
Improving Transport Design for WARP SDR Deployments

Krishna C. Garikipati

Dept. of EECS

University of Michigan–Ann Arbor

gkchai@eecs.umich.edu

Kang G. Shin

Dept. of EECS

University of Michigan–Ann Arbor

kgshin@eecs.umich.edu

ABSTRACT
Software-Defined radios (SDRs) are a popular platform for
developing and implementing wireless protocols. Their basic
architecture consists of radio front-ends hosted on an FGPA
board, and a back-end processing host for running bulk of
the signal processing in software. The two components are
bridged, usually by an Ethernet or PCIe interface that trans-
ports the radio samples. In addition to the processing delay
in software, SDRs may experience a non-negligible transport
latency, for example, due to the limited Ethernet bandwidth.

Wireless-Access Research Platform (WARP) is one such
SDR platform that has recently gained a lot of attention.
Research prototypes deploying tens of WARP radios over the
Ethernet have become a familiar sight. WARP’s transport
design, however, is ine�cient due to its linear increase in
transport latency with the number of radios. We propose
modifications to improve the current design. First, we utilize
functional parallelism to run the read/write operations of
multiple WARP radios concurrently. Second, we propose
a high-bandwidth link at the host in order to support the
combined transfer rates resulting from the parallel transport
to/from the radios. As a result, we achieve a significant
reduction in the transport latency by scaling back the linear
increase to a constant overhead.

Categories and Subject Descriptors
C.2.1 [Computer-communications networks]: Network
Architecture and Design — wireless communication; C.3
[Special-purpose and application-based systems]:
Signal processing systems

General Terms
Design, Experimentation, Performance

Keywords
Software-Defined Radios, WARP

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SRIF’14, August 18, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2995-8/14/08 ...$15.00.

http://dx.doi.org/10.1145/2627788.2627789 .

1. INTRODUCTION
From their modest beginning as experimental prototypes,

Software-Defined Radios (SDRs) have gained significant trac-
tion across industry, military and academia. Today, a wide
range of open-source and commercial SDR platforms are
available: USRP [1], WARP [2], SORA [3], OpenAirInter-
face [4], NI FlexRIO [5], Nutaq PicoSDR [6] etc. SDRs are
used in the industry to model, test, simulate and develop
next-generation wireless protocols. While in academia, they
provide a research and educational tool for wireless exper-
imentation, validation and demonstration of new applica-
tions.

SDR is a highly-flexible radio that realizes most of the pro-
cessing, such as filtering, (de)modulation and (de)coding as
well as the link layer operations in software, instead of a spe-
cialized hardware. Though the split between the hardware
and software components, and the type of interfaces used
may vary, the architecture of a typical SDR is more or less
well-defined [3, 7]: a radio front-end with RF transceivers,
ADC/DACs and down/up-converters embedded on an FPGA
or DSP board; a host machine, usually a general-purpose
processor (GPP), which implements signal-processing in soft-
ware; and a bridge interface, such as PCIe, Ethernet or USB,
to transport the radio samples between the host’s memory
and the radio. Examples of this architecture include the
USRP hardware that functions with the popular GNU Ra-
dio [8] open-source software, and the WARP board that is
controlled through the WARPLab framework [2], both using
the Ethernet interface. On the other hand, in a non-GPP
based SDR architecture, the PHY and MAC-layer process-
ing is implemented in the FPGA board itself, either as an
FPGA core or on separate CPU. Its examples are the WARP
802.11 reference design and the USRP Embedded hardware
series, respectively. Note that while the PCIe interconnect is
much faster than a Gigabit Ethernet link (PCIe 2.0 x8 runs
at 32Gbps in a single direction), the restrictions on the bus
length and the additional hardware have limited its adop-
tion. The SORA and the Nutaq SDR platform, however,
utilize the PCIe bus interface.

The WARP SDR along with its WARPLab framework
has recently received a lot of attention. Particularly, as a
suitable platform for large-scale radio setups such as the Ar-
gos [9], which was built using 16 WARP nodes and a total of
64 transmit antennas. However, due to the limited Ethernet
bandwidth, the significant delay in reading the radio samples
from the hardware bu↵ers into the host’s memory and vice-
versa, has become a processing bottleneck. For example, in
the current WARPLab release, the average read/write delay

1

in transferring 32K samples from 4 WARP nodes is around
5ms — which is much greater than the 16us turnaround time
of WLAN protocols, and even more than the 3ms processing
deadline of LTE.

