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Abstract—Conventional wireless broadcast protocols rely heavily on the 802.11-based CSMA/CA model, which avoids interference

and collision by conservative scheduling of transmissions. While CSMA/CA is amenable to multiple concurrent unicasts, it tends to

degrade broadcast performance significantly, especially in lossy and large-scale networks. In this paper, we propose a new protocol

called Chorus that improves the efficiency and scalability of broadcast service with a MAC/PHY layer that allows packet collisions.

Chorus is built upon the observation that packets carrying the same data can be effectively detected and decoded, even when they

overlap with each other and have comparable signal strengths. It resolves collision using symbol-level interference cancellation, and

then combines the resolved symbols to restore the packet. Such a collision-tolerant mechanism significantly improves the transmission

diversity and spatial reuse in wireless broadcast. Chorus’ MAC-layer cognitive sensing and scheduling scheme further facilitates the

realization of such an advantage, resulting in an asymptotic broadcast delay that is proportional to the network radius. We evaluate

Chorus’ PHY-layer collision resolution mechanism with symbol-level simulation, and validate its network-level performance via ns-2, in

comparison with a typical CSMA/CA-based broadcast protocol. Our evaluation validates Chorus’s superior performance with respect to

scalability, reliability, delay, etc., under a broad range of network scenarios (e.g., single/multiple broadcast sessions, static/mobile

topologies).

Index Terms—Optimal broadcast, wireless ad hoc and mesh networks, collision resolution, multipacket reception, self-interference

cancellation, analog network coding
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1 INTRODUCTION

NETWORK-WIDE broadcast is a fundamental primitive for
many communication protocols in multihop wireless

networks, such as route discovery and information dis-
semination. An efficient broadcast protocol needs to deliver
a packet (or a continuous stream of packets) from the
source node to all other nodes in the network, with high
packet-delivery ratio (PDR) and low latency. To improve
PDR in a lossy network, multiple relay nodes can forward
and retransmit each packet, thereby creating retransmission
diversity. To reduce latency and resource usage, however,
the number of transmissions must be kept to minimum,
since redundant retransmissions waste channel time,
slowing down the packet’s delivery to the edge of the
network. Therefore, a delicate balance needs to be main-
tained between PDR and delay.

To date, efficient broadcast support, in the form of
theoretical analysis [1], [2], [3] or practical protocol design
[4], has mostly focused on the CSMA/CA MAC-layer
scheduling model. CSMA/CA has proven to be an effective
distributed scheduling scheme, especially via the 802.11
family of MAC standards. The limitation of CSMA/CA,
however, has not been examined carefully in case of
network-wide broadcast. While its fine-tuned sensing and
scheduling reduces collision, CSMA/CA inevitably misses

transmission opportunities, lowering channel usage and
spatial reuse. This problem becomes acute, especially for
network-wide broadcast with latency constraints.

Fig. 1a illustrates a typical scenario where CSMA/CA
restricts the broadcast efficiency. With CSMA/CA, the
delivery of one packet from source S to all other nodes
requires at least three time slots. A and B cannot transmit
concurrently, even if they have to forward the same packet.
Suppose node D in a lossy network had already received
the packet, while C and E await its retransmission from A
and B, respectively. An optimal scheduling protocol would
be oblivious of the collision at D, and allow A and B to
transmit the packet concurrently. However, this is not
possible in CSMA/CA, as one of them will defer its
transmission immediately upon sensing the other’s activity.

In this paper, we introduce a novel broadcast protocol,
called Chorus, based on a MAC layer that adopts CSMA
with collision resolution (CSMA/CR). Chorus is built upon
the key insight that packets carrying the same data can be
detected and decoded, even when they overlap at the receiver with
comparable strength. With Chorus, collision of the same
packets from different relays can be effectively resolved.
The advantage of such a collision-tolerant protocol is
obvious, as shown in Fig. 1b. With collision resolution, A
and B can now transmit packets immediately and
independently after receiving them from the source. Node
D exploits Chorus’ collision resolution to decode the two
collided packets from A and B. Therefore, only two time
slots are required to deliver one packet over the entire
network, due to the improved spatial reuse. Moreover, when
links are unreliable, the two decoded packets from A and B
create transmit diversity for the common receiver D, without
consuming any additional channel time.
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Both the spatial reuse and the transmit diversity gain in
Chorus are realized via its collision resolution scheme,
which is based on self-interference cancellation [5]. Unlike
traditional transmit diversity schemes such as beamforming
[6], Chorus requires neither symbol time synchronization
nor instantaneous channel state information. In reality, it is
difficult to synchronize the independent transmitters A and
B at the symbol level [6]. Chorus exploits the asynchrony
between them to identify collision-free symbols in the
overlapping packets. It then initiates an iterative cancella-
tion process that subtracts clean and known symbols from
the collided ones, and obtains estimates of unknown
symbols. The decoding succeeds as long as one packet
has sufficient SNR, hence realizing the diversity offered by
multiple transmitters.

At the MAC layer, Chorus adds a cognitive sensing and
scheduling module to the 802.11 CSMA mechanism. Speci-
fically, senders back off only when they sense a packet on
the air that has a different identity from what they intend to
transmit. Such a cognitive MAC allows Chorus to fully
exploit the advantage of collision resolution, while main-
taining friendliness to background traffic. In addition, the
collision-resolution capability enables anonymous broad-
cast at the network layer, without any topology or
neighborhood information.

To quantify the effectiveness of Chorus, we establish an
analytical framework for its achievable SNR and bit error
rate (BER), which takes into account the error-propagation
effects in iterative collision resolution. We further analyze
its network-level performance in terms of latency and
throughput. With a joint design of CSMA/CR and broad-
cast, Chorus achieves �ðrÞ latency (r is the network radius),
which is asymptotically optimal and unachievable in
existing CSMA/CA-based broadcast protocols.

To verify the feasibility of Chorus’ collision resolution,
we implement the iterative decoding and packet combina-
tion in a symbol-level simulator. To evaluate Chorus’s
performance in large networks, we feed the above fine-
grained analytical and simulation results into the PHY layer
of ns-2, implement the CSMA/CR MAC, and broadcast
protocol, and compare Chorus with a CSMA/CA-based
protocol. In a large set of randomly chosen topologies,
Chorus is shown to make several-fold performance im-
provement in latency and PDR. The performance gain is
relatively insensitive to network size, source rate, and link

quality, and is observed for both static and mobile
topologies, and in both single- and multisource broadcast
scenarios. These salient properties are important, especially
for information dissemination in large-scale wireless net-
works, and represent the importance of exploiting PHY-
layer signal processing to improve application performance.

The remainder of this paper is organized as follows: In
Section 2, we review existing work in comparison with
Chorus. We introduce the collision resolution mechanism in
Section 3, and then the cognitive sensing, scheduling, and
network-layer broadcast scheme in Section 4. In Section 5,
we derive Chorus’ achievable SNR and BER, and analyze its
asymptotic broadcast performance. We evaluate Chorus’
performance via simulation in Section 6, and conclude the
paper in Section 7.

2 RELATED WORK

Efficient broadcast in multihop wireless networks has been
studied extensively, from both theoretical and practical
perspectives. From the theoretical perspective, it is well
known that scheduling a minimum-latency broadcast is
NP-hard, either in a general undirected graph [3] or in a
unit disk graph (UDG) [1]. Without the minimum latency
constraint, analytical solutions demonstrated the feasibility
of scheduling with time complexity �ðr lognÞ [7] in a
distributed anonymous broadcast, and rþOðlog rÞ [2] in
centralized broadcast with a known topology, where r and
n denote the network radius and number of nodes. More
recent work has improved the efficiency, and adopted more
realistic models, such as the interference graph [8].

