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Abstract—As use of location-based services (LBSs) is becoming
increasingly prevalent, mobile users are more and more enticed to
reveal their locations, which may be exploited by attackers to infer
the points of interest (POIs) the users visit and then their privacy
information. We propose a novel approach to the protection of
a user’s location privacy based on unobservability, preventing
the attackers from relating any particular POI to the user’s
current location. We design, implement, and evaluate a privacy-
protection system, called the Location Information ScrAmbler
(LISA) which protects the user’s location privacy by adjusting
the location noise and hence, the uncertainty of associating his
location with any POI, while conserving resources (especially
battery energy) on mobile devices. By protecting location privacy
locally on each mobile user’s device, LISA eliminates the reliance
on the trusted third-party servers required by most existing
approaches. Therefore, it not only avoids the vulnerability of
a single point of failure, but also facilitates the deployment of
LBSs. Our evaluation of LISA using real-world users’ traces
demonstrates its efficacy and efficiency.

I. INTRODUCTION

As GPS-integrated smartphones are becoming increasingly
popular, location-based services (LBSs) have attracted signif-
icant attention from mass media [35], [38], financial investors
[27], companies [3], [6], [29], and a rapidly-growing number of
application developers and customers. LBS is an information
service that exploits the knowledge about users’ geographic
locations to deliver personalized information tailored to their
needs. Typical examples include turn-by-turn navigation to an
addressed location, finding nearby business or service, receiv-
ing alerts such as warning of traffic jams in certain areas, and
locating friends or events in the user’s vicinity. According to a
report by Computer Science and Telecommunications Board
[7], LBSs are expected to be seamlessly and ubiquitously
integrated into future computing environments and users’ daily
lives and businesses.

However, with the rapidly-growing deployment and use
of LBSs, mobile (smartphone) users are enticed to provide
their location. In particular, some LBSs, such as Dokiru and
Geolife [26], and Alohar’s Placeme [2], rely on real-time and
continuous updates of location information, thus significantly
risking mobile users’ location privacy. For example, a user may
use a location-based social network service to locate friends
[11] and interesting events within his vicinity by running
an application on his smartphone—as the smartphone user
moves, the application periodically updates his location to the
service and fetches a list of friends and events inside the
moving geographic boundaries. Suppose the user is heading
toward a clinic or a church, his phone, with or without

his knowledge, still interacts with the service. Attackers or
unauthorized entities, once obtained the trace, can infer his
visits to the church/clinic (i.e., Points of Interest (POIs)), and
thus his personal information, such as health condition or
religious affiliations.

The privacy threat imposed by the use of LBSs has been
attracting significant attention from both academia, industry
[10], and the administration [1]. Most approaches proposed in
academia to date for the protection of mobile users’ location
privacy are based on location perturbation and obfuscation,
employing well-established generic privacy metrics such as k-
anonymity and relying on a third-party trusted anonymization
server for the proper functionality of the proposed protection
mechanisms. The reliance on a third-party anonymization
server can result in the susceptibility to a single point of failure
and also raise similar privacy concerns for the anonymization
server. If a mobile user is concerned about his location privacy
and unwilling to reveal his location to LBS servers, they will
also likely be reluctant to entrust his location information to a
third-party server.

In this paper, we propose a novel approach called the
Location Information ScrAmbler (LISA), to protection of
mobile users’ location privacy without requiring a third-party
anonymization server. The key idea behind LISA is to make
attackers less certain about which POI a mobile user visits
next from his current location, and therefore, weaken their
capability of inferring the user’s privacy information. Our
rationale is that a user’s location privacy is often associated
with POIs (or “identifying locations” [26]) and attacks on the
location privacy often aim to infer sensitive POIs the user
visits. For example, a user’s home location, religion, and health
condition may be revealed by his visits to residences, churches,
and clinics. Consequently, one way to protect a user’s location
privacy is to prevent attackers from associating his current
locations with sensitive POIs, i.e. the attacker’s inability to
distinguish which POI a mobile user visits.

To measure users’ location privacy, LISA uses unobserv-
ability, which is calculated as the entropy (or uncertainty) that
a location is related to a set of POIs. A location is said to
be m-unobservable if and only if the information leakage is
equivalent to that at least m POIs can be equally likely related
to the location, i.e., the entropy is no less than log2m. In order
to protect a user’s location privacy, LISA intentionally intro-
duces a certain level of measurement noise into the locations
provided to a LBS, such that they are m-unobservable. By
using a simple yet general object-tracking model based on an
extended Kalman filter [28], LISA adjusts the level of location



noise to meet the m-unobservability requirement. Since LISA
performs such noise-level tuning locally on individual mobile
handsets, it eliminates the reliance on trustworthy third-party
servers. In LISA, mobile users need to trust only their handheld
devices and can set up personalized privacy requirements. Its
less demanding trust requirements and improved configuration
flexibility significantly reduce the complexity of the design
and deployment of LBSs, thus making LISA more attractive
to privacy-concerned users.