In this paper, we concern ourselves with only the transport
latency of large WARP deployments (processing latency be-
ing the other aspect). The requirement of a large number of
WARP nodes arises mainly from wireless technologies like
Massive MIMO [10]. Already, prototypes with tens if not
hundreds of transmit antennas have been realized [9, 11],
while many others are still under development. While the
processing latency is another important component that re-
quires attention, we claim that, ultimately, it is dictated
by the processing framework and its speed. For instance,
replacing the MATLAB base in WARP framework with op-
timized C/C++ routines can provide a significant speed-up.

Our goal is to mitigate the high transport latency, a linear
increase, seen when exchanging radio samples with multiple
WARP nodes. Towards this, we propose our software and
hardware design for WARP transport; the software code is
available in [12] under the terms of the WARP open source
license. As we demonstrate in this work, our design is readily
applicable to the existing WARP software release and the
current version of WARP hardware.

The rest of the paper proceeds as follows: §2 gives the mo-
tivation for improving the transport design while §3 specifies
our SDR platform. §4 describes the transport functions and
the performance of the existing design. §5 describes our pro-
posed software and network design and its evaluation results
are shown in §6. Finally, we conclude the paper with §7.

2. MOTIVATION
Wireless standards have stringent demands on latency —

end-to-end and turnaround timing constraints are required
to ensure the correctness of MAC protocols. Conventional
radios that are built on DSPs or ASICs easily satisfy these
requirements as they run at hardware speeds. Most SDRs
on the other hand (with the exception of SORA), don’t
meet the timing constraints because of the variable delay of
software-processing [7], and due to the non-negligible trans-
port delay between the host and the radio front-ends [13].

Reducing the transport delay, and thus the overall pro-
cessing delay is beneficial for a number of reasons. Argos [9]
like systems can be studied in more diverse wireless environ-
ments, such as mobile and vehicular channels, where channel
measurements need to be made within the coherence period
(< 10ms). Moreover, channel variations and channel feed-
back in large MIMO systems can be evaluated with greater
detail [14]. More importantly, many research results, for
e.g. [15], that are based on trace-based o✏ine evaluation of
the wireless channel can be emulated online. Not only com-
munication networks, but wireless-based indoor-localization
systems [16] built using WARP antenna arrays also stand to
benefit from the processing speed-up.

3. PLATFORM DESCRIPTION
This section describes theWARP SDR platform, its signal-

processing framework and the details of our testbed setup.

3.1 WARP
A product of the research work by Rice University, WARP

is a scalable and programmable SDR platform. The lat-

UDP!
 Transport!

Reference !
C-code!

MicroBlaze!

!!!…
!!

Ethernet!
Driver!

FPGA!

WARPLab!
Buffers!

WARPLab!
AGC!

!!!…
!!

Ethernet!

IP Cores!

MATLAB!

BUS!

Reference!
 M-code!

WARP Hardware!

Host Processor!

Figure 1: An illustration of the WARPLab architec-
ture

est WARP v3 hardware integrates a Virtex-6 FPGA and
two RF interfaces on each board. It uses two MAX2829
dual-band RF transceivers covering both 2.4GHz and 5GHz
ISM bands, with a maximum 40MHz RF bandwidth and a
support for shared clocking. Additionally, it contains 12-
bit ADCs/DACs, an FMC expansion slot and two gigabit
Ethernet ports. An attractive feature of WARP is its ex-
tensibility through readily available add-on modules: FMC
module for two additional RF interfaces, and a clock module
to interface with external clock sources. Unlike most other
SDRs, the large number of logic slices on WARP FPGA
make it possible to implement the wireless protocol stack,
such as 802.11 g/n PHY and MAC, on the FPGA itself.
Though time-consuming to develop, the FPGA implemen-
tation lends real-time capability to WARP allowing it to
function in standalone mode with real wireless deployments.

