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Abstract—To enable real-time systems to adapt to dynamically
changing environments, update functionalities and/or accommo-
date those tasks migrated from other failed sub-systems, there
have been a number of studies on making timing guarantees
while accounting for change of parameters and addition/deletion
of tasks. While most of them have dealt with “transition”
protocols that delay next task releases or discard the unfinished
tasks released before the transition, such protocols are not
suitable for many control systems in which missing/delaying
control updates (by completing periodic tasks) even during a
transition or mode-change may cause system instability or incur
a significant incremental operational cost. In this paper, we focus
on a transition protocol that does not miss/delay control updates
during a system transition, and develop a new schedulability
analysis for the transition in a real-time multi-core system, which
provides sufficient timing guarantees without requiring any online
information, such as the release and execution patterns of tasks
and the start time of a transition. To achieve this, we extend
an existing popular schedulability analysis framework for non-
transitional tasks, and identify the scenarios that maximize the
duration of a task’s interference to another task in the case of a
transition. Since the analysis works for any arbitrary transition
order of tasks, we can improve the schedulability performance by
enforcing a specific order. We formulate the problem of assigning
an optimal transition order, and develop a solution by deriving
some properties of optimality. Our evaluation results demonstrate
that the proposed solution finds more schedulable task sets, which
are not covered by naive approaches.

I. INTRODUCTION

Most studies of real-time systems have focused on meet-
ing deadlines of a given set of static periodic tasks whose
parameters do not change over time, and many scheduling
algorithms such as EDF (Earliest Deadline First) and FP (Fixed
Priority) [1] have been studied extensively to guarantee the
deadlines of such tasks. However, today’s real-time systems are
more dynamic, requiring dynamic change of task parameters,
in order to cope with changing environments and physical
system’s state, improve system performance with new pro-
tocols/functionalities, and/or accommodate the tasks migrated
from other failed sub-systems. Furthermore, such transition of
tasks should be done without missing/delaying systems’ peri-
odic control updates in many systems, such as real-time control
systems in power and automation domains [2–4]. In these
systems, an additional transition delay that skips/suspends
control updates may cause system instability or incur high
control cost. Therefore, it is increasingly important to support

real-time systems in the case of a transition in which parameter
changes and/or addition/deletion of tasks occur during the
system’s operation, and both unchanged and changed tasks
coexist and do not skip/suspend their control updates.

To make timing guarantees in the presence of changes of
task parameters, a number of studies focused on mode-change
protocols. Starting from [5], timing guarantees of periodic
tasks with mode changes have been developed for uniprocessor
platforms [6–11] (see a survey [7]). Some of them have then
been extended to multi-core systems [12–14]. On the other
hand, some studies have analyzed mode changes of real-time
systems with streaming data using real-time calculus [15–17].
If we confine our interest to periodic tasks, then there have
been only a few studies (e.g., [6, 9]) that support the transi-
tion without skipping/suspending control updates, while other
mode-change protocols require an additional transition delay.
These studies, however, have been limited to uniprocessor
platforms.

In this paper, we focus on multi-core systems that have
become popular as real-time system platforms due to their
potential for high performance at low cost, and support timing
guarantees with a transition that yields continuous task execu-
tion. One may argue that timing guarantees with a transition
can be simply achieved by making the timing guarantees of
both the task sets before and after the transition, which does
not hold as explained below. As shown in Figs. 1(a) and
(b), the traditional response-time analysis [18] guarantees the
schedulability of each of task sets τg and τh on a uniprocessor,
when each task set is scheduled by FP (assuming τ1 and
τ ′1 have a higher priority than τ2). However, if τg makes a
transition to τh at t = 9, τ2 misses a deadline at t = 12 as
shown in Fig. 1(c).1 Therefore, we need to develop a new
schedulability analysis for transitions with continuous task
execution, which has not been studied before for real-time
multi-core systems.

We consider a series of transitions, each of which is
performed after completing its predecessor transition. Within
a single transition, multiple tasks can change their parameters,
including addition/deletion of tasks and change of tasks’ peri-
ods and execution times. During each transition, no task misses

1For simplicity, we show an example on a uniprocessor system, but the
same phenomenon occurs on a multi-core system. Another example can be
found in [6].
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Fig. 1. τg = {τ1(period and relative deadline=3, execution time=2),
τ2(12, 4)} as well as τh = {τ1′(6, 4), τ2(12, 4)} is schedulable by FP
(assuming τ1 and τ ′1 having a higher priority than τ2) on a uniprocessor
in the absence of transition. However, the task set is not schedulable in the
presence of transition from τg to τh at t = 9.

or delays its control updates due to the transition. Section III
will detail our transition protocol.

Our goal is to develop a sufficient, offline schedulability
analysis that guarantees all task deadlines in the presence
of a single transition on multi-core platforms. We make this
analysis independent of online information, such as the time
instant when the transition starts, and task release and exe-
cution patterns; otherwise, the system must monitor/predict
the information, and hence the analysis cannot provide any
offline guarantees. We also make the analysis independent of
the history of previous transitions. This relieves the system
from keeping track of transition history, and the analysis from
considering all of the transition history. Then, the timing
guarantees of a task set with a series of transitions can be
decomposed into those with individual transitions, each of
which can be made with our proposed schedulability analysis.

To achieve the above goal, we focus on an existing popular
schedulability analysis framework for non-transitional tasks
on multi-core platforms, called deadline-based schedulability
analysis [19, 20]. To extend this analysis, it is essential to
calculate the duration a task can interfere with other tasks
in the presence of a transition. Since this duration depends
on the underlying scheduling algorithms, we identify and
calculate the maximum duration under two popular scheduling
algorithms, EDF and FP. By extending the analysis framework
to a transition, and incorporating the maximum duration into
the framework, we develop a sufficient schedulability analysis
for a transition, which is, to the best of our knowledge, the
first attempt in real-time multi-core systems.