The main contributions of LISA are four-fold. It

• introduces a new orthogonal dimension of uncertainty
and can be combined with existing approaches to
provide stronger location privacy protection;

• saves resource consumption by searching for the min-
imum level of noise to be introduced into the location
data to satisfy the m-unobservability requirement, and
by intelligently planning where LBS requests are sent;

• prevents leakage of mobile users’ privacy information
as a result of compromised third-party servers, and
limits the impact of privacy attacks to individual
smartphones;

• lowers the trust requirements from mobile users, thus
simplifying the implementation and deployment of
LBSs.

The paper is organized as follows. Section II reviews the
previous work. Section III and IV describe our threat model
and the privacy model. Section V presents the details of LISA,
and Section VI describes two optimizations for performance
improvement. Section VII discusses our evaluation and Sec-
tion VIII concludes the paper.

II. RELATED WORK

In this section we discuss prior work on location privacy
in terms of threats, metrics, and protection mechanisms.

A. Location-Privacy Threats

There are two major types of LBS-related privacy: query
privacy and location privacy. Query privacy refers to users’
private information related to LBS query attributes. Typical
threats related to query privacy include (1) inferring a user’s
identity (e.g., [12]) and (2) inferring a user’s interests and
habits from query contents (e.g., [33]). Location privacy refers
to users’ private information directly related to their locations,
as well as other private information that can be inferred from
the location information. Example threats (e.g., [19], [25]) in
this category are (1) locating a user and (2) inferring a user’s
interests and habits based on his/her locations. Our work aims
at mitigating location privacy threats, and below we provide a
detailed analysis of this attack category.

Prior work targeting at location privacy threats mainly con-
sidered two types of attack: location disclosure and movement
tracking. For the former, Hoh et al. [19] and Krumm [23]
showed that a driver’s home location can be inferred from
GPS data collected on his vehicle even if the location data
were pseudonymized. Moreover, Matsuo [25] exploited a
user’s indoor location data to infer a variety of his personal

information, such as work role, smoker, coffee drinker, and
age. For the latter, Gruteser and Hoh [15], [17] showed
that coherent, individuals’ traces can be reassembled from
completely anonymized GPS data from three to five users by
applying Multiple Hypotheses Tracking (MHT) algorithm.

B. Location-Privacy Metrics

There has not yet been any standard for the quantification
of location privacy. Most of the location-privacy metrics to
date are uncertainty-based. That is, a user’s location privacy
is better protected if attackers are made unable, or less able
to differentiate the user from others within an anonymity
set [14], linking two pseudonyms of the user outside a mix
zone [4] or in a wireless LAN [21], or distinguishing paths
along which a user may travel [26]. Therefore, the degree of
location privacy is determined by the size of the anonymity
set e.g. k-anonymity, the number of users in the mix zone,
or the probability that the user is at a certain location. A
good quantitative metric of uncertainty is the location entropy
which has widely been adopted [18], [21], [26]. Aside from the
uncertainty-based metrics, Hoh et al. [17] used the expected
error between the attackers’ estimation and the true location
of a user to measure the user’s privacy. A similar but more
general use of the adversary’s estimation error for quantifying
location privacy is proposed in [37].

C. Location-Privacy Protection Mechanism

Most approaches to protecting location privacy employ
perturbation and obfuscation. But other types of defense, such
as policy-based schemes (e.g., [39]) and private information
retrieval (PIR) based approaches (e.g., [13], [30]), have also
been investigated.

Most location perturbation and obfuscation schemes as-
sume the existence of a trusted anonymization server, where
users’ LBS queries are collected, anonymized and then trans-
ferred to LBS servers. Gruteser and Grunwald [14] designed
an adaptive interval cloaking algorithm which replaces users’
accurate locations with spatio-temporal cloaking boxes con-
taining at least kmin users. Gedik and Liu [12] proposed
CliqueCloak which achieves k-anonymity by enlarging the
exposed spatial area (spatial cloaking) and delaying the query
messages (temporal cloaking) until at least k different queries
have been sent from the specific area. Further extensions of
k-anonymity based approach include (1) taking both historical
and current locations into consideration [40] and (2) employing
more realistic adversary models (e.g., “policy-awareness” of
adversaries) [9].

In addition, approaches based on unlinkability aim at un-
linking the two pseudonyms of a user, preventing the attackers
from accumulating enough history of the same user to infer
his personal information. To achieve unlinkability, Beresford
and Stajano [4] proposed the concept of mix zone in which
a number of users simultaneously change to new, unused
pseudo-names so that an external viewer cannot link people
going into the zone with those coming out of it. Jiang and
Wang [21] unlink different pseudonyms of the same user
with silent periods between different pseudonyms, which are
planned using well-known user mobility patterns.



