
Rapid Prototyping and Evaluation of
Intelligence Functions of Active Storage Devices

Yongsoo Joo, Member, IEEE, Junhee Ryu, Sangsoo Park, Member, IEEE,
Heonshik Shin, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract—Active storage devices further improve their performance by executing “intelligence functions,” such as prefetching and data
deduplication, in addition to handling the usual I/O requests they receive. Significant research has been carried out to develop effective
intelligence functions for the active storage devices. However, laborious and time-consuming efforts are usually required to set up a
suitableexperimental platform toevaluateeachnew intelligence function.Moreover, it is difficult tomakesuchprototypesavailable to other
researchers and users to gain valuable experience and feedback. To overcome these difficulties, we propose IOLab, a virtual machine
(VM)-based platform for evaluating intelligence functions of active storage devices. The VM-based structure of IOLab enables the
evaluation of new (and existing) intelligence functions for different types of OSes and active storage devices with little additional effort.
IOLab also supports real-time execution of intelligence functions, providing users opportunities to experience latest intelligence functions
withoutwaiting for their deployment in commercial products.Usinga set of interesting case studies,wedemonstrate theutility of IOLabwith
negligible performance overhead except for the VM’s virtualization overhead.

Index Terms—Active storage device, intelligence function, device emulation

1 INTRODUCTION

STORAGE devices have constantly been upgraded with cut-
ting-edge technologies to perform “something”more than

just handling the usual I/O requests they receive, in order to
improve their performance. We call this type of devices active
storage devices, and “something” intelligence functions.

Researchers initially focused on large-scale workloads
running on HDD-based massive storage systems to develop
application-specific intelligence functions, such as pattern
matching in the database systems [1], [2], data mining for
multimedia applications [3], and text search and biological
gene sequence matching [4].

However, active storage devices have been expanding
their coverage since their inception. Today’s active storage
devices include not only HDDs but also a new type of storage
devices, such as solid-state drives (SSDs), flash caches, and
hybrid drives. Also, various types of general-purpose intelli-
gence functions are now under consideration for individual
user workloads running on a single storage device. Examples
include prefetching [5]-[8], defragmentation [9], hot data
clustering [10], [11], replication [12], [13], data pinning [14],
write caching [15], run-time data deduplication and compres-
sion [16], and so on.

Although the evolution of active storage devices offers
more opportunities for researchers and developers, it has
been accompanied with increasing difficulties in setting up
a suitable experimental platform to explore new intelligence
functions. Researchers often used to rely on storage device
simulators [17], [18] that provide a great deal of flexibility and
low setup overhead. However, they mostly support only
trace-driven simulation, lacking the ability to interact with
real applications. Also, they are unable to account for the data
transfer delay between main memory and a storage device,
yielding inaccurate evaluation of intelligence functions.

A real system implementation would be an ultimate solu-
tion to this problem. However, it requires enormous amounts
of time and effort in hacking anOSkernel or developing anew
device driver that could otherwise be used to focus on the
intelligence functions themselves.Moreover, researcherswho
are interested in emerging active storage devices often need to
build a new hardware prototype by themselves [19], [20]
because either they are not available as a commodity product
or researchers have no access to their firmware code.

The above problems motivate us to develop IOLab, a new
virtual machine (VM) based evaluation platform for the latest
intelligence functions of active storage devices. IOLab is a user-
space module interposed between a VM and the virtual file
system (VFS) of a host OS. IOLab intercepts block-level I/O
requests from the VM and then forwards them to the intelli-
gence function under test that is running inside IOLab. The
target intelligence function works by analyzing and extracting
useful information from the captured I/O sequence.

As the I/O requests from the VM contain only block-level
information, IOLab has an inherent limitation that it only
supports intelligence functions based on block-level seman-
tics. Despite the limitation, the VM based structure of IOLab
offers a number of desirable features: (1) IOLab effectively

• Y. Joo, S. Park, and K. G. Shin are with the Department of CSE, Ewha
Womans University, Seodaemun-gu 120-750, Seoul, Korea.
E-mail: sangsoo.park@ewha.ac.kr.

• J. Ryu and H. Shin are with the School of CSE, Seoul National University,
Seoul 151-742, Korea.

• K.G. Shin is with the Department of EECS, University of Michigan, Ann
Arbor, MI 48019.

Manuscript received 12 Jan. 2012; revised 29May 2012; accepted 24 Apr. 2013.
Date of publication 28 April, 2013; date of current version 07 Aug. 2014.
Recommended for acceptance by S. Ranka.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.101

2356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



decouples the implementation of an intelligence function
from the target applications and OSes; (2) IOLab enables
real-time execution of intelligence functions as well as inter-
acting with real applications running on the VM; and
(3) IOLab is able to use any commodity block devices or
combinations of themwithout the need of customized device
drivers or special hardware.

To demonstrate the usefulness and effectiveness of IOLab,
we have conducted a set of case studies, including optimizing
application startup and OS boot, and prototyping a

hybrid drive. The performance overhead of
IOLab is found to be negligible except the VM’s inherent
virtualization overhead.

The contribution of IOLab is that it is the first evaluation
platform that exploits a VM to bridge the gap between
simulation and real implementation. We expect that IOLab
can significantly reduce the effort to set up an experimental
platform, improving the productivity of storage and I/O
systems researchers and developers. Also, IOLab enables easy
distribution and real-time execution of intelligence functions,
allowing users to experience the latest intelligence functions
with daily workloads before their deployment in commodity
systems.

The remainder of the paper is organized as follows.
Section 2 provides background on active storage devices with
their intelligence functions. Section 3 provides an overview of
IOLab, and Section 4 discusses its features and coverage.
Section 5 describes its implementation, and Section 6 presents
a set of case studies to demonstrate the usefulness and
effectiveness of IOLab. Section 7 compares IOLabwith existing
approaches, and finally, Section 8 concludes the paper.

2 BACKGROUND

This section provides background on active storage devices
and intelligence functions as well as their prevalent imple-
mentation methods.

2.1 Active Storage Devices
Discussed below are active storage devices that are currently
available as commercial products or being actively discussed
in the research community.

2.1.1 Hard Disk Drive (HDD)
Currently, this is the most widely deployed active storage
device. The state-of-art HDD is equippedwith a sophisticated
on-disk controller built with a microprocessor and a DRAM
buffer of up to 64 MB. The on-disk controller, however,
performs only the basic intelligence functions that are essen-
tial for the HDD to operate (e.g., LBA-to-PBA mapping and
bad sector management) or have a critical influence on
disk performance (e.g., write buffering and read lookahead).
Numerous intelligence functions have been proposed for
HDDs, but most of them are implemented on the host OS,
rather than on the HDD itself.

2.1.2 Solid-State Drive (SSD)
Rapid advances of the semiconductor technology have made
NAND flash-based SSDs affordable even for personal storage
systems. A SSD, just like a HDD, is also equipped with a

controller, but the controller performs different intelligence
functions. It implements a flash translation layer (FTL) which
performs not only LBA-to-PBA mapping but also wear-
leveling and garbage-collection. New SSD controllers are
getting equipped with even more complicated intelligence
functions, such as deduplication and real-time data compres-
sion [16] as well as a built-in sanitization function [21].

2.1.3 Hybrid Drive
Twoormoredifferent types of storagemedia canbe combined
to form a “hybrid” drive to overcome the performance draw-
back ofHDDswithout increasing costs toomuch.A small size
of flash memory is integrated into a HDD [22], or implemen-
ted as aPCI-express card [23] to beusedas anonvolatile cache.
The authors of [19], [24] proposed to combine a small SSD and
a large HDD, where data can be dynamically migrated be-
tween two devices to optimize metrics such as performance
and device lifetime.

