint,Preq)
2: Xk ← Xk that has no additional power for the auxiliary devices;
3: /* Reduce ∆Rint via Xk control if it is larger than the target ∆Rint

*/
4: while Rub < Rint do
5: Set a target accumulative physical quantities that reduce ∆Rint
6: end while
7: Xk ← Search Xk maximizing to at Preq and maintaining the target

cumulative physical quantities via the discharge current and temperature
scheduling (Supplement file)

8: /* We can estimate to and ∆Rint at Xk for supplying Preq via the
behavior models constructed in Section IV*/

9: return [to, Rint, Xk];
10: end procedure

Vo 

time 
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Tbat 
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max 𝑡o 
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time 
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Regulate {𝑇bat
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Rint + ∆Rint  < Rub 

Rint + ∆Rint  = Rub 

(a) 

(b) 

(c) 

Initial Tbat 

Fig. 12. An example of the temperature scheduling in a cycle

stopping the motor operation. To increase operation-time,
we have to compensate the voltage shortage by relieving
the discharging stress or helping chemical reactions in the
battery via discharge current and/or temperature control. In
the meantime, we have to maintain the battery degradation
level (Rint) within the required range (< Rub) for its future
usability. The next subsection provides a detailed algorithm for
extending operation-time while keeping the degradation rate
below the specified level.

2) Algorithm for a single cycle: Algorithm 1 describes
how to determine vectors of (Iibat, T

i
bat) in a single cycle.

Initially, the minimum use of the thermal fins or energy buffers
is set (Line 2). It would not be the best solution because
the required degradation rate may not be satisfied and/or the
output voltage of battery could be dropped quickly as shown
in Fig. 12 (a). First, to meet the required degradation rate
at the kth cycle, steps (Line 4–6, Fig. 12 (b)) determine the
target cumulative physical quantities affecting the degradation
described in Table I. The final step (Line 7, Fig. 12 (c))
determines a pair of (Iibat, T

i
bat) of each control interval to

compensate as many voltage drop periods as possible while
maintaining the required cumulative physical quantities. A
detailed algorithm for Line 7 is presented in the supplementary
file [19].

Algorithm 2 Algorithm for optimization within a whole period
1: procedure PROC2(Nw, Rub, R

1
int, Preq)

2: [t1o , R2
int,X

1] ← PROC1(∞, R1
int, Preq);

3: for i = 2; i ≤ Nw; i++ do
4: [tio, Ri+1

int ,Xi] ← PROC1(∞, Ri
int, Preq);

5: Ri−1
UB ← Ri

int
6: while tio 6= ti−1

o do
7: // To increase to, decrease Rint
8: Ri−1

ub ← Ri−1
ub − 0.01;

9: [ti−1
o , Ri

int,X
i−1] ← PROC1(Ri−1

ub , Ri−1
int , Preq);

10: [tio, Ri+1
int ,Xi] ← PROC1(Ri

ub, Ri
int, Preq);

11: end while
12: end for
13: return [to, X];
14: end procedure

Increase operation-time (to) by decreasing degradation level (Rint) 
Rint ↓    to ↑ 

Decrease degradation rate (∆Rint) for next cycles at cost of operation-time (to) 
to ↓    ∆Rint ↓ 

Maximizing ‘to’ without considering ‘∆Rint’ at 1st cycle 
Vo 

time 

Max min to at 1st cycle (a) 
Vo 

time 

Max min to at 2nd cycle (b) 

Vo 

time 

Max min to at 3rd cycle 
(c) 

Fig. 13. Determination of each target Rint to maximize the minimum
operation-time

C. Scheduling algorithm during the whole warranty period

So far, we proposed a scheduling algorithm for maximizing
operation-time in a cycle while satisfying the required degra-
dation rate (∆Rint). We now expand the algorithm for the
whole warranty period to maximize the minimum operation-
time (min {to}) based on the impact of battery thermal and
discharge-rate control on the operation-time and degradation
rate.

1) Optimization within warranty period: Algorithm 2 de-
termines the target degradation rate (Rub) for each cycle
to maximize the minimum operation-time. At the first step
(Line 2), the temperature and discharge current are scheduled
without considering the battery degradation rate as shown in
Fig. 13 (a). The battery temperature would be set only for
its safety, and therefore UCs are used as little as possible to
save additional energy consumption by the auxiliary devices.
Next, the target degradation level is regulated for the present
cycle (Line 8) to increase the operation-time during the next
cycle. Even if it may cause inefficiency in terms of the
operation-time of the present cycle, we can improve the overall
system performance by increasing the worst-case operation-
time during the warranty period. We iterate this process until
all the operation-times become similar as shown in Figs. 13 (b)
and (c).

