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Abstract—Satellites are indispensable for broadcast, weather
forecast, navigation, and many other applications, but their design
entails a number of stringent requirements, such as limited space
and weight, impossible/costly online repairs, severe radiation,
and a wide range of temperature they have to withstand. These
requirements can only be met by an effective, robust co-design of
physical and computing (control) parts of each satellite, making
them prototypical cyber-physical systems (CPSes). Of the various
CPS issues related to satellites, this paper focuses on offline design
and online management of satellite power systems. Specifically, we
analyze and model unique characteristics of power supply and
demand of a satellite, which are dictated by the periodicity of
power generation from solar panels and the nonlinear behavior
of rechargeable battery cells. Based on the understanding of
these characteristics, we first propose how to find the best
configuration (e.g., the number, the arrangement, and the type)
of solar panels and battery cells at design time, such that all
tasks can be executed without power shortage throughout the
satellite’s mission lifetime. Second, we propose how to manage
power online so as to execute the highest QoS versions of tasks
(thus yielding the most power-effective performance) without
compromising the power-sufficiency guarantee under a given
configuration. As a case study, we study cubic-shaped nano-
satellites, which have been launched multiple times since 2004.
We borrow their architecture, configuration and parameters, and
demonstrate the effectiveness of our design and management of
satellite power systems.

I. INTRODUCTION

Satellites have become essential for many applications,
such as broadcast and communications, weather forecast, nav-
igation, earth/space observation, and scientific experiments.
Due to their significant impact on human lives, business
and scientific exploration, satellites have been widely studied,
mainly focusing on their physical and communication aspects,
respectively from the aerospace and networking communities
[1–3]. Unlike other systems operating on the earth, all sub-
systems of a satellite should be accommodated within a limited
budget of space and weight, resilient to severe radiation and
a wide range of temperature, and ultra-reliable since it is
impossible or very costly to replace (failed) physical parts
after its launch. This calls for effective, robust design of
physical parts and sophisticated controls thereof, addressing
the issues of co-designing physical and computing (control)
parts simultaneously. That is, satellites are a prototypical
example of Cyber-Physical System (CPS), typified by tight
integration and coordination between physical and computing
parts [4–6]. As a result, the CPS community has recently paid
considerable attention to satellites [7, 8].

Of the various CPS issues of satellites, this paper focuses
on the design and management of satellite power systems.

Since no physical fuel can be supplied to power satellites
from earth, they are usually equipped with solar panels and
rechargeable battery cells, which entail unique characteristics
of power supply, as explained below. According to the rev-
olution of a satellite around the earth, solar panels generate
power and charge battery cells when it is exposed to the sun or
during the “sun phase,” while they cannot during the “eclipse
phase” (without sunlight). The amount of power generated
depends on the satellite’s position, the efficiency of solar panels
(which degrades with time), and temperature. On the other
hand, battery cells supply power during the eclipse phase
or the sun phase in case of a peak power demand. Their
discharge behaviors are known to be non-linear [9–11], e.g.,
discharge efficiency—higher discharge rate, less deliverable
power, and recovery efficiency—resting a battery cell will
recover its voltage that was temporarily dropped. Battery cells’
performance also varies with their efficiency and operating
temperature.

As to power demand, each sub-system (e.g., on-board
computer, receiver, transmitter, camera, magnetorquer, and
magnetometer) consumes power, and is modeled with periodic
power-consumption tasks with different versions,1 e.g., a task
that periodically takes and transmits pictures with different
resolutions; a higher resolution consumes more power.

Considering the unique characteristics of satellite power
supply and demand, we would like to achieve the following
goals.

G1. Design: we want to find the best configuration (e.g.,
the number, the arrangement, and the type) of solar
panels and battery cells, which can guarantee offline
(i.e., pre-launch) the execution of all tasks without
power deficiency until the end of the satellite’s mission
lifetime.

G2. Management: we want to manage power online (i.e.,
post-launch) so as to execute tasks with as high QoS
versions as possible, without compromising the power
sufficiency guaranteed by G1.

G1 is important in that we can not only reduce the production
cost, but also allocate more weight and space budget for
payloads. G2 is also significant because we can maximize
mission performance for a given power systems design.

Existing studies on satellite systems have addressed G1 by
over-designing power supply units [12–19]. As to G2, there

1Note that the notion of periodic power-consumption tasks has nothing to
do with deadlines.

2013 IEEE 34th Real-Time Systems Symposium

1052-8725/13 $26.00 © 2013 IEEE

DOI 10.1109/RTSS.2013.18

97



have also been a line of studies on systems with regenerative
energy [20–22]. In particular, the authors of [20] provided
a general problem formulation with an abstracted model of
energy, deadlines and task rewards, where all tasks compete
for the temporal resource of a computing unit, which is not
the case for a satellite’s sub-systems that share energy resource
only. In contrast to these existing studies, we address both G1
and G2 by thoroughly investigating the characteristics of a
satellite’s power supply and demand.

To achieve G1, we analyze and model the characteristics
of a satellite’s power supply and demand, and derive lower-
bounds of generated power from solar panels as well as the
SoC (State of Charge) of the entire battery cells, and an upper-
bound of power demand, e.g., the generated power during the
sun phase is at least as much as 2.3W throughout the satellite’s
mission lifetime. We also derive a relationship between power
sufficiency and the SoC level: a positive level of SoC implies
that no sub-system suffers from power shortage. Applying
these bounds and relationship to the execution of tasks with
fixed versions, we find a fixed value X of SoC such that
X ≤ X ′ holds where X and X ′ are SoC values at the
beginning and end of a satellite’s orbit period.2 We prove
that power sufficiency is guaranteed as long as there exists
such a fixed value of SoC. Then, we calculate fixed points
for different configurations of solar panels and battery cells,
and choose the best configuration, thus addressing G1. Since
there is a gap between the lower-bound of SoC and actual
SoC (which is available online only), we can execute higher
versions of tasks by exploiting this gap. To this end, we
propose dynamic-version execution, which adaptively raises
the execution versions, thus addressing G2. The underlying
principle of the dynamic-version execution is to find the
highest versions of tasks that yield SoC at the end of each
orbit period at least as high as the fixed point that guarantees
power sufficiency.

