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Abstract—We address the problem of rapidly discovering spectrum opportunities for seamless service provisioning in cognitive radio

networks (CRNs). In particular, we focus on multichannel communications via channel-bonding with heterogeneous channel

characteristics of ON/OFF patterns, sensing time, and channel capacity. Using dynamic programming (DP), we derive an optimal

online sensing sequence incurring a minimal opportunity-discovery delay, and propose a suboptimal sequence that presents a near-

optimal performance while incurring significantly less computational overhead than the DP algorithm. To facilitate fast opportunity

discovery, we also propose a channel-management strategy that maintains a list of backup channels to be used at building the optimal

sequence. A hybrid of maximum likelihood (ML) and Bayesian inference is introduced as well for flexible estimation of ON/OFF

channel-usage patterns, which selectively chooses the better between the two according to the frequency of sensing and ON/OFF

durations. The performance of the proposed schemes, in terms of the opportunity-discovery delay, is evaluated via in-depth simulation,

and for the scenarios we considered, the proposed suboptimal sequence achieves a near-optimal performance with only an average of

0.5 percent difference from the optimal delay, and outperforms the previously proposed probabilistic scheme by up to 50.1 percent. In

addition, the backup channel update scheme outperforms the no-update case by up to 49.9 percent.

Index Terms—Cognitive radio, spectrum sensing, sensing sequence, backup channels, candidate channels, Bayesian estimation

Ç

1 INTRODUCTION

DYNAMIC Spectrum Access (DSA) is a key concept to
solve the problem of wireless spectrum scarcity, rooted

from inefficient spectrum utilization by the current static
resource allocation policy. DSA can enhance spectrum
utilization by allowing (unlicensed) secondary users (SUs),
equipped with cognitive radios (CRs), to utilize the
spectrum whitespaces (also called spectrum opportunities)
during which spectrum bands (or channels) are left unused
by their (licensed) primary users (PUs).

Spectrum opportunities are discovered by spectrum
sensing that monitors channels to determine the pre-
sence/absence of PUs in them via PU signal detection. If
thus-discovered idle channels are utilized by SUs, they are
referred to as in-band channels; channels other than in-band
channels are called out-of-band channels. Hence, opportunity
discovery is an act of sensing out-of-band channels (called
out-of-band sensing [2]) to locate whitespaces in them.

In this paper, we consider a CR network (CRN) that
collectively utilizes multiple idle channels to serve the total
spectrum demand of SUs in the CRN (Breq in Section 4),
which may be achieved by combining a few high-capacity
idle channels or many low-capacity idle channels. In this
scenario, the CRN discovers only the necessary amount of
whitespaces to meet the given bandwidth requirement,

instead of maximizing the throughput of the SUs as in [3],
[4]. Therefore, opportunity discovery is triggered only
when the CRN experiences a shortage of whitespaces due
to the return of PUs1 at one of the in-band channels which
forces SUs to immediately vacate the channel (called
channel vacation).

At channel vacation, fast opportunity discovery is
essential to seamless service provisioning for the SUs,
because the CRN may not provide its service in full strength
with a shortage of bandwidth. Since the discovery of new
whitespaces incurs a nontrivial delay, it is desired to derive
an optimal sequence of sensing out-of-band channels that
minimizes the latency in discovering additional idle chan-
nels to satisfy the total bandwidth requirement. Therefore,
our objective is to minimize “interruption” of SUs’ operation
while maintaining their minimum bandwidth requirement.

1.1 Contributions

Our contribution in this paper is threefold. First, we
propose an optimal sensing sequence that minimizes the
latency of discovering available out-of-band channels to
achieve the target amount of opportunities. We consider
heterogeneous channel characteristics in terms of signal
detection time, channel capacity, and the probability �i
that channel i is idle, and discuss the difference between
offline and online sequences to show that the optimal
sequence is an online sequence. Then, we derive the
optimal online sequence using dynamic programming
(DP), and show that the optimal sequence takes a simple
form when channels have homogeneous capacities. To
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1. The return of PUs is detected by sensing in-band channels (called in-
band sensing [5]), which is separate from and independent of out-of-band
sensing. The most common approach for in-band sensing is to sample an in-
band channel periodically (e.g., sense once every 2 seconds with a sensing
duration of 1-10 ms).
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overcome the computational complexity of the DP algo-
rithm, we also propose a suboptimal sequence algorithm
that shows a near-optimal performance while incurring
insignificant overhead.