D. Real-time scheduling algorithm

To schedule the temperature and discharge current needed
to achieve our goal, we first solve the scheduling problem
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Fig. 14. Real-time prediction and scheduling for battery discharge current
and temperature

for a given power requirement. Typically, the future power
requirement is unknown, because it depends on a number of
variables, including, but not limited to, driving conditions,
vehicle type, and road conditions. But, solving for a given
power requirement allows for the creation of an implementable
schedule. Using past power requirement patterns, we can
determine the amount of power needed for a few seconds
of battery usage [10]. Based on these patterns, we can adopt
a power requirement predictor and determine the discharge
current and temperature in real time based on the prediction
as shown in Fig. 14. We should also determine the frequency at
which discharge current and temperature must be determined
(scheduling period). This scheduling period is used to preclude
batteries from inefficient usage.

Algorithm 3 Algorithm for real-time discharge current
scheduling
1: procedure PROC3(Itot, I∗bat)
2: while Driving do
3: if Recharge then
4: Ibat = 0;
5: Sleep(pc);
6: else if Ibat < I∗bat then
7: Ibat = Itot;
8: else
9: Ibat = I∗bat;

10: Sleep(pd);
11: end if
12: end while
13: end procedure

The scheduling results shown in Fig. 18 give insight into
the real-time scheduling of the discharge current. The UCs
should be fully recharged when the braking system generates
energy. They can then supply some of the stored charge to
the motor, based on the target degradation rate. Algorithm 3
schedules discharge current in real time. It requires both the
present total discharge current (Itot) and the target battery
discharge current (I∗bat) needed to control the degradation rate.
First, when the power is recharged from the braking system,
the battery current is set to 0 to charge the UC. Then, the
discharge current is rescheduled after pc. If the battery is
discharged to the electric load, the target battery discharge
current is determined based on its amount. If it is in the
normal discharge range (Ibat < I∗bat), the battery is allowed to
supply charges to the load (Ibat = Itot). If it is outside of the
normal range, the UC provides charges to maintain the battery
discharge current (Ibat = I∗bat). Later, the discharge current is
scheduled (pd). The scheduling period (pd and pc) must be
determined carefully for real-time scheduling. Otherwise, it
may lead to additional power consumption. For instance, if
the discharge current is not rescheduled in time, the battery

discharges energy to the UC, even though the UC does not
require power. From the power requirement prediction, the
length of the discharge/charge period can be estimated (p∗d /
p∗c ). We set pd (pc) to p∗d (p∗c ) over 10. Real-time temperature
scheduling is similar to the discharge current scheduling, and
thus we omitted the result.

VI. EVALUATION

We now evaluate the proposed battery model construction
and scheduling of battery temperature and discharge/charge
current. We first describe tools and setups for the evaluation,
and then demonstrate the accuracy of battery behavior predic-
tions and performance improvement by our scheduling system.

A. Evaluation settings

To test the proposed model construction, we exploit real
data including battery discharge/charge current (Ibat), tem-
perature (Tbat), and output voltage (Vo) by using Neware’s
battery tester [31]. We measure the performance improvement
of the proposed temperature and current scheduling by using
commonly-used vehicle (Advisor 2.0) [32] and battery simu-
lator (Dualfoil5) [33]. To make the simulation more realistic,
we obtained real driving data from “The US Environmental
Protection Agency (EPA)” and “California Air Resources
Board” such as ARB02, SC03 and LA92.

B. Evaluation results

Our goal is to maximize the minimum battery operation-
time during the warranty period by determining efficient bat-
tery temperature and discharge/charge current. For effective
temperature and current schedules, we constructed a battery
behavior model. We evaluate the following schemes for mod-
eling battery voltage and degradation rate:

• V-LR: battery voltage model via linear regression with a
circuit-based battery model;

• V-SVR: battery voltage model via support vector regression;

• V-SR: our battery voltage model via symbolic regression
described in Section IV;

• R-LR : battery degradation rate model via linear regression
with temperature (likewise discharge current) linear degra-
dation model;

• R-SVR : battery degradation rate model via support vector
regression;

• R-SR: battery degradation rate model via symbolic regres-
sion with described in Section IV.
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Fig. 15. An example of battery output voltage predictions.

Table II shows the error of the constructed model of V-
SR, V-SVR and V-LR for battery output voltage prediction,
and Fig. 15 plots their predictions. Root-mean-square error
(RMSE) is used to measure the prediction accuracy. As shown
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Fig. 16. Degradation rate predictions. We use 12 degradation patterns from the
battery tester. We select 10 degradation patterns to build a degradation model
and validate the model with 2 remaining degradation cases. The validation
process is then repeated 6 times (6-fold cross-validation).

in this table, V-SR improves the accuracy of the model by
up to 67.9% (49.8%), compared to V-LR (V-SVR). The basis
form of V-LR is a circuit-based battery model whose internal
resistance depends on temperature exponentially [5]. However,
at low temperature, the accuracy of the model is lower than
that of V-SR, because the exponential internal resistance model
is correct only for a specific range of temperature. So, while
V-SVR predicts the output voltage more accurately than V-
LR, V-SR has the best overall prediction accuracy of the
three output voltage models. Table III and Fig. 16 show the
errors of degradation predictions. R-SR shows improvements
of prediction accuracy by 5.6% and 8.0% over R-LR and
R-SVR, respectively. That is, the degradation rate model
constructed based on various physical quantities yields an
accurate behavior model to predict the battery’s states.