The above algorithmic solutions generally assume
perfect MAC-layer scheduling. In reality, scheduling in
wireless networks is mostly based on distributed CSMA/
CA. The widely used 802.11 standards [9] provide best-
effort service broadcast, using CSMA/CA without any
ACK or retransmissions. Practical broadcast protocols have
mostly adopted the 802.11 CSMA/CA and extended it to
multihop networks. A main mechanism is to prune the
topology, leaving only a backbone that covers the entire
topology. The double-coverage broadcast (DCB) [4], for
example, reduces redundant transmissions by selecting
nodes that cover more neighbors, while ensuring each node
is covered at least twice, such that retransmission can be
exploited to improve delivery ratio. The fundamental
difference between Chorus and such existing protocols lies
in its MAC layer scheduling protocol. With a joint design of
CSMA/CR and network level broadcast, Chorus can
achieve the �ðrÞ latency bound, hence it has both
theoretical and practical relevance.

Network coding is another approach that improves the
broadcast reliability for wireless networks [10]. It simplifies
the relay-selection problem by allowing random mixing of
information at relays. However, network coding only
applies to continuous broadcast, where a batch of source
packets can be encoded. Network coding improves broad-
cast efficiency for lossy and mobile networks, but still
cannot achieve the optimal latency in general [10].

The advent of high-performance software radios (SRs)
has inspired wireless protocols beyond the CSMA/CA
paradigm. For instance, the classical concept of interference
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cancellation [5] in information theory has been realized in
SR-based wireless LANs [11]. Interference cancellation
resolves overlapped packets by first decoding the one with
stronger RSS, treating the weak packet as noise, and then
subtracting the decoded strong packet, thus obtaining the
weak one. It applies to the case where two different packets
collide with disparate strengths. In Chorus, even two
packets with similar strengths can be effectively decoded,
because each sees the other as a complement, rather than
an interferer.

The PHY layer of Chorus shares similar spirits with the
ZigZag protocol [12], which exploits the signal processing
capability of SRs to solve the hidden terminal problem in
WLANs. ZigZag extracts symbols from collided packets by
identifying repeated collisions of two hidden terminals. It
treats each collided packet as a sum over two packets. The
two original packets are recovered from two known sums,
similar to solving a linear system of equations. In the PHY
layer, Chorus uses a collision resolution mechanism similar
to ZigZag, but it resolves multiple packets from a single
collision, given that the packets are identical. In addition,
Chorus aims to improve broadcast efficiency in wireless
mesh networks, where it exploits transmit diversity and
spatial reuse, using MAC-layer cognitive sensing and
broadcast scheduling.

Analog network coding (ANC) [13] also exploits PHY
layer self-interference cancellation to improve performance
of multihop networks. Its rationale is to allow relays one-
hop away to transmit concurrently, and cancel out the
known packet at the intermediate relay. ANC asymptoti-
cally improves relaying throughput, since it reduces the
exclusion region from three to two hops, compared to the
traditional CSMA. In this paper, we show how ANC can
be leveraged to further improve the broadcast performance
of Chorus (Section 5.4).

The feasibility of allowing concurrent transmissions to
create diversity has also been explored in communications.
Concurrent cooperative communication [14], for example,
allows colocated wireless nodes to transmit at the same time,
thus forming a virtual antenna array that increases signal
strength at the common receiver. Beamforming protocols [6]
synchronize the transmitters, such that their signals can
combine coherently at the receiver. These techniques require
strict frequency, phase, and time synchronization at the
symbol level, among distributed transmitters. Such fined-
grained synchronization remains an open problem [6], due
to the limited time resolution at the wireless nodes, and the
variation of the wireless channels.

3 COLLISION RESOLUTION IN CHORUS

In this section, we introduce the physical-layer collision
resolution in Chorus. For clarity, we start with a simple case
of two-packet collision, focusing on how to detect, decode,
and combine the collided packets to achieve the diversity
gain. Then, we deal with the general case of resolving the
collision of more than two packets.

3.1 Detecting Collided Packets

In Chorus, a transmitter attaches a known random
sequence to the beginning of each packet as a preamble.

The receiver then uses a matched filter to detect the exact
arrival time of this preamble. A matched filter is an optimal
linear correlator that maximizes the SNR when correlating
unknown signals with a known sequence [15]. It outputs a
peak value whenever the packet preamble is detected, even
if the preamble is hidden in a strong noise. It operates
continuously, so that those preambles overlapping with
other packets can still be identified. The number of
preambles detected in a run indicates the number of
overlapping packets at the receiver.

The peak output grows linearly with the number of bits
in the preamble, and with the RSS of the packet [15].
Therefore, the detection threshold is also a linear function of
these two factors [12]. In has been observed that using a 32-
bit pseudorandom preamble, the collision detection prob-
ability is higher than 98 percent under practical wireless
settings [12]. Hence, the preamble introduces negligible
overhead to the packet.

3.2 Iterative Resolution of Collision

Since a packet usually consists of thousands of symbols, the
probability of two collided packets being aligned perfectly
is close to 0. In practice, the higher layer operations at
transmitters introduce further randomness, resulting in
asynchronous arrivals. We identify the natural offset
between the two packets by detecting their preambles.
Within the offset region, no collision occurs. We first decode
the clean symbols therein, and then iteratively subtract such
known symbols from the collided ones, thereby obtaining
the desired symbol.

For instance, Fig. 2 shows collision of two packets (head
packet P1 and tail packet P2) from different transmitters.
We first decode the two clean symbols A and B in P1.
Symbol C is corrupted as it collides with A0 in P2, resulting
in a combined symbol S. To recover C, note that symbols A0

and A carry the same bit, but the analog forms are different
because of channel distortion. Therefore, we need to
reconstruct an image of A0 by emulating the channel
distortion over the corresponding bit that is already known
via A. The channel distortion effects, including amplitude
attenuation, phase shift, frequency offset, and timing offset,
can be accurately estimated using standard communication
techniques, as demonstrated in a realistic experimental
setting [12].

After reconstruction, we subtract the emulated A0 from
S, obtaining a decision symbol for C. Then, the decision
symbol is normalized using the channel estimation for P1,
and a slicer decides if the bit in C is 0 or 1. For BPSK, the
slicer outputs 0 if the normalized decision symbol has
negative real part, and 1 otherwise. The decoded bit in C is
then used to reconstruct C0 and decode E. This process
iterates until the end of the packet is reached. The iteration
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Fig. 2. Iterative decoding of two collided packets carrying the same
content.



for other collided symbols proceeds similarly. The estima-
tion, reconstruction, and cancellation for higher order
modulation schemes, such as M-PSK (M ¼ 4, 8, 16, 64),
can be realized similarly, except that the signal constellation
is mapped to different complex numbers [12]. Also, note
that the above procedure has linear complexity with respect
to packet length, which is similar to ZigZag [12] and
interference cancellation [11].

Besides the iterative decoding in the forward direction,
Chorus can also work backward, starting from the clean
symbols in P2 (i.e., symbol Y 0 and Z0), to its beginning,
hence obtaining a different estimation of the packet. Chorus
then performs the following packet combination to improve
the decoding probability.