To demonstrate the effectiveness of the proposed ap-
proaches, we use cubic-shaped nano-satellites, called Cube-
Sats, and borrow configurations from two actually-deployed
CubeSats. For rechargeable batteries, we use a popular bat-
tery simulator, Dualfoil [23]. Our simulation results from
actual/realistic configurations and Dualfoil show that we can
find the Pareto optimal configurations of solar panels and bat-
tery cells, achieving G1. Also, the proposed dynamic-version
execution effectively exploits online information, allowing
execution of tasks with higher versions without compromising
power-sufficiency guarantees (achieving G2).

In summary, this paper makes the following contributions:

• Thorough investigation of the unique characteristics of
power supply and demand of a satellite, and derivation
of their properties;

• Design and management of satellite power systems,
and derivation of solutions to achieve the goals G1
and G2; and

• Case study of an actual nano-satellite, and demonstra-
tion of the effectiveness of our solutions.

2A satellite periodically revolves around the earth; each orbit period starts
at the beginning of an eclipse phase, and ends at the end of the corresponding
sun phase. See Fig. 5.

The rest of this paper organized as follows. Section II
investigates characteristics of a satellite’s power supply and
demand. Section III proposes our design and management of
power systems. Section IV focuses on a nano-satellite, and
validates our solutions. Finally, Section V concludes the paper.

II. CHARACTERISTICS OF SATELLITES’ POWER SUPPLY

AND DEMAND

Satellites are usually equipped with solar panels and
rechargeable battery cells as their energy source and storage.
Both are complementary to each other during two alternate
phases. First, when a satellite faces the sun, photovolatics
in solar panels convert sunlight into electrical energy; the
generated power is supplied to the satellite’s sub-systems, and
then the remaining power is stored in battery cells. On the
other hand, during the eclipse phase (or the sun phase with a
peak power demand), the stored energy in battery cells is used
to operate the satellite sub-systems.

To achieve G1 and G2, we need to know the amount of
supplied and consumed power, thus requiring a good under-
standing of the unique characteristics of supplied power from
solar panels and battery cells, and consumed power by the sub-
systems. We first analyze the characteristics of power supplied
by the solar panels, and then examine power demand from the
sub-systems. Finally, we investigate the physical characteristics
of a rechargeable battery cell, and express its SoC (State of
Charge) using the supplied and demanded power.

A. Power Supply from Solar Panels

Since a satellite revolves around the earth, its solar panels
supply power periodically. That is, the sun and eclipse phases
alternate, and each panel can generate power only during the
sun phase. The amount of power generated by a solar panel at t
depends on the angle between sunlight and the solar panel, and
the angle is determined by the satellite’s position and attitude
(denoted by s(t)). Then, the amount of power generated by
all solar panels in a satellite at t is a function of s(t) and
nS, where nS is the configuration of solar panels at design
time (e.g., the number, the arrangement, and the type of solar
panels). Fig. 1 shows an example of the amount of generated
power over time, which will be detailed in Section IV.

Another characteristic is the efficiency degradation of solar
panels. Due to ultraviolet degradation, redication degradation,
fatigue (thermal cycling) and micrometeoroid loss, the effi-
ciency of solar panels decreases over time. Also, a rise in
temperature decreases the amount of power generated by solar
panels. For example, the amount of power generation by a
solar panel in [17] is 1.2 W at −20◦C, which drops to 1.1
W at 20◦C. Let eS(t) and θ(t) denote the efficiency of solar
panels and temperature at t.

Taken together, the amount of power generation at t
(denoted by Sup(t)) can be expressed as a function of nS,
s(t), eS(t) and θ(t) as:

Sup(t) = Fsup

(
nS, s(t), eS(t), θ(t)

)
. (1)

As mentioned earlier, Sup(t) is an increasing (likewise,
decreasing) function of eS(t) (likewise, θ(t)). We will present
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Fig. 1. Generated power from 10 solar panels; the eclipse and sun phases
last 38 and 62 minutes, and the details are given in Section IV.

an example of Fsup in Section IV-B. Note that all parameters
used in this paper are summarized in Table I.

B. Power Demand from Sub-Systems

Each sub-system’s instantaneous power consumption is
represented as a periodic task τi. Task τi ∈ τ is specified

by
(
pi, ci(t, vi)

)
, where pi is the period (Min) and ci(t, vi) is

the amount of instantaneous power consumption with version
(or operating mode) vi at t (W ); so, if τi is idle at t,
ci(t, vi) = 0. While some tasks have only one version, others
can have multiple versions, e.g., taking pictures with different
resolutions; a task with a higher version yields higher workload
and higher power consumption than that with a lower version.
Note that while pi is determined at design time, ci(t, vi) varies
with time; vi is now expressed as a fixed value, but it will later
be generalized to vi(t) to account for dynamic version changes
in Section III. For deterministic behaviors, we assume that pi

is a divisor of �ORB (the orbit period).

The periodic task model can abstract the power consump-
tion of sub-systems in a satellite in that it not only directly
expresses sub-systems with periodic operation, e.g., feedback
loop control, but also indirectly expresses sub-systems with
non-periodic operation. For example, a satellite to be pre-
sented in Section IV has four periodic and two non-periodic
tasks. For the two non-periodic tasks τ1 and τ2, we can set
p1 = p2 = �orb; this is also applicable when the minimum
power is consumed during the inactive state of a sub-system.

The amount of a satellite’s instantaneous power consump-
tion at t (denoted as Dem(t)) is the sum of power consumption
of all tasks (sub-systems) as:

Dem(t) =
|τ |∑
i=1

ci(t, vi), (2)

where |τ | is the number of tasks in τ .