2.2 Intelligence Functions
Active storage devices may perform an application-specific
intelligence function, such as database applications [2], data
mining for multimedia applications [3], and text search and
biological gene sequence matching [4]. Another type of active
storage device provides multiple views of a file [25] or sup-
ports context-aware adaptation [26] tomeet the various needs
of users.

In addition to these, there also exist various types of
intelligence functions for optimizing general workloads that
are currently under study, including:

1. Prefetching: Various types of prefetching techniques have
been proposed and studied to hide disk access latencies,
based on sequential pattern detection [5], [7], history-
based prediction [8], or user access pattern analysis [27].

2. Defragmentation: Fragmented files are rearranged peri-
odically or upon a user’s request so as to make each file
occupy a contiguous disk space [9].

3. Hot data clustering: Hot data blocks are identified and
migrated to a small, dedicated region of a disk so as to
reduce disk access time for successive accesses of the hot
data blocks [10], [11].

4. Replication: A data block is replicated to two or more
physical locations on adisk, andwhenan I/O request for
that data block is issued, a disk controller chooses the
replica closest to the current location of the disk head to
service the I/O request [12], [13].

5. Data pinning: Frequently-used data blocks can be pinned
to dedicatednon-volatile cachememory to accelerate the
access speed for them [14].

6. Write caching: Non-volatile cache is used tomaximize the
spin-down time of a HDD, aiming at reducing energy
consumption [15].

7. Deduplication and data compression: Runtime data dedu-
plication and compression are performed to reduce the
amount of data to be written, which is shown to be
beneficial, especially for SSDs [16].

2.3 Prevalent Implementation Methods
Depending on the target of optimization and the type of
information being exploited, intelligence functions can be

JOO ET AL.: RAPID PROTOTYPING AND EVALUATION OF INTELLIGENCE FUNCTIONS 2357



implemented at one or more places between the application
level and the device level in a computer system:

1. Application level: Intelligence functions can be tightly
integrated into an application to fully exploit the appli-
cation-level information [28]-[30].

2. OS level:Many intelligence functions are implemented as
an OS daemon process, such as application prefetching
and disk defragmentation [31].

3. File-system level: File systems can be extended to include
intelligence functions that exploit file-level semantics
[12], [32], [33].

4. Block I/O level: Intelligence functions can be inserted in
the OS block I/O layer if they use only the block-level
information [11].

5. Device-driver level: A pseudo device driver can be used to
represent an active storage device where the intelligence
function is able to manipulate block-level information
like the block I/O level implementation [24], [34].

6. Device level: A recent hybrid HDD integrates flash cache
management functionswith its controller,which is differ-
ent from previous hybrid HDDs in that it is fully OS-
independent [35]. Researchers utilize reconfigurable logic
on the disk to implement their intelligence functions [4].

3 THE PROPOSED EVALUATION PLATFORM

Our goal is to build a flexible evaluation platform to allow for
rapid prototyping and easy distribution of intelligence func-
tions for active storage devices.We propose IOLab, a newVM
based evaluation platform, which is a userspace module
interposed between a VM and the VFS of a host OS.

3.1 A Structural Overview
Fig. 1 depicts a structural overview of a system with IOLab,
which consists of an application layer, a host OS layer, and a
block device layer.

3.1.1 Application Layer
There are two applications running on a host OS: a virtual
machine monitor (VMM) and IOLab.

1. VMM: IOLab uses I/O requests generated by real appli-
cations as its input I/O trace. Instead of executing a target
application directly on the host OS, IOLab runs it on the
guest OS managed by the VMM. This design allows
IOLab to effectively separate the implementation of an
intelligence function froma specificOS. IOLab is designed
to support a VMM that: (1) uses full virtualization mode,
(2) uses a file-backed virtual disk image (VDI), and
(3) accesses the VDI using file I/O system calls.

2. IOLab: intercepts file-level I/O requests from the VM to
the VDI file that would otherwise be sent directly to the
host OS. The intercepted file I/Os actually contain the
information of block-level accesses to the VDI. An intel-
ligence function is running inside IOLab, analyzing all
the I/O requests it receives to extract useful information.
Based on the thus-obtained information, the intelligence
function can modify the original I/O requests or create
new I/O requests, all of which are gathered and reor-
dered according to their priorities before they are sent to
the host OS.

3.1.2 Host OS Layer
The host OS receives I/O requests from IOLab and passes
them to the associated component block devicewhile keeping
the received I/O stream as unmodified as possible. Linux
Fedora 14 x64 (2.6.37 kernel) with the EXT4 file system is used
as the host OS.

3.1.3 Block Device Layer
To express various types of active storage devices, IOLab uses
a set of commodity block devices, which we call “component
block devices,” that are connected to a host machine via the
device drivers of the host OS. For example, using two com-
ponent block devices—aHDD and a SSD—IOLab can express
four types of active storage devices: a HDD, a SSD, a HDD
with a flash cache, and a hybrid drive.

3.2 VDI Manipulation
IOLab keeps amaster VDIfile, which can be split intomultiple
partial VDI files distributed over other component block
devices, as shown in Fig. 1. The distribution depends on the
type of the intelligence function that is to be evaluated.
Regardless of how the master VDI file is distributed over
component block devices, IOLab provides an illusion of the
master VDI file to the VMM.

ModernVMMs support two types ofVDIs:file-backed and
partition-backed VDIs. For the latter, the partition can be
logical or physical. IOLab supports file-backed VDIs because:
(1) it is easy to intercept I/O requests via wrapping a few file
I/O system calls; (2) run-time creation of partial VDIs is
straightforward by creating new files; and (3) multiple VDIs
can share a single component block device, allowing conve-
nient setup of IOLab for users not having a dedicated block
device for experimental purpose.

4 FEATURES AND COVERAGE

In this section, we discuss the limitations and possible exten-
sions of IOLab.

Fig. 1. The overview of a system with IOLab.

2358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014



4.1 Features
IOLab offers several important advantages as follows:

1. Easy deployment: IOLab is implemented as an application
of the host OS, and hence, does not rely on customized
device drivers or any special hardware. IOLab only
requires minor modification of a few file-I/O-related
system calls of the host OS at installation time. Once
installed, IOLab does not require OS kernel recompila-
tion upon change of an intelligence function or an active
storage device.

2. Modular design: IOLab employs a VMM to run a target
application, which effectively decouples the implemen-
tation of an intelligence function from the guest OS
where the target application is running. Thus, IOLab
facilitates the evaluation of intelligence functions for
different OSes without any modification of target appli-
cations or guest OSes.

3. Real-time execution: IOLab expresses an active storage
device by combining a set of commodity component
block devices that are real hardware. Consequently,
IOLab supports real-time execution, and the perfor-
mance improvement achieved by using IOLab is an
immediate benefit to users who run their applications
on a VM.

4. Extensibility: IOLab utilizes the device drivers provided
for the host OS, thereby inheriting the extensibility of the
host machine. Any block device can be used as a com-
ponent block device as long as it can be connected to the
host machine and recognized by the host OS. IOLab also
supports rapidprototyping of a hybrid storagedevice by
combining heterogeneous component block devices at
block level.

4.2 Support of Intelligence Functions
Depending on how to obtain the semantic information from
I/Orequests, intelligence functionsare categorized into“black-
box,” “graybox,” and “whitebox” approaches, as discussed in
[36], [37].

4.2.1 Blackbox
IOLab basically supports intelligence functions by taking a
blackbox approach, which operates with only block-level
information. Although IOLab intercepts file-level I/O re-
quests from the VM to the VDI file, they are in fact block-
level I/Os to the virtual blockdevice abstracted by theVDIfile
(i.e., the file offset and size are always multiples of the block
size). As IOLab only sees block-level information, it cannot
directly access the semantic information available inside the
guest OS (e.g., the file type or process ID of each I/O request).