Next, we categorize out-of-band channels as backup or
candidate channels, as introduced in IEEE 802.22 [6]. To
promote faster discovery of idle channels, we sort and
search backup channels at the time of opportunity
discovery where the backup channels are specially chosen
among those that are more probable to have whitespaces;
out-of-band channels other than backup channels are called
candidate channels, and they are not sensed until they are
designated as backup channels. Using this concept, we
propose an efficient mechanism that constructs a backup
channel list (BCL) and dynamically updates its entries. The
proposed scheme maintains a moderate size of the BCL
and updates its entries by importing/exporting channels
from/to the candidate channel list (CCL) with a small
computational overhead.

Finally, we propose a strategy that estimates ON/OFF
channel-usage patterns to predict channel availability, by
selectively applying maximum likelihood (ML) and Bayesian
estimation. We capture the tradeoff between two estimation
techniques: The former is simple but its performance
degrades greatly with infrequent samples; the latter requires
more computation but performs better with a small number
of samples [7]. In addition, our scheme considers imperfect
sensing with nonzero probabilities of miss detection (PMD)
and false alarms (PFA) in predicting �i.

1.2 Organization

We first overview related work in Section 2, and introduce
our system models and assumptions in Section 3. Section 4
describes the opportunity discovery mechanism via sequen-
tial sensing. In Section 5, we derive the optimal sensing
sequence and a suboptimal sensing sequence that achieves a
near-optimal performance with small computational over-
head. Section 6 presents construction of the initial BCL
and an BCL-update algorithm to keep the list up-to-date.
Section 7 introduces a strategy to estimate ON/OFF
channel-usage patterns using ML and Bayesian inference.
The performance of the proposed schemes are evaluated in
Section 8, and then the paper concludes in Section 9.

2 RELATED WORK

Among a number of studies on spectrum sensing, several
notable bodies of work are found to be related to fast
opportunity discovery. Chang and Liu [8] proposed a
strategy that optimally determines which channel to probe
and when to transmit. Jiang et al. [9] investigated the
optimal sensing sequence in a multichannel cognitive MAC
protocol. Shu and Krunz [3] studied the problem of
sequential sensing for throughput efficiency along with
finding the optimal sensing time. Ahmad et al. [10] derived
an optimal myopic policy in finding the best channel to
sense per time slot. Fan and Jiang [11] investigated the
impact of adaptive modulation on channel sensing order.
Cheng and Zhuang [12] proposed a simple channel sensing
order that senses channels in descending order of their
achievable rates. However, all of the above considered the
case where data transmission utilizes up to one channel at a

time, while our paper considers the case where CR-to-CR
transmission occurs on a multichannel environment via
channel bonding. Although Lai et al. [4] considered a
scenario in which SUs can sense and utilize more than one
channel simultaneously, their focus was to maximize the
throughput of the SUs, whereas ours is to minimize the
duration of service interruption in case the minimum
bandwidth requirement is specified.

Regarding the Bayesian estimation, Motamedi and
Bahai [13] introduced Bayesian learning to predict the
availability of a channel, where the learning process is
simplified by assuming a geometric distribution for
channel-usage patterns. In this paper, we use a general
alternating renewal process and develop a multistage
iterative Bayesian inference.

This paper builds upon our preliminary work pre-
sented at IEEE DySPAN 2008 [1], which is significantly
extended by:

1. Capturing the fundamental difference between off-
line and online sensing sequences,

2. deriving the optimal sequence for heterogeneous
channel characteristics via application of DP to the
online sensing sequence,

3. proposing a near-optimal sequence incurring very
little computational overhead, and

4. enhancing efficiency of the BCL update by sorting
channels with a new metric called effective capacity.

3 SYSTEM MODEL

3.1 Network Model

We focus on a single-hop CRN with a central controller
(e.g., an access point) and a group of SUs, where the CRN
utilizes a set of M licensed channels from which it harvests
the necessary amount of spectrum opportunities. The M
licensed channels are assumed to be determined and given
a priori through an inter-CRN coexistence mechanism such
as IEEE SCC 41 [14] and the coordinated channel allocation
schemes [15], [16]. The inter-CRN coexistence scheme
coordinates resource allocation between neighboring CRNs,
which is necessary to avoid collision by simultaneous
channel access, through which the licensed channels can be
assigned to the CRNs in a nonoverlapping fashion. Since
such schemes are beyond the scope of this paper, we focus
on selecting backup channels from the given M channels
and optimally sequencing them at opportunity discovery.