C. Physical Characteristics of Rechargeable Battery Cells

Rechargeable battery cells are known to possess many
unique, non-linear characteristics [9–11]. One of them is
called discharge efficiency—the higher discharge rate, the less
efficiency. Fig. 2(a) represents the output voltage drop of a
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(a) Discharge efficiency

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0  10  20  30  40  50  60

O
ut

pu
t 

vo
lt

ag
e 

(V
)

Time (minute)

4C or 0C

(b) Recovery efficiency: 2-minute discharge at rate 4 C and
8-minute rest are repeated.

Fig. 2. Physical characteristics of a rechargeable battery cell: we simulate a
lithium-ion battery cell operating at 25◦C, using Dualfoil [23].

battery cell at various constant discharge rates, simulated by
Dualfoil [23]. We can observe that the operation time (during
voltage larger than the cutoff voltage 2.4 V ) is not inverse-
proportional to the discharge rate. That is, while the operation
time of a battery cell at the discharge rate of 1 C (C-rate)
is 60 minutes, that at 2 C is 28.7 minutes, not 30 minutes.
As the discharge rate gets higher, its deliverable power is
decreasing; compared to the discharge rate of 1 C, there are
4.3%, 10.0% and 14.6% losses of deliverable power with the
discharge rate of 2, 3 and 4 C, respectively. Such losses
come from the process of converting chemical energy into
useful electric energy for two main reasons. First, the internal
resistance of battery cells proportionally increases with the
discharge rate, which is called IR loss. The second reason
is the polarization effect, which occurs because (i) a higher
discharge rate yields more concentration difference between
the reactants and products at the electrode surface, and/or (ii)
a discharge rate is higher than the slowest rate among chemical
reaction steps.

Another interesting characteristic is called recovery effi-
ciency. Fig. 2(b) represents the output voltage drop of a battery
cell when it alternates to discharge for 2 minutes at 4 C and
rest for 8 minutes. After a voltage drop during each discharge,
the output voltage is recovered during each rest period. For
example, after the first 2-minute discharge, the voltage is
dropped to 3.78 V , but a rest for 8 minutes recovers voltage up
to 3.99 V , as shown in the figure. Recovery efficiency occurs
because a rest not only decreases the concentration difference
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Parameter Unit Description

�ORB Min The orbit period
nS Configuration of solar panels determined at design time, e.g., the number, the position and the type of solar panels
nB Configuration of battery cells determined at design time, e.g., the number, the connectivity and the type of battery cells
pi Min The period of τi

ci(t, vi), c+i (t%�ORB, vi) W the amount of power consumption of τi with version vi at t, and its upper bound

eS(t), e−S % Solar panel’s efficiency at t, and its lower bound

eB(t), e−B % Battery cell’s efficiency at t , and its lower bound

s(t), s− Position/attitude of the satellite at t, and position/attitude that results in the minimum power supply
θ(t) ◦C Temperature at t
t = 0, t = t+ Min The times at the beginning and end of life (which are assumed to be the beginning of an orbit period)

Dem(t), Dem+(t) W The amount of power consumption at t (W ), and its upper bound

Sup(t), Sup−(t) W The amount of power generation at t (W ), and its lower bound

SoC(t), SoC−(t) % SoC at t, and its lower bound

TABLE I. PARAMETERS

between the reactants and products, but also takes time to finish
the remaining chemical reactions that did not follow a high
discharge rate, thus alleviating the polarization effect.

Similar to solar panels, battery cells are also affected by
their efficiency and temperature. The efficiency of battery cells
at t (denoted by eB(t)) degrades with time according to the
calendar fade effect. A temperature change also influences
deliverable capacity.

We represent the battery cells’ charge status using State of
Charge (SoC). The SoC at a given time is proportional to the
amount of charge available at the time, and it is expressed in
percent, from 0% when there is no charge, to 100% when it
is fully charged. In this paper, we define SoC for the entire
battery system, not for each cell. Then, we express SoC at t+Δ
as a function of SoC at t, the amount of charged or discharged
power during [t, t + Δ) (i.e., Δ · (Dem(t) − Sup(t)), nB, eB,
and θ(t), as:

SoC(t + Δ) =

Fsoc

(
SoC(t),Δ · (Dem(t)− Sup(t)

)
, nB, eB(t), θ(t)

)
, (3)

where nB denotes configuration of battery cells determined at
design time (e.g., the number, the connectivity and the type of
battery cells).

Fsoc is a decreasing function of Δ ·(Dem(t)−Sup(t)), and
an increasing function of eB(t). While the exact form of Fsoc

is complex due to the non-linear behaviors, it can be modeled
and calculated numerically, e.g., see [9, 10, 23].

III. DESIGN AND MANAGEMENT OF SATELLITE POWER

SYSTEMS

We now propose a new design and management scheme
for satellite power systems that meets both G1 and G2. We
first derive the properties of power supply and demand. Based
on these properties, we propose a way of guaranteeing power
sufficiency for a given design, and then meet G1 by applying
it to different designs. We finally develop a strategy for
execution of higher-version tasks without compromising the
power sufficiency guarantee, thus meeting G2.

A. Properties of Power Supply and Demand

To achieve G1 and G2, we should know (i) the amount of
power generated by solar panels and stored in battery cells, and
(ii) the amount of power dissipated by sub-systems. Eqs. (1),
(2) and (3) express what we need to know, but their exact
values are available only at runtime, not at a pre-launch time.
Therefore, we need to derive a lower-bound of (i) and an upper-
bound of (ii), and use the bounds for achieving G1 and G2.

Based on an offline analysis, we determine the thresholds
for relevant variables eS(t), eB(t) and s(t) that hold for all
t ∈ [0, t+), where 0 (t+) is the time at the beginning (end) of
the satellite life (and, 0 and t+ are assumed to be the beginning
of an orbit period). Here, we use the superscripts X+ and X−
to represent upper and lower bounds of X , respectively, and
define the thresholds such that eS(t) ≥ e−S , eB(t) ≥ e−B , and
ci(t, vi) ≤ c+

i (t%�ORB, vi) hold for all t ∈ [0, t+).3 Recall that
all parameters used in this paper are summarized in Table I.
In Section IV, we will present specific threshold values for a
satellite.