4.2.2 Graybox
The authors of [38] proposed a graybox approach to infer the
semantic information inside the OS by running a probe
process on the OS. IOLab can support this approach by
running the probe process in the VM.

4.2.3 Whitebox
There have been various whitebox approaches that explicitly
pass the semantic information to an intelligence function
by extending the traditional storage I/O interface [28], [34],

[37], [39]. Although the current implementation of IOLab does
not support these whitebox approaches, it can be easily
extended to support them. A possible extension could be to
create a communication channel between the guest OS and
IOLab to transfer the semantic information.

4.3 Support of Active Storage Devices
Similar to the taxonomy presented in Section 4.2, intelligence
functions can also be categorized as blackbox or whitebox,
depending on how they treat an active storage device.

4.3.1 Blackbox
Most modern active storage devices provide only a logical
block addressing interface, hiding their internal structure.
Hence, intelligence functions running outside the active
storage devices are usually implemented without knowing
the internal structure of a target storage device. Their com-
mon assumption is that a target storage device will provide
better performance for large sequential I/O requests. On the
other hand, researchers have suggested the inference of its
performance characteristics by running a prove function
[40]-[44], which is similar to the graybox approach discussed
in Section 4.2.2. IOLab supports these types of intelligence
functions as it runs on commodity block devices, i.e., real
hardware.

4.3.2 Whitebox
Some intelligence functions, such as a FTL for SSDs, essen-
tially exploit the information on the internal structure of the
target device, and are thus integrated into the device con-
troller [45], [46]. The most common approach taken in
studying this type of intelligence functions is to use a device
simulator [17], [18], [47]. Although IOLab does not support
this type of intelligence functions, it can be extended to
recognize the device simulator as a component block device
by taking a similar approach of device emulation, as dis-
cussed in Section 7. Through this extension, IOLab can also
emulate emerging storage devices that are not yet commer-
cially available (e.g., PRAM caches). Once such devices
become available, IOLab can immediately support them by
simply connecting them to the host machine, very much like
HDDs and SSDs.

4.4 Input Workload
Although IOLab is intended to support as many types of
intelligence functions and active storage devices as possible,
its current implementation focuses mainly on individual user
workloads from personal storage systems. For example,
IOLab receives input I/O requests from a single VM, focusing
on individual user workloads. IOLab is also designed to
evaluate a single active storage device for personal storage
systems.

5 IMPLEMENTATION

The implementation of IOLab consists of a set of subcompo-
nents, most of which are reconfigurable. We prototype an
intelligence function by customizing necessary subcompo-
nents while using the default configuration for the rest.

JOO ET AL.: RAPID PROTOTYPING AND EVALUATION OF INTELLIGENCE FUNCTIONS 2359



5.1 Intercepting Input I/O Requests
IOLab should intercept the file I/O requests from the VMM to
the VDI file without touching the I/O requests made to other
files. To implement this, we first define a flag bit O VDI to
indicate that a file opened with O VDI is one of the VDIs
composing a target active storage device. All read and
write calls to thefile openedwithO VDI are tobe intercepted
by IOLab. To set O VDI, we exploit one of the unused bits in the
unsigned int variable f flags of the file structure, which is
defined in “include linux fs h.”

To be consistent with the conventional procedure of the
open call, the VMMmust pass the O VDI flag as an argument
to the open call when it opens the VDI file. Alternatively, we
modify the open call such that, when it is invoked, it first
checks the sticky bit of the file to be opened. If it is set, the
modified open call sets O VDI. We assume that the sticky bit
is set by a user for all of the VDI files of interest, which can be
done with the command:

$ chmod t VDI filename

We then modify the read call such that, when it is
invoked, it first checks the f flags of the file structure, which
can be accessed using its file descriptor. If O VDI is set, all of its
function arguments are forwarded to IOLab. Otherwise, the
original code of read call is executed. Likewise, we modify
the write , aio read , and aio write .

5.2 I/O Pattern Analyzer
The I/O pattern analyzer monitors all accesses to the VDI to
infer useful information to be exploited by the intelligence
function. Example types of information include deterministic
I/O request sequences, access frequency statistics of data
blocks, and the event of accessing a certain data block.

The I/O pattern analyzer also has the role of initiating a
new I/O dispatcher when a certain condition predefined by
the intelligence function ismet (e.g., a counter variable reaches
its threshold, or an access to a certain data block occurs).

5.3 Block Cache
Data blocks requested by the VM are serviced by the block
cache of IOLab, instead of being sent directly from the active
storage device. The block cache also manages the data blocks
fetched by the I/O dispatchers.

The block cache is implemented in such away that it stores
only metadata of the I/O requests (e.g., a start address and a
block count) to keep track of the lists of data blocks it
manipulates. It relies on the page cache of the host OS to
actually store the data blocks to be cached. Thisway, the block
cache can keep its implementation simple and efficient, while
saving the main memory space of the host PC.

Under the proposed block cache structure, the total size of
data blocks managed by the block cache can grow up to the
page cache size of the hostOS. To control the effective capacity
of the block cache, we deploy a separate page replacement
policy in addition to that included in thepage cache of the host
OS. The page replacement policy of the block cache can be
configured according to a target intelligence function. For
example, a data block can be immediately evicted from the
page cache as soon as it is read by the VM.Another example is

to set a constant capacity limit so that victimblocks are evicted
when the block cache size exceeds the preset value.

Note that some VMMs use O DIRECT flag for read and
write system calls to bypass the page cache of the host OS.
In such a case, we force the VMM not to use O DIRECT flag.

5.4 I/O Dispatcher
I/O dispatchers perform actual I/O operations intended by
the intelligence functions, such as prefetching, datamigration,
and data replication. It is done by dispatching I/O requests
one-by-one from the predefined block request stream config-
ured by the I/O pattern analyzer.

The dispatching rate of I/O dispatchers can be controlled
directly by setting the maximum data transfer rate or indi-
rectly by the capacity limit of the block cache. For example, an
I/O dispatcher will be blocked if there is no free space in the
block cache. A separate space limit may also be specified for
each I/O dispatcher.

5.5 Device Mapper
The device mapper provides mapping between a master VDI
and partial VDIs distributed over component block devices.
When two or more component block devices form a single
active storage device, the intelligence function manages the
mapping table of the device mapper.

The device mapper receives input I/O requests from both
the block cache and the I/O dispatchers, and then converts
their offset to the file descriptor and the offset of the partial
VDIfile containing the requesteddata. If there are twoormore
locations storing the requested data, the intelligence function
is responsible for deciding on how to handle it. For a read
request, the intelligence function should choose one of the
locations it found (e.g., one stored in the fastest component
blockdevice). For awrite request, itmayeither choose oneand
invalidate the rest, or update all the locations by issuing I/O
requests to every partial VDI file that has the data. The thus-
processed I/O requests are then sent to their corresponding
I/O scheduler.

The device mapper works at page-level granularity to
reduce the overhead of maintaining the mapping table. Its
block-mapping information is managed by using the radix
tree—provided by the linux kernel library—to limit the
mapping overhead of large VDI files. A radix-tree node
consists of (dev, inode, page offset) of the partial VDIs.
For example, the height/level of the radix tree is only 4when
themaster VDIfile size is 64GB and the page size is 4 KB (i.e.,
8 blocks).

5.6 I/O Scheduler
IOLab deploys separate I/O schedulers for each component
block device, which operates independently from the I/O
scheduler of the host OS. The purpose of the dedicated I/O
scheduler is to prioritize between the I/O requests from the
VM and those from the I/O dispatchers, which is often
essential for realizing various types of intelligence functions.

Each I/O scheduler receives I/O requests from the device
mapper to reorder them according to their preset priorities.
The prioritized I/O requests are then sent to the VFS of the
host OS, which finally commits them to the corresponding
partial VDI file.