3.3 Using Packet Combination to Improve Diversity

Since P1 and P2 may have different strengths, their
decoding confidence also differs. The decoding confidence
is indicated by the magnitude of the decision symbol. The
farther away it is from the decoding threshold (0 in BPSK),
the higher probability it can produce the correct bit, since
this is equivalent to a higher SNR. Combining two decision
symbols carrying the same bits (e.g., A and A0 in Fig. 2) can
increase the decoding confidence. This is because the useful
information is enhanced, while the noise within the two
symbols is not combined coherently.

In Section 5, we show that weighted summing over the
corresponding symbols can improve the decoding prob-
ability, when two versions of the same packets are received
sequentially without collision. Such a weighted combina-
tion harvests full transmit diversity, i.e., the SNR of the
combined packet is the sum SNR of the two independently
received packets.

For those iteratively decoded packets, we only use
selective combination, i.e., assigning weight 1 to the packet
with the highest SNR, and 0 to all other packets. This is
because a weighted combination over two iteratively
decoded packets does not improve SNR. In fact, the
iterative collision resolution in Chorus can cause error
propagation, due to the correlation between consecutively
decoded symbols. For example, in Fig. 2, if symbol A
produces an erroneous bit, then the error propagates to A0,
which affects subsequent symbols such as C. Fortunately,
such error propagation stops if the actual bits of A0 and C
are the same. In this case, after subtracting the error image
of A0, we obtain a strengthened symbol that indicates the
correct bit of C. Error propagation also stops when symbol
C has a much higher strength than A0. Based on these two
observations, we can bound Chorus’ BER, showing that the
probability of error propagation decays exponentially with
the error length (Section 5).

3.4 Multipacket Collision Resolution

Since Chorus allows concurrent transmissions, multiple
versions of a packet can collide, especially when the
network has high density. The resolution of multipacket
collision is complicated by the fact that intermediate
packets no longer have clean symbols at the beginning or
end. Fig. 3 illustrates a typical scenario.

Let the earliest and latest packets be head packet and tail
packet, respectively. To decode the head packet, Chorus

proceeds in a way similar to the two-packet case, except
that it needs to subtract multiple reconstructed symbols,
including the one from the tail and those from the
intermediate packets. Similarly, another version can be
obtained by decoding the tail packet, but in reverse order,
starting from its end to the beginning. To obtain additional
versions from intermediate packets, Chorus performs
simple hard decoding. It tracks the packet symbol-by-
symbol, treating all others as noise. Intuitively, the results
have reasonable confidence only when this packet has a
much higher strength than others. The achievable decoding
confidence will be rigorously characterized in Section 5.

We recognize that perfect interference cancellation is
hard to achieve in practice, due to hardware distortion and
imperfect channel estimation. However, the collision
resolution mechanism in Chorus does not require perfect
interference cancellation. Even though residual interfer-
ence exists and cannot be completely removed, Chorus is
able to decode the useful packet, as long as the SINR
is above the decoding threshold. The decoding threshold is
around 9.7 dB in typical WiFi receivers [16], whereas even
a prototype implementation of interference cancellation
can reduce interference by 20 dB [17], i.e., collision
resolution can succeed even if interference is 10.3 dB
higher than the useful signal. In addition, recent develop-
ment of specialized hardware and algorithms (e.g., over-
sampling and long-preamble design [18]) can make the
performance closer to ideal interference cancellation.

4 COGNITIVE SENSING AND BROADCAST

SCHEDULING

Chorus’ physical-layer collision resolution must be inte-
grated with the MAC layer, in order to reduce unresolvable
collisions occurring when packets with different data collide.
In addition, Chorus’ network layer must ensure broadcast
packets can reach the network edge. Next, we detail both
the MAC- and network-layer support for broadcast.

4.1 MAC Layer Cognitive Sensing and Scheduling

Chorus’ MAC layer maintains the carrier sensing and
backoff in the 802.11-based CSMA protocol, but adopts
cognitive sensing that exploits the collision-resolution
feature, while avoiding unresolvable collisions. The princi-
ple of cognitive sensing is to decode the identity of the
packet on the air, and accordingly, make the transmission
decision. To this end, Chorus needs to add a new header
field into the 802.11 packet.

4.1.1 Chorus Packet Format

Fig. 4 illustrates the broadcast packet format in Chorus.
First, a known random sequence is attached to facilitate
packet detection and offset identification (Section 3.1).
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Fig. 3. Collision resolution: The multipacket collision case.



Second, a Chorus header field is added, which informs the
receiver of the packet’s identity, including the broadcast
source’s ID and the packet’s sequence number. A 16-bit
Cyclic Redundancy Check (CRC) [15] is included in this
header. In case of CRC failure, this packet is discarded as it
conveys wrong identity information.

When the headers of two packets collide, Chorus
proceeds with the iterative decoding, assuming they have
the same identity. After the decoding, it performs CRC
over the header of each packet to ensure they are identical.
If not, a decoding failure occurs, and both packets will be
discarded. A decoding failure also occurs when the CRC
check over the payload fails.

4.1.2 Scheduling of Sensing and Transmissions

With the collision-resolution capability, each transmitter
calls a SEND procedure to perform cognitive sensing, as
shown in Fig. 5 Transmitters make scheduling decision
following three rules:

R1. Forward a packet immediately if the channel is idle.
R2. If the channel is busy, and the packet on the air is

exactly one of the packets in the transmit queue, then start
transmission of the pending packet.

R3. If the channel is busy, but a preamble cannot be
detected, or the header field of the packet on the air cannot
be decoded, or a different packet is on the air, then start the
backoff procedure according to the 802.11.

R1 is typical of all CSMA protocols. R2 is unique to
Chorus’s CSMA/CR. It enforces the principle of Chorus, i.e.,
overlapping packets carrying the same data may not cause
collisions. Instead, by collision resolution, these packets
offer transmit diversity to the receiver. Therefore, a sender
node, such as node B in Fig. 1, can transmit its pending
packet if it has the same identity as the one on the air (e.g.,
the one that A is transmitting). In contrast, CSMA/CA
transmitters stall and back off whenever the channel is busy.

R3 ensures friendliness to alien traffic, and is relevant
for multisource broadcast and coexistence with CSMA/
CA-based unicast traffic. To prevent unresolvable collisions
between different packets, Chorus starts the normal 802.11
backoff if it senses that the channel is occupied by such
alien traffic. To reduce interference to coexisting traffic, it
also backs off conservatively if the identity of the packet on
the air cannot be decoded.

The advantages of cognitive sensing and scheduling
come at the expense of additional overhead. In 802.11b, the
sensing time slot is 20 �s, equivalent to the channel time of
20 bits in the broadcast mode. In contrast, Chorus needs to
sense over the entire preamble and the header (80 bits in
total, as indicated in Fig. 4). However, this overhead is
negligible compared to the packet length (a similar result
holds for 802.11a/g/n). We will formalize the cost of the
header overhead using both asymptotic analysis (Section 5)
and simulation experiments (Section 6).

4.2 Scheduling Network-Wide Broadcast

Compared to existing CSMA/CA-based broadcast proto-
cols, Chorus has the following salient features:

. Anonymity. The source and relays do not require any
topology information or neighbor identity. As a
result, it is insensitive to node mobility, and incurs
no control message overhead.

. Decentralization. Each node only needs to maintain
local states recording the most recent packet ID that
it forwarded for a broadcast session (corresponding
to a source ID).