For path confusion, Hoh and Gruteser [17] developed a
data-perturbation technique that modifies the location data
reported from users in close proximity such that the users’
paths intersect with one another. Meyerowitz and Choudhury
[26] proposed CacheCloack, a system that uses a mobility
model to predict a user’s future path and performs prospective
path confusion without degrading accuracy. CacheCloak uses
a centralized anonymization server to cache the LBS query
results for the predicted paths. In case of a cache miss, a new
predicted path is generated such that both ends of the new path
intersect with existing paths. This way, the adversaries will be
prevented from determining the user’s exact path.

One significant drawback of most existing work is the
requirement for a centralized trusted anonymization server,
namely, the susceptibility to single-point failures and the
trustworthiness of the server. Researchers thus explore pro-
tection schemes that are applicable to users’ mobile devices.
For example, CAP [32] used a quadtree to maintain road-
density information and conducted the Various-grid-length
Hilbert Curve (VHC) mapping and perturbation to achieve
k-anonymity. In [20], k-anonymous cloaking boxes are gen-
erated by employing the nearby mobile devices to building
the proximity information among the users via the received
signal strength or the time difference of arrivals. However, this
approach may become ineffective if the query sender cannot
detect a sufficient number of users in the vicinity. Kido et
al. [22] investigated ways to hide real user movements with
dummies. Users’ location Despite this success, a malicious
LBS server may be able to differentiate the real user from
those dummies after long-term movement tracking.

In this paper, we propose a very different but effective
privacy-protection approach, called LISA, using the concept
of m-unobservability [31]. LISA scrambles users’ locations
such that the estimated location is m-unobservable, i.e., the
uncertainty of relating users to POIs is equivalent to the
entropy that the user can be equally related to at least m
POIs. Our design is based on the empirical fact that, in many
cases, users’ privacy is leaked by their strong association with
a particular POI (e.g., home or hospital), if attackers cannot
reliably associate any particular POI to a user’s location, their
ability to infer the user’s privacy information is significantly
weakened. LISA introduces a new dimension of uncertainty,
and can also be combined with existing approaches enhance
privacy protection. Moreover, LISA does not require any
trusted third-party server for location-privacy protection, thus
avoiding a single point of failure. Additionally, it greatly
lowers the trust requirements from mobile users, significantly
simplifying the implementation and the deployment of LBSs.

III. SYSTEM AND THREAT MODELS

A typical LBS system consists of smartphones, wireless
networks, and LBS servers, as shown in Fig. 1. A smartphone
user moves from one POI to another, performing daily activi-
ties such as going to work (from home to office) and seeing a
doctor (from office or home to a hospital). At the same time,
the smartphone user may access a LBS by sending requests to
a certain LBS provider via wireless networks. The user’s re-
quests include information about his current location, obtained
from the GPS integrated in his phone or by triangulation of
nearby radio tower locations. The provider then returns the

Fig. 1: A typical LBS system architecture

queried information to the user. The communication between
the mobile device and LBS servers can be done through secure
connections to prevent unauthorized eavesdropping.

Here we adopt a generic threat model in which adversaries
may compromise any third-party servers (e.g., LBS servers
or anonymization servers) and gain unauthorized access to
any information in users’ LBS service requests, such as their
identity (names and IP addresses used in the LBS service),
current locations, and past trajectories. Adversaries can thus
keep track of the POIs a user has visited or intends to visit, and
infer a wide range of privacy information of the user, such as
home or private offices [26]. As a result, we assume that a user
trusts only his own handset (See [5] for an efficient way of self-
securing handsets.) and therefore, cannot rely on third-party
servers (such as the location server [14] or the anonymization
server [12]) to protect his location privacy. This model removes
the dependency on trusted third-party servers, and is thus more
realistic and attractive.

As in previous work [12], [14], [18], we also assume that
adversaries only make use of the location information in the
compromised servers to breach the users’ privacy and do not
manipulate the responses from LBS servers to the users. This
is because attackers’ main purpose is to learn users’ location
privacy information. Although modifying responses may allow
attackers to mislead mobile users to a wrong place, it provides
little help for attackers who try to learn the users’ privacy
information. In addition, bogus responses also increase the risk
of attackers to be caught, as users can easily verify the validity
of a server’s responses with their expectation and observation.