Each SU is assumed to have been equipped with a single
antenna, widely tunable to any combination of M channels.
That is, a SU can utilize possibly noncontiguous multiple
idle channels at the same time, which is made possible by
using signal processing techniques such as NC-OFDM [17].
Having one antenna per SU may help reduce the size of a
secondary device and avoid potential interference between
colocated antennas due to their close proximity [18]. A SU is
assumed to act as either a spectrum sensor or a secondary
transceiver, by dynamically reconfiguring itself.

We assume the central controller coordinates inter-SU
transmission, spectrum sensing, and channel switching. The
SU coordination is performed by a CR MAC protocol such
as C-MAC [19] and OS-MAC [20], which is beyond the
scope of this paper. Using the proposed sensing sequence in
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Section 5, the controller can assign as many SUs/sensors as
necessary to achieve the PU protection requirements (e.g.,
PMD and PFA). Note that the optimality of the proposed
sensing sequences is intact regardless of which MAC
protocol is employed.

3.2 Channel Model

A channel is modeled as a renewal process alternating
between ON and OFF states. The ON (OFF) state represents
a time period within which a PU signal is present (absent).
Once sensing finds a channel in its OFF state (i.e., an idle
channel), SUs can utilize the channel until its next state
transition to ON state. This type of channel model was
introduced in [2], [13], [21], where its potential for modeling
spectrum opportunities was demonstrated.

Fig. 1 illustrates the channel model. Suppose i is the
channel index (i ¼ 1; 2; . . . ;M), and let ZiðtÞ denote the state
(ON or OFF) of channel i at time t, such that

ZiðtÞ ¼ 1; if channel i is ON ðor busyÞ at t;
ZiðtÞ ¼ 0; otherwise:

�

For an alternating renewal channel [22], the sojourn times of
ON and OFF states are represented by random variables
T iON and T iOFF with probability density functions (pdfs)
fTi

ON
ðtÞ and fTi

OFF
ðtÞ, t > 0, respectively. ON and OFF states

are independent of each other.
Note that fTi

ON
ðtÞ and fTi

OFF
ðtÞ can be any distribution

functions. For example, for exponentially distributed ON/
OFF periods, we have

fTi
OFF
ðtÞ ¼  iOFFe� 

i
OFF

t; fTi
ON
ðtÞ ¼  iONe� 

i
ON
t; ð1Þ

where E½T iON � ¼ 1= iON and E½T iOFF � ¼ 1= iOFF .

On the other hand, channel utilization, ui 2 ½0; 1�, defined
as the average fraction of time during which channel i is in
ON state, is given as

ui ¼ E
�
T iON

���
E
�
T iON

�
þE

�
T iOFF

��
:

Ci is the capacity of channel i which is a physical
bandwidth or Shannon capacity, taken as a long-term
average considering time-varying channel conditions (e.g.,
fading). Although instantaneous capacity can also be used
in view of fast fading statistics at each instant, we avoid
using such fast-changing channel conditions in achieving
the target amount of opportunities because we do not want
overly sensitive channel switching due to the short-term
degradation of channel quality.

3.3 Sensing Model

When a SU acts as a spectrum sensor, it monitors channel i
during a certain time period, called sensing-time T iI , and
determines the channel state between ON and OFF.
Therefore, sensing is akin to a sampling process producing

a binary random sequence of 0 (OFF) and 1 (ON), as
illustrated in Fig. 2. Note that sensing is not necessarily
periodic. T iI is assumed small relative to E½T iOFF � and
E½T iON � such that channel i’s state remains unchanged
during the sensing-time.

The value of T iI is determined by the underlying
detection method (e.g., energy or feature detection) and
the type of PU signals [23], and thus it varies with channels.
In this paper, we assume T iI is determined a priori and
fixed, due to the following reasons. First, in many CR
scenarios we take a conservative approach in choosing the
detection method (e.g., energy and feature detection) and
the sensing time (i.e., T iI ) to achieve the PU protection
requirements (e.g., PMD and PFA). This is because CRNs
generally do not have any feedback from the PU’s network,
and thus we should protect them (both PU transmitter and
receiver) based on the worst case scenario assuming PU
receivers are located at the edge of their coverage. The IEEE
802.22’s approach in determining the sensing sensitivity of
�114 dBm for DTV protection is a good example of such
approach. Then, as shown in [5], we can derive a fixed
value of T iI that minimizes the sensing overhead while
achieving all the PU protection requirements, which
becomes the value of T iI in this paper.