2360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014



6 EVALUATION

We first describe the experimental setup we use to evaluate
IOLab, and present a set of case studies focusing on applica-
tion launch and OS boot optimization to demonstrate the
usefulness of IOLab. Finally, we evaluate the prototyping
effort and performance overhead of IOLab.

6.1 Experimental Setup
We chose VMWare Workstation 7.1.1 as the VMM of IOLab,
and selectedNOOP as the I/O scheduler of the Linux (the host
OS of IOLab), and disabled its readahead function tominimize
the host OS intervention. The host machine we used for
experiments is equipped with an Intel i7-860 2.8 GHz quad-
core CPU and 4GBofmainmemory.We configured theVM to
use 2 cores of the CPUwith hyper-threading enabled and 1 GB
of memory. For component block devices, we used a Western
Digital 3.5” 7200 RPM640GBHDD (WD6400AAKS), a Fujitsu
2.5” 5400RPM120GBHDD(MHZ2120BH), andan Intel 40GB
MLC SSD (X25-V). The disk block accesses shown in the
following case studies are measured with IOLab.

6.2 Case Study 1: Application Prefetcher
The application prefetcher optimizes application launch per-
formance by prefetching all the data blocks necessary for
starting the application in an optimized fashion just before
its launch process begins. The application prefetcher has been
included in the Windows XP and its subsequent versions,
which we will call Windows prefetcher.

The execution of the application prefetcher involves the
following phases.

1. Learning phase: monitors and logs all the I/O requests
generated during the launch of each target application to
determine the set of data blocks necessary for its launch.

2. Post-processing phase: creates an application launch se-
quence using the information obtained from the learning
phase. It reorders the data blocks using a predefined sort
key (e.g., inode number and file offset), and stores the
resulting sequence in the reserved system folder (e.g.,
C : WINDOWS PREFETCH for the Windows prefetcher).

3. Prefetching phase: When it detects a new launch of the
target application that has an application launch se-
quencefile, this phase (1) immediately pauses the launch
process; (2) fetches the data blocks in the order specified
in the sequence file; and (3) resumes the launch process.

6.2.1 Observation
To see how the Windows prefetcher works in practice, we
captured the output I/O requests from the block cache of
IOLabwhile launching MS Office Word 2007 on the HDD. To
ensure a cold start scenario, we flushed the page cache of both
the guestOS and the hostOSbefore launching the application.
Fig. 2a shows the disk block accesses with the Windows
prefetcher disabled. In this case, the launch time was mea-
sured to be 8.3s. Once we enabled the Windows prefetcher,
the launch timewas reduced to 5.7s (Fig. 2b), clearly showing
the benefit of the Windows prefetcher.

6.2.2 Motivation
Despite the performance improvement, Fig. 2b shows that
there still exists a considerable number of random block

accesses even with the Windows prefetcher, which is far from
whatwe expected.As theWindowsOS is not an open source, it
is difficult to analyze its behavior in detail. Instead,we decided
to implement our own application prefetcher on IOLab.

6.2.3 Configuration
We configured IOLab so that it performs the application
prefetch as described above, which we call the IOLab pre-
fetcher. Given below is a detailed account of how we config-
ure the IOLab prefetcher.

1. Launch sequence creation: For this we can use the method
in [36] that automatically and accuratelymines the block
correlation information. For simplicity, in this experi-
ment, we manually captured the I/O request sequence
generated during the application launch.

2. Application launch detection: The VM does not inform
IOLab when the target application is launched. Hence,
we configured IOLab to initiate an I/O dispatcher im-
mediately when 3 consecutive block requests from the
VM match with the captured sequence.

3. Application prefetcher generation: The above-created I/O
dispatcher is configured to fetch the blocks of the cap-
tured sequence in their sorted order of LBAs.

4. Launch control:We set the priority of the I/O dispatcher
higher than the VM to pause the launch process of
the target application running on the Windows OS.
Upon completion of the prefetching, IOLab resumes
the target application by responding to the I/O requests
from the VM.

6.2.4 Experiment
We conducted experiments on the WD6400AAKS HDD, and
plotted the resulting disk accesses in Fig. 2c. The dashed box

Fig. 2. Disk block accesses of the Windows prefetcher and the IOLab
prefetcher (OS: Windows XP, application: Word 2007, used device:
WD6400AAKS. (a) No prefetcher; (b) Windows prefetcher; (c) IOLab
prefetcher.

JOO ET AL.: RAPID PROTOTYPING AND EVALUATION OF INTELLIGENCE FUNCTIONS 2361



in Fig. 2c indicates that the IOLab prefetchermade the LBAs of
I/O requests monotonically increased as intended. As a
result, the application launch time is reduced to 4.4s (a 23%
improvement over theWindows prefetcher). However, some
I/O requests still occur after the completion of the prefetcher
because they were not included in the captured I/O request
sequence. The prefetch hit ratio was observed to be 95.4% (by
dividing the number of I/O requests IOLab prefetched by the
total number of I/O requests from the VM).

6.2.5 Test on the Linux OS
Although there are suggestions to use the application pre-
fetcher for LinuxOS [48], it is not yet available in official Linux
distributions. We tested the IOLab prefetcher for the Eclipse
application installed on the Linux OS, which required no
change in the IOLab configuration. Fig. 3 shows a 37% reduc-
tion of the application launch time (from15.8s to 10.0s), where
the prefetch hit ratio was 97.5%.

6.2.6 Summary
This case study demonstrates the usefulness of IOLab in
emulating proprietary intelligence functions and assessing
the possibility of improving them further. In particular, IOLab
supports adjusting the I/O priority between its I/O dispatch-
er and the target application, through which IOLab is able to
control the pause and resumption of the target application
without modifying the guest OS of the VM. It also demon-
strates the convenience of deploying the same intelligence
function on different OSes without any porting effort.

6.3 Case Study 2: OS Boot Optimization
Modern OSes often employ various optimizations to reduce
their boot time. For example, the Windows OS applies its
application prefetch technique again for its boot process, and
Mac OS deploys a similar technique called bootcache [49].
Thanks to the VM based structure, IOLab can easily observe
the I/O requests generated during the OS boot, and apply an
intelligence function to assess its potential for improving the
OS boot time reduction.

6.3.1 Observation
Windows XP supports use of its application prefetcher for
the OS boot process [31]. As Windows XP allows its boot
prefetch to be turned on via registry configuration, we could
capture the I/O requests during the boot process without and
with the boot prefetch, which are shown in Figs. 4a and 4b,
respectively.

Enabling the boot prefetch is shown to increase the boot
time ofWindowsXPby 13%, butWindowsXP reads 192.7MB
of data with the boot prefetch, which is more than twice the
data (93.4MB) readswithout the boot prefetch. This is because
Windows XP fetches not only boot files but also frequently-
used application files when the boot prefetch is enabled [50],
allowing their quick launch after the boot completion. The
dash-lined boxes in Fig. 4b show that the boot prefetch fetches
data blocks in an optimized way.

For Mac OS X, we also observed a similar pattern as
marked by the dash-lined box in Fig. 4c, indicating that its
bootcache works well. In Fig. 4d, however, Linux does not
show any optimized disk access pattern, indicating that not
much has been done on Linux boot optimization.

It is interesting to see considerable disk idle periods for all
the cases of Fig. 4. For example, the idle period was about 20s
for Windows XP. One possible reason for this is the delay for
I/O device detection, but it needs a further study for accurate
understanding of this behavior.

6.3.2 Motivation
The results shown in Fig. 4 raise two questions: (1) what will
be the performance improvement of Linux with boot optimi-
zation applied; and (2) will it be possible to eliminate the
inefficiency resulting fromdisk idle periods, especially for the
boot ofWindowsXP. To answer thefirst question,wedecided
to apply the IOLab prefetcher, described in Section 6.2. We
chose correlation-directed prefetching (CDP) [36] to answer
the second question.