. Diversity. By decoding multiple copies of the same
packet, Chorus gains diversity, and hence, robust-
ness to link losses.

These properties are realized in a wave-propagation style
broadcast. Following the SRC procedure in Fig. 6, the source
node composes a Chorus packet, and transmits it like a
normal 802.11 broadcast packet. Any neighbor overhearing
this packet will provide best-effort service by forwarding it
once, following the FORWARD procedure. Receivers with
overlapped packets perform collision resolution before
continuing with the packet relaying. After each successful
reception, a receiver flushes those pending packets with
obsolete seq, in order to prevent unresolvable collisions
between packets with different sequence numbers. Intui-
tively, multiple versions of a packet proceed in parallel just
like a wavefront, which stops at the network edge.
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Fig. 4. The broadcast packet format in Chorus.

Fig. 5. The MAC-layer control flow in Chorus. seq’ denotes the sequence
number of the packet on the air.

Fig. 6. Control flow for scheduling network-wide broadcast.



In case of continuous broadcast of packets, the source
distributes a batch of packets (such as software patches)
over the network. In such a scenario, Chorus controls the
source rate to prevent congestion and avoid collision
between packets with consecutive sequence numbers. As
verified in the following analysis, the supportable source
rate of Chorus allows for a simple closed-form expression
that is independent of network topology. This expression
can be used to calculate an upper bound on throughput and
control the source rate in continuous broadcast.

To improve the reliability of continuous broadcast,
the source node can rebroadcast each packet. Intermediate
relays need to distinguish rebroadcast packets from the
first/original version. This is achieved by splitting the seq
field into broadcast sequence and packet sequence. To make a
tradeoff between delay and reliability, the source node
limits the maximum number of retransmissions for each
packet. As shown in Section 5.5, a simple relation between
retransmission and PDR can be derived for PDR, which can
be used as a guideline for making the tradeoff.

When multiple broadcast sessions are running concur-
rently, their packets are identified through the source-id
field in the header part. Each relay maintains a transmit
queue storing the packets to be forwarded. When the
channel is idle, it directly transmits the head-of-line packet.
Otherwise, it follows the MAC-layer cognitive scheduling
protocol, which maximizes the spatial reuse opportunity by
scheduling the same packets, while avoiding collision with
other broadcast sessions. Note that the coexistence with
unicast traffic is a special case of multisource broadcast. In
effect, the latter case requires more conservative scheduling
because of more severe interference, and hence, it will be
used as a benchmark for validating Chorus’ friendliness to
alien traffic.

5 PERFORMANCE ANALYSIS

In this section, we first characterize the performance of
collision resolution and packet combination in Chorus. We
then analyze its asymptotic delay and throughput perfor-
mance, in comparison with the traditional CSMA/CA
schemes. The analytical results serve as guidelines for
selecting the design parameters, such as packet-combining
strategy and maximum source rate.

Unless stated otherwise, we use the following set of
notations: L for the packet length, F the offset between two
collided packets, D the data rate, W the signal bandwidth,
N the noise power, and �2 the noise variance. Multiple
collided packets are indexed according to their arrival time,
and �i denotes the SNR of packet i. We maintain consistent
settings to the 802.11b broadcast mode. Specifically, all links
adopt the 1 Mbps basic access mode using BPSK [9]
(assuming D ¼ 1 Mbps, W ¼ 1 MHz). No MAC-layer re-
transmission, ACK, RTS/CTS, or other control packets are
involved.

5.1 Achievable SNR and BER

We begin with an elementary scenario where two versions
of a packet (denoted as P1 and P2) from different
transmitters collide. This scenario is analogous to the two-
user uplink channel in information theory [5], which adopts

interference cancellation as the optimal decoder. However,
Chorus’ application scenario is unique in that P1 and P2
carry the same content. Ideally, they should complement, or
at least do not interfere with each other. This intuition is
formalized in the following set of theorems.

Theorem 1. Without packet combination, the achievable SNR of

Chorus’ collision resolution in the two-packet collision case

is � ¼ maxfP1

N ;
P2

Ng. When decoding m overlapped packets,

the achievable SNR of Chorus’ collision resolution is � ¼
maxfP1

N ;
PiP

j 6¼i PjþN
; PmN g, i 2 f2; . . . ;m� 1g.

Proof. The proof follows from Chorus’ iterative decoding.

We represent symbols in the complex form. Suppose at

time t, symbol ~s1ðtÞ ¼ a1e
j�1x1ðtÞ in P1 collides with

~s2ðtÞ ¼ a2e
j�2x2ðtÞ in P2. Let v denote the receiver noise,

then the received symbol ~sðtÞ ¼ ~s1ðtÞ þ ~s2ðtÞ þ v. If we

decode P1 first (forward-direction decoding), then

x2ðtÞ ¼ x1ðt� F Þ. In addition, the channel amplitude

a2 and phase �2 can be estimated via correlation, which

can achieve high accuracy and introduces negligible

noise [12]. Therefore, we can obtain a decision symbol

for x1ðtÞ as: ~sðtÞ � ~s2ðtÞ ¼ a1e
j�1x1ðtÞ þ v. The resulting

SNR level is: ja1e
j�1 j2

2�2 ¼ P1

N , which equals the SNR when

s1ðtÞ is decoded independently.

Similarly, if the clean symbols in P2 are decoded first

(backward-direction decoding), then we can obtain P2

N .

Taking the maximum of these two yields � ¼maxfP1

N ;
P2

Ng.
When m packets collide, the head and tail packets

have clean symbols, and the achievable SNRs are P1

N and
Pm
N , respectively, following a similar line of reasoning as

above. Since Chorus performs hard decoding over
intermediate packets, the achievable SNR for an inter-

mediate packet is the same as treating other packets as

noise, i.e.,

PiP
j 6¼i Pj þN

; 8i 2 f2; . . . ; m� 1g:

The result follows directly after taking the maximum
SNR of all packets. tu
The above SNR bounds can be transformed to the BER

bound that is directly related to the decoding performance

[15]: BER ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�WD�1
p

Þ ¼ Qð
ffiffiffiffiffiffi
2�
p

Þ, where the Q-function

QðyÞ ¼ 1ffiffiffiffi
2�
p
R1
y e�

x2

2 dx. QðyÞ ! 0 exponentially when y < 1

and y! �1, which also holds for y > 1 and y!1. This

implies that BER decreases exponentially with the achiev-

able SNR.

5.2 Effects of Error Propagation

The above SNR and BER bounds are simplified in that they
ignore the error propagation along sequentially decoded
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Fig. 7. The error-propagation process as a Markov chain.



symbols. Fortunately, the following analysis verifies that
the error propagation has negligible effect in common cases.

We set up a Markov chain model that relates error
propagation to the SNR of each packet, and the offset
between collided packets. Again, we start with the two-
packet collision scenario in Fig. 2 and analyze the iterative
decoding of the head packet P1. As shown in Fig. 7, we
define states according to the error propagation length,
i.e., the number of consecutive errors in a run. The state
transition can be classified into two cases: 1) the prob-
ability that an independent decoding error occurs (transi-
tion from state 0 to state 1), which equals the BER of clean
symbols in P1 (denoted as Pe), and 2) the probability Pbc
that error propagation stops, i.e., the next bit is correct
even when the current bit is erroneous. The probability of
continuing error propagation is 1� Pbc. The maximum
error propagation length starting from a clean symbol is
G ¼ bLFc, since the distance between any two consecutively
decoded symbols equals F .