IV. PRIVACY MODEL AND METRICS

LISA adopts m-unobservability to quantify the uncertainty
of associating POIs with a user’s locations. According to
[31], “unobservability is the state of Items of Interest (IOIs)
being indistinguishable from any IOI at all.” In the context
of location-based services, IOIs are Points of Interest (POIs).
Hence a user’s location privacy can be defined as unobservabil-
ity of his location (l). That is, the location is m-unobservable
if and only if

H(l) = −Σn
j=1p(oj)log2p(oj) ≥ log2m

where oj , j = 1, . . . , n are the POIs and p(oj) is the prob-
ability that the user goes to oj from his current location.
We choose log2m as the threshold of information leakage
(or entropy [34]) for m-unobservability because log 2m is the



Fig. 2: Entropy map from the traces of one
user in one day. Fig. 3: Entropy map from the traces of all

users in one day.
Fig. 4: Entropy map from the traces of all
users in a week.

entropy value when the user is equally likely to visit one of
m POIs. The intuition behind m-unobservability is that the
adversary’s ability to infer the user’s private information is
significantly weakened when they cannot relate any particular
POI to the user’s current location.

To derive p(oj), we divide a map area into a grid of
10m×10m cells using pixelation similar to that in CacheCloak
[26]. From users’ location traces, each cell records the the
number of times users go into the cell and finally, end at a
particular POI, yielding n historical counters, cj , j = 1, . . . , n,
where n is the number of POIs. Then p(oj) is defined as:

p(oj) =
cj∑
j cj

. (1)

For an illustrative purpose, we obtained the location traces
of real users collected by Livelab [36] for over one year. Each
log entry consists of a timestamp, the user’s location in form
of (latitude, longitude) and its accuracy. Collected separately
is information about 600 POIs on the university campus. We
select three subsets of traces: one user’s traces on a certain
day, eleven users’ traces on the same day, and eleven users’
traces of that week. For each data set, we calculate p(oj) for
each POI using Eq. (1). The entropy of each cell is then used
to color the cell on the map, as shown in Figs. 2, 3 and 4.

The unit of X and Y axes is the length of cell, 10m. The
triangles indicate possible source and destination POIs and
the line segments represent the roads connecting sources and
destinations. The color bar on the right maps the entropy to the
color temperature. Fig. 2 shows the entropy values calculated
from two traces of a user going from one POI to another and
coming back along the same road. With respect to each trace,
the user only goes to one POI; therefore, the entropy values
along the road are zero. Figs. 3 and 4 illustrate that, with more
user traces and POIs, the entropy along the road increases.
From a mobile user’s perspective, the entropy map shows that
location privacy, measured by unobservability, is affected by
three fundamental factors: user activities, connectivity of roads,
and location of POIs. Road segments that lead to few POIs
have low entropy values and are thus privacy-revealing. On
the contrary, those that are well connected often have high
entropy values and are thus privacy-preserving because users
may go through them to visit many different POIs.

V. PROTECTION OF LOCATION PRIVACY
In this section, we describe the design goals of LISA and

how it protects location privacy using m-Unobservability.

A. Design Goals
The design of LISA is steered by the following two goals.

G1. Privacy Protection: it must prevent the distin-
guishability of sensitive POIs related to a mobile
user, such that the attackers’ ability to infer the
user’s privacy information is greatly weakened.

G2. Meeting Resource Constraints: it must operate
under various resource constraints imposed by
smartphones, e.g. limited battery and processor
capacity.

B. Overview of LISA
As mentioned in Section III, an LBS system consists of

smartphones, wireless networks, and LBS servers. In each
smartphone, Query Composer is responsible for sending
location-service requests to, and receiving responses from, an
LBS server. Suppose a user wishes to send her current location
(x0, y0) and a query range S = {x, y|(x−x0)2+(y−y0)2 ≤ L}
to an LBS server (for example, to find her friends or inter-
esting events in her proximity defined by query range S).
If she sends exact location (x0, y0), her privacy information
can be inferred by attackers. To protect the location privacy,
Privacy Protection Engine computes a “scrambled”
location (x′

0, y
′
0) and a larger query range § ′ = {x, y|(x −

x′
0)2 + (y − y′

0)2 ≤ L′} (L < L′), such that (x′
0, y

′
0) satisfies

the m-unobservability and the larger query range S ′ contains
the original range S (this will be elaborated in the next
section). Upon receiving the request from the user, the LBS
server returns information inside S ′ (e.g. all her friends or
events in S ′), and then the smartphone performs local filtering,
presenting users the information inside S.

C. Location Privacy Protection Engine
Fig. 5 illustrates how location information is scrambled

by the local Privacy Protection Engine inside each
smartphone. At the center of the protection engine, there are
two Kalman filters to track users’ movements based on a
mobility model and scramble the user’s location information
to satisfy the m-unobservability requirement.