WARP also serves as an ideal platform for MIMO im-
plementation as it supports multiple RF interfaces, shared
clocking and synchronization. Since each WARP node sup-
ports a maximum of only four antennas, building a massive-
MIMO like system from WARP needs a large deployment of
nodes. Therefore, the task of managing these nodes, which
includes controlling the radio settings such as channel se-
lection, Gain parameters, Tx/Rx duration, o↵sets, trigger
modes etc., as well as the Tx /Rx configuration and coordi-
nation, requires a well-defined framework. This is discussed
in the following.

3.2 WARPLab Framework
WARPLab is a flexible framework for developing wireless

applications with a large array of WARP nodes. It utilizes
the WARP hardware as RF transceiver entities (whose com-
ponents include Amplifiers, Antennas, DAC/ADCs and Fil-
ters,) while the baseband (signal) processing is carried out
at the host. An Ethernet interface connects the nodes and
the host, and is used for carrying the baseband samples. Its
instantiation, the WARPLab Reference Design, supplies a
software library in MATLAB that provides simple user-level
commands for coordination, configuration and control of
WARP nodes. The library contains several modules: Node,
Baseband, Interface, Transport and Trigger. Each of the
modules acts as an interface to manage the corresponding
hardware component. Among these, the transport module
is a base module which is responsible for handling messages
to and from the WARP hardware. WARPLab also provides

2

a FPGA reference design with custom IP cores (WARPLab
Bu↵ers, WARPLab AGC etc.) for the WARP hardware. In
addition, it contains a C software design that runs on the
Microblaze soft processor. The latter is required for Ether-
net based control of the di↵erent hardware modules. Fig. 1
illustrates the described WARPLab framework. Given the
abstraction of the hardware complexityand the easy-to-use
programming interface, WARPLab is suited for rapid devel-
opment of physical-layer algorithms.

The MATLAB’s ease of use, however, comes at the cost of
high delay in executing code, and reading/writing samples
from the WARP nodes. As mentioned earlier, one solution
to speed-up processing is to use the FPGA design as it is
and migrate the software processing on the host to a com-
piled language like C/C++. This approach requires mini-
mal modification since the current transport library, which
is written in C can be reused, while the WARPLab user
commands just have to be rewritten. But as we report in
this paper, the transport design remains highly ine�cient
which results in excessive transfer delays as we increase the
number of WARP radios.

In summary, WARP andWARPLab provide a self-contained
SDR framework in that it allows a user to develop, deploy,
transmit, receive and analyze a full-scale wireless communi-
cation system. Though limited to o✏ine processing of base-
band (I and Q) samples, it finds extensive use in prototyping
a number of wireless applications, from MIMO [9] to indoor
localization [16].

3.3 Testbed setup
Our experimental setup consists of 16 WARP v3 boards,

each with 2 RF interfaces and connected through gigabit
Ethernet. We use an HP ProCurve 6600 series Switch that
provides 48 1GbE and 4 10GbE ports. The host processor
is a hyper-threading enabled 32-core Intel(R) Xeon(R) E5-
2660 CPU Linux machine with 128GB RAM. It has a dual-
port 10GbE card, in addition to standard Gigabit Ethernet
cards. We use the WARPLab 7.4 release, MATLAB 2012b
and an Ubuntu 12.04 LTS operating system.

4. WARP TRANSPORT
A major design challenge for the WARPLab framework

is to provide an e�cient transport mechanism for moving
I and Q samples between WARP bu↵ers and the host ma-
chine’s userspace over the Ethernet. Note that the transport
of the rest of the control messages, for e.g. baseband and
interface commands, is not considered as they require only
few Ethernet frames. To keep matters simple, WARPLab
implements packet bu↵er transfers (215 samples is the max-
imum Tx/Rx bu↵er capacity per radio interface) instead of
streams. This implies that the fixed-size I and Q bu↵er can
be encoded into fixed number of Ethernet frames and sent
from the source port to the destination port, which is the
central idea of WARP transport. While in essence the ba-
sic transport methods are only read and write, which take
the number of samples as an input parameter and return
once the transfer is complete, this abstraction however hides
the underlying complexity. In what follows we describe the
WARP transport and its latency evaluation in detail.