Using the thresholds, we can calculate lower bounds of
Sup(t) and SoC(t), and an upper bound of Dem(t) as:

Sup−(t) = Sup(t) | nS, s
−, e−S , θ(t), (4)

Dem+(t) = Dem(t) | {c+
i (t%�ORB, vi)}|τ |i=1, (5)

SoC−(t) = SoC(t) | Dem+(t),Sup−(t), nB, e−B , θ(t). (6)

The functions Sup−(t), Dem+(t) and SoC−(t) are inter-
preted as the minimum supply, the maximum demand, and
the minimum SoC at the end of satellite life, and they are
deterministic at design time since all parameters are constant
or deterministic. Although θ(t) seems to be online information,
we can calculate/predict the variable, because the orbit of
a satellite is fixed and temperature depends on the position
(meaning that θ(t) is periodic). We will give the detail of this
in Section IV. The following lemma presents and proves two
properties of Sup−(t), Dem+(t) and SoC−(t): upper/lower
bounds and periodicity.

3% means the modulo operation, so we define c+i (t, vi) only in [0, �ORB).
We define s− such that it yields the smallest power generation.
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Lemma 1. For all t ∈ [0, t+), the following (in)equalities
holds:

• Sup(t) ≥ Sup−(t);

• Dem(t) ≤ Dem+(t) for given {vi}|τ |i=1;

• SoC(t) ≥ SoC−(t) under the same initial value of the
beginning of lifetime, i.e., SoC(0) = SoC−(0);

• Sup−(t) = Sup−(t + �ORB);

• Dem+(t) = Dem+(t + �ORB) for given {vi}|τ |i=1; and

• SoC−(t) = SoC−(t + �ORB) under the same initial
value of the beginning of each orbit period, i.e.,
SoC−(t′) = SoC−(t′ + �ORB), where t′ is the begin-
ning of the orbit period which t belongs.

Proof: As shown in Section II-A, Sup(t) is an increasing
function of eS(t). Therefore, by the definition of eS(t) and s−,
Sup(t) ≥ Sup−(t) holds for all t ∈ [0, t+). Similarly, by the

definition of c+
i (t, vi), Dem(t) ≤ Dem+(t) for given {vi}|τ |i=1

also holds for all t ∈ [0, t+).

When it comes to SoC−(t), we use the first two inequal-
ities. Then, we guarantee that Δ · (Dem(t) − Sup(t)

)
is no

larger than Δ · (Dem+(t)− Sup−(t)
)
, which yields a smaller

discharge rate and a longer rest period. Since SoC(t) is an
increasing function of eB(t), and eB(t) ≥ e−B holds for all
t ∈ [0, t+), the third inequality holds.

The periodicity for Sup−(t) and Dem+(t) (i.e., the fourth
and fifth equalities) holds because all parameters in Sup−(t)
are constant or periodic, and c+

i (t, vi) is periodic. Thus, all
parameters in SoC−(t) are either constant or periodic, and
therefore the sixth equality follows.

Figs. 6(b) and (c) in Section IV, and Fig. 3 in this section
show examples of Sup−(t), Dem+(t) and SoC−(t) for a
satellite.

We need to guarantee that no sub-system will suffer from
power shortage, and the following lemma formally expresses
the guarantee only with SoC(t), which will be used to develop
strategies for G1 and G2.

Lemma 2. As long as SoC(t) > 0 holds (i.e., strictly larger
than 0), no sub-system suffers from power deficiency.

Proof: Sub-systems use the power generated from solar
panels first, and draw the power from battery cells if the power
generation is not available (during the eclipse phase) or the
amount of generated power is not sufficient. Thus, no sub-
system experiences power shortage, as long as battery cells can
provide necessary power to sub-systems, which is expressed
as SoC(t) > 0.

Lemma 2 provides a good abstraction of power-sufficiency
guarantee. That is, while power supply and demand in a
satellite are complex as shown in Section II, we can only
find whether or not SoC(t) is dropped to zero. This eases the
development of strategies for achieving G1 and G2.

Algorithm 1 Finding the smallest fixed point of SoC

1: succ ← 100%, fail← 0%.
2: for Given number of iterations do
3: curr ← (succ + fail)/2.
4: Calculate SoC−(t) for all t ∈ [0, �ORB), starting from

SoC−(0) ← curr.
5: Check whether or not SoC−(0) ≤ SoC−(�ORB) holds.
6: Check whether or not SoC−(t) > 0 for all t ∈ [0, �ORB)
7: If Steps 5 and 6 holds, succ ← curr; otherwise, fail ←

curr.
8: end for
9: SoC∗ ← INFEASIBLE, if succ = 100% holds; otherwise,

SoC∗ ← succ.
10: Return SoC∗.

B. Design-Time Guarantees on Execution of a Given Task
Version (achieving G1)

At design time, we want to ensure all sub-systems do not
experience power shortage until t+ (the end of the satellite’s
life), for given nS and nB (configurations of solar panels and
battery cells). Once we develop a strategy for this assurance,
we test different configurations and find the best configuration
that minimizes the cost, space and/or weight of power supply
units, achieving G1.

To achieve this, we first consider fixed-version execution in
which versions of tasks are determined at design time, and do
not change over time. Note that this execution is not related to
real-time scheduling in that tasks (sub-systems) of our interest
share energy resource only, instead of competing for temporal
resource in a computing unit.