6.3.3 Correlation-Directed Prefetching (CDP)
Block access streams, which are non-sequential, often repeat-
edly occur in storage systems [11], [36], [51]. The determinism
in block access patterns can be used to reorganize the disk
layout of related blocks [51], or to perform prefetching while
optimizing the disk head movements as in the Windows
prefetcher. CDP takes a different approach in that it performs
prefetch using the detected I/O request sequence as hints for
what to prefetch next. A similar approach was also suggested
for improving application startup performance on SSDs [6].

6.3.4 Configuration
For the experiment of Linux boot optimization, we used the
configuration of IOLab prefetcher in Section 6.2. For the
implementation of CDP, we modified the IOLab prefetcher
such that (1) the created I/Odispatchermaintains the original
block request sequence instead of reordering them; and (2) the
priority of the I/O dispatcher is set lower than that of the VM
in order to simultaneously execute the OS boot process and
the CDP. If the guest OS generates an I/O request that is not
coveredby theCDP, the I/O requestwill not be blockedby the
prefetcher. We will call this configuration the IOLab CDP.

Fig. 3. Disk block accesses of the IOLab prefetcher on the Linux OS
(application: Eclipse, device:WD6400AAKS). (a)Noprefetcher; (b) IOLab
prefetcher.

2362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014



6.3.5 Experiment
Fig. 5 shows the experimental results on the WD6400AAKS
HDD, where Figs. 5b and 5d visualize the artificial disk
block accesses assuming use of an ideal block device having
zero access latency. These results are obtained by booting
the VM immediately after shutting it down, so all the boot
files remained in the page cache of the host OS, causing
no disk access for the second boot. This “warm start OS
boot time” provides an upper bound of I/O performance
improvement.

Fig. 5adepicts the resultingdiskblock accesses byapplying
the IOLab prefetcher to the booting of Linux. The boot time is
reduced from 38.1s (Fig. 4d) to 28.2s (a 26% improvement),
and the prefetch hit ratio was 95.2%. Fig. 5c shows that the
IOLab CDP works as intended by aggressively fetching the
boot files during the otherwise idle period of the HDD. The
achieved boot time ofWindows XP (29.5s) is close to its warm
start boot time (28.6s) of Fig. 5d. The prefetch hit ratio was
98.0%.

6.3.6 Summary
This case study shows that IOLab can be used to observe and
optimize the disk access pattern during the OS boot process.
The experimental results allow us to estimate the potential
advantage of optimizing the boot process of different OSes.
The achieved performance improvement is an immediate
benefit to the users who use a VM that frequently reboots
the guest OS.

6.4 Case Study 3: � Hybrid Drive
Newly emerging memory devices such as NAND flash and
PRAM make it natural for researchers to conceive a hybrid
drive by combining heterogeneous block devices, such as

and . However, only recently
researchers have begun to actively explore hybrid drives [19],
[24], [52].

6.4.1 Motivation
Amajor impediment in exploring the design of hybrid drives
has been their unavailability as commodity products. Al-
though Intel Turbo memory [23] and Seagate Momentus XT
[22] have recently been announced, their cache management
policies are proprietary, not open to researchers. As a result,
most of the previous work on hybrid drives relies on simula-
tion, which lacks evaluation accuracy. Payer et al. [19] used a
SATA bridge chip to prototype a real hybrid
drive, but their prototype was not available to the researchers
(including ourselves). Thus, we decided to prototype a

hybrid drive like the one in [19] using IOLab.

6.4.2 Configuration
We “composed” a hybrid drive using the Intel X25-V SSD
and the Fujitsu MHZ2120BH HDD. The capacity of the
MHZ2120BH HDD after formatting it is 107 GB, and the
master VDI size is set accordingly. We configured a 107 GB

hybrid drive such that its first 4 GB is mapped to
the X25-V SSD and the rest to the MHZ2120BH HDD.

Fig. 5. Disk block accesses of Linux and Windows XP with IOLab
optimization applied (used device: WD6400AAKS, -axis: in log scale
for Windows XP). (a) Linux Fedora 14 x64 (IOLab prefetcher enabled);
(b) Linux Fedora 14 x64 (warm start); (c) Windows XP (IOLab CDP
enabled); (d) Windows XP (warm start).

Fig. 4. Disk block accesses of the boot processes of Windows XP, Mac
OS X, and Linux Fedora (device: WD6400AAKS, -axis: in log scale for
Windows XP). (a) Windows XP (boot prefetch disabled); (b) Windows XP
(boot prefetch enabled); (c) Mac OS X 10.6; (d) Linux Fedora 14 x64.

JOO ET AL.: RAPID PROTOTYPING AND EVALUATION OF INTELLIGENCE FUNCTIONS 2363



6.4.3 Experiment
We ran HD Tune Pro, a HDD benchmarking tool, to observe
the read performance of the emulated hybrid drive, and
plotted the results in Fig. 6. The -axis denotes the location
of the hybrid drive for read throughput, and the seek distance
for access latency. The read throughput, depicted as a solid
line, is shown to be 150 MB/s for the first 4 GB SSD region.
Then, it drops to about 50 MB/s as it enters the HDD region,
and gradually decreases as the disk head moves to the inner
track of theMHZ2120BHHDD.Thedotted-line access latency
curve represents the seek latency of the MHZ2120BH HDD,
where the variation for the same seek distance corresponds to
the rotational delay variations. Dots showing a near zero
access latency spread over all the seek distances, correspond-
ing to the access latency from anywhere in the HDD region to
the SSD region. The boot time of Windows XP on this hybrid
drive was measured to be 34.6s. We also measured the boot
time using theMHZ2120BHHDD only, whichwas 49.1s. The
warm start boot took 28.6s.

6.4.4 Summary
This case study demonstrates the ability of IOLab in rapid
prototyping of a hybrid drive by combining commodity block
devices.

6.5 Prototyping Effort
We evaluated the effectiveness of IOLab in reducing the effort
to prototype an intelligence function. We used the IOLab

prefetcher of Section 6.2 as the target intelligence function.
For comparison purpose, we chose FAST (Fast Application
STarter), which is a Linux implementation of the application
prefetcherwe have developed in our recentwork [6]. Both the
IOLab prefetcher and FAST were developed on the same host
machine described in Section 6.1.

6.5.1 Structural Difference
FAST has OS-dependent constraints in its implementation,
making its structure more complicated than the IOLab pre-
fetcher. In particular, FAST should fetch the blocks of an
application launch sequence to the Linux page cache,whereas
the IOLab prefetcher uses the block cache of IOLab.

The Linux page cache is organized as a radix tree per node,
and its cached blocks are always indexed and searched by
using their associated file name and file offset. To comply
with this, FAST needs to convert the block-level representa-
tion of each block request in the application launch sequence
into file-level one before generating an application prefetcher
(i.e., LBA size filename offset size ). In contrast,
the IOLab prefetcher does not require such conversion be-
cause the block cache of IOLab operates outside the guest OS
with only using block-level information.

Fig. 7 depicts the structure of FAST,where the components
in the dash-lined boxes are related to the block-level to file-
level conversion process of the application launch sequence.
Note that the LBA-to-inode reverse mapping is essential to
perform the conversion process, but most file systems includ-
ing EXT3 of the Linux OS do not support it. Hence, we had to
develop one by ourselves, which was the most time-consum-
ing task, though intuitive.

6.5.2 Quantification of the Prototyping Effort
Table 1 compares the prototyping effort of FAST and the
IOLab prefetcher in terms of lines of code (LOC) and devel-
oping time.Aswe do not have exact data for developing time
of each component, we presented only the total time for
development. The total LOC of the IOLab prefetcher and
its total development time are 11% and 4% of FAST,
respectively.