Obviously, this Markov chain is aperiodic and irreduci-
ble, and thus, the steady-state distribution exists. Let �i be
the steady-state probability of state i, then we have the
following balance equations:

�1 ¼ �0 � Pe
�i ¼ �i�1 � ð1� PbcÞ; i ¼ 2; 3; . . . ; GXG
i¼0

�i ¼ 1:

8>>><
>>>:

Solving for the steady state, we have

�0 ¼
�
1þ Pe � ð1� ð1� PbcÞGÞP�1

bc

��1
; ð1Þ

�i ¼ �0 � Pe � ð1� PbcÞi�1; i ¼ 1; 2; . . . ; G: ð2Þ

We proceed to derive the probability Pbc that error
propagation stops. BPSK symbols can be represented as real
values subject to channel attenuation, since decoding only
depends on the in-phase part of the received symbol. Back to
the example in Fig. 2, suppose symbol C carries bit “0”
(mapped to -1 in BPSK), and the channel attenuation over C
isXa, then symbol C is represented as�Xc. Suppose symbol
A0 carries bit “1” (mapped to 1 in BPSK) with channel
attenuationXa0 , then the collided symbol S ¼ �Xc þXa0 þ v,
where v is the additive white Gaussion noise. In this case,
Chorus should subtract Xa0 from S. However, if the
estimation of symbol A is incorrect, it will propagate to C
via A0. Specifically, Chorus erroneously subtracts �Xa0 ,
resulting in a decision value Yc ¼ �Xc þ 2Xa0 þ v. Similarly,
when A0 carries bit “0” but Chorus estimates it as “1” via A,

the resulting decision value is Y 0c ¼ �Xc � 2Xa0 þ v. A
symmetric argument applies to the case when symbol C
carries bit “1.” Therefore, the probability that the collision
resolution outputs a correct bit is

Pbc ¼ 0:5PfY 0c < 0g þ 0:5PfYc < 0g
¼ 0:5Pfw < 2Xa0 þXcg þ 0:5Pfw < Xc � 2Xa0 g:

ð3Þ

The first term in (3) can be bounded as:

Pfw < 2Xa0 þXcg ¼ 1� Pfw � 2Xa0 þXcg
� 1� �2ð2Xa0 þXcÞ�2ðChebyshev InequalityÞ
¼ 1� ð2

ffiffiffiffiffiffiffi
2�2

p
þ

ffiffiffiffiffiffiffi
2�1

p
Þ�2:

Both �1 and �2 are in normal scale, corresponding to
practical log scale values ranging from 6 dB and above [12].
Therefore, in the above equation, it is reasonable to assume
�1 � 1; �2 � 1. Consequently, Pfw < 2Xa0 þXcg � 1.

For the second term in (3), a closed-form estimation can
be obtained as:

� ¼ Pfw < Xc � 2Xa0 g ¼ 1� 1

�
ffiffiffiffiffiffi
2�
p

Z 1
Xc�2Xa0

e�
u2

2�2 du

¼ 1� 1ffiffiffiffiffiffi
2�
p

Z 1ffiffiffiffiffi
2�1

p
�2

ffiffiffiffiffi
2�2

p e�
z2

2 dz note : z ¼ u
�

� �
¼ 1�Qð

ffiffiffiffiffiffiffi
2�1

p
� 2

ffiffiffiffiffiffiffi
2�2

p
Þ:

In practice, since the two packets are from two different
transmitters, the difference between �1 and �2 is larger than
1, even in dB scale. Given the exponential decaying of the
Qð�Þ function (Section 5.1), a practical estimation is � � 1 if
�1 � �2 and � � 0 if �1 � �2.

Combining the analysis of the two terms in (3), we have
0:5 � Pbc � 1, and Pbc transits fast from 0.5 to 1 when
�1 � �2. This trend is also illustrated in Fig. 8.

Back to (1), we have �0 � ð1þ PeÞ�1 � 1� Pe. �0 approx-
imates this upper bound as G! 1, i.e., the offset between
the two packets approaches the packet size. Furthermore, in
the common case G > 1, we have

�0 �
�
1þ PeP�1

bc

��1 � ð1þ 2PeÞ�1 > 1� 2Pe: ð4Þ

Therefore, the bit error probability P 0e in iterative decoding
is bounded as:

Pe � P 0e ¼ 1� �0 < 2Pe: ð5Þ

Pe is typically below 10�6; the packet length is around
1KB. Hence, P 0e has a similar effect on the packet error rate
(PER) as Pe, even when it approaches the upper bound. This
means the effects of error propagation on PER are negligible,
which will be further verified in our bit-level simulation.

Combining the bounds for Pbc and Pe with (2), we
conclude that while resolving a given collision, the error-

propagation probability decays exponentially with the error length

(also shown in Fig. 9). This is consistent with the empirical
observation in [12]. The above reasoning can easily be
extended to multipacket collision resolution, where the
probability that error stops propagating is also close to, or
larger than 0.5, because the previous erroneous bit may
strengthen the current bit with probability 0.5.
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Fig. 8. Head packet’s Pbc: the probability that error stops propagating to
the next bit.



5.3 Optimal Packet Combination Weight

When two or more versions of the same packet are received

sequentially without any collision, no error propagation

occurs. Intuitively, this happens when a small packet size is

used. Error propagation is also negligible when the two

packets have a large offset F close to packet length. In such

cases, we can harvest the transmit diversity via weighted

combination of the symbols in the received versions. The

optimal weight is derived as follows:

Theorem 2. Without error propagation, the optimal combination

weight of packet i is �i. The resulting SNR equals
Pm

i¼1 �i.

Proof. Suppose m versions of the packets are received

sequentially. The tth symbol in version i is ~siðtÞ ¼
aie

j�ixðtÞ þ v. We normalize the symbol phase, and then

assign weight ci to each version, obtaining a coherently

combined decision symbol ~siðtÞ ¼
Pm

i¼1 ciðaixðtÞ þ vÞ,
resulting in SNR:

gSNR ¼ ð
Pm

i¼1 ciaiÞ
2Pm

i¼1 c
2
i �

2
: ð6Þ

This function can be easily shown to be concave with
respect to ci. Therefore, we take the first-order derivative
and obtain

ci ¼ arg max
ci

gSNR ¼ a
2
i

�2
¼ �i: ð7Þ

Combining (6) and (7), we obtain: max gSNR ¼
Pm

i¼1 �i,
thus completing the proof. tu

It should be noted that Theorem 2 does not hold when

combining two or more iteratively decoded packets with a

small offset F , where the error propagation occurs. In a high

SNR region, the error propagation dominates the bit errors

caused by noise, so the performance of the weighted

combination can be worse than selective combination,

i.e., assigning weight 1 to the packet with the highest

SNR, and 0 to all other packets. This intuition will be further

justified via simulation.

5.4 Asymptotic Delay and Throughput

We now analyze the network-level performance of Chorus,

including latency and throughput. To be consistent with

existing asymptotic analysis [1], [2], [7], we assume perfect

reception within the transmission range if no collision

occurs. The network radius is r, i.e., it spans r hops from the

source to the receiver farthest away.

5.4.1 Single-Source Broadcast

We first analyze the case when a single node broadcasts

packets over the entire network. Let h denote the size of

Chorus preamble plus Chorus header, then we have the

following asymptotic performance bound regarding broad-

cast latency and throughput.