1) Mobility Model: To accurately track and predict a user’s
movements, the Engine uses the extended Kalman filter [28]
which is often considered as the de facto standard for object
tracking and navigation. We adopt the Wiener-sequence accel-
eration model [24] to model user’ mobility, which assumes
each acceleration increment is an independent (white noise)
process. Let !xk denote the state variable and !yk the observation
(a.k.a. measurement) variable at time tk. In fact, the process
state, !xk, is a vector in the form of (x, vx, ax, y, vy, ay)T ,
which represents the location, velocity, and acceleration of a
user on the X and Y axes. The mobility model is given by

!xk+1 = Ak(∆tk) !xk + G(∆tk) !wk (2)
!yk = C !xk + !vk (3)

where

Ak(∆tk) =





1 ∆tk ∆t2k/2 0 0 0
0 1 ∆tk 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆tk ∆t2k/2
0 0 0 1 ∆tk
0 0 0 0 0 1





Gk(∆tk) =





∆t2k/2
∆tk
1

∆t2k/2
∆tk
1




C =





1 0
0 0
0 0
0 1
0 0
0 0





T

!wk and !vk are both random variables for the process (system)
noise and the observation (measurement) noise, respectively,
and ∆tk = tk+1 − tk. Based on this mobility model, the
Kalman filter1 can be defined as follows. The predicted process
state is:

x̂k+1|k = Ak(∆tk) x̂k (4)

and the predicted estimate covariance is:
Pk+1|k = Ak(∆tk)Pk|k Ak(∆tk)′ + Qk (5)

where the process noise covariance is:

Qk(∆tk) = cov(Gk(∆tk)wk) =

var(wk)

0

BBBBB@

∆t4k/4 ∆t3k/2 ∆t2k/2 0 0 0
∆t3k/2 ∆t2k ∆tk 0 0 0
∆t2k/2 ∆tk 1 0 0 0

0 0 0 ∆t4k/4 ∆t3k/2 ∆t2k/2
0 0 0 ∆t3k/2 ∆t2k ∆tk

0 0 0 ∆t2k/2 ∆tk 1

1

CCCCCA

For measurement updates, the Kalman gain is:

Kk = Pk+1|k C′ [C Pk+1|kC′ + Rk+1]−1,

the updated state estimate is:

x̂k+1|k+1 = x̂k+1|k + Kk+1[yk+1 − C x̂k+1|k]

1The filter is sometimes called Stratonovich-Kalman-Bucy filter because it
is a special case of a more general, non-linear filter developed earlier by
Stratonovich.

Fig. 5: Privacy protection engine

, and the updated estimate covariance is:

Pk+1|k+1 = [I6 − Kk+1 C] Pk+1|k. (6)

Next, we will discuss how this model is used to protect
location privacy in the description of KF0 and KF1.

2) Two Kalman Filters: KF0 denotes the extended Kalman
filter that the Engine uses to track the user’s movement. Such
movement tracking is necessary for the following reasons.
First, the Kalman filter can be used as an effective way
to reduce the location measurement error, especially when
users’ location is determined by triangulation of radio towers 2.
Second, the Protection Engine uses accurate prediction
of the user’s movement (using Eq. (4)) to improve privacy
protection and reduce resource consumption (a movement-
prediction-based optimization is detailed in Section VI).

KF1 denotes the extended Kalman filter that the Engine
uses to guide the scrambling of the user’s location information.
Given a location (x, y), a scrambled location, (X ′, Y ′) is a
random variable following the normal distribution with mean
µ = (x, y) and covariance Σ. In fact, Σ is the covariance
of the measurement noise that the Engine injects to confuse
attackers. From attackers’ perspective, a scrambled location
is a location measurement with some significant noise, which
can be filtered or reduced by using mobility model. Hence, the
role of KF1 is to examine a scrambled location and determine
how much noise is needed to achieve the location uncertainty
(given by Eq. (6)) that satisfies the privacy requirement. More
specifically, Privacy Protection Engine scrambles a
user’s location information in following steps.

S1. When the user wishes to access an LBS,
Request Composer tells the Engine to start
generating a location that can be given to the LBS.

S2. The Engine obtains a location measurement from
one of the location information providers, such as
A-GPS or triangulation of radio towers. Assuming
that the measurement is timestamped at tk, the
Engine updates the coefficient matrices of KF0

2Triangulation is still useful for smartphones without an integrated GPS
(A-GPS) and for saving battery power even in phones with GPS [8]



and KF1 using ∆tk = tk − tk−1, and uses KF0
to estimate the current location lk = (xk, yk).

S3. With the current location lk, the Engine looks
up the entropy map and checks if the location
satisfies the user’s privacy requirement.

S4. If the location is m-unobservable, the Engine
returns it to the Request Composer. Otherwise,
go to S5 to perform location scrambling.