4.1 UDP Protocol
To maximize throughput, WARPLAB uses the UDP trans-

port protocol between the Host PC and WARP nodes. The

source code for the host side is available as a self-contained
C-based MEX file wl_mex_udp_transport.c, which needs
to be compiled and built into the MATLAB environment.
At the WARP node, the transport methods are provided
in wl_transport.c, which further relies on the Xilnet li-
brary for socket operations. The UDP connection is estab-
lished for each of the WARP nodes during initialization. A
control layer on top of the UDP transport is further pro-
vided to guarantee reliable delivery of data. UDP pack-
ets are stamped with sequence numbers and checksums are
appended. Correspondingly, routines for timeout, acknowl-
edgement, checksum calculation and retransmission are pro-
vided.

4.2 Transport latency
The transport latency for a given node and a given number

of samples is defined as the total delay in executing the trans-
port function call in the userspace. In case of WARPLab,
the userspace is the MATLAB environment. For instance,
the read latency is the sum of the processing delay at the
host in issuing the read command, the transfer delay of the
read message, the turnaround time of the WARP hardware,
the transfer delay of the Ethernet frames carrying the base-
band samples, and finally the processing delay at the host in
passing on the contents to the userspace. The turnaround
time of the WARP hardware is further determined by the
delay of Ethernet functions running on the MicroBlaze pro-
cessor and the DMA (Direct Memory Access) transfer of
WARPLab bu↵ers. Clearly, the major component of trans-
port latency is the transfer of baseband bu↵er samples over
the Ethernet.

As one measure to reduce transport latency, WARPLab
suggests using jumbo frames (MTU � 9000B) wherever pos-
sible. While the default configuration specifies 1464 bytes
(1508-byte Ethernet packet) as the maximum WARP trans-
port payload, jumbo frames carry a 8960-byte (9004-byte
Ethernet packet) payload in each packet. It is well known
that for large Ethernet transfers, jumbo frames achieve higher
throughput, and can be attributed to a smaller sender/re-
ceiver overhead (parsing of header, memory transfer, etc.)
per byte transferred.

A quick back-of-the-envelope calculation reveals that with-
out any overheads the maximum transfer rate of a 16-bit I
and 16-bit Q sample stream over a 1Gbps Ethernet link
is 31.2 Msps (samples per second). In contrast, the ADC/-
DACs of WARP hardware can operate at more than hundred
Msps. Even with the DMA transfer overhead, each WARP
board still generates/consumes at a much faster rate than
the capacity of the 1Gbps Ethernet link. This suggests that
the Ethernet link is the bottleneck of WARP transport.

To investigate if this is indeed the case, we measure the
network performance of a single WARP node connected to
our server. Table 1 shows the raw packet throughput mea-
sured at the host in terms of packets captured per second
(pps) and the bytes transferred. The resulting transfer rate
that is measured from the number of WARP payload frames
is also shown. The first point to note is that jumbo frames
achieve almost 3⇥ higher throughput. Second, with jumbo
frames enabled, both read and write functions run close to
the maximum 1Gbps line rate, and are hence limited by the
Ethernet speed.

Next, we focus on the transport latency as the number of
WARP nodes is increased. Fig. 2 shows the total latency of

3

Function Packet Size
(bytes)

#Samples Throughput
(Kpps)

Throughput
(Mbps)

#calls
(per sec)

Transfer rate
(Msps)

Read 1508 32K 30.83 373.2 193.3 6.3
Read 9004 32K 13.57 972.8 314.2 10.3
Write 1508 32K 9.8 118.4 71.1 2.3
Write 9004 32K 13.67 979.9 336.7 11.0

Table 1: Raw packet throughput and the resulting transfer rate of the transport functions for a single WARP
radio. Both read and write methods saturate the 1Gbps Ethernet link.

2 4 6 8 10 12 14 16
0

20

40

60

80

Number of WARP nodes

T
o

ta
l r

e
a

d
 la

te
n

cy
 (

m
s)

1464B, 32K
1464B, 16K
8960B, 32K
8960B, 16K

Figure 2: Measured total delay in reading with
WARPLab 7.4 (Link speed = 1Gbps)

reading (values for write are similar) a single IQ bu↵er from
the WARP nodes at di↵erent payload and sample sizes. For
each configuration, 1000 measurements are made and the
average value is reported. The variance was observed to
be negligible. Since WARPLab transport is based on serial
execution, the total delay is linear in the number of nodes.
On an average each node takes around 4.8ms for reading
32K samples with jumbo frames disabled, and as a result
the overall delay exceeds 75ms in case of 16 nodes.