We want to find the smallest fixed point of SoC (denoted
by SoC∗), which satisfies the following two conditions for
given SoC−(t′) ← SoC∗, where t′ ∈ [0, t+) is the beginning
of an orbit period: (i) SoC−(t′ + �ORB) ≥ SoC∗, and (ii)
SoC−(t) > 0 holds for all t ∈ [t′, t′ + �ORB). Then, if SoC
at the beginning, i.e., SoC(0), is no smaller than SoC∗, we
can guarantee the power sufficiency, which will be formally
stated in Theorem 1. Algorithm 1 describes how to find a
fixed point of SoC, using a binary search; note that we apply
any t′ (the beginning of an orbit period) since SoC−(t) is a
periodic function by Lemma 1, and hence, we apply t′ = 0.
Steps 5 and 6 address (i) and (ii), respectively. An example of
the smallest fixed point is illustrated in Fig. 3. If SoC starts
with 96.8%, 43.3% and 30.8% with Configurations D, E and F,
each of SoC satisfies Steps 5 and 6. Since such values barely
meet Step 6, they are the smallest SoC that satisfies Steps 5
and 6. Here, Configuration D, E and F mean 1, 2 and 3 battery
cells connected in parallel, and one solar panel on each side,
which will be detailed in Section IV.

Suppose that the SoC at t′ is no smaller than SoC∗ (i.e.,
SoC(t′) ≥ SoC∗) where t′ ∈ [0, t+) is the beginning of an
orbit period. Then, SoC(t) > 0 holds for all t ∈ [t′, t′+�ORB),
by the definition of the fixed point and Lemma 1. This implies
that by Lemma 2, no sub-system suffers from power deficiency
in [t′, t′ + �ORB), which is formally stated in Lemma 3.

Lemma 3. Suppose that SoC∗ exists (i.e., not INFEASIBLE) in
Algorithm 1. If SoC(t′) ≥ SoC∗ holds where t′ ∈ [0, t+) is the
beginning of an orbit period, SoC(t′+�ORB) ≥ SoC∗ holds and
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Fig. 3. An example of the minimum fixed point of SoC−(t) (i.e., SoC∗) with
three configurations (with v5 = v6 = 1), which are detailed in Section IV.
Note that the three configurations satisfy SoC−(t) > 0 for t ∈ [0, 100).

no sub-system suffers from power shortage in [t′, t′ + �ORB),
under fixed-version execution.

Proof: SoC∗ from Algorithm 1 satisfies (i) and (ii), by
Steps 5 and 6, respectively. By Lemma 1, SoC(t) ≥ SoC−(t)
for all t ∈ [0, t+). Therefore, SoC(t′ + �ORB) ≥ SoC−(t′ +
�ORB) ≥ SoC∗ holds, and SoC(t) ≥ SoC−(t) > 0 holds for
all t ∈ [t′, t′+ �ORB). By Lemma 2, this proves the lemma.

Extending Lemma 3 to the entire interval of [0, t+), we
finally guarantee power sufficiency as follows.

Theorem 1. Suppose that SoC∗ exists (i.e., not INFEASIBLE)
in Algorithm 1. If SoC(0) ≥ SoC∗ holds, no sub-system
suffers from power deficiency at t ∈ [0, t+) under fixed-version
execution.

Proof: This is proved by mathematical induction. For each
orbit period with its beginning time t′, we prove the following
proposition: if SoC(t′) ≥ SoC∗ is satisfied, SoC(t′ + �ORB) ≥
SoC∗ holds and SoC(t) > 0 holds for all t ∈ [t′, t′ + �ORB).

(The basis) Since SoC(0) ≥ SoC∗ holds, the proposition
holds for t′ = 0 by Lemma 3.

(The inductive step) We will prove that if the proposition
holds for the k-the orbit period (whose beginning is t′), then
the proposition holds for the (k + 1)-th orbit period (whose
beginning is t′ + �ORB). Satisfying the proposition for the k-
th orbit period implies SoC(t′+ �ORB) ≥ SoC∗. Therefore, by
Lemma 3, the proposition holds for the (k+1)-th orbit period.

By the basis and inductive steps, the lemma holds.

Theorem 1 is useful because we make a power-sufficiency
guarantee without investigating all intervals [0, t+); instead,
what we need to do is to find SoC∗ by looking at a single
orbit period in Algorithm 1.

Using Theorem 1, we test all possible configurations of
solar panels and battery cells, and choose one of the Pareto
optimal configurations, which addresses G1. Section IV will
provide an example.

Algorithm 2 Dynamic-version execution for each sub-period

1: t′ ← current time that is the beginning of the current sub-
period, t′′ ← the end of the current orbit period

2: for All sets of versions {vi}|τ |i=1 in descending order of
given task-level priorities for executing higher versions do

3: Calculate SoC′(t) for all t ∈ [t′, t′′), starting from
SoC′(t′) ← SoC(t′).

4: Check whether or not SoC′(t′′) ≥ SoC∗ holds.
5: Check whether or not SoC′(t) > 0 for all t ∈ [t′, t′′).
6: If both Steps 4 and 5 hold, return the current set of

versions.
7: end for

C. Online Power Management for Higher Version Execution
(achieving G2)

We can achieve G1 with fixed-version execution by The-
orem 1, which involves the worst case of all situations, ab-
stracted by SoC−(t). However, we can execute higher versions
of tasks by exploiting the difference between the worst-case
and the actual situations available online only. Here we develop
dynamic-version execution that addresses G2. Note that the
system is assumed to be able to measure the current SoC at
any time, i.e., SoC(t) is measurable at any time t.

The underlying principle of dynamic-version execution is
to execute tasks with the highest versions as long as power-
sufficiency is guaranteed. This can be realized by making SoC
at the end of each orbit period at least as much as SoC∗,
because Lemma 3 ensures power-sufficiency for the next orbit
period. The remaining issue is then how to determine the
maximum versions of tasks to be executed in the current orbit
period. For this, we divide an orbit period of �ORB into sub-
periods, each of length δ; in Section IV-B, we will discuss how
to select the sub-periods. At the beginning of each sub-period,
we calculate the highest versions of tasks4 in the current sub-
period, such that SoC at the end of the current orbit period is
no smaller than SoC∗, provided that fixed-version execution is
applied to other sub-periods than the current sub-period in the
current orbit period.