S5. Recall that Rk can be locally tweaked to affect
Pk+1|k+1 by Eq. (6). Furthermore,

Lk ∼ N(lk,

(
Pk+1|k+1(1, 1) 0

0 Pk+1|k+1(4, 4)

)
)

, i.e., Lk is an unbiased estimation of lk. The
Engine gradually increases Rk so as to increase
the covariance/uncertainty of Lk until H̄(Lk) =
Σlg(l) ∗ H(l) ≥ log2m is satisfied or the maxi-
mum noise level is reached.

S6. Once Rk is found, the Engine uses it to generate
a random noise ek by the normal distribution
N(0, Rk), and returns lk + ek to the Composer.

VI. OPTIMIZATIONS

In this section, we propose two optimizations, look-ahead
and de-randomization, to improve location-privacy protection.

A. Look-ahead

In Section V, we have showed that KF1’s state-transition
matrix, Ak, and process noise covariance, Qk, are both de-
termined by the inter-arrival time between consecutive LBS
queries, ∆tk. As ∆tk gets smaller, Ak and Qk both become
smaller. As a result, the prior estimation error covariance
Pk+1|k approaches 0 and so does the Kalman filter gain,
Kk. Then, the location measurement is trusted less, while the
predicted location is trusted more. If Pk|k is also small (i.e., not
in high entropy location), increasing Rk+1 cannot effectively
increase Pk+1|k+1, and thus, cannot satisfy m-unobservability.

The look-ahead optimization alleviates this problem by
predicting the location in the next step and adjusting the mea-
surement noise in the current step accordingly in order to allow
the next step to meet the unobservability requirements. To do
so, the Engine predicts the location-privacy requirement in
the next step by fixing the inter-arrival times of LBS queries,
∆tk(k = 1, 2, · · · ) in Eq. (4) and use the predictd location to
calculate its the entropy. Next, the Engine searches for the
measurement noise covariances for the current step and the
next step, Rk+1 and Rk+2, such that both satisfy the privacy
requirements and Rk+1 + Rk+2 is minimized.

B. De-randomization

Another limitation in the previous section is that it does not
consider user movement between two LBS queries. If a user
stay in the same place but keeps sending LBS queries, his true
locations may still be disclosed even though the queries only
contain scrambled locations. The reason is simple: because the
noises injected into the scrambled locations follow a 0 mean
normal distribution, the average of the scrambled locations
converges to the true location as the sequence gets longer.
To address the problem, we propose to de-randomize the
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Fig. 7: User traces

scrambled locations. Specifically, when the Engine detects
less than minimum movement by a user, it reuses the previous
scrambled location rather than generating a new one. This way,
no new information can be obtained by attackers even as the
mobile device continues to send LBS queries.

VII. EVALUATION
In this section, we evaluate the performance of LISA

with real-world traces. First, we describe the traces used in
the evaluation. Then, we present the experimental setup and
performance metrics. Finally, we thoroughly analyze LISA’s
performance and explore the impact of varying settings on
LISA’s effectiveness in providing strong privacy protection for
mobile users.

A. Real-world Traces

We use real-world traces of mobile users from the LiveLab
Project at Rice University [36] that aims to measure long-
term usage patterns of smartphones and wireless networks.
To collect real user data, they recruited 25 participants from
Rice University and gave each of them a smartphone equipped
with the logging framework. The logged data was sent back
to a centralized server on a daily basis, with sensitive per-
sonal information stripped off. The traces we obtained from
LiveLab contain 11 users’ GPS location readings over about
one month. Each location log entry consists of the following
six attributes: timestamp, latitude, longitude, accuracy of the
location, altitude, and accuracy of the altitude. Overall, the
raw data contains 45,151 GPS entries3 covering a 409,915m
× 89,502m area. The accuracy of GPS data varies significantly
between 17m and 128km and its CDF (cumulative distribution
function) is plotted in Fig. 6.

The initial step of processing the raw GPS data is to break
down continuous GPS logs into movement segments (i.e.,
traces), representing users’ trip from one POI to another. These
segments can be used to create entropy maps and evaluate
LISA’s effectiveness. Based on the assumption that a user, after
arriving at a particular POI, tends to stay at the same location,
we use following process to separate user traces and identify
the corresponding start/end POIs:

1) Filter GPS readings whose location inaccuracy is over
200m. The threshold is so chosen, balancing between
the requirement for a sufficient amount of data and
their quality (i.e., accuracy).

2) Cluster consecutive locations. Location entries are
grouped such that the diameter of a group (i.e., the

3On average, 150 points were collected from each user every day.
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Fig. 8: Real-world trace statistics

maximum distance between any pair of locations) is
less than 500m. A “group” of locations indicate a
small neighborhood/region.

3) Identify “stays” and “passings.” If the duration of a
group (i.e., the span from the earliest entry to the
latest in a group) is more than 10 minutes, the user is
considered to have stayed around the neighborhood.
Otherwise, s/he is assumed to have passed it.