As explained previously, jumbo frames reduces the trans-
port latency, as seen in Fig. 2. However, the gains are in-
su�cient and the latency is still linear in the number of
nodes. This motivates us to consider an alternative trans-
port design: reading/writing samples from multiple nodes
concurrently rather than sequentially.

It is worth pointing out that the current release of WARPLab
7.4, on which our results are based is already an improved
version of the earlier releases that were based on JAVA or
PNET implementation, and did not utilize DMA for mem-
ory transfers.

5. PROPOSED DESIGN
We present an improved transport design for WARP SDR

that is achieved with two modifications. First, a modified
WARP transport library is implemented for parallel execu-
tion of read and write operations. Second, to achieve full
benefits of parallelism, a high-bandwidth link, for example
10Gbps, is installed between the host and the switch.

5.1 Transport Parallelism
We base our design on the WARPLab UDP transport

source code wl_mex_udp_transport.c. Though it is avail-
able as MEX file, we rewrote some of its methods so that
our library compiles and runs in a standard C/C++ envi-
ronment, independent of MATLAB. Thus, we have a stan-

dalone driver to interface with the WARP radios. On the
other hand, the FPGA hardware design is unchanged and
we use the WARPLab reference hardware design as it is.

We focus on implementing only the core transport com-
mands. Additional control commands for AGC control, chan-
nel settings, bu↵er enable, etc. are obvious extension targets
of our future implementation. However, this poses no prob-
lem in evaluation since the control commands are required
only during initialization.

sendTrigger()!

 readIQ()! writeIQ()!

 nodesInit()! nodesDis()!

warp_functions.c!

warp_transport.c!

!!!…!!

 multiRead()! multiWrite()!

RX!
Processing!

TX!
Processing!

Measure!
latency!

Applications!

WARPLab UDP Transport!

Figure 3: High-level organization of our code

Code description: Based on the WARPLab UDP trans-
port methods, we design a standalone base transport script
warp_transport.c which provides an interface for all mes-
sage exchanges with the WARP nodes. It handles the socket
creation, header creation, UDP functions etc. This is ex-
tended by the script warp_functions.c that abstracts the
two transport methods readIQ() and writeIQ() with the
following declaration:

void readIQ (double complex⇤ samples , int
s tar t sample , int num samples , int
node sock , int node id , int bu f f e r i d ,
int ho s t i d) ;

As seen from the declaration, the transport methods are de-
fined w.r.t. single WARP node id and bu↵er id, and base-
band samples are specified as an array of complex numbers.
In addition, it provides methods for initializing nodes (sock-
ets) and for disabling them. Further, the function sendTrig-

ger() is used in broadcasting the sync packet to trigger the
nodes to start their transmit/receive chain.

Transport Parallelism: In the current WARPLab imple-
mentation, reading or writing to multiple WARP nodes is
done serially. But since the data — sample array, socket
handle, headers, etc.— used in the transport call of each

4

10 Gbps

1Gbps

Ethernet
Switch

WARP nodes

Host
Processor

Figure 4: Proposed network design for deployment
of 16 WARP nodes. An additional 10Gbps connec-
tion may be utilized to reduce the queuing delay.

WARP node is independent, we may readily apply functional
parallelism by utilizing the multiple cores available on the
host processor. By assigning a separate thread (each usually
bound to a CPU core) for each WARP node (or bu↵er), the
read/write operations can be run concurrently as long as the
network interface on the host supports the resulting transfer
rate. Implicitly this assumes that we use large enough send
and receive socket bu↵ers to prevent bu↵er overflow at the
host.

To this end, we use the OpenMP API [17] that provides
multiprocessor programming extensions for C/C++. OpenMP
uses the #pragma directives to mark section of code that is to
be parallelized. It also provides the loop construct, omp for,
to split loop iterations among the threads where each itera-
tion can be run independently. We use this loop construct
while executing the readIQ() and writeIQ() functions of
multiple WARP nodes so that they run in parallel.