While the thus-developed analysis provides safe guarantees
on timing requirements, it can be pessimistic due to its
applicability to any arbitrary transition order of tasks. Once
we fix the transition order of tasks, we find that a task with
one of both modes (before and after the transition) cannot
interfere with another task with a given mode. This entails
two questions: (i) how to guarantee timing requirements with
a specific transition order, and (ii) how to find a transition order
that guarantees the timing requirements of a given task set by
(i). We achieve (i) by adapting the proposed schedulability
analysis to a given transition order. For (ii), we derive some
properties toward an optimal order, and then develop an
optimal assignment of transition order that divides tasks into

three groups and determines the group-level optimal transition
order. For the relative transition order within each group, we
prove that any arbitrary order of tasks in the first and third
groups preserves the optimality, and apply a heuristic algorithm
for the second group. Our simulation results demonstrate that
the optimal transition-order assignment covers a large number
of schedulable task sets, which are otherwise not proven
schedulable.

In summary, this paper makes the following contributions.

• Development of a new (first) schedulability analysis
for transitions (without any additional transition delay)
in real-time multi-core systems;

• Identification of the problem of the sequential
transition-order assignment, and development of a
grouping framework for an optimal transition-order
assignment using the derived properties regarding op-
timality; and

• Demonstration of the effectiveness of the framework
via simulation.

The rest of this paper is organized as follows. Section II
presents our system model, assumptions and notations, and
recapitulates an existing schedulability analysis framework for
non-transitional tasks. Section III describes our transition pro-
tocol, and addresses the requirements of the proposed schedu-
lability analysis. Section IV develops a schedulability analysis
for a transition. Section V develops an optimal transition-order
assignment framework. Section VI evaluates the effectiveness
of this framework, and Section VII concludes the paper.

II. BACKGROUND

In this section, we first describe the system model, assump-
tions, and notations to be used throughout this paper. Then, we
summarize an existing schedulability analysis framework for
non-transitional tasks, which will be used as a basis for our
schedulability analysis for a system transition.

A. System model, assumptions and notations

We consider a periodic task model [1, 21] associated with
different operation modes. A task τi associated with a mode
Mg (denoted by τgi ) is specified by (pgi , e

g
i , d

g
i ) where pgi is

the time separation between two successive invocations (called
period),2 egi the worst-case execution time, and dgi the relative
deadline of τgi . Our focus is confined to constrained deadline
tasks, each of which satisfies the inequality dgi ≤ p

g
i . Different

modes imply not only the change of task parameters (e.g.,
pgi 6= phi , egi 6= ehi and/or dgi 6= dhi ), but also addition/deletion
of tasks. For convenience of presentation, we let τ denote a
set of all tasks existing in at least one mode; if a task τi does
not exist in a mode Mg , τgi represents a dummy task (pgi =
1, egi = 0, dgi = 1), which does not affect the actual execution
of other tasks. Then, let τg denote a task set τ associated with
a mode Mg , i.e., τg = {τg1 , · · · , τ

g
|τ |}, where |τ | denotes the

number of tasks in τ . Whenever g is irrelevant, we will omit
it, i.e., using τi, pi, ei and di instead of τgi , pgi , egi and dgi .

2Note that all the analytic results in this paper are also applicable to sporadic
tasks in which pgi represents the minimum separation, not the exact separation.



A task τgi invokes a series of jobs, each separated from its
predecessor by pgi time units, supposed to finish its execution
within dgi time units, and taking at most egi time units for its
execution. We call the interval between the release time and
deadline of a job J , the scheduling window of J . We assume
a quantum-based time, and let the length of a quantum be one
time unit, without loss of generality. All task parameters are
specified in multiples of this quantum.

The computing platform is a multi-core chip containing
m identical cores. We consider global, preemptive and work-
conserving scheduling algorithms under which the execution
of a job can migrate from one core to another; a job can be
preempted at any time; and there should be no idle core as
long as there is an unfinished, ready job. We also assume that
a job cannot be executed in parallel.

B. Existing schedulability analysis

To ensure no deadline miss in a set of non-transitional
tasks, numerous schedulability analyses have been developed.
Of them, a deadline-based analysis has been popular in real-
time multi-core scheduling, due to its wide applicability (EDF,
FP, EDZL, LLF and potentially more) and low (polynomial)
time-complexity [22–24].

For completeness, we summarize the deadline-based anal-
ysis for non-transitional tasks in real-time multi-core systems,
which was originally introduced in [19, 20]. This technique
employs the notion of interference [20]. The interference to τk
in [a, b) (denoted by I(τk, a, b)) is defined as the cumulative
length of all sub-intervals in [a, b) such that a job of τk is
ready to execute, but it cannot execute due to other higher-
priority jobs’ execution. Also, the interference of τi with τk in
[a, b) (denoted by I(τk ← τi, a, b)) is defined as the cumulative
length of all sub-intervals in [a, b) such that a job of τk cannot
execute although it is ready to execute, but a job of τi executes
instead. Since a job of τk cannot execute only when m other
jobs execute, the following equation holds under any global
work-conserving algorithm [20]:

I(τk, a, b) =

P
τi∈τ\{τk}

I(τk ← τi, a, b)

m
. (1)

A relationship between I(τk, a, b) and I(τk ← τi, a, b) was
derived in [20] as:

I(τk, a, b) < x

⇐⇒
X

τi∈τ\{τk}

min
“
I(τk ← τi, a, b), x

”
< m · x. (2)

Note that the inequality holds for any arbitrary positive x.

We compute the maximum interference of τi ∈ τ \ {τk}
with τk in an interval of length dk between the release and
completion times of any job of τk (denoted by I(τk ← τi)) as:

I(τk ← τi) , max
t|the release time of any job of τk

I(τk ← τi, t, t+ dk). (3)

If the maximum interference to τk in an interval of length
dk starting from the release time of any job of τk is less than
or equal to dk − ek (i.e., strictly less than dk − ek + 1), any

job of τk successfully completes its execution (that amounts
to ek) before its deadline. Incorporating Eqs. (1) and (2), this
leads to the following deadline-based analysis framework:

Lemma 1 (Theorem 5 in [22]). Suppose that a set τ of
non-transitional tasks is scheduled by a global, preemptive,
and work-conserving algorithm. Then, τ is schedulable if the
following inequality holds for all τk ∈ τ :

X
τi∈τ\{τk}

min
“
I(τk ← τi), dk − ek + 1

”
< m · (dk − ek + 1).