Theorem 3. The worst case latency and throughput of Chorus is
rðLþhÞ
D and LD

3ðLþhÞ , respectively.

Proof. The network can be divided into r rings centered

around the source node. A trivial lower bound on the

latency is r LD , i.e., all nodes within the same ring transmit

concurrently after those in the previous ring, and the

packet’s transmission is repeated exactly r times. How-

ever, this is achievable only when the cognitive sensing

function is disabled. The worst case scenario occurs when

cognitive sensing induces the longest delay between

adjacent rings, as shown in Fig. 10. Specifically, at most a

half of the nodes within each ring transmit while others

within the same ring are transmitting. This incurs a

latency equal to the duration of the Chorus preamble and

header, which equals h
D . In addition, the occurrence of this

latency can be repeated at most r times over the network,

resulting in the worst case latency r LþhD .

In continuous broadcast, packets of different sequences

must not collide as such collisions cannot be resolved. To

prevent such collisions, nodes within two hops cannot

send different packets concurrently. Therefore, a new

packet can be sent from the source only after the previous

packets have propagated at least three hops, which takes

time 3 Lþh
D . As a result, the amount of data transmitted

within a unit time is L
3LþhD

, which is equivalent to the broad-

cast throughput of Chorus. tu
From Theorem 3, one can see that the asymptotic latency

of Chorus satisfies rL
D � �ðrÞ � rðLþhÞ

D . Under a unit disk

graph model, Chorus’s latency can be close to the trivial

lower bound rL
D , since h� L. This is in sharp contrast with

the �ðr lognÞ latency for anonymous broadcast using

CSMA/CA [7].
Theorem 3 also reveals that the maximum supportable

source rate (or maximum throughput) of Chorus is

insensitive to the network size. As a worst case bound, it

can be used to control the source rate in continuous

broadcast, in order to prevent the collision between

consecutive packets, and avoid congestion.
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Fig. 10. The worst case latency scenario in Chorus broadcast.

Fig. 9. Steady state distribution of error length. �1 ¼ 10; �2 ¼ 7. F ¼ L
64 .

Error length 0 is not shown.



5.4.2 Combining with Analog Network Coding

Chorus exploits self-interference cancellation to resolve
collision of packets containing the same data. When the

source broadcast a continuous stream of packets, collision
may still occur between consecutive packets. By preser-

ving the carrier-sensing mechanism, Chorus alleviates
such collision. As a result, the exclusive region (i.e., three

hops) is the same as traditional CSMA protocols. How-

ever, this problem can be alleviated by combining Chorus
with ANC [13].

ANC takes advantage of self-interference cancellation to

resolve collision between a known packet and a newly
arrived packet. The key observation is that, in multihop

wireless networks, a relay node Nr can allow its next-hop
and previous-hop nodes to forward packets at the same

time. The next-hop node forwards packets known to Nr,

which can thus be reemulated and canceled out even when
colliding with new packets from the previous-hop node. By

combining with ANC, Chorus can allow relays two hops
away to forward packets concurrently (as illustrated in

Fig. 11), thereby asymptotically improving the throughput
performance. Following a similar line of analysis to

Theorem 1, we can obtain the following result (we omit
the detailed proof).

Corollary 3.1. When combined with analog network coding,

the worst case latency and throughput of Chorus are rðLþhÞD and
LD

2ðLþhÞ , respectively.

In a half-duplex wireless network, any node can either
transmit or receive at any time, and thus, the maximum

broadcast throughput is bounded by D
2 . In this sense,

Chorus achieves the optimal throughput asymptotically.
In reality, combining Chorus with ANC has more

stringent implementation requirements than Chorus itself.
To effectively cancel known packets, next-hop and pre-

vious-hop relays may need to coordinate with each other,

thus complicating the MAC-layer sensing and scheduling
mechanisms. Hence, in this paper, we only discuss the

theoretical implication of integrating ANC into Chorus, and
leave the practical implementation as our future work.

5.4.3 Multiple Broadcast Sessions

We proceed with the case when multiple source nodes
broadcast packets concurrently. Following a similar line of

analysis with Theorem 3, we can obtain the following result.

Corollary 3.2. When M sessions run Chorus concurrently and

the network topology has a bounded node degree E, then the

worst case latency and throughput of each session are
rðLþhÞminfE2;Mg

D and LD
ðLþhÞminfE2;Mg , respectively.

Proof. For each forwarder of packets of an arbitrary session

m, the maximum number of two-hop neighbors is E2.

Thus, the maximum number of contending nodes with

alien traffic is minfE2;Mg. In the worst case, the packets

of session m will be delayed by minfE2;Mgr, where r is

the network radius (c.f.the proof for Theorem 1). There-

fore, the worst case delay for a single packet from session

m is rðLþhÞminfE2;Mg
D . Similarly, the throughput bound can

be derived as LD
ðLþhÞminfE2;Mg . tu

Corollary 3.2 implies that the contention among multiple

broadcast sessions may reduce the performance of indivi-

dual sessions, but does not affect the asymptotic delay and

throughput. This is again owing to the wave-front style

broadcast enabled by Chorus MAC/PHY layers.

5.5 The Delay-Reliability Tradeoff

When the source node is allowed to rebroadcast each

packet (Section 4.2), PDR can be improved, but at the cost of

latency. We use the shadowing propagation model [15] to

derive a tradeoff between broadcast reliability and latency.

The shadowing model accounts for the irregularity of

transmission range by modeling the received power at a

certain distance as log-normal-distributed. Its accuracy has

been verified in outdoor mesh network measurements [19].
With the shadowing model, the received power (in dBW)

at a certain distance d is

P ðdÞ ¼ P ðd0Þ � 10� log
d

d0

� �
þX; ð8Þ

where d0 is a reference distance with known received

power, � the path-loss exponent, X a Gaussian random

variable with zero mean and standard deviation �. P ðd0Þ, �,

and � can be obtained from empirical measurements [19].
Assume the packet reception is successful if the SNR at

the receiver side is above a threshold Ts, then the packet-

reception probability at distance d is

PaðdÞ ¼ P
P ðdÞ
N

> Ts

	 

¼ P X > NTs þ 10� log

d

d0

� �	 


¼ Q 1

�
NTs þ 10� log

d

d0

� �� �� �
:

ð9Þ

Denote R as the network radius in meters. Given a

random network, we first partition the topology into c

rings centered around the source node with equal-distance

(Rc ) separation. We simplify the analysis by performing a

ring mapping, which projects each node to the ring closest to

it. We consider a degraded version of Chorus where a node

can decode at most one packet from transmitters on the

previous ring (i.e., the transmit diversity is not exploited).

We focus on nodes at the network edge, which are the

determinant of delay and PDR. For such nodes, the

reception probability is
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Fig. 11. Snapshot of a continuous broadcast session, where Chorus is
combined with analog network coding. Nodes two hops away (S and
fC;D;Eg) can broadcast concurrently. Interfering packets from nodes
fC;D;Eg are known to fA;Bg and can be canceled using analog
network coding.



Pc ¼ 1� 1� Pc
a

R

c

� �� �xþ1

; ð10Þ

where PaðRcÞ is the reception probability between nodes on
adjacent rings, and x denotes the number of rebroadcast
from the source.

On the other hand, the latency of this packet equals the

initial delay plus subsequent pipelined retransmissions.