5.2 Network Design
From the throughput values in Table 1 we can conclude

that a single bu↵er transfer nearly saturates the 1Gbps link,
which implies that a 1Gbps connection at the host can sup-
port only one WARP node. Therefore, to avoid the con-
gestion delay when simultaneously reading or writing from
multiple nodes, we require the host link to have a much
larger bandwidth (>> 1Gbps). We achieve this by using
the 10GbE ports on the server and the switch to create a
10Gbps connection, while the WARP nodes are connected to
the switch with 1Gbps links. Fig. 4 illustrates the proposed
network design.

Beyond 10Gbps: Ideally, assuming each WARP node satu-
rates its own link, the 10Gbps bandwidth at the host should
support the combined transfer rates of up to 10 nodes. How-
ever, beyond 10 nodes, there will be a queuing (congestion)
delay. To overcome this, we use the second port on the
10GbE card to install an additional 10Gbps link between
the host and the switch. The second interface is given a
separate IP within the WARP subnet.

Since there are 16 nodes in our setup, tra�c is routed so
that each 10Gbps link is dedicated to a group of 8 WARP
nodes. This is achieved by adding static route entries in the
host’s kernel routing table.

WARPLab currently supports a single IP for the host.
However, we find that the addition of a new network inter-
face at the host requires minimal changes to the transport
code. This is because every response packet of the WARP
node reuses the Ethernet header of the sent packet. In ad-
dition to that, transport methods function at the transport

2 4 6 8 10 12 14 16
0

10

20

30

40

50

Number of WARP nodes

T
o

ta
l d

u
ra

tio
n

 (
m

s)

M write
M read
C write
C read

Figure 5: Comparison of total read and write delay
of WARP nodes in MATLAB and the proposed C
implementation. Host link speed is 10Gbps.

layer and are independent of the network interface used for
routing.

6. EVALUATION
This section evaluates the performance of the proposed

transport design in our testbed setup.
In Fig. 5, we show the total latency of read and write

methods in the MATLAB (WARPLab) implementation com-
pared with our proposed C-based implementation.The re-
ported values are the average value of 1000 runs. The total
duration here refers to the total time it takes for the read or
write function call of all nodes to deliver I and Q samples to
the userspace. As shown in Fig. 3, we have a written a sep-
arate module to measure the latency of our multi-threaded
implementation, and is based on the clock_gettime timer
function. The bu↵er size is set to 32K samples while the
jumbo frames are enabled to maximize throughput. We use
the default OpenMP settings where the number of threads
is set equal to the number of cores (32) on our server. The
experiments are run when all the cores are lightly loaded.

Two observations can be made from our results. First,
implementing transport methods directly in C is more ef-
ficient. Even for a single node, the average write delay is
1.5ms, which is less than half of the 3.3ms write delay in
MATLAB. This is attributed to the fact that for data struc-
ture operations like creating headers, sample arrays etc.,
MATLAB/MEX-based implementation is slower than a pure
C program.

Second, the total transport delay using parallelism shows
negligible increase with the number of nodes—total write
delay increases from 1.5ms to 1.61ms; total read delay in-
creases from 1.74ms to 2.55ms. In contrast, in the MATLAB
implementation the delay for both read and write increases
linearly from around 3ms to almost 45ms.

We also evaluate the delay performance with an additional
10Gbps link at the host. As we vary the number of WARP
nodes, we equally split the tra�c among the 2⇥10Gbps
links. Fig. 6 shows the read and write delays in transfer-
ring 32K samples with single and double 10Gbps links. As
explained earlier, a single 10Gbps link may result in a queu-
ing (congestion) delay at the switch. This is confirmed by
the almost linear increase in read/write delay between 10
and 16 nodes which is in contrast to the almost constant
behavior between 1 and 10 nodes. In Fig. 7, we again com-
pare the total transport delay, but for a reduced bu↵er size

5

2 4 6 8 10 12 14 161

1.5

2

2.5

3

Number of WARP nodes

To
ta

l d
ur

at
io

n
(m

s)

write, 10Gbps
read, 10Gbps
write, 2x10Gbps
read, 2x10Gbps

Figure 6: Total transport delay for 32K samples
with single and double 10Gbps links. The improve-
ment in the delay performance is noticeable beyond
10 nodes.