Prediction methods prediction error E(Vo)

V-LR 0.00336
V-SVR 0.00215
V-SR 0.00108

TABLE II. AVERAGE ERROR OF BATTERY OUTPUT VOLTAGE
PREDICTION

Prediction methods prediction error E(Rint)

R-LR 1.626
R-SVR 1.668
R-SR 1.535

TABLE III. AVERAGE ERROR OF BATTERY DEGRADATION PREDICTION
(Rint)

1) Performance of the proposed scheduling policy: We
have evaluated the following three discharge/charge current
and temperature scheduling schemes:

• Const-TI: fixed operational temperature and discharge-rate;

• Opt-TI: our scheduling scheme described in Section IV;

• RT-TI: our real-time scheduling scheme described in Sec-
tion IV.

Minimum operation-time (to) (s)
Prediction methods ARB02 LA92 SC03
Const-TI 407 331 321
Opt-TI 451 396 595
RT-TI 407 368 554

TABLE IV. MINIMUM OPERATION-TIMES

We ran simulation and extracted operation-times during
the warranty period of each scheme under various electric
loads. The minimum operation-times are then extracted to
evaluate the schemes. As shown in Table IV, Opt-TI improves
the minimum operation-time by up to 10.8% at ARB02,
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Fig. 17. Voltage profiles during the first cycle and the last cycle (30) for
SC03 driving under Opt-TI scheduling. Compared to Const-TI, the voltage
drop was tolerable due to pre-heating the battery and lower degradation level.
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Fig. 18. UC current (IUC) profile for SC03 under Opt-TI. IUC helps
the battery when it is required to supply high power by mitigating the
discharge/charge stress to the battery.

19.6% at LA92 and 85.3% at SC03, respectively, over Const-
TI. Figs. 17 (a) and 18 present examples of battery voltage
and scheduled temperature (Tbat) and battery discharge/charge
current (Ibat) under Opt-TI during the first and the last cycles.
The algorithm pre-heats batteries and pre-charges UCs to
preclude the batteries from a fast voltage drop. By comparing
Figs. 17 (a) and (b), we can see the differences between Const-
TI and Opt-TI during early cycles and late cycles. As we
discussed in Section V-C, Opt-TI utilizes the thermal and
discharge/charge current management much at early cycles
to decelerate the battery degradation. Then, it maximizes
operation-time without considering its degradation during late
cycles. Therefore, although battery output voltage during early
cycles of Opt-TI (in Fig. 17 (b)) is lower than that of Const-
TI (in Fig. 17 (a)), Opt-TI could maintain the output voltage
within the applicable range longer than Const-TI during the
last cycle, because Opt-TI decelerated the battery degradation
during early cycles. The battery behavior models constructed
in Section IV enable our BMS to determine a pair of (Ibat, Tbat)
at each control interval under Opt-TI, because they allow
the BMS to predict battery operation-time and degradation
rate with respect to (Ibat, Tbat) schedules. The derived real-
time prediction model, RT-TI, determines the temperature and
discharge current of a given cycle, while the target degradation
rate is calculated by the model Opt-TI. The simulation shows
that the minimum battery operation-time of RT-TI is generally
similar to the LA92 and SC03 cases of the Opt-TI model.
However, certain conditions, like highly variable driving pat-
terns in one case (ARB02), reduced the operation-time of the
RT-TI model. In extreme cases, like ARB02, the minimum
battery operation-time is similar to the Const-TI.

VII. CONCLUSION

In this paper, we have proposed a new integrated BMS that
schedules the amount of energy pre-charged into UCs and bat-
tery temperature at each control interval based on the analysis
of their impact on the battery capacity and degradation. We
have also proposed a battery prognosis scheme, which is able
to predict when the battery cannot provide the required power.
Our evaluation with real battery data and realistic driving
simulation shows that the proposed schemes make a significant



improvement in BMS’s efficiency over a simple method used
in the existing BMSes for EVs.

In future we would like to improve the BMS using the
proposed architecture. Primarily, the accuracy of the prognosis
scheme and power requirement predictions should be enhanced
for efficient discharge/charge current and temperature sched-
ule. This could be achieved by increasing the accuracy of the
battery behavior and power requirement models. For this, we
have to process the model construction after acquiring lots of
battery behavior and driving data under various conditions via
a remote prognosis system. Our framework can also be used
for other types of batteries including fuel cells which have
their own power and energy densities, because battery behavior
models are extracted by using behavior data of the batteries
installed in the system, and scheduling discharge/charge cur-
rent and temperature of the batteries based on the constructed
behavior model.
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