Let {v′i}|τ |i=1 denote the versions of tasks in the current
sub-period (each of which satisfies v′i ≥ vi), and t′ and t′′
denote the beginning of the current sub-period and the end of
the current orbit period. Then, Sup(t), Dem(t) and SoC(t) are
upper- or lower-bounded by Sup′(t), Dem′(t) and SoC′(t) for
all t ∈ [t′, t′′), respectively, where

Sup′(t) = Sup(t) | nS, s
−, eS(t), θ(t), (7)

Dem′(t) ={
Dem(t) | {c+

i (t%�ORB, v′i)}|τ |i=1, if t ∈ [t′, t′ + δ),
Dem(t) | {c+

i (t%�ORB, vi)}|τ |i=1, if t ∈ [t′ + δ, t′′),
(8)

SoC′(t) = SoC(t) | Dem′(t),Sup′(t), nB, eB(t), θ(t). (9)

4We assume that task-level priorities for executing higher versions are given.
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Fig. 4. An example of Algorithm 2: at t′ = 20, the version in [20, 40) is
calculated, and only versions 1, 2 and 3 are feasible since version 4 does not
satisfy Step 5.

Unlike Eqs. (4) and (6), Sup′(t) and SoC′(t) require non-
deterministic online information, such as eS(t) and eB(t). This
should be addressed because at t′, we should know Sup′(t) and
SoC′(t) for all t ∈ [t′, t′′). However, we can regard eS(t) and
eB(t) as constants in t ∈ [t′, t′′) since their change during
an orbit period is negligible. eS(t′) and eB(t′) are measured
from sensors, or calculated by using the history of Sup(t) and
SoC(t). Therefore, Eqs. (7), (8) and (9) for all t ∈ [t′, t′′) are

available at t′ for given {vi}|τ |i=1 and {v′i}|τ |i=1.

Algorithm 2 summarizes what we have discussed so far,
representing dynamic-version execution for each sub-period.
The algorithm tests the highest version first, and in each loop,
it investigates (i) SoC at the end of orbit period is no smaller
than SoC∗ in Step 4 and (ii) SoC is always positive during the
current orbit period in Step 5. Fig. 4 illustrates an example of
dynamic-version execution in Algorithm 2, in which t′ = 20,
t′′ = 100 and δ = 20. That is, the current time is 20, and we
calculate the versions of tasks in [20, 40), given the versions of
tasks in [40, 100) (which are the smallest versions). We focus
on determining the versions of two tasks (v5 and v6), which
will be detailed in Section IV. As shown in the figure, if the
version is 1, 2 or 3, Steps 4 and 5 hold. However, there exists
t such that SoC′(t) = 0 with version 4. Therefore, the highest
possible version in [20, 40) is 3.

The following lemma presents a power-sufficiency guaran-
tee for dynamic-version execution.

Theorem 2. Suppose that SoC∗ exists (i.e., not INFEASIBLE)
in Algorithm 1. If SoC(0) ≥ SoC∗ holds, no sub-system suffers
from power deficiency at t ∈ [0, t+) under dynamic-version
execution in Algorithm 2.

Proof: The proof is similar to that of Theorem 1. For each
orbit period starting at t′, Algorithm 2 guarantees (i) SoC′(t′+
�ORB) ≥ SoC∗ and (ii) SoC′(t) > 0 for all t ∈ [t′, t′ + �ORB).
By definition, we can easily show that SoC′(t) is no smaller
than SoC(t). Therefore, by Lemma 2, we prove the lemma for
t ∈ [t′, t + �ORB). Similar to Theorem 1, the guarantee with
an orbit period is extended to the entire interval [0, t+), since
SoC(t) at the beginning of each orbit period is no smaller than
SoC∗.

By Theorem 2, we achieve G2 efficiently because Al-

Fig. 5. CubeSat∗’s orbit—100-minute orbit with 38-minute eclipse phase
and 62-minute sun phase

gorithm 2 investigates the current orbit period only. The
efficiency of the algorithm is important because dynamic-
version execution makes decisions online. In Section IV, we
will evaluate the effectiveness of dynamic-version execution in
terms of average executed versions of tasks. As expected, the
sub-period length of δ affects performance; the smaller δ, the
higher performance and the cost of more overhead.

IV. CASE STUDY: CUBESAT∗

In this section, we study a cubic-shaped nano-satellite,
called CubeSat∗, to exploit its simple, manipulable architec-
ture. We first present its architecture, power supply units, and
sub-systems that consume power, with specific configuration
and parameters. Then, we evaluate the effectiveness of the
design and management of power systems proposed in Sec-
tion III.

A. Architecture, Power Supply and Demand

CubeSat is a nano-scale satellite, which has a cubic shape
and weighs about 1kg. It was proposed by Robert Twiggs
at Stanford University, and originated from an educational
intent. Due to its low cost and short production time, many
CubeSats were launched since 2004, and now they can perform
commercial experiments (see a survey [24]). Examples of
CubeSats include CADRE [18, 19], SwissCube [16, 17], and
CanX [14, 15]. CubeSat is a proper target system for the design
and management of power systems of satellites; its simple,
manipulable architecture eases the design and management of
power systems as well as the demonstration of their effective-
ness, and it is a “real” system.

Of many CubeSats, we target SwissCube [16, 17] and
CanX [14, 15], and borrow their system architecture, configu-
rations and parameters. We call our target CubeSat, CubeSat∗.