4) Identify segments of movement. If the time between
consecutive groups (i.e., the earliest time in a group
minus the latest time in its previous group) is over
60 minutes, then the two groups are assumed to
be temporally unrelated and belong to two separate
movement segments.

5) Construct a POI database. We compile a list of 650
POIs surrounding the Rice University campus includ-
ing campus buildings, restaurants, shopping centers
and other attractions.

6) Associate POIs with group of points. For each group
of points at which users have stayed, we associate it
with a POI in our POI database that has the minimum
distance to all the points within the group.

The above algorithm has yielded 572 separate traces for
all users over the entire monitoring period. Fig. 7 shows the
number of traces collected from 11 users (noted as A00-A10)
in different scenarios (i.e., day time vs. night time). From
the figure, we can see that on average around 50 traces were
collected from each user with the most active user contributing
90 traces over the five weeks. It is interesting to note that
user activity patterns vary considerably across different users.
Although users tend to be more active during the day time
(372 traces) than during the night time (202 traces) and more
active during weekdays (413 traces) than during the weekend
(161 traces), some users exhibit different usage patterns. In
particular, for A00, A01 and A06, the number of traces
collected during the night is almost the same as (or even larger
than) those collected during the day time.

Aggregating traces from all users, Figs. 8a and 8b show the
CDFs (Cumulative Distribution Functions) of their duration (in
seconds) and length (in meters) of day- and night-time traces.
The empirical data show that users generally take short trips.
For example, on average a trip takes about 30 minutes and the
mean length of the trip is around 5km. Our data also shows
that the trip length is shorter during the day than during the
night and the trip duration exhibits the opposite trend. Overall
the traces represent typical daily usage of smartphones and we
use them to evaluate LISA in real-world settings
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Fig. 10: Effectiveness of LISA
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B. Experimental Methodology and Performance metrics

The GPS data from LiveLab was recorded at coarse time-
scale (every 15 minutes) due to high energy consumption
of frequent location logging. For the evaluation of LISA’s
effectiveness, we refine these traces by feeding the original
GPS records into VANETMobiSim [16] simulator to generate
fine-grained location data along the coarse-grained traces. We
first load into the simulator the map for area that covers most
of the movement of the 11 users. Then, we use the staying and
passing points of a GPS trace to define a user’s trajectory and
move virtual nodes intelligently between the points to create
detailed location traces. It allows us to recover the real user’s
activity from coarse GPS logging data, which are then used to
generate entropy maps and evaluate LISA’s performance.

Specifically, two performance metrics are used to evaluate
the effectiveness of privacy protection. The main metric is
the location privacy entropy along the users’ traces, which
reflects an attacker’s uncertainty in associating users with a
particular POI. For example, 3 bits of entropy is equivalent to
23 = 8 POIs equally likely to be related to a user location.
However, it is difficult to set a fixed quantitative threshold
for entropy, above which the user’s privacy is considered
protected and below which the user is identified. Thus, in
the rest of this section, we will focus on the improvement on
the location privacy LISA can achieve in different scenarios.
Second, as LISA relies on injection of noises into location
updates to protect the user’s privacy, an important measure
is the average spatial resolution provided by LISA. A lower
spatial resolution (e.g. higher injected noises) means that LISA
has to communicate more data with LBS servers and perform
additional local filtering to remove irrelevant data points,
leading to high energy costs. Therefore, LISA attempts to
maximize the spatial resolution while maintaining sufficient
location entropies.

C. Performance Evaluation

1) Location Entropy: We build entropy maps from first four
weeks’ user traces and use the fifth weeks’ trace to evaluate
LISA’s performance in improving location entropies of the user
paths. Fig. 9 shows the CDF of average entropies of users
with and without LISA. From these results, we found that
LISA performs especially well for low-entropy traces, often
improving the location privacy by 2 bits (in many cases this
is equivalent to a 200% increase in the entropy). Given that
LISA stops noise injection if the location entropy reaches the
entropy threshold (which is set to be log210 = 3.32 in our



experiments), the improvement is significant. For high-entropy
traces, the improvement is moderate. To demonstrate this
effect, we place the test traces into buckets according to their
average entropies. In total, we have five buckets holding traces
whose entropies are between i and i + 1 where i = 1, 2, 3, 4.
For high-entropy traces with the entropy value greater than 5,
we group them together in one bucket. Fig. 10 plots average
improvement in different buckets using LISA. From the figure,
we can see that LISA achieves, on average, 4.2 bits of entropy
for all types of traces and 2.7 bits of entropy even for very
low entropy traces. The average improvement for low entropy
traces is about 1.7 bits, corresponding to a 180% increase.