When the same packet is retransmitted, three-hops apart

nodes can transmit concurrently. In this case, the throughput

is LD
3ðLþhÞ , following a similarly line of reasoning to Theorem 1.

Therefore, the latency of the packet (including retransmis-

sion time) is

eT ¼ xL
LD

3ðLþhÞ
þ cðLþ hÞ

D
¼ Lþ h

D
ð3xþ cÞ: ð11Þ

From (10) and (11), we obtain a tradeoff between delay

and PDR:

Pc ¼ 1� 1� Pc
a

R

c

� �� � eTD
3ðLþhÞ�

c
3

: ð12Þ

Equation (12) indicates that in a lossy network (corre-
sponding to Pc

a < 1), with all other factors fixed, the PDR of
Chorus approaches 1 at an exponential speed as delay (or
the number of retransmissions) increases. This is especially
true for the first few retransmissions. Such a simple relation
has not been established for CSMA/CA-based broadcast,
because of the intractability of optimal scheduling with
CSMA/CA.

6 EXPERIMENTAL EVALUATION

We quantitatively evaluate the performance of Chorus in
two steps. First, we use symbol-level simulation to verify the
effectiveness of its collision-resolution scheme. Then, we
introduce the implementation of Chorus based on the
802.11b module in ns-2, and evaluate its broadcast perfor-
mance in large-scale networks. The simulation experiments
further justify our analysis.

6.1 Collision-Resolution Performance

We implement a symbol-level simulator in Matlab. The
symbols are represented as complex numbers, whose
magnitude depends on the packet’s SNR. We assume the
receiver noise profile is AWGN, which is a typical
approximation to the noise profile after receiver filtering
and frequency compensation [12]. Given two or more
collided packets, the simulator resolves the collision using
Chorus’s iterative decoding algorithm. The simulated
receiver adopts a simple zero-forcing slicer which outputs
a “0” bit if the decision symbol’s real part is negative, and
“1” otherwise. The signal bandwidth is set to 1 MHz and
data rate 1 Mbps. The noise power density is 10�11 W/Hz.
We vary the received signal power to simulate the SNR
range between 0 and 15 dB. For each SNR value, we
simulate 5	 104 collisions, each consisting of three copies of
a randomly generated packet of length 1,024 B. The results
trivially extend to general cases with an arbitrary number of
packets of varying sizes. We focus on the head and tail

packets since these two adopt iterative decoding while
others use hard decoding.

Fig. 12 illustrates the BER and PER of Chorus’s iterative
decoding algorithm. We observe close performance between
Chorus’s collision resolution and the case without any
collision. This implies that the BER and PER degradation
caused by error propagation is negligible under practical
settings.

The SNR-weighted combination of decoded packets
reduces BER at the low SNR region. However, at the high
SNR region, it results in lower performance than selective
combination, i.e., assigning weight 1 to the packet with
higher SNR, and 0 to the other. This is because as the SNR
increases, the error- propagation effect dominates the
additional diversity of weighted combination. Our analysis
of error propagation (Section 5) is also found to match well
with the symbol-level simulation results. Therefore, it can
be used as the packet-reception model in the network-level
simulation of Chorus.

An additional observation from Fig. 12 is the impact of
SNR on Chorus’s performance. Inaccurate channel estima-
tion reduces the SNR, thus increasing BER. Our previous
analysis assumed accurate channel estimation during the
iterative decoding. This is because Chorus detects and
decodes collided packets with a relatively high SNR, while
treating undetectable packets as noise. In addition, channel
estimation is usually realized via adaptive filtering [12], and
thus, the noise added is much lower than ambient noise
and interference.

6.2 Network-Level Performance

We now evaluate the broadcast performance of Chorus. We
implement the cognitive sensing and broadcast scheduling
protocols based on the 802.11b module in ns-2 (version
2.33). We adopt the collision-resolution module as the
PHY-layer packet-reception model. This module computes
the SNR for a given collision pattern, following the analysis
in Section 5. The resultant SNR is then compared with the
SNR threshold to determine whether the reception suc-
ceeds. We do not consider error propagation since it has
negligible effect on PER, as shown in our previous analysis
and simulation. We only use the selective combination
when multipacket collisions occur.

We use a typical CSMA/CA-based protocol, Double-
Coverage Broadcast [4] as a performance benchmark. In order
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Fig. 12. Symbol-level simulation of iterative decoding. The x-axis
represents the SNR of the head packet. As an illustration, the tail
packet’s SNR is set to 3 dB lower than that of the head packet. no-
collision indicates the decoding performance when only the head packet
is present.



to reduce the latency caused by redundant transmissions,
DCB prunes the network topology, such that only those
nodes with the potential to deliver packets to many
downstream receivers will be selected. It further improves
PDR by ensuring that each receiver is covered at least twice
by other selected forwarders. DCB has been compared with
a number of other CSMA/CA-based broadcast protocols
and demonstrated its superior performance.

We have implemented DCB based on the ns-2 802.11b
MAC, following the specification of [4, Algorithm 5]. Since
it requires a strict definition of neighborhood, DCB
assumes the existence of a transmission range, within
which all nodes receive packets from the transmitter with
the same probability. To improve accuracy while satisfying
this requirement, we use the following channel model. We
define the transmission range at a distance where
reception succeeds with an edge reception probability 	.
Within this range, the RSS follows the log-normal
distribution [19], with mean 4 and std 5 (dB). This channel
model represents a middle ground between the UDG and
the log-normal shadowing model. When 	 is close to 1, it
approaches the UDG model. As 	 approaches 0, it becomes
a shadowing model. For a given topology, as 	 decreases,
the average link quality decreases. From the symbol-level
simulation in Fig. 12, we observe a sharp decrease of PER
beyond certain SNR. Therefore, it is reasonable to assume
a SNR threshold exists, above which packets cannot be
received. Given the edge reception probability 	 and noise
power, the SNR threshold is calculated by inverting the
log-normal function [19].

All experiments are repeated on 30 randomly generated

topologies with node degree ranging from 2 to 9. We

measure 1) PDR according to the fraction of nodes that

successfully receive a packet, and 2) latency equal to the

duration between its release and the last successful

reception. Both the PDR and latency are averaged over

1,000 packets for each topology, and evaluated with respect

to link quality (indicated by 	), network size, source rate,

and packet size. The typical settings are: source rate 1 pkt/s

(packets/second), packet size 1 KB, edge reception prob-

ability 	 ¼ 0:5, network size (number of nodes) 100 with

average node density 6. Unless noted otherwise, we isolate

the effect of each factor by varying it with others fixed at

their typical values.
Our experimental results on DCB are consistent with [4] at

high link quality, low source rate, small packet size, and
small network size. However, in general, DCB’s performance

degrades fast. In contrast, Chorus demonstrates significant
advantages in all cases. Next, we report the detailed results
and their analysis.

6.2.1 Effects of Link Quality

We vary the link quality by tuning the edge reception
probability 	. A higher 	 value implies a lower packet loss
rate for average links in the network. As shown in Fig. 13,
the PDR of both Chorus and DCB decreases with loss rate.
However, Chorus is much less sensitive to the link
condition, owing to the diversity provided by its collision
resolution. As 	 varies, Chorus’s latency remains around
0.1 second, while DCB’s latency varies from 0.12 to 0.3.
More importantly, Chorus preserves more than 90 percent
PDR under all link conditions, while DCB’s average PDR
drops from 90 to 20 percent as 	 decreases. Note that DCB’s
latency may drop as the link quality decreases. This is at
the expense of severe packet losses as indicated by the
decrease of PDR.