We assume each out-of-band sensing requires all SUs to
sense a channel simultaneously (called collaborative sensing
[24], [25]) to exploit location diversity of sensors for better
detection performance. This assumption is reasonable for a
mid-sized CRN with up to 20 SUs, because the desirable
number of collaborative sensors is known to be 10-20 [26].
For a large-scale CRN with more than 20 SUs, however, a
part of SUs may participate in out-of-band sensing while
others continue to utilize in-band channels. In this case, out-
of-band sensing should be performed by all the SUs vacated
from an in-band channel plus some extra SUs in other in-
band channels to recruit a sufficient number of sensors
(e.g., 20 sensors). Therefore, minimizing the opportunity-
discovery delay is important not only to help the vacated
SUs resume their operation but also to minimize interrup-
tion of SUs in other in-band channels.

3.4 Notation Table

We summarize the frequently used notations in Table 1.

4 SEQUENTIAL SENSING MECHANISM

This section overviews our opportunity discovery mechan-
ism via sequential sensing, to enhance the understanding of
the proposed schemes in the later sections.

4.1 Opportunity Discovery Procedure

Let Breq denote the total amount of bandwidth a CRN
requires, which is the sum of spectrum demands of all SUs
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Fig. 1. Channel model: Alternating renewal process with ON and OFF
states.

Fig. 2. Illustration of the sensing process on a channel.



in the CRN.2 Breq may be achieved by utilizing just one idle
channel with Ci � Breq or by simultaneously utilizing
multiple idle channels whose combined capacity exceeds
Breq. Therefore, a CRN utilizes one or more in-band
channels to achieve Breq.

Opportunity discovery is triggered when one of the in-
band channels is vacated due to the returning PUs. At
opportunity discovery, a CRN needs to find a set of new
idle channels whose collective capacity achieves Btarget,
which is given as Btarget ¼ maxfBreq �Bin�band; 0g, where
Bin�band is the sum capacity of the remaining in-band
channels after the channel vacation.

New idle channels are discovered by sequentially sensing
backup channels such that SUs synchronously tune to one
backup channel at a time following a given sensing
sequence. Once a backup channel is detected idle, it becomes
an in-band channel. The CRN tracks the combined capacity
of all current in-band channels, and opportunity discovery
completes when the capacity reaches or exceeds Breq.

Fig. 3 shows an example where all four channels have the
same capacity and the CRN requires two idle channels to
meet its Breq. In the figure, the delay of each opportunity
discovery is also shown, which is the sum of sensing-times
spent to sequentially sense the backup channels until Breq is
achieved. Although in this example it suffices to find one
additional idle channel per discovery, we will consider
general scenarios in the next section, where achieving Breq

may require to find more than one idle channel.

4.2 Channel Idle Probability Prediction

In this paper, we characterize a channel by a tuple of
fT iI ; Ci; �ig, where T iI is the sensing time, Ci the channel
capacity, and �i the probability that channel i would be idle
if the channel is sensed at opportunity discovery. Although
derivation of �i for alternating renewal channels is
described in [2], we briefly overview the procedure for
completeness of the presentation.
�i varies with channels and time because it depends on

the ON/OFF usage pattern and the history of sensing results
(or samples). Therefore, calculation of �i first requires
estimation of channel parameters, e.g.,  iOFF and  iON in
(1). In [2], an ML estimator and its confidence interval was
derived when a set of samples from channel i is given as
Zi ¼ ðZiðt1Þ; Ziðt2Þ; . . . ; ZiðtrÞÞ where t1 < t2 < � � � < tr. The
r samples can be collected at any time, i.e., they are
not necessarily periodic, because they are produced by:

1) sequential sensing at opportunity discovery (if the
channel is selected and sensed); and/or 2) extra sampling
scheduled by the central controller who assigns some idle
SUs (i.e., SUs with no transmission) to sense out-of-band
channels (even when no opportunity discovery is neces-
sary). The extra sampling is to enhance the accuracy of
estimation but is outside of the scope of this paper.