6.6 Performance Overhead
While the performance overhead of IOLabmostly comes from
the VM’s virtualization overhead, IOLab itself can also affect
the performance. We performed a set of experiments to
estimate the performance overhead of IOLab.

6.6.1 Virtualization Overhead
To evaluate the effect of the virtualization overhead of IOLab,
we chose an application prefetcher as a target intelligence
function, as in Section 6.5. In particular, we prepared two
system configurations: (1) we run the Linux application
Eclipse on the VM with the IOLab prefetcher; and (2) we
run Eclipse directly on the host OS with FAST. We used the
same host machine of Section 6.1 for the experiment.

Fig. 6. Read throughput (line) and access latency (dots) of the hybrid
drive, captured from HD Tune Pro 4.6 (device used: X25-V and
MHZ2120BH, left -axis: average throughput, right -axis: access latency).

Fig. 7. The structure of FAST, a Linux implementation of the application
prefetcher [6].

2364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014



We first observed the effect of CPU virtualization over-
head by comparing warm start time for both the configura-
tions. We created a warm start scenario by launching
Eclipse immediately after completing its associated pre-
fetcher. In this way, all the data blocks in the application
launch sequence hit in the main memory, effectively mini-
mizing disk accesses during the launch time. The first row of
Table 2 shows that the VM achieved 20% longer launch time
than that of the host OS.

We then measured execution time of only an application
prefetcher to estimate I/O virtualization overhead. As an
application prefetcher only issues I/O requests for the pre-
determined set of data blocks, the CPU remains mostly idle
except for processing the I/O requests. According to the
second row of Table 2, the IOLab prefetcher achieves 5%
longer execution time than that of FAST, showing that the
I/Ovirtualization overheadofIOLab is relatively smaller than
its CPU virtualization overhead.

The above results indicate that IOLab effectively renders an
application launch procedure more CPU-bound, which in
turn reducing the efficiency of an application prefetcher that
optimizes only I/O latency. This is also supported by the
measurements of the third and fourth rows of Table 2; FAST
reduced application launch time by 42% whereas the IOLab

prefetcher achieved only 37% reduction.

6.6.2 I/O Interception
Since IOLab modifies a set of system calls to intercept I/O
requests from the VM, it may increase the latency of these
system calls. We chose the OS boot time to capture the I/O
performance degradation caused by IOLab, because the ac-
cumulated delays of thousands of read calls from OS boot
are likely to make the measurement easier.

IOLab was set to its default configuration so that it just
passes the intercepted I/O requests from the VM to the VDI
file. For the experiment with IOLab disabled, we cannot use
the I/O trace logging function of IOLab to measure the OS
boot time. So, we modified the host OS kernel to monitor the
I/O requests from the VM to the first and last block of the

Windows XP boot sequence. For the experiment with IOLab

enabled, however, we monitored the OS boot time using
IOLab.

We measured the boot times of Windows XP on the
WD6400AAKS HDD with and without running IOLab. We
repeated each experiment five times. The total amount of data
transferred in the Windows XP boot process was 93.4 MB,
which accounts for 4103 read and 57 write calls. The
averageOSboot timeswith andwithout IOLabwere 41.6s and
41.7s, respectively. The measured min-max boot time differ-
ence was 1.0s without IOLab and 0.6s with IOLab. In summa-
ry, the I/O interception overhead of IOLab appears to be
unmeasurable due to the boot time variations.

6.6.3 Device Mapper
The devicemapper of IOLab lies on the critical path of the I/O
processing routine, directly affecting I/O performance. We
chose the hybrid drive in Section 6.4 to test the
performance overhead of the device mapper, since it makes
extensive use of the device mapper.

As the hybrid-drive case study of Section 6.4 used a
simple mapping, we were able to configure the same hybrid
drive using the logical volume manager (LVM) of the Linux
OS—the host OS of IOLab. We made 4 GB and 103 GB
volumes on the X25-V SSD and the MHZ2120BH HDD,
respectively, and combined them to create a 107 GB logical
partition using the LVM. We then copied the VM used in
Section 6.4 to the logical partition tomeasure the boot time of
Windows XP. Finally, we used the same measurement
method described above. The measured OS boot time on
the logical partition was 34.61s, while that in Section 6.4 was
34.60s, showing that the overhead of the IOLab device
mapper is similar to that of LVM.

7 RELATED WORK

Over recent years, significant efforts have been made to
develop an efficient evaluation method for storage system
research. Table 3 summarizes representative evaluationmeth-
odswith their advantages aswell as limitations in comparison
with IOLab. Each method is discussed in detail below.

Real implementation. Prototyping intelligence functions
on a real system [19], [20] enables a thorough investigation of
various implementation issues and their accurate evaluation.
However, real system implementations require significant
time and effort, thus impeding prompt evaluation of new
intelligence functions. Also, the thus-developed prototypes
are often not suitable for wide distribution because they are

TABLE 1
Comparison of the Prototyping Effort between FAST [6] and IOLab Prefetcher

TABLE 2
Performance Differences between FAST [6] and IOLab

Prefetcher (Unit: Seconds)

JOO ET AL.: RAPID PROTOTYPING AND EVALUATION OF INTELLIGENCE FUNCTIONS 2365



tightly coupled with a customized OS and a file system, or
even require custom hardware.

Device simulation. Storage device simulators [17], [18]
have a great deal of flexibility in modeling the internal
structure of an active storage device. However, they mostly
support only trace-driven simulation, lacking the ability of
interacting with real applications. Also, they are unable to
account for thedata transfer delay betweenmainmemory and
a storagedevice, yielding inaccurate evaluation of intelligence
functions.

Full system simulation. Full-system simulators [53] can
execute real applications with a real OS because they model
most major components of a computer system in enough
detail. They can also simulate I/O connect delays, enabling
accurate evaluation of intelligence functions. However, set-
ting up a new target intelligence function on a full-system
simulator requires substantial time and effort, which is often
comparable to that of real system implementation. Also, full-
system simulators are not suitable for getting user experience
from daily workloads because they do not support real-time
execution.

Device emulation. The device emulation approach can
overcome the limitations of the trace-driven device simula-
tors discussed above. For example, MEMULATOR [54] ex-
tends Disksim [17] to perform timing-accurate emulation of
its diskmodel.MEMULATORuses apart ofmainmemory as
its RAM cache to perform actual data load/store operations.
For timing emulation, it inserts an artificial delay before the
completion of each I/O request according to the I/O latency
calculated by Disksim. This approach allows interaction
with real applications as well as real-time execution of
intelligence functions. However, this approach is not perfect
for the purpose of distributing intelligence functions to users
because (1) the data stored in the RAM cache can be lost by
sudden power loss; and (2) it cannot maintain real-time
execution if the working set size is larger than the RAM
cache size, while IOLab does not have such a limitation.

File system extension. There have been continuous efforts
to facilitate exploring new experimental file systems, such as
FUSE (Filesystem in USErspace) [55] and FiST (File System
Translator) [56]. FUSE is a userspace file system framework
that provides an interface between an OS kernel and an
experimental file system running in user space. FiST is a file
system generation tool to create a new file system from a
standard file system template and new functionalities de-
scribed using its own template language. Both FUSE and FiST
enable rapid development and evaluation of a new experi-
mental file system with much less prototyping effort than
developing one from scratch. These tools can also be used to
evaluate a specific type of intelligence functions exploiting

file-level semantics [12], [32], [33]. However, IOLab is differ-
entiated from the file system extension tools in that it focuses
on supporting intelligence functions using block-level infor-
mation as discussed in Section 4.