(4)

Since the interference I(τk ← τi) varies with the underly-
ing scheduling algorithms, upper-bounds on the interference
under EDF and FP have been presented in [22]. We will
develop their generalizations for a transition in Section IV.

III. TRANSITION PROTOCOL AND SCHEDULABILITY
ANALYSIS REQUIREMENTS

In this section, we first describe our transition protocol and
then state the requirements of the schedulability analysis for a
transition to be developed in Section IV.

We consider a series of transitions Mg1 , Mg2 , · · · Mgn of
a task set τ , and each transition is separated from its prede-
cessor and successor transitions, meaning that the scheduling
window of any job with mode Mgz cannot overlap with that
of any job with other modes than its previous, current and
next modes (i.e., Mgz−1 , Mgz and Mgz+1 ). Within a single
transition from Mg to Mh, multiple tasks can change their
task parameters; recall that addition or deletion of tasks is
also expressed as change of task parameters by using dummy
tasks as we discussed in Section II-A.

To support a transition that does not result in miss-
ing/delaying any task’s control update, we follow the protocol
in [6], as explained next. Suppose that a Mode Transition
Request (MTR) from Mg to Mh is released at t1, as shown
in Fig. 2. We consider two types of tasks: (i) tasks whose
parameters are not affected by the transition (i.e., pgi = phi ,
egi = ehi and dgi = dhi ) and (ii) the other tasks, which satisfy at
least one of pgi 6= phi , egi 6= ehi and dgi 6= dhi . Then, the protocol
does not affect release patterns of each task in (i) at all, e.g., τ1
in the figure. For each task τi in (ii), the next release time (i.e.,
the earliest release time of jobs of τi after t1) is not different
from the time without the transition, but the difference is that
at the next release time, a job of τhi (associated with a new
mode Mh) is released instead of that of τgi (associated with
an old mode Mg), e.g., at t2, a job of τh2 is released in the
figure. After the release of the job with Mh, jobs of τhi are
periodically released until another MTR is released. Note that
if τgi is a dummy task, a job of τhi is released when an MTR
is released; for example, τg3 in Fig. 2 is a dummy task, so a
job of τh3 is released as soon as the MTR is released at t1.
Therefore, this transition protocol supports not only each task’s
transition without missing/delaying its control update, but also
immediate task migration from other systems due to failure.

While many existing mode transition protocols require to
discard unfinished jobs of the old-mode tasks, or need to wait
until some time instant for synchronous releases of jobs of



  

job release – mode g/hMTR

τ1

τ2

τ3

…
…

MhMgMf Mi

t1 t2

t1 t2

Mg→Mh

t0 t3

g g

g

h h

h

hh h h

h

h

g h

p2g p2h

Fig. 2. An MTR from Mg to Mh is released at t1: while the mode transition
does not change any task parameter of τ1, it extends the period of τ2 and
introduces a new task τ3 (meaning τg3 is a dummy task).

the new-mode tasks (see the survey in [7]), this protocol does
not perform such functions. Therefore, the protocol is suitable
for real-time control systems, which require timely control
updates, even in the presence of transitions.

Then, we want to determine whether or not a task set
τ is schedulable in the presence of a single transition from
Mg to Mh. The actual execution behavior during a transition
depends on online information, such as the time instant when
the current MTR is released, and the release and execution
patterns, which are also affected by the previous transitions. If
we develop a schedulability analysis that requires such online
information, the system should be able to monitor/predict the
information, and should keep track of the information. Since
an MTR is triggered due to many situations (e.g., triggered by
users, systems and failures), we may not predict the release
time.

Therefore, our goal is to develop a sufficient offline schedu-
lability analysis of a task set in the presence of a single transi-
tion, which does not require any online information, including
the history of previous transitions. We also generalize the
target schedulability analysis for non-transitional tasks. The
(non)requirements for our analysis are summarized as follows.

R1. The schedulability analysis does not require any
online information including release and execu-
tion patterns of jobs and the release time of an
MTR.

R2. It focuses on a single transition, and should be
independent of the history of previous transitions;
by a single transition, we mean a period between
the previous transition’s completion and the next
transition’s beginning, e.g., [t0, t3) for a single
transition from Mg to Mh in Fig. 2. Then, we
can guarantee the timing requirements of a task
set with mode Mg (old mode without transition),
with a transition from Mg to Mh, and with mode
Mh (new mode without transition).

R3. It should be a generalization of the existing
schedulability analysis described in Lemma 1.

Once we develop a schedulability analysis that satisfies R1–
R3, we can determine the schedulability of a task set with a

series of transitions, by sequentially applying the analysis with
each single transition.

We will develop a schedulability analysis with R1–R3
in Section IV, and improve the analysis by adding some
constraints to the transition protocol in Section V.

IV. SCHEDULABILITY ANALYSIS FOR A TRANSITION

In this section, we develop a schedulability analysis frame-
work for a single transition. First, we extend the existing
deadline-based schedulability analysis framework presented in
Lemma 1. Second, we calculate upper-bounds of the inter-
ference of a task in the presence of a transition under EDF
and FP. Finally, we propose the deadline-based schedulability
analysis by incorporating the upper-bounds into the framework,
and demonstrate that the proposed analysis satisfies our design
requirements R1–R3.