CubeSat∗ revolves around the earth every 100 minutes, i.e.,
�ORB = 100. As shown in Fig. 5, the eclipse and sun phases
last 38 and 62 minutes, respectively. In CubeSat∗, solar panels
can be attached to five of six sides; one side is reserved for a
channel for the camera. The inside of CubeSat∗ is occupied by
battery cells, an onboard computer, a magnetorquer, a magne-
tometer, a receiver, a transmitter, and a camera. The onboard
computer is responsible for controlling all sub-systems, and
the magnetorquer and magnetometer stabilize CubeSat∗, with
attitude control. The receiver and the transmitter communicate
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Task τi Period pi (Min) Maximum power consumption c+i (t, vi) (W )

τ1: Onboard computer 100.0 0.38
τ2: Receiver 100.0 0.15
τ3: Magnetorquer 10.0 1.00, if 8.0 ≤ t%10.0 ≤ 9.0
τ4: Magnetometer 10.0 0.23, if 0.0 ≤ t%10.0 ≤ 5.0
τ5: Transmitter 10.0 1.11, if 4.0 ≤ t%10.0 ≤ 4.0 + v (v4 = 1, 2, 3 or 4)
τ6: Camera 10.0 0.3, if 0.0 ≤ t%10.0 ≤ v (v5 = 1, 2, 3 or 4)

TABLE II. CUBESAT∗’S SUB-SYSTEMS MODELED AS PERIODIC TASKS
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Fig. 6. Profiles of temperature, power supply from solar panels and power demand from sub-systems

with the ground. The camera periodically takes pictures, which
is the mission objective of CubeSat∗.

We express each sub-system as a periodic task τi. Ta-
ble II summarizes task parameters, which can be deter-
mined/measured offline (before launching the satellite). Note
that the magnetorquer, magnetometer, transmitter and camera
are actual periodic tasks, while the onboard computer and
receiver can consume power at any time, thus assigning
p1 = p2 = �ORB = 100.

Due to the limited budget of space and weight, we only
consider two configurations of solar panels: one or two solar
panels are attached on each side. We use nS as the number of
solar panels on each side, and therefore nS = 1 or 2. Each solar
panel is triple-junction gallium-arsenide. Up to three battery
cells can be accommodated, and the number of battery cells is
denoted as nB. Each battery cell is a polystor lithium-ion cell,
and all battery cells are connected in parallel.

A mission lifetime of CubeSat∗ is 2 years, i.e., t+ =
1051200 minutes.

B. Evaluation

To evaluate our design and management of CubeSat∗,
we need actual data and simulation tools for its operation
environments, power supply from solar panels, power demand
from sub-systems, and SoC of battery cells.

Temperature. To reflect a harsh thermal environment,
we assume that the temperature of solar panels ranges from
−27◦C (when each eclipse phase ends) to 41◦C (when each
eclipse phase starts). Since battery cells are shielded with
insulators, we assume that their ambient temperature varies
within [0◦C, 30◦C). We assume that both temperatures vary
linearly, and Fig. 6(a) shows temperature transition during an
orbit period, where t = 0 and t = 38 are the beginning and
end of the eclipse period.

Power supply from solar panels. According to [17], the
worst-case generated power is between wmin = 2.30W and
wmax = 3.26W under nS = 2. Based on the analysis of power
generation with different temperature and efficiency in [17], we
determine Sup(t) and Sup−(t) during the sun phase as:

Sup(t) = w(t) · eS(t)
e−S

· −0.00261 · θ(t) + 1.161
−0.00261 · 41 + 1.161

· nS

2
,

Sup−(t) = wmin · −0.00261 · θ(t) + 1.161
−0.00261 · 41 + 1.161

· nS

2
,

where w(t) is a random variable in [wmin, wmax), which
varies with s(t). Fig. 6(b) illustrates Sup(t) and Sup−(t) under
nS = 2 and eS(t) = e−S (which means that the time is near
the end of lifetime). There is no power generation during
0 ≤ t < 38 (the eclipse phase), and after t = 38, Sup−(t)
decreases with time, due to temperature increase.

Power demand from sub-systems. Since c+
i (·) is deter-

ministic as shown in Table II, Dem+(t) is simply calculated by
using Eq. (5). We calculate the actual power consumption as:
Dem(t) =

∑6
i=1 c+

i (t%100, vi)∗y(t), where y(t) is a random

variable in [0, 1). Fig. 6(c) illustrates Dem+(t) and Dem(t).

SoC of battery cells. To simulate SoC of battery cells,
we use a popular battery simulator, Dualfoil [23], which
simulates the behavior of rechargeable battery cells including
a lithium-ion battery cell, based on an electro-chemical model
that expresses its charge/discharge [9]. By setting the load
profile as a sequence of constant current steps, we can obtain
the physical and electrical states of battery cells until the
voltage is dropped below the cutoff voltage. Dualfoil effec-
tively addresses physical characteristics of rechargeable battery
cells, including discharge efficiency, recovery efficiency and
temperature’s effect.

The input of Dualfoil (load profile) is current, so we
calculate current from power and nominal voltage, i.e., power
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Configuration Power-sufficiency guarantee
name (nS, nB) with v5 = v6 = 1, 2, 3, 4

A (1,1) X X X X
B (1,2) X X X X
C (1,3) X X X X
D (2,1) O X X X
E (2,2) O O O O
F (2,3) O O O O

TABLE III. POWER-SUFFICIENCY GUARANTEE WITH DIFFERENT

CONFIGURATIONS OF SOLAR PANELS AND BATTERY CELLS WITH

DIFFERENT VERSIONS OF τ5 = τ6 , UNDER FIXED-VERSION EXECUTION

= current × voltage. That is, using the profiles of demand
and supply, we calculate the amount of power demanded or
supplied, and translate it to current. We feed the current with
temperature profile to Dualfoil, and then obtain the output
voltage, which is converted to SoC.

Now, we present the evaluation results using the settings
discussed so far.

Design of CubeSat∗’s power system. We have two
configurations of solar panels (nS = 1 and 2) and three
configurations of battery cells (nB = 1, 2, and 3), implying
a total of six configurations as shown in Table III. We test
Algorithm 1 for all configurations A–F when the version of
τ5 and τ6 is fixed at 1, 2, 3 and 4, in total 24 cases. Once
there exists SoC∗ derived by the algorithm, Theorem 1 proves
the power-sufficiency guarantee. Note that the version of τ5

depends on that of τ6, because a higher resolution picture
entails a large amount of data to be transmitted. Therefore,
we only consider the same version of τ5 and τ6.