8 CONCLUSION

In this paper, we revisited the definition of active storage
devices in accordance with their evolution, and introduced
IOLab, a VM based platform for the evaluation of intelligence
functions of active storage devices. We demonstrated the
usefulness and capability of IOLab via a set of case studies
that are difficult to prototype in real systems in spite of their
obvious benefits. In particular, we have shown that IOLab
(1) can evaluate the same intelligence function on different
OSes without any modification; (2) can emulate even propri-
etary intelligence functions; and (3) is useful in rapid proto-
typing of hybrid drives by combining a set of commodity
block devices.

As IOLab supports real-time execution of intelligence
functions on VMs, the performance improvement achieved
using IOLab is not only useful for researchers but also can be
an immediate benefit to users who use VMs for their daily
workloads. Using the thus-obtained user experience, IOLab
can facilitate the design and testing of intelligence functions
for active storage devices, and speedingup their deployment
in commodity storage devices and computing systems.

ACKNOWLEDGMENTS

This research was supported by RP-Grant 2011 of Ewha
Womans University and Basic Science Research Program
through the National Research Foundation of Korea (NRF)
fundedby theMinistry of Education, Science, andTechnology
(2011-0013422).

REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Programming
Model,AlgorithmsandEvaluation,”Proc. 8th Int’l Conf.Architectural
Support for Programming Languages andOperating Systems (ASPLOS),
pp. 81-91, 1998.

[2] K. Keeton, D.A. Patterson, and J.M. Hellerstein, “A Case for Intelli-
gentDisks (IDISKs),”ACMSIGMODRecord, vol. 27, pp. 42-52, 1998.

[3] E. Riedel, G.A. Gibson, and C. Faloutsos, “Active Storage for Large-
Scale DataMining andMultimedia,” Proc. 24th Int’l Conf. Very Large
Data Bases (VLDB), pp. 62-73, 1998.

[4] R.D. Chamberlain, R.K. Cytron, M.A. Franklin, and R.S. Indeck,
“The Mercury System: Exploiting Truly Fast Hardware for Data
Search,”Proc. Int’lWorkshop StorageNetworkArchitecture Parallel I/Os
(SNAPI’03), pp. 65-72, 2003.

[5] W. Fengguang, X.Hongsheng, andX.Chenfeng, “On theDesign of a
New Linux Read Ahead Framework,” ACM SIGOPS Operating
Systems Rev., vol. 42, no. 5, pp. 75-84, 2008.

TABLE 3
Comparison of IOLab with Representative Evaluation Methods

2366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014



[6] Y. Joo, J. Ryu, S. Park, and K.G. Shin, “FAST: Quick Application
Launch on Solid-State Drives,” Proc. USENIX Conf. File and Storage
Technologies (FAST), pp. 259-272, 2011.

[7] R. Pai, B. Pulavarty, and M. Cao, “Linux 2.6 Performance Improve-
ment Through Readahead Optimization,” Proc. Ottawa Linux Symp.
(OLS), pp. 105-116, 2004.

[8] V. Vellanki and A.L. Chervenak, “A Cost-Benefit Scheme for High
Performance Predictive Prefetching,” Proc. ACM/IEEE Conf. Super-
computing (SC’99), Article no. 50, 1999.

[9] M.E. Russinovich and D. Solomon,Microsoft Windows Internals, 4th
ed. Microsoft Press, pp. 727-728, 2004.

[10] Apple. Technical Note TN1150 HFS Plus Volume Format [Online].
Available: http://developer.apple.com/library/mac/#technotes/
tn/tn1150.html2004.

[11] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis, “BORG: Block-ReORGanization
for Self-Optimizing Storage Systems,” Proc. Conf. File Storage Tech-
nologies (FAST), pp. 183-196, 2009.

[12] H.Huang,W.Hung, andK.G. Shin, “FS2:DynamicDataReplication
in Free Disk Space for Improving Disk Performance and Energy
Consumption,” Proc. 20th ACM Symp. Operating Systems Principles
(SOSP), pp. 263-276, 2005.

[13] S.W. Ng, “Improving Disk Performance via Latency Reduction,”
IEEE Trans. Computers, vol. 40, no. 1, pp. 22-30, 1991.

[14] Intel. Intel Turbo Memory with User Pinning [Online]. Available:
http://www.intel.com/design/flash/nand/turbomemory/index.
htm, 2008. Accessed on: 17 Nov. 2010.

[15] T. Bisson, S.A. Brandt, and D.D. Long, “NVCache: Increasing the
Effectiveness of Disk Spin-Down Algorithms with Caching,” Proc.
10th IEEE Int’l Symp. Modeling, Analysis and Simulation of Computer
and Telecomm. Systems (MASCOTS), pp. 422-432, 2006.

[16] A.L. Shimpi, This Just In: Corsair Force 100GB SSD (SF-1200). Ana-
ndtech [Online]. Available: http://www.anandtech.com/show/
3654/this-just-in-corsair-force-100gb-ssd-sf1200, 2010.

[17] J.S. Bucy and G.R. Ganger, “The DiskSim Simulation Environment
Version 3.0 Reference Manual,” Dept. of Computer Science,
Carnegie-Mellon Univ., Tech. Rep. CMU-CS-03-102, 2003.

[18] Microsoft. SSD Extension for DiskSim Simulation Environ-
ment [Online]. Available: http://research.microsoft.com/en-us/
downloads/b41019e2-1d2b-44d8-b512-ba35ab814cd4/default.aspx,
Mar. 2009.

[19] H. Payer, M. Sanvido, Z. Bandic, and C. Kirsch, “Combo Drive:
Optimizing Cost and Performance in a Heterogeneous Storage
Device,” Proc. Workshop Integrating Solid-State Memory into the Stor-
age Hierarchy (WISH), pp. 1-8, 2009.

[20] A.M. Caulfield, A. De, J. Coburn, T.I. Mollow, R.K. Gupta, and
S. Swanson, “Moneta: A High-Performance Storage Array Archi-
tecture for Next-Generation, Non-Volatile Memories,” Proc. 2010
43rd Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO’43),
pp. 385-395, 2010.

[21] M.Wei, L.M. Grupp, F.E. Spada, and S. Swanson, “Reliably Erasing
Data from Flash-Based Solid State Drives,” Proc. USENIX Conf. File
and Storage Technologies (FAST), pp. 105-118, 2011.

[22] Seagate. Data Sheet Momentus XT [Online]. Available: http://
www.seagate.com/docs/pdf/datasheet/disc/ds_momentus_xt.
pdf, 2010.

[23] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud,
“Intel Turbo Memory: Nonvolatile Disk Caches in the Storage
Hierarchy of Mainstream Computer Systems,” ACM Trans. Storage,
vol. 4, no. 2, pp. 1-24, 2008.

[24] X. Wu and A. Reddy, “Managing Storage Space in a Flash and Disk
Hybrid Storage System,” Proc. 10th IEEE Int’l Symp. Modeling,
Analysis and Simulation of Computer and Telecomm. Systems (MAS-
COTS), pp. 1-4, 2009.

[25] X.MaandA.Reddy,“MVSS:Multi-ViewStorageSystem,”Proc. 21st
Int’l Conf. Distributed Computing Systems (ICDCS), pp. 31-38,
Apr. 2001.

[26] K. Veeraraghavan, J. Flinn, E.B. Nightingale, and B.Noble, “quFiles:
TheRight File at theRight Time,”Proc.USENIXConf. File and Storage
Technologies (FAST), pp. 1-14, 2010.

[27] Microsoft. Windows PC Accelerators [Online]. Available: http://
msdn.microsoft.com/en-us/windows/hardware/gg463388.aspx.
Accessed on: 17 Nov. 2010.

[28] F. Chang and G.A. Gibson, “Automatic I/O Hint Generation
Through Speculative Execution,” Proc. USENIX Symp. Operating
Systems Design and Implementation (OSDI), pp. 1-14, 1999.