A. Extension of the existing framework

Since the schedulability analysis framework in Section II-B
assumes only a single mode for each task, we need to extend
the framework with two modes (hence a transition from Mg to
Mh). To express the situation where two modes of a task can
interfere with another task in a given mode, let τg⇒hi denote
τi in the presence of a transition from Mg to Mh. Then, we
define interference of τg⇒hi to τuk (u is either g or h) in [a, b),
as the cumulative length of all intervals in [a, b) such that a
job of τuk cannot execute although it is ready for execution, but
a job of τgi or τhi executes; let I(τuk ← τg⇒hi , a, b) denote the
interference. Similarly to Eq. (3), we define I(τuk ← τg⇒hi ) as
follows.

I(τuk ← τg⇒hi ) , max
t|the release time of any job of τuk

I(τuk ← τg⇒hi , t, t+ duk).

(5)

On the other hand, if we focus on a task τk which is
interfered by other tasks, then we also consider two modes of
τk because a task in one mode has different task parameters
from the same task in another mode. This means that we should
calculate the schedulability of both τgk and τhk independently.
Finally, the deadline-based schedulability analysis framework
in Lemma 1 is generalized by the following lemma.

Lemma 2. Suppose that a task set τ makes a transition
from Mg to Mh and is scheduled by a global, preemptive,
and work-conserving algorithm. Then, the task set τ with the
transition is schedulable if the following inequality holds for
all τk ∈ τ and u ∈ {g, h}:

X
τi∈τ\{τk}

min
“
I(τuk ← τg⇒hi ), duk − euk + 1

”
< m · (duk − euk + 1).

(6)

Proof: The lemma holds due to Lemma 1 and the defini-
tions of I(τuk ← τg⇒hi ).

Then, how to upper-bound the interference I(τuk ← τg⇒hi )
is the most critical part of the schedulability analysis for a
transition, which we will address next.



B. Calculation of the amount of interference

Since the interference depends on the underlying schedul-
ing algorithm, we now calculate the interference under two
popular scheduling algorithms, FP and EDF. To satisfy R1 and
R2, we first compute the maximum amount of the interference
of a task on another task under FP, which upper-bounds the
amount of interference with any release and execution patterns
and any release time of an MTR. Now, let us consider the case
of FP.

1) Upper-bound of interference under FP: FP schedules
jobs according to the pre-determined task-level priorities. That
is, if τi has a lower priority than τk, a job of τi cannot interfere
with any job of τk. Otherwise, a job of τi can potentially
interfere with any job of τk. Therefore, we need to calculate
the amount of execution of jobs of a given task in an interval.

For non-transitional tasks, the release and execution pat-
terns that maximize the amount of execution of a single-mode
task τgi ’s jobs in an interval of length ` have been identified.
As shown in Fig. 3(a), the interval of interest (i) starts when
the first job of τi starts execution (at a), or (ii) ends when
the last job of τi finishes execution (at b). In both cases, the
first job of τi executes as late as possible, and the last job of
τi executes as early as possible. Both cases result in the same
amount of execution of τgi ’s jobs, and the amount of execution
in the case of (i) (denoted by W g

i (`)) is calculated by [20, 22]
as follows.

W g
i (`) , F gi (`+ dgi − e

g
i ), (7)

where F gi (`) is defined as:

F gi (`) ,

( j
`
p
g
i

k
· egi + min

“
egi , `−

j
`
p
g
i

k
· pgi
”
, if l > 0,

0, otherwise,
(8)

and the physical meaning of F gi (`) is the amount of execution
of jobs of τgi in an interval of length `, when the first job is
released at the beginning of the interval and all jobs of τgi in
the interval execute as early as possible.

In case of transitional tasks, it is more difficult to find
the maximum amount of execution of jobs of τi because the
amount depends not only on release and execution patterns, but
also on the time of the MTR. However, we discover a property
regarding the maximum amount, as stated in the following
observation.

Observation 1. Suppose that τ makes a transition from Mg to
Mh in an interval of length `, in which the scheduling window
of at least one job of τgi and at least one job of τhi (either
partially or entirely) overlap with the interval as shown in
Figs. 3(b) and (c). Then, the amount of execution of jobs of
both τgi and τhi in the interval is maximized with one of the
following release and execution patterns: (i) when the first job
of τgi is executed as late as possible and starts its execution
at the beginning of the interval (at a), and the last job of τhi
is executed as early as possible as shown in Fig. 3(b), and
(ii) when the last job of τhi executes as early as possible and
finishes its execution at the end of the interval (at b), and the
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first job of τgi is executed as late as possible as shown in
Fig. 3(c).

If a release pattern belongs to neither (i) nor (ii), shifting the
release pattern towards (i) or (ii) yields the larger (or at least an
equal) amount of execution of jobs of both τgi and τhi . With a
fixed release pattern, it is straightforward that the execution
pattern of (i) and (ii) maximizes the amount of execution.
Therefore, the observation holds.

A native approach requires an exhaustive search for the
release time of an MTR since we develop a schedulability
analysis that satisfies R1, meaning that an MTR can be released
at any time in the interval of interest. Using Observation 1,
however, we are allowed to look at only the following two
types of finite patterns.

P1. Release and execution patterns of (i) with a situation
where the scheduling window of a given number of
jobs of τgi (denoted by δg) overlaps with the interval
of interest.

P2. Release and execution patterns of (ii) with a situation
where the scheduling window of a given number of
jobs of τhi (denoted by δh) overlaps with the interval
of interest.



Fig. 3(b) depicts P1 with δg = 1. Then, the amount of
execution of jobs of τgi in the interval of interest (starting at
a) is equal to δg · egi , and that of τhi is calculated by Fhi (`+
dgi −e

g
i −δg ·p

g
i ) as shown in Fig. 3(b). Therefore, the amount

of execution of jobs of τgi and τhi in the interval of length `
with P1 and given δg (denoted by W g⇒h

i (`, δg)) is calculated
by

W g⇒h
i (`, δg) , δ · egi + Fhi (`+ dgi − e

g
i − δ

g · pgi ), (9)

where 1 ≤ δg ≤ b(`+ dgi − e
g
i )/p

g
i

⌋
.