D. Spatial Resolution

LISA improves the location privacy at the cost of increasing
location uncertainties which inevitably reduces the spatial
resolution and incurs additional communication and processing
overheads. We measured this effect using the relative temporal
resolution [12], which is defined as the temporal resolution
provided by LISA normalized by the minimum acceptable
temporal resolution (i.e., maximum tolerable bounding box
size denoted as Bm). More specifically, let B̄ represent the
average bounding box size along the trace, the relative spatial
resolution is defined as Bm/B̄. A higher value implies more
accurate location updates and thus a smaller communication
overhead. Fig. 11 depicts the CDF of the relative spatial reso-
lution, showing that in over 20% cases, the relative resolution
is larger than 10 and in over 60%, the relative resolution is
larger than 1. On average, the relative spatial resolution is 4.9,
meaning that the bounding box generated by LISA is much
smaller than the constraint box size. This demonstrates the
effectiveness of LISA’s noise tuning algorithm in generating
the minimum possible bounding box to satisfy the privacy
requirement.

E. Adaptive Entropy Map

Because a user’s activity pattern may vary significantly
between day time and night time, a potential way to improve
LISA’s performance is to adapt the entropy map to accom-
modate the dynamics of user mobility patterns. In particular,
we create two separate entropy maps corresponding to user
activities at day time and night time so that LISA can adap-
tively choose an appropriate entropy map to protect the user’s
privacy based on the local time. To evaluate the effectiveness
of this adaptive entropy map, we use the same set of first
four-week traces from all 11 users and separate them into
two types of traces, namely, day-time and night-time traces.
Each set is used to create one entropy map. Then, we also
separate the traces of the fifth week into these two types
and run them through LISA to collect results about average
entropies of user traces. The results, summarized in Fig. 12,
are compared using the same bucketing algorithms to better
demonstrate the advantages of the adaptive approach. First,
we observe that for low-entropy traces, using the adaptive
entropy map allows LISA to achieve higher location entropy
in both day and night times than the combined entropy map.
For example, the average entropy for the first bucket (1-2) is
2.98 for day time, 2.74 for night time and 2.70 for combined
entropy maps. The difference is even larger for the second
bucket. On the other hand, for high-entropy traces, using

adaptive entropy maps leads to a smaller bounding box size
and reduced the communication overhead. For example, the
average bounding box size for day-time entropy for the fourth
bucket (4-5) is 79.6m compared to the 179.6m bounding box
for the combined entropy map. With fewer user activities in the
night, the night time entropy map yields a bounding box size
of 210m, which is justifiable since user entropies tend to be
low in the night. Although for high-entropy traces, the adaptive
entropy map appears to reduce average location entropy below
the combined entropy map. However, the location entropy is
still above the threshold (i.e., log210)) and provides a desirable
level of location privacy. Trading this additional entropy for a
smaller bounding box size, LISA reduces the communication
and processing overheads without failing to meet the required
privacy for mobile users.

F. Cross Validation Among Users
One potential reason for LISA to achieve good performance

could be due to the temporal correlation of traces from the
same person. Therefore, to show LISA’s robustness to the
user population, we perform cross validation with different
sets of users. Specifically, we create an entropy map using
traces from 10 out of total 11 users (i.e. training traces),
and then use the traces of the remaining user as the “test”
traces for LISA. We performed the cross validation for all
11 cases and summarized the results in Fig. 13. In Fig. 13,
each bar represents the location entropy averaged across 11
different combinations and the error bars indicate the minimum
and maximum values. Although there are variations in the
amount of entropies LISA can provide (likely caused by traces
that is unique to individual users), LISA still achieves high
privacy protection, in particular for low-entropy traces. For
example, for low-entropy traces in the first bucket, LISA, on
average, increases its location entropy by 2.3 bits, resulting in
an entropy value that is close to the threshold (log210) and
almost 3 times more than achieved without LISA. This result
suggests that after accruing a relatively large number of user
traces, LISA can be generalized to previously unseen users.

VIII. CONCLUSION
We have proposed a new approach, called the Location In-

formation ScrAmbler (LISA), to protecting the location privacy
of mobile users. The key idea of LISA is m-unobservability,
which disables the distinguishability of POIs a user may visit,
and therefore, weakens the attackers’ capability of inferring his
privacy information. Based on a simple mobility model, LISA
achieves protection of location privacy and resource efficiency
by tweaking the noise used to scramble the locations revealed
to LBSs. LISA introduces a new, orthogonal (relative to others)
dimension of uncertainty, and can be combined with other
approaches to enhance location privacy. Moreover, it eliminates
the need for trusted third-party servers, thus lowering the risk
of attacks and simplifying the implementation and deployment
of LBS systems. We evaluated the performance of LISA using
real-world traces. The results show that LISA can effectively
protect location privacy with good resource efficiency.
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