
Supplement of “Schedulability Analysis for

a Mode Transition in Real-Time Multi-Core

Systems”

Jinkyu Lee and Kang G. Shin

Department of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2121, U.S.A.

APPENDIX I: DETAILED PROOFS

A. Proof of Lemma 3.

R1. Since Wg⇒h
i (du

k) and Eg⇒h
i (du

k) are upper-bounds of

I(τu
k ← τg⇒h

i) with any release and execution patterns of
tasks and any release pattern of the MTR, R1 holds.

R2. The schedulability analysis does not require any infor-
mation from previous modes, such as response times of tasks
with previous modes, and thus, R2 holds.

R3. If every task with Mg is identical to the task with

Mh (i.e., τg
i = τh

i), Wg⇒h
i (�) and Eg⇒h

i (�) are the same as
W g

i (�) and Eg
i (�), respectively. The schedulability analysis in

Theorem 1 is then equivalent to Lemma 1 with W g
i (�) and

Eg
i (�). Therefore, R3 holds.

B. Proof of Lemma 4.

We first look at a task τk in τ(1) (defined in Step 2 of
Algorithm 1), and consider two aspects: (a) τk is schedulable
or not; and (b) τk makes other tasks schedulable or not.

Placing τk’s transition first is the best choice for τk’s
schedulability, because such an order maximizes the chance
of τg

k ’s schedulability by Observation 4 and τh
k is schedulable

with any sequential transition order by Observation 3.

Since τg
k

I(τ\τ∗)

> τh
k holds, min(SWg⇒h

k (dg
i), d

g
i − eg

i + 1)
= min(W g

k (dg
i), d

g
i − eg

i + 1) holds, regardless of tran-

sition order. On the other hand, τg⇒h
k ≺ τg⇒h

i yields

a smaller min(SWg⇒h
k (dh

i), dh
i − eh

i + 1), which equals
min(Wh

k (dh
i), dh

i − eh
i + 1). Therefore, placing τk’s transition

order in the earliest position minimizes the interference of
τk on all other tasks in τ \ (τ∗ ∪ {τk}). Note that we need
not care for tasks in τ∗ because the tasks with both modes
are schedulable with any sequential transition, according to
Observation 3.

In summary, placing the transition order of each task τk

in τ(1) first maximizes the possibility of τk’s schedulability,
and minimizes its interferences on other tasks. This means that
such a placement maximizes the chance of the schedulability
of all tasks including τk itself.

The same reasoning holds for placing the transition order
of tasks in τ(3) last. Therefore, the lemma holds.

C. Proof of Lemma 5.

Before proving this lemma, we introduce a property to be
used, as stated in the following observation.

Observation 5. Suppose that τ makes a sequential transition
from Mg to Mh with a given order. Then, the left-hand side of
Eq. (18) for a given task τu

k (u is either g or h) is not affected
by the relative transition order of tasks in τ ′ � {τi|τg⇒h

k ≺
τg⇒h
i } and τ ′′ � {τi|τg⇒h

k � τg⇒h
i }, but affected by the

elements of τ ′ and τ ′′.

The observation holds because SWg⇒h
i (du

k) depends only on

whether τg⇒h
k ≺ τg⇒h

i or τg⇒h
k � τg⇒h

i holds.

Suppose that τ is schedulable in the presence of a transi-
tion from τg to τh, with a given sequential transition order
compliant with Algorithm 1. Now, we look at how transition
order change of tasks in τ(1) affects the schedulability of two
groups of tasks: (i) tasks in τ(1) and (ii) tasks in τ(2)∪ τ(3).

For (i), the transition order of a task τk in τ(1) does not
affect the schedulability of τg

i for all τi ∈ τ(1) \ {τk}, since

min(SWg⇒h
k (dg

i), d
g
i − eg

i + 1) = min(W g
k (dg

i), d
g
i − eg

i + 1)
holds regardless of the relative transition order of τk and τi (by

the definition of τg
k

I(τ)

> τh
k). As to τh

i , it is also schedulable
with any sequential transition by Observation 3, meaning that
the transition order of a task τk in τ(1) does not affect the
schedulability of τh

i for all τi ∈ τ(1) \ {τk}.
The schedulability of tasks in τ(2) ∪ τ(3) is also not

affected by the relative order of tasks in τ(1) according to
Observation 5.

In summary, the relative transition order of tasks in τ(1)
does not change the schedulability of every task in τ . This
holds for τ(3) with the same reasoning. Therefore, the lemma
follows.

APPENDIX II: TASK SET GENERATION

To evaluate a variety of task sets in terms of task-set uti-
lization, task utilization, the number of tasks, etc., we generate
task sets as follows, based on a widely-used method [26].

For task parameters, pi is uniformly distributed in [1, 1000],
di is set to pi (i.e., implicit deadline tasks), and ei is generated
based on the exponential distribution of ei/pi, whose proba-
bility density function is 0.1 · exp(−0.1 · x).

We focus on a situation where a task set τ switches from
Mg to Mh. We generate τg and τh, both of which are
schedulable by FP, and determine whether or not the task set is
schedulable in the presence of the transition from Mg to Mh

by our schedulability analyses. To achieve this, we generate
10,000 task sets (each of which has both modes Mg and Mh)
for each m = 2, 4, 8, 16, by repeating the following procedure.

1) Initially, we generate a set of m + 1 tasks for τg

because m tasks are trivially schedulable on m cores.
2) In order to exclude unschedulable sets, we check

whether the generated task set τg can pass Lemma 1
with the upper-bound of Wi(�) (for higher-priority
tasks) and zero (for lower-priority tasks).

3) If τg fails to pass the test, we discard the generated
task set and return Step 1. Otherwise, τg will be used
for evaluation.

4) For each task τg
i in τg , we generate a new task τh

i for
τh with probability 0.5; otherwise, we use the same
task for τh, i.e., τh

i = τg
i .

 0

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2

Th
e

nu
m

be
r

of
 g

en
er

at
ed

 t
as

k
se

ts

Task set utilization

Total

Fig. 5. Task-set utilization of generated task sets Mg for m = 2

5) We perform Step 2 for τh.
6) If τh fails to pass the test, we discard the generated

task set and return Step 4. Otherwise, we include a
pair of τg and τh for evaluation; we create a new set
for τg by adding a new task into the current τg , and
return Step 2.

For task sets for EDF, we apply Ei(�) instead of Wi(�). Note
that we do not consider task deletion, since it cannot make a
schedulable task set unschedulable. In future, we will evaluate
addition of tasks.

We now present the statistics of generated sets Mg for
m = 2; the trend for other m values is similar to m = 2.
Fig. 5 shows the total number of generated task sets Mg with
different task-set utilizations (i.e., Usys �

∑
τi∈τ ei/pi) in

[Usys − 0.01 · m, Usys + 0.01 · m). Also, the generated task
sets differ in the number of task sets, from 3 to 34.