Similarly, Fig. 3(c) depicts P2 with δh = 2. Then, the
amount of execution of jobs of τhi in the interval of interest
(ending at b) is equal to δh ·ehi , and that of τgi is calculated by
F gi (`+ phi − ehi − (pgi − d

g
i )− δh · phi ) as shown in Fig. 3(c).

Therefore, the amount of execution of jobs of τgi and τhi in
the interval of length ` with P2 and given δh (denoted by
W g⇒h
i (`, δh)) is calculated by

W g⇒h
i (`, δh) ,

δh · ehi + F gi (`+ phi − ehi − (pgi − d
g
i )− δ

h · phi ), (10)

where 1 ≤ δh ≤ b(`+ phi − ehi )/phi
⌋
.

Then, an upper-bound of the amount of execution of jobs
of τgi and τhi in an interval of length ` is the maximum among
the cases where only jobs of τgi are executed in the interval
(when the MTR occurs after the interval) and only jobs of τhi
are executed in the interval (when the MTR occurs before the
interval), and the cases of P1 and P2 (in which the MTR occurs
within the interval). The upper-bound (denoted by Wg⇒h

i (`))
is calculated as:

Wg⇒h
i (`) , max


W g
i (`), Wh

i (`),

max
1≤δg≤b(`+dgi−e

g
i )/p

g
i c
W g⇒h
i (`, δg),

max
1≤δh≤b(`+phi −e

h
i )/phi c

W g⇒h
i (`, δh)

ff
. (11)

Under FP, a job of τi can interfere with another job τk only
when the job of τi is executed and τi has a higher task-level
priority than τk. Therefore, I(τuk ← τg⇒hi ) (u is either g or h)
in Lemma 2 under FP is upper-bounded by Wg⇒h

i (duk) if τi
has a higher priority than τk; otherwise, I(τuk ← τg⇒hi ) = 0.

2) Upper-bound of amount of interference under EDF:
EDF determines jobs’ priorities based on their deadlines; a
job with an earlier deadline has a higher priority than another
job with a later deadline. Therefore, a job JA can interfere
with another job JB only when the deadline of JA is no later
than that of JB . Then, we derive a property that can be used
to derive an upper-bound of the interference under EDF, as
stated in the following observation.

Observation 2. Suppose that τ makes a transition from Mg

to Mh in an interval of length `, in which at least one job
of τgi and at least one job of τhi (either partially or entirely)
overlap with the interval of interest as shown in Fig. 3(e). Then,
the amount of execution of jobs of τgi and τhi in the interval

whose deadlines are no later than the end of the interval (at b
in Fig. 3(e)), is maximized when the deadline of the last job of
τhi is at the end of the interval, and the first job of τgi executes
as late as possible as shown in Fig. 3(e).

If we shift the job releases a little bit later, the last job’s
deadline is later than the end of the interval. Shifting the job
releases to the other way also does not increase the amount of
execution. Therefore, the observation holds.

Let βh denote the number of jobs of τhi whose scheduling
windows overlap with the interval of interest when the release
and execution patterns accord with Observation 2; for example,
βh is equal to 1 in Fig. 3(e). Then, the amount of execution
of jobs of τhi in the interval is equal to βh · ehi , and that of
τgi is calculated by F gi (` + phi − dhi − (pgi − d

g
i ) − βh · phi ).

Therefore, the amount of execution of jobs of τgi and τhi in an
interval of length ` whose deadlines are no later than the end
of the interval (denoted by Eg⇒hi (`, βh)), is calculated by

Eg⇒hi (`, βh) ,

βh · ehi + F gi (`+ phi − dhi − (pgi − d
g
i )− β

h · phi )), (12)

where 1 ≤ βh ≤ b(`+ phi − dhi )/phi c.

Similar to Wg⇒h
i (`), an upper-bound of the amount of

execution of jobs of τgi and τhi in an interval of length `
whose deadlines are no later than the end of the interval, is
the maximum of the cases where the MTR occurs outside
the interval (either only jobs of τgi or those of τhi execute
within the interval, which is calculated by Egi (`) , F gi (`)
or Ehi (`) , Fhi (`) [20, 22] as shown in Fig. 3(d)), and the
cases where MTR occurs in the interval (Eg⇒hi (`, βh) with
different βh). Then, the upper-bound (denoted by Eg⇒hi (`)) is
calculated by

Eg⇒hi (`) , (13)

max
“
Egi (`), E

h
i (`), max

1≤βh≤b(`+phi −d
h
i )/phi c

Eg⇒hi (`, βh)
”
.

Since a job with a later deadline cannot interfere with
another job with an earlier deadline under EDF, I(τuk ← τg⇒hi )
(u is either g or h) in Lemma 2 is upper-bounded by Eg⇒hi (duk)
under EDF.

C. Deadline-based schedulability analysis and its property

Using Lemma 2 and the derived upper-bounds on the
amount of interference, we derive the deadline-based schedu-
lability analysis for a transition under EDF and FP as follows:

Theorem 1. Suppose that a task set τ makes a transition from
Mg to Mh. Then, a task set τ with the transition is schedulable
under FP (likewise EDF), if Eq. (14) (likewise, Eq. (15)) holds
for all τk ∈ τ and u ∈ {g, h}.

X
τi∈τ\{τk}

min
“
Wg⇒h

i (duk), d
u
k − euk + 1

”
< m · (duk − euk + 1).

(14)



X
τi∈τ\{τk}

min
“
Eg⇒hi (duk), d

u
k − euk + 1

”
< m · (duk − euk + 1).

(15)

Note that Eq. (14) holds only when τi has a higher priority
than τk; otherwise, Wg⇒h

i (duk) should be replaced by 0.

Proof: The theorem holds by Lemma 2 and the derivation
of Wg⇒h

i (`) and Eg⇒hi (`).

Note that the time-complexity of the theorem is O(|τ |2 ·
Dmax), where Dmax = maxτi 6=τk∈τ

max(dgk,d
h
k)

min(pgi ,p
h
i )

. Then, the
proposed schedulability analysis has the following property.