2 4 6 8 10 12 14 16

0.8

1

1.2

1.4

Number of WARP nodes

T
o

ta
l d

u
ra

tio
n

 (
m

s)

write, 10Gbps
read, 10Gbps
write, 2x10Gbps
read, 2x10Gbps

Figure 7: Total transport delay for 16K samples
with single and double 10Gbps links.

of 16K samples. The observations are again consistent with
our explanation.

The gains from the additional 10Gbps link are more promi-
nent as the number of nodes is increased. In case of 16 nodes
and 32K samples per node, the total read delay drops 24%
from 2.6ms to 2ms while the total write delay goes down by
almost 28%, from 2.2ms to 1.6ms. Adding more bandwidth
between the host and the switch, therefore, is beneficial to
the delay performance.

7. CONCLUSION
WARP deployments are constrained by the limited Eth-

ernet bandwidth that results in a non-negligible delay in
transporting radio samples. More importantly, this delay
increases linearly with the number of the WARP nodes. In
this paper, we showed that executing the read/write meth-
ods in parallel decreases the average delay of transferring
32K samples from 16 WARP nodes, from 45ms to under
2.5ms. Our implementation uses a 10Gbps Ethernet connec-
tion to the host processor to support the combined transfer
rate of the nodes.

The improved delay performance enables new scenarios of
experimentation for large-scale WARP deployments, for ex-
ample, measuring the wireless capacity of a massive-MIMO
system in mobile wireless channels.

Acknowledgments
The work reported in this paper was supported in part by
the NSF under Grants 1160775 and 1317411.

8. REFERENCES
[1] “Universal Software Radio Peripheral.”

http://ettus.com/.
[2] “WARP Project.” http://warpproject.org.
[3] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,

Y. Zhang, H. Wu, W. Wang, and G. Voelker, “Sora:
High Performance Software Radio Using General
Purpose Multi-core Processors,” in Proc. of USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2009.

[4] “OpenAirInterface.” http://openairinterface.org/.
[5] “National Instruments FlexRIO SDR.”

http://www.ni.com/sdr/.
[6] “Nutaq PicoSDR.”

http://nutaq.com/en/products/picosdr.
[7] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and

P. Steenkiste, “Enabling MAC Protocol
Implementations on Software-defined Radios,” in Proc.
of USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2009.

[8] “GNU Radio.” http://gnuradio.org.
[9] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta,

R. Yang, and L. Zhong, “Argos: Practical
many-antenna base stations,” in Proc. of ACM
MOBICOM, 2012.

[10] F. Rusek, D. Persson, B. K. Lau, E. Larsson,
T. Marzetta, O. Edfors, and F. Tufvesson, “Scaling Up
MIMO: Opportunities and Challenges with Very
Large Arrays,” IEEE Signal Processing Magazine,
vol. 30, pp. 40–60, Jan 2013.

[11] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu,
J. Zhang, and Y. Zhang, “Bigstation: Enabling
scalable real-time signal processing in large scale
MU-MIMO system,” in Proc. of ACM SIGCOMM,
2013.

[12] “CWARP.” https://github.com/gkchai/cwarp.
[13] T. Schmid, L. Sekkat, and M. Srivastava, “An

Experimental Study of Network Performance Impact
of Increased Latency in Software Defined Radios,” in
Proc. of the ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and
Characterization (WINTECH), 2007.

[14] K. C. Garikipati and K. G. Shin, “Measurement-Based
Transmission Schemes for Network MIMO,” in Proc.
of ACM MOBIHOC, 2014.

[15] X. Zhang, K. Sundaresan, M. Khojastepour,
S. Rangarajan, and K. Shin, “NEMOx: Clustered
Network MIMO for Wireless Networks,” in Proc. of
ACM on Mobile Computing and Networking
(MOBICOM), 2013.

[16] J. Xiong and K. Jamieson, “Arraytrack: A
fine-grained indoor location system,” in Proc. of
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2013.

[17] “OpenMP API .” http://openmp.org.

6