[29] S. VanDeBogart, C. Frost, and E. Kohler, “Reducing Seek Overhead
with Application-Directed Prefetching,” Proc. USENIX Ann. Techni-
cal Conf. (ATC), pp. 299-312, 2009.

[30] C.-K. Yang, T. Mitra, and T.-C. Chiueh, “A Decoupled Architecture
for Application-Specific File Prefetching,” Proc. USENIX Ann. Tech-
nical Conf. (ATC), pp. 157-170, 2002.

[31] M.E. Russinovich and D. Solomon, Microsoft Windows Internals,
4th ed. Microsoft Press, pp. 458-462, 2004.

[32] J.A. Garrison and A.L.N. Reddy, “Umbrella File System: Storage
Management Across Heterogeneous Devices,” ACM Trans. Storage,
vol. 5, pp. 1-24, 2009.

[33] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “FlexFS: A Flexible Flash
File System for MLC NAND Flash Memory,” Proc. USENIX Ann.
Technical Conf. (ATC), pp. 115-128, 2009.

[34] G. Sivathanu, S. Sundararaman, and E. Zadok, “Type-Safe Disks,”
Proc. USENIX Symp. Operating Systems Design and Implementation
(OSDI), pp. 15-28, 2006.

[35] A.L. Shimpi, Seagate’s Momentus XT Reviewed, Finally a
Good Hybrid HDD. Anandtech [Online]. Available: http://www.
anandtech.com/show/3734/seagates-momentus-xt-review-finally-a-
good-hybrid-hdd, 2010.

[36] Z. Li, Z. Chen, S.M. Srinivasan, and Y. Zhou, “C-Miner:
Mining Block Correlations in Storage Systems,” Proc.USENIX Conf.
File and Storage Technologies (FAST), pp. 173-186, 2004.

[37] G. Soundararajan, M. Mihailescu, and C. Amza, “Context-Aware
Prefetching at the Storage Server,” Proc. USENIX Ann. Technical
Conf. (ATC), pp. 377-390, 2008.

[38] M. Sivathanu, V. Prabhakaran, F.I. Popovici, T.E. Denehy,
A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau, “Semantically-
Smart Disk Systems,” Proc. USENIX Conf. File and Storage Technolo-
gies (FAST), pp. 73-88, 2003.

[39] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka, “Informed Prefetching and Caching,” Proc.USENIX 15th
ACM symp. Operating Systems Principles (SOSP), pp. 79-95, 1995.

[40] F. Chen, D.A. Koufaty, and X. Zhang, “Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based
Solid StateDrives,”Proc. 11thACMSIGMETRICSConf.Measurement
andModeling of Computer Systems (SIGMETRICS), pp. 181-192, 2009.

[41] J. Gim and Y. Won, “Extract and Infer Quickly: Obtaining Sector
Geometry ofModernHardDiskDrives,”ACMTrans. Storage, vol. 6,
pp. 6:1-6:26, 2010.

[42] S. Li and H.H. Huang, “Black-Box Performance Modeling for Solid-
State Drives,” Proc. 10th IEEE Int’l Symp. Modeling, Analysis and
Simulation of Computer and Telecomm. Systems (MASCOTS),
pp. 391-393, 2009.

[43] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and
G. Ganger, “Storage Device Performance Prediction with CART
Models,” Proc. 10th IEEE Int’l Symp.Modeling, Analysis and Simulation
of Computer and Telecomm. Systems (MASCOTS), pp. 588-595, 2004.

[44] L. Yin, S. Uttamchandani, andR. Katz, “AnEmpirical Exploration of
Black-Box Performance Models for Storage Systems,” Proc. 10th
IEEE Int’l Symp. Modeling, Analysis and Simulation of Computer and
Telecomm. Systems (MASCOTS), pp. 433-440, 2006.

[45] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-Aware Flash
Translation Layer Enhancing the Lifespan of Flash Memory Based
Solid State Drives,” Proc.USENIX Conf. File and Storage Technologies
(FAST), pp. 77-90, 2011.

[46] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging Value Locality in Optimizing NAND Flash-Based
SSDs,” Proc. USENIX Conf. File and Storage Technologies (FAST),
pp. 91-104, 2011.

[47] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” Proc.
USENIX Ann. Technical Conf. (ATC), pp. 57-70, 2008.

[48] B. Hubert, “On Faster Application Startup Times: Cache Stuffing,
Seek Profiling, Adaptive Preloading,” Proc. Ottawa Linux Symp.
(OLS), pp. 245-248, 2005.

[49] A. Singh, Booting Mac OS X. OSXBOOK.COM [Online]. Available:
http://osxbook.com/book/bonus/ancient/whatismacosx/arch_
boot.html, 2003.

[50] S. Wiseman, Why Windows Takes So Long to Start Up. IntelliAdmin
[Online]. Available: http://www.intelliadmin.com/index.php/
2006/09/why-windows-takes-so-long-to-start-up/, 2006.

[51] W.W. Hsu, A.J. Smith, and H.C. Young, “The Automatic Improve-
ment of Locality in Storage Systems,”ACMTrans. Computer Systems,
vol. 23, pp. 424-473, 2005.

JOO ET AL.: RAPID PROTOTYPING AND EVALUATION OF INTELLIGENCE FUNCTIONS 2367



[52] J.K. Kim, H.G. Lee, S. Choi, and K.I. Bahng, “A PRAM and NAND
Flash Hybrid Architecture for High-Performance Embedded Stor-
age Subsystems,” Proc. 8th ACM Int’l conf. Embedded software
(EMSOFT), pp. 31-40, 2008.

[53] P. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50-58, Feb. 2002.

[54] J.L. Griffin, J. Schindler, S.W. Schlosser, J.S. Bucy, and G.R. Ganger,
“Timing-Accurate Storage Emulation,” Proc. USENIX Conf. File and
Storage Technologies (FAST), pp. 75-88, 2002.

[55] M. Szeredi, Filesystem in Userspace [Online]. Available: http://fuse.
sourceforge.net, 2005.

[56] E. Zadokand J.Nieh, “FiST:ALanguage for Stackable File Systems,”
Proc. USENIX Ann. Technical Conf. (ATC), pp. 55-70, 1999.

YongsooJoo received theBSandMSdegrees in
computer engineering and the PhD degree in
electrical and computer engineering from Seoul
National University, Seoul, Korea, in 2000, 2002,
and2007, respectively. Currently, he is a research
professor in the Department of Computer Science
and Engineering at Ewha Womans University,
Seoul, Korea. His research interests include
embedded systems, memory systems, and I/O
performance optimization of storage systems.

Junhee Ryu received the BS degree in computer
engineering from Korea Aerospace University in
2003, and theMSdegree in computer scienceand
engineering from Seoul National University,
Korea, in 2005. He is currently working toward
the PhD degree in computer science and engi-
neering at the same institution. His research inter-
ests include file systems, storage systems, and
network systems.

Sangsoo Park received the BS degree from
Korea Advanced Institute of Science and Tech-
nology, Daejeon, Korea, in 1998, and the MS and
PhD degrees from Seoul National University,
Seoul, Korea, in 2000 and 2006, respectively.
Currently, he is an assistant professor in the
Department of Computer Science and Engineer-
ing at Ewha Womans University, Seoul, Korea.
His research interests include real-time embed-
ded systems and system software.

Heonshik Shin received theBSdegree in applied
physics from Seoul National University, Seoul,
Korea, and the PhDdegree in computer engineer-
ing from the University of Texas at Austin. He is a
professor in the Department of Computer Science
and Engineering at Seoul National University. His
research interests include mobile systems and
software, real-time computing, and storage
systems.

Kang G. Shin is the Kevin & Nancy O’Connor
Professor of Computer Science in theDepartment
of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor. His current
research focuses on computing systems and net-
works as well as on embedded real-time and
cyber-physical systems, all with emphasis on
timeliness, security, and dependability.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014