Lemma 3. The proposed schedulability analysis in Theorem 1
meets R1–R3 in Section III.

Proof: Due to space limitation, we refer readers to Ap-
pendix I in the supplementary file [25] for a full proof.

V. OPTIMAL TRANSITION ORDER ASSIGNMENT

As proved in Lemma 3, the proposed schedulability anal-
ysis in Theorem 1 satisfies the design requirements R1–R3.
In particular, the analysis is independent of job release and
execution patterns, and the release time of an MTR, in meeting
R1. However, this requirement is met at the expense of over-
estimating the interference, as discussed below.

In Fig. 2, after the release of an MTR from Mg to Mh

at t1, the first jobs of τh1 and τh3 are released earlier than t2,
while that of τh2 is released at t2. Therefore, the scheduling
window of any job of τh2 does not overlap with that of any job
of tasks in Mg . If we enforce such a transition order of tasks
within a single transition (e.g., Mg to Mh), we can rule out
other tasks in mode Mg in the calculation of the amount of
interference to τh2 during the transition from Mg to Mh. This
reduces the interference and increases the possibility of τh2 ’s
schedulability.

Therefore, we consider a task-level transition protocol that
allows only one task’s transition at a time, as opposed to the
task-set-level transition in Section III that allows multiple tasks
to transit from one mode to another concurrently. We call a
series of single task-level transitions a sequential transition,
and the task-set-level transition (described in Section III),
any-order transition. A sequential transition can improve the
schedulability guarantees over the corresponding any-order
transition, and this improvement can be achieved at the expense
of increasing the system’s transition time.

There are two challenges in making timing guarantees
with the sequential transition: (i) how to guarantee the timing
requirements with the sequential transition, and (ii) how to
find the best transition order of tasks, whose schedulability is
guaranteed by (i). Now, we first address (i) by modifying the
schedulability analysis proposed in Theorem 1.

Suppose that a task set τ makes a sequential transition
from Mg to Mh with a given order. To express the relative
transition order of tasks, let τg⇒hk ≺ τg⇒hi denote a situation
where τk’s transition from Mg to Mh is performed before

τi’s transition, meaning that the scheduling window of any
job of τgk cannot overlap with that of any job of τhi , e.g.,
τg⇒h1 ≺ τg⇒h2 holds in Fig. 2. Therefore, if τg⇒hk ≺ τg⇒hi
holds, any job of τhi cannot interfere with any job of τgk . This
implies that the interference of τg⇒hi on τgk is reduced by that
of τgi on τgk . Hence, if τg⇒hk ≺ τg⇒hi holds, the upper-bound
of I(τgk ← τg⇒hi ) under FP (when τi has a higher priority than
τk) in Theorem 1 is changed from Wg⇒h

i (dgk) to SWg⇒h
i (dgk),

where

SWg⇒h
i (dgk) ,


W g
i (dgk), if τg⇒hk ≺ τg⇒hi (reduced),

Wg⇒h
i (dgk), if τg⇒hk � τg⇒hi (no change).

(16)

On the other hand, any job of τgi cannot interfere with any job
of τhk , if τg⇒hk � τg⇒hi holds. Therefore, an upper-bound of
I(τhk ← τg⇒hi ) by FP (when τi has a higher priority than τk)
in Theorem 1 is changed from Wg⇒h

i (dhk) to SWg⇒h
i (dhk),

where

SWg⇒h
i (dhk) ,


Wg⇒h

i (dhk), if τg⇒hk ≺ τg⇒hi (no change),
Wh
i (dhk), if τg⇒hk � τg⇒hi (reduced).

(17)

Note that all theories developed in this section can be applied
to EDF, by applying the same modification for Eg⇒hi (duk). Due
to the space limit, our description is confined to FP.

We can now derive a schedulability analysis for a sequen-
tial transition, as stated in the following theorem.

Theorem 2. Suppose that a task set τ makes a sequential
transition from Mg to Mh with a given order. Then, a task set
τ with the transition is schedulable under FP, if the following
inequality holds for all τk ∈ τ and u ∈ {g, h}:X
τi∈τ\{τk}

min
“

SWg⇒h
i (duk), d

u
k − euk + 1

”
< m · (duk − euk + 1).

(18)

Proof: The theorem holds by Lemma 2 and the derivation
of SWg⇒h

i (`).

By the definition of Wg⇒h
i (duk), the upper-bound of

the amount of interference with sequential transition (i.e.,
SWg⇒h

i (duk)) is always smaller than or equal to that with any-
order transition (i.e., Wg⇒h

i (duk)). Therefore, the following
observation holds.

Observation 3. Suppose that τ makes a transition from Mg

to Mh. If τgk and τhk are deemed schedulable with any-order
transition (proven by Theorem 1), then they are also deemed
schedulable with any sequential transition order (proven by
Theorem 2).

As shown in Eqs. (16) and (17), enforcing the task-level
sequential order will reduce (or at least stay) the interference
on each task, yielding a possibility of finding additional
schedulable task sets, which are not deemed schedulable with
any-order transition. Then, here comes an important question:
“How can we find an optimal transition order of tasks?” By
“optimal order,” we mean that a task set in the presence



of a sequential transition with the order is guaranteed to be
schedulable by the proposed schedulability analysis, as long as
there is at least one transition order to be schedulable. Since
an exhaustive search requires to investigate O(|τ |!) transition
orders, we need to develop an efficient way to find an optimal
order. To achieve this, we present how the transition order of
a given task affects the interference of other tasks on the task
itself, as stated in the following observation.

Observation 4. Suppose that τ makes a sequential transition
from Mg to Mh. If τk’s transition order is placed in the
first (last), the left-hand side of Eq. (18) for τgk is minimized
(maximized) while that for τhk is maximized (minimized).

As shown in Eq. (16), if τg⇒hk ≺ τg⇒hi holds, the upper-bound
on I(τgk ← τg⇒hi ) is reduced from Wg⇒h

i (dgk) to W g
i (dgk).