6.2.2 Effects of Network Size

Sensitivity to network size indicates the scalability of
broadcast protocol. To quantify the scalability of Chorus,
we keep the average network density at 6 while increasing
the total number of nodes in the network. The network
radius grows accordingly. Fig. 14 plots the resulting latency
and PDR. Chorus demonstrates a negligible loss of PDR as
the networks size grows. Moreover, its latency is 75 percent
lower than that of DCB. Consistent with the asymptotic
analysis, its latency increases with the network size.
However, the growth rate or sensitivity to network size is
much lower than DCB.

6.2.3 Effects of Source Rate

It is well known that in end-to-end unicast or broadcast, the
throughput drops when the source rate is too high and the
network becomes congested. Therefore, the maximum
supportable source rate reflects the maximum throughput
of a broadcast protocol. In Fig. 15, we vary the rate at which
the source node generates broadcast packets, and track the
resulting latency and PDR. Both Chorus and DCB’s PDRs
decrease abruptly beyond certain values, which roughly
indicate their supportable throughput. The supportable
throughput of Chorus is around 20 pkts/second, in contrast
to 1 pkt/second in DCB. In addition, DCB’ latency
increases from 0.1 to 10 seconds as the source rate increases
from 1 to 40 pkts/second, while Chorus maintains around
0.1 second latency over this range.
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Fig. 14. Scalability of the broadcast protocols as the network size
(number of nodes) grows.

Fig. 13. The impact of link quality (reflected by 	) on latency and PDR.
The error bars indicate variation over 30 random topologies.



6.2.4 Effects of Packet Size

Fig. 16 shows how packet size affects the broadcast
performance when coupled with the variation of source
rate. When the source rate is low (1 pkt/s), the network
is less congested, so Chorus’s spatial reuse advantage is less
obvious. Owing to the diversity gain, however, it maintains
a PDR higher than 95 percent, in contrast with 80 percent
when running DCB. Moreover, its latency is 60 percent
lower than DCB for all packet sizes. When the source rate is
high (10 pkts/s), Chorus’s PDR and latency remain the
same. In contrast, DCB suffers from a sharp degradation of
performance—its latency increases from 0.2 to 4 seconds as
packet size grows from 64 to 1,024 B. Again, this is due to its
limited supportable throughput. For larger packets, the
source injects more data into the network per unit time,
which causes congestion. In addition, the cost of losing a
packet increases, resulting in higher latency and lower PDR.

As indicated in Section 5, the worst case delay of Chorus
is affected by its packet overhead. The experimental results

in Fig. 16 show that Chorus is relatively insensitive to
packet overhead, in contrast to the analysis. This is because

the worst case in Fig. 10 rarely occurs in a random network,
and the overhead is negligible compared to packet length.

6.2.5 Effect of Retransmission

Recall the source node can improve the broadcast reliability
by rebroadcsting each packet (Section 5.5). To verify this, we

generate a number of random topologies with low link
quality (	 ¼ 0:01, average link quality 0.23). Fig. 17 shows

the PDR (averaged over 20 topologies) as the number of
retransmissions increases. We see that the PDR increases
sharply for the first two retransmissions. However, further

retransmissions only make marginal improvement, because
randomly generated topologies tend to contain a number of

isolated nodes with sparse connections to the majority of

nodes. The PDR of such nodes remains low even with

retransmissions, especially in extremely lossy networks.

6.2.6 Broadcast in Mobile Networks

Traditional broadcast protocols is often hampered by node
mobility, since they need timely topology updates in order
to recalculate the optimal set of forwarders. However, a
topology update often involves network-wide broadcast for
neighbor discovery and other control overhead. Chorus
removes this obstacle since it enables anonymous broadcast
forwarding (Section 4.2).

Fig. 18 verifies this intuition by running Chorus at
various node speeds (the number of nodes is 200 and
	 ¼ 0:5). We compare Chorus with an ideal version of DCB,
where all nodes can obtain timely update of the topology
information and forwarder set assignment from an oracle.
We see that for both protocols, the PDR and delay are
insensitive to node mobility. In addition, Chorus still
maintains high PDR and low latency compared to the ideal
DCB. Its performance gain is unaffected by node mobility.

6.2.7 Effects of Network Density

Network density, indicated by the average node degree
(number of neighbors), affects the amount of redundancy or
diversity that can be harvested from repeated transmissions
of the same packets. Fig. 19 quantifies this effect. We fix the
node population at 200 and 	 at 0.5. The network decreases
as network density increases, resulting in a higher PDR.
When the density exceeds 15, DCB achieves a similar level
of PDR as Chorus. However, such a high density implies
that all nodes are clustered in a small collision domain,
which lacks generality in practice. In addition, even under a
high node density, Chorus can still achieve more than
53 percent delay reduction compared to DCB.
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Fig. 17. Effect of source retransmission on the reliability of broadcast.

Fig. 18. Effects of node mobility on broadcast performance. DCB-Oracle
is an ideal DCB protocol that tracks the topology without any message
overhead.Fig. 16. Impact of packet size, ranging from 64 to 2,048 bytes.

Fig. 15. Sensitivity to the source rate, which indicates the maximum
supportable throughput of a broadcast protocol.



6.2.8 Multiple Broadcast Sessions

We proceed to evaluate the case where multiple broadcast
sessions coexist, each corresponding to one randomly
selected source node in a 50-node topology. We set 	 ¼
0:1 and 	 ¼ 0:5 to represent lossy and nonlossy networks,
respectively. The former is close to a real-world mesh
network [20] in which most links have an intermediate
reception rate. We focus on two metrics: average PDR
among all sessions, and broadcast throughput, which
equals the total amount of data delivered to all nodes
within unit time, summed over all the sessions. Fig. 20 plots
these metrics as a function of traffic load (the number of
sessions). In a lossy network, Chorus achieves a 3	 higher
throughput than DCB, and maintains PDR above 60 percent,
which indicates the friendliness among different traffic. The
performance gain over DCB is less in a nonlossy network,
where Chorus benefits more from spatial reuse than
diversity gain. Also, although throughput increases when
the traffic load is high, the cost is lower PDR, implying that
most traffic is confined to the vicinity of source nodes,
especially for the DCB protocol.

7 CONCLUSION

In this paper, we provide theoretical and practical results
that demonstrate the feasibility and advantages of a
collision-resolution protocol for wireless broadcast. We
introduce Chorus, which allows forwarders with the same
outgoing packets to transmit roughly at the same time, and
then employs physical-layer iterative decoding to resolve
collisions at the receiver. By decoding multiple versions of a
packet at once, Chorus achieves transmit diversity and
improves loss resilience without any retransmission. More
importantly, with its collision-tolerant MAC, Chorus
significantly simplifies the CSMA scheduling and improves
its spatial reuse. Our theoretical analysis and symbol-level
simulation show that Chorus’s iterative decoding algorithm
can effectively resolve collisions with negligible error
propagation effect. We also establish an asymptotic latency
bound of �ðrÞ when using Chorus for broadcast, where r is
the network radius. Our network-level simulation experi-
ments further show that Chorus outperforms a typical
CSMA/CA-based broadcast protocol by a significant
margin, in terms of latency, reliability, throughput, and
scalability. These features make Chorus suitable especially
for fast information dissemination in large-scale networks,
such as wireless mesh networks.
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