As shown in Table III, the power-sufficiency guarantee
cannot be made even with the lowest version, if there is
only one solar panel on each side (see configurations A,
B and C), because there does not exist SoC∗ with these
configurations. As shown in Fig. 7, when SoC−(t) at t = 0
(the beginning of an orbit period) is set to 100.0%, SoC−(t)
at t = 100 (the end of an orbit period) is only 84.3%, 92.5%,
and 97.3% for configurations A, B and C; for any given
SoC−(0), there does not exist SoC∗ with the configurations.
On the other hand, when the number of solar panels on each
side is two, (i.e., nS = 2), we can make power-sufficiency
guarantees. If we focus on configuration D, SoC∗ exists only
with v5 = v6 = 1. Also, configurations E and F make power-
sufficiency guarantees with any v5 = v6.

This can be interpreted as follows: (i) the case of nS = 1
cannot supply sufficient power even for v5 = v6 = 1 (the
smallest demand); and (ii) the case of nS = 2 can for v5 =
v6 = 4 (the largest demand). Further credibility to (i) is given
by the fact that the initial SoC does not recover at the end
of the orbit period with nS = 1, regardless nB in Fig. 7. On
the other hand, if nS = 2, the bottleneck is the performance
of battery cells. That is, as shown in Fig. 3 in Section III, if
nB = 1, SoC∗ barely exists with v5 = v6 = 1; if we demand
more power (v5 = v6 ≥ 2), SoC∗ does not exist. However, if
we increase the number of battery cells (i.e., nB = 2 or 3), we
can guarantee power-sufficiency with any version of v5 = v6.

Based on the results presented in Table III, the Pareto
optimal points are configurations D and E. That is, at design
time, we can guarantee the execution of the lowest version
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Fig. 7. SoC−(t) with SoC−(0) = 100 under configurations A, B and C
with v5 = v6 = 1

of τ5 and τ6 without experiencing power shortage, if we
employ configuration D which incurs less cost. We can choose
configuration E for the execution of the highest version of τ5

and τ6, at the expense of more design cost. We do not choose
configuration F, since it incurs more cost than configuration E,
while yielding the same guarantee on the executed version.

Online management of CubeSat∗’s power system.
While configuration D is design-time Pareto optimal, we can
execute higher-version tasks using online information. Thus,
we focus on configuration D, and evaluate the effectiveness of
dynamic-version execution described in Algorithm 2, in terms
of average executed versions of v5 = v6. As mentioned in
Section III, the effectiveness depends on δ, the frequency of
triggering the calculation of the highest possible version. Since
the period of τ5 and τ6 is 10 and the orbit period is 100, we
choose δ as 10, 20, 50, and 100. For Sup(t), we are interested
in the time instant near the end of lifetime, thus setting eS(t)
to e−S .

Table IV presents the executed version of v5 and v6 in each
interval during an orbit period. With δ = 100, the decision
on the executed version is made only at t = 0, resulting in
v5 = v6 = 1 for the entire orbit period. Since the sun phase
starts at 38, every decision after 38 is v5 = v6 = 4, e.g., at
t = 50 with δ = 50, at t = 40, 60 and 80 with δ = 20, and
t = 40, 50, · · · , 90 with δ = 10. During the eclipse phase,
the cases of δ = 20 and 10 can execute higher versions. As
a result, while the average number of versions with δ = 100
is 1.0, those with δ = 50, 20, and 10 are 2.5, 3.2 and 3.7,
respectively. In particular, we can execute the highest version
most of the time with δ = 10. Since the smaller δ, the higher
computation overhead, there is a tradeoff between performance
(average executed version) and overhead.

One may wonder if Algorithm 2 requires a simulation of
Dualfoil, which is not suitable when the computing power of
a satellite is low. In this case, we can choose a finite number
of simulation inputs and store the results offline. During the
operation, we calculate SoC by applying the nearest (but safely
upper-bounded) simulation input.

Summary. Using actual/realistic profiles and simulator, we
demonstrated that the proposed design can find the Pareto opti-
mal configurations D and F. We also showed that the proposed
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Interval [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100) Average

δ =100 1 1 1 1 1 1 1 1 1 1 1.0
δ =50 1 1 1 1 1 4 4 4 4 4 2.5
δ =20 1 1 3 3 4 4 4 4 4 4 3.2
δ =10 1 4 4 4 4 4 4 4 4 4 3.7

TABLE IV. VERSION OF τ5 AND τ6 UNDER DYNAMIC-VERSION EXECUTION WITH VARIOUS δ

dynamic-version execution can exploit online information, and
guarantee higher-version operations of tasks.

V. CONCLUSION

In this paper, we proposed the design and management of
satellite power systems. Based on the analysis of characteristics
of power supply and demand, we first proposed a solution to
judge at design time whether or not power-sufficiency with a
given configuration is guaranteed, and this solution is used to
find the best configuration. Second, we developed an online
dynamic-version execution policy, which executes the highest
possible versions of tasks without compromising the power-
sufficiency guarantee. Using a case study of CubeSat∗, we
demonstrated the effectiveness of our design and management
of satellite power systems.

While our solution is dedicated to a small number of battery
cells that are connected in parallel, large-scale satellites need a
battery management system (BMS) to handle a large number
of battery cells. In such a case, a reconfigurable architecture is
promising in that it precludes a BMS from the failure caused by
a single-cell failure, and enables the BMS to form an efficient
configuration based on external conditions and electrical states
of battery cells. The BMS should then address how to control
charge, discharge, and rest of individual battery cells. In future,
we would like to develop the BMS associated with solar
panels, which achieves our design and management goals for
large-scale satellites.

We have made some implicit assumptions for concise
presentation; for example, task periods are no longer than the
orbit period, and the orbit period is an integer multiple of each
task period. In future we would like to relax these assumptions.
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