Therefore, the left-hand side of Eq. (18) for τgk is minimized,
if the order of τk’s transition is the earliest. Likewise, the other
case for τgk and both cases for τhk hold.

Using the above observations, we now derive some prop-
erties of optimal transition order assignment. Let us focus
only on the schedulability of τk (i.e., both τgk and τhk ), not
on that of other tasks. If τhk is schedulable with any-order
transition (proven by Theorem 1), placing τk’s transition order
in the earliest position not only maximizes the possibility of the
schedulability of τgk as shown in Observation 4, but also guar-
antees the schedulability of τhk by Observation 3 (regardless of
the transition order). However, such an assignment favorable
for τk’s schedulability may increase the interference of τk on
other tasks. To address this, we introduce two notations.

First, we use τgk
I(τ′)
> τhk (likewise, τgk

I(τ′)
< τhk ), if

min(Wg⇒h
k (dui ), d

u
i − eui + 1) = min(W g

k (dui ), d
u
i − eui + 1)

(likewise, min(Wg⇒h
k (dui ), d

u
i −eui +1) = min(Wh

k (dui ), d
u
i −

eui +1)) holds for all τi ∈ τ ′\{τk} and u ∈ {g, h}. Its physical
meaning is that the interference of τg⇒hk on other tasks is
dominated by that of τgk . Thus, min(SWg⇒h

k (dui ), d
u
i −eui +1)

in Eq. (18) is fixed at min(W g
k (dui ), d

u
i − eui + 1) regardless

of transition order.

Second, let τ∗ denote a set of tasks in τ , which are
schedulable with any-order transition (proven by Theorem 1);
then, any task τk ∈ τ∗ with Mg and that with Mh are
schedulable with any sequential transition order according to
Observation 3.

Let us focus on a task τk which satisfies that (i) τhk is
schedulable with any-order transition (proven by Theorem 1),
and (ii) τgk

I(τ\τ∗)
> τhk holds. Then, we determine the order of

τk by considering two aspects: (a) τk is schedulable or not;
and (b) τk makes other tasks schedulable or not. For (a), we
should place τk’s transition in the earliest position, because
this placement maximizes the chance of the schedulability of
τgk by Observation 4 and τhk is schedulable with any sequen-
tial transition order by Observation 3. For (b), placing τk’s
transition in the first yields smaller min(SWg⇒h

k (dhi ), d
h
i −

ehi + 1) (= min(Wh
k (dhi ), d

h
i − ehi + 1)) for a given τhi while

min(SWg⇒h
k (dgi ), d

g
i − e

g
i + 1) for a given τgi is independent

of transition order. Therefore, in terms of (i) and (ii), τk’s
transition should be performed earliest. Note that we do not
consider tasks in τ∗ for (b) because they are schedulable with

Algorithm 1 Optimal transition order assignment framework
1: for τk ∈ τ do
2: Check whether τgk

I(τ\τ∗)
> τhk and τhk is schedulable with

any-order transition (i.e., Theorem 1). If so, add τi to
τ(1).

3: Check whether τgk
I(τ\τ∗)
< τhk and τgk is schedulable with

any-order transition (i.e., Theorem 1). If so, add τi to
τ(3).

4: end for
5: Determine the first |τ(1)| orders by tasks in τ(1).
6: Determine the next |τ(2)| orders by tasks in τ(2) , τ \

(τ(1) ∪ τ(3)).
7: Determine the last |τ(3)| orders by tasks in τ(3).

any sequential order by Observation 3.

With this reasoning, we develop an optimal transition-
order assignment framework that identifies three groups in
Algorithm 1. In Steps 2 and 3, the algorithm identifies two
groups of tasks, whose transition orders should be placed
the earliest (τ(1)) and latest (τ(3)) as shown in Steps 5
and 7, respectively; the remaining tasks belong to the second
group (τ(2)) as shown in Step 6. Then, Lemma 4 proves its
optimality.

Lemma 4. Suppose that τ makes a sequential transition from
Mg to Mh. Then, Algorithm 1 yields an optimal transition
order.

Proof: See Appendix I in the supplementary file [25] for
a full proof.

The remaining step is then to determine a transition order
of tasks within individual groups τ(1), τ(2) and τ(3) in Steps
5–7 in Algorithm 1. The following lemma finds an optimal
transition order for tasks in τ(1) and τ(3).

Lemma 5. Suppose that τ makes a sequential transition from
Mg to Mh with a given order compliant with Algorithm 1. The
relative transition order of tasks within τ(1) (likewise, τ(3))
in Algorithm 1 does not change the schedulability of any task
in τ .

Proof: See Appendix I in the supplementary file [25] for
a full proof.

Therefore, by applying Algorithm 1 with any arbitrary
order for tasks in τ(1) and τ(3), we can derive an optimal
transition order except for the relative transition order of tasks
in τ(2). To determine a transition order for tasks in τ(2), we
may apply an exhaustive search (if |τ(2)| is small) or some
heuristic transition order assignment algorithms.

In Algorithm 2, we introduce a heuristic transition order
assignment algorithm. The algorithm uses a property derived
for Algorithm 1: if min(Wg⇒h

k (dui ), d
u
i − eui + 1) is equal

to min(W g
k (dui ), d

u
i − eui + 1) for all τi ∈ τ \ {τk} and

u = {g, h}, placing τk’s transition order in the first minimizes
its interference on other tasks. To approximate the property,
each task τk calculates Wk, which sums the ratio between
min(Wg⇒h

k (dui ), d
u
i − eui +1) and min(W g

k (dui ), d
u
i − eui +1)

for all τi ∈ τ \ {τk} and u ∈ {g, h}, as shown in Steps 4–7.



Algorithm 2 Heuristic transition order assignment algorithm
1: T ← [] (empty list).
2: W k ← 0 for all τk ∈ τ (new variables).
3: for τk ∈ τ do
4: for τi ∈ τ \ {τk} do
5: W k ←W k + min(Wg⇒h

k (dgi ),d
g
i−e

g
i+1)

min(W g
k (dgi ),d

g
i−e

g
i+1)

.

6: W k ←W k + min(Wg⇒h
k (dhi ),dhi −e

h
i +1)

min(W g
i (dhk),dhi −ehi +1)

.
7: end for
8: end for
9: while TRUE do

10: for τi ∈ τ in ascending order of W i do
11: if τgi and τhi are schedulable with a τi’s transition

order such that τi ≺ τj for all τj ∈ τ \ {τi} then
12: τ ← τ \ {τi}.
13: T ← T | [τi].
14: Go to Step 18.
15: end if
16: end for
17: Return INFEASIBLE.
18: if τ = ∅ then
19: Return T .
20: end if
21: end while

The algorithm assigns transition order of tasks from the earliest
to the latest, and each assignment examines unassigned tasks
in ascending order of Wk, such that both modes of a task are
schedulable if the task is assigned to the current order. Such
an examination is possible, because the relative order of other
unassigned tasks does not affect the task’s schedulability as
shown in Observation 5 in Appendix I of the supplementary
file [25]. Steps 10–16 describe each assignment.

The time-complexity of Algorithm 1 without determining
the relative order of tasks in τ(2) is O(|τ |2 ·Dmax), which is
the same as that of Theorem 1 for a single task set. If we apply
Algorithm 2 for transition order assignment of tasks in τ(2),
the total time-complexity of transition order assignment with
its schedulability test is polynomial in |τ |, i.e., O(|τ |3 ·Dmax),
while the exhaustive search with its schedulability test requires
an exponential time-complexity in |τ |, i.e., O(|τ |!·|τ2|·Dmax).

In Section VI, we will evaluate the optimal transition
order assignment framework in Algorithm 1 with our heuristic
assignment in Algorithm 2, in terms of the number of schedu-
lable task sets.

VI. EVALUATION

In this section, we demonstrate the effectiveness of the op-
timal transition order assignment framework and the heuristic
assignment algorithm, in terms of the number of schedulable
task sets.

We generate task sets, each of which has two mode Mg

and Mh (in order to express a transition from Mg to Mh).
We tailor a popular method [26], and Appendix II in the
supplementary file [25] details our task set generation. For
generated 10,000 task sets for each m = 2, 4, 8 and 16, we
compare the number of schedulable task sets with different
transitions using their corresponding schedulability analyses:
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Fig. 4. The ratio between the number of schedulable task sets by SeqR,
SeqH, SeqR* or SeqH*, and that by Any

• Any-order transition (denoted by Any);

• A sequential transition—the entire order is determined
randomly (denoted by SeqR);

• A sequential transition—the entire order is determined
by Algorithm 2 (denoted by SeqH);

• A sequential transition—the entire order is grouped
by Algorithm 1, and then the relative order of tasks in
τ(2) is determined randomly3 (denoted by SeqR*);
and

• A sequential transition—the entire order is grouped
by Algorithm 1, and then the relative order of tasks
in τ(2) is determined by Algorithm 2 (denoted by
SeqH*).

Here, the schedulability of Any is judged by Theorem 1, while
that of others is proven by Theorem 2. We only present the
simulation results for FP, since those for EDF exhibit a similar
trend.

Fig. 4 shows the ratio between the number of schedulable
task sets by SeqR, SeqH, SeqR* or SeqH*, and that by
Any, with different m. The most important observation is
the effectiveness of the optimal transition order assignment
framework in Algorithm 1. That is, if we compare SeqR with
SeqR*, and SeqH with SeqH*, the framework finds up to
44.7% and 17.3% additional schedulable task sets, respectively.
Also, the improvement becomes significant as the number of
cores is increasing. For example, compared to SeqR, SeqR*
covers additional 20.8%, 23.8%, 37.1% and 44.7% task sets
when m = 2, 4, 8 and 16, respectively. This implies that the
framework is scalable to the number of cores.

The heuristic transition order assignment in Algorithm 2
increases the number of schedulable task sets, compared to
a random ordering. If we compare SeqR with SeqH, its
improvement on the number of schedulable task sets is up to
26.8%. However, the improvement is marginal if the optimal

3For SeqR* and SeqH*, the relative order of tasks in τ(1) and τ(3)
is determined randomly because the optimality holds with any sequential
transition order within the groups according to Lemma 5.



transition order assignment framework is applied; SeqH* finds
only up to 3.3% additional schedulable task sets which are not
deemed schedulable by SeqR*. This is because the optimal
framework is so effective that there is only limited room for
improvement.

In summary, the optimal transition order assignment frame-
work in Algorithm 1 outperforms the other approaches, and our
heuristic transition order assignment in Algorithm 2 is a good
candidate to assign the transition order of the remaining group
(i.e., τ(2)) in the optimal framework. Then, SeqH*, our best
approach in which Algorithms 1 and 2 are applied together,
finds up to 91.5% additional schedulable task sets, which are
not covered by Any.

VII. CONCLUSION

In this paper, we addressed the problem of guaranteeing the
timing requirements of task sets with mode transitions without
disrupting task execution in real-time multi-core systems.
By generalizing a popular schedulability analysis for non-
transitional tasks, we developed an offline, sufficient schedula-
bility analysis, which does not require any online information.
To improve the analysis, we enforced the transition order of
tasks, and solved the optimal transition sequence assignment
problem by deriving the useful properties of an optimal tran-
sition order.

Although we focused on a deadline-based schedulability
analysis due to its simplicity, low time-complexity and in-
dependence of the history of previous operational modes, it
would be interesting to extend other analyses to handle a
mode-transition, e.g., a response-time analysis, which is known
to have better schedulability performance at the expense of
higher time-complexity. Since the response time is affected by
previous modes, there will be many challenging issues to be
addressed. For example, it is necessary to address how to man-
age the history of response times of each task with previous
modes and how to handle the case where such information is
not available, for example, due to system overhead.
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