Then, [2] showed that �i of the renewal processes at the

opportunity discovery time t is given as

�i ¼ PrðZiðtÞ ¼ 0jZiðt1Þ; . . . ; ZiðtrÞÞ
¼ PrðZiðtÞ ¼ 0jZiðtrÞÞ;

where PrðZiðtÞ ¼ 0jZiðtrÞÞ is the transition probability
between the most recent sample at time tr and an imaginary
sample 0 at time t. The transition probability is expressed
with the estimated channel parameters. For example,
exponentially distributed ON/OFF periods lead to the
following [2]:

�i ¼
ð1� uiÞ þ ui � e�ð iOFFþ iON Þðt�trÞ; if ZiðtrÞ ¼ 0;

ð1� uiÞ
�

1� e�ð iOFFþ iON Þðt�trÞ
�
; otherwise;

(

where  iON and  iOFF are from (1).
One can notice that �i 6¼ ð1� uiÞ because ui is a long-term

average utilization of channel i while �i is the instantaneous
channel idle probability considering the past channel
samples. This also implies that �i reflects the correlation
between the samples. For example, if ZiðtrÞ ¼ 0 and ðt� trÞ
is small, it is likely that the channel is still in its OFF state,
thus making �i very close to 1. On the contrary, if ZiðtrÞ ¼ 1
and ðt� trÞ is small, it is likely that the channel is still in its
ON state, thus making �i very close to 0. In addition, once a
channel with a long ON period enters the ON state, the
channel’s �i becomes very small until enough time passes.

4.2.1 Sensing Error Compensation

Although the derivation of �i is exact, its correctness relies
on how accurately the samples reflect the actual channel
state. In reality, spectrum sensing is imperfect since PMD
and PFA are nonzero. Since the impact of imperfect sensing
on �i was not considered in [2], here we propose Bayesian
state estimation [27] that can compensate for the sensing
error. For the ease of notation, we omit i in this section.

Suppose ~ZðtkÞ 2 f0; 1g denotes the actual state of a
channel at time tk. Assuming the pdf of the initial state ~Zðt0Þ
is known, the estimator is
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TABLE 1
Summary of Notations

Fig. 3. An illustration of opportunity discovery when a CRN requires two
idle channels for its operation.

2. We consider a persistent transmission model, where each SU
continuously transmits at a constant rate in its in-band channel. Hence,
Breq is interpreted as the sum of the rates of all SUs in the CRN.



fð ~Zðt0ÞjZ0Þ ¼ fð ~Zðt0ÞÞ;

where Zk ¼ fZðt1Þ; Zðt2Þ; . . . ; ZðtkÞg for k � 1 and Z0 ¼ ;.
For each k � 1, we evaluate

fð ~ZðtkÞjZk�1Þ ¼
X

~Zðtk�1Þ
fð ~ZðtkÞj ~Zðtk�1ÞÞfð ~Zðtk�1ÞjZk�1Þ;

fð ~ZðtkÞjZkÞ ¼
fðZðtkÞj ~ZðtkÞÞfð ~ZðtkÞjZk�1ÞP

~ZðtkÞ fðZðtkÞj ~ZðtkÞÞfð ~ZðtkÞjZk�1Þ
;

where fð ~ZðtkÞjZk�1Þ is the prior probability mass function
(pmf) of ~ZðtkÞ before observing ZðtkÞ and fð ~ZðtkÞjZkÞ is the
posterior pmf of ~ZðtkÞ after observing ZðtkÞ.

Prior and posterior pmfs are updated whenever a new
sample ZðtkÞ is obtained. Then, when opportunity discov-
ery is triggered at time t, � can be estimated as

� ¼ fð ~ZðtkÞjZk�1Þ
��
tk¼t; ~ZðtkÞ¼0

:

In the above procedure, fð ~ZðtkÞj ~Zðtk�1ÞÞ and fðZðtkÞj
~ZðtkÞÞ are yet to be determined. fð ~ZðtkÞj ~Zðtk�1ÞÞ is the
transition probability between two consecutive samples at
times tk�1 and tk, which has been fully derived in [2]. On the
other hand, fðZðtkÞj ~ZðtkÞÞ is easily determined according to
the definition of PMD and PFA such as

fðZðtkÞj ~ZðtkÞÞ ¼
1� PFA; if ð ~ZðtkÞ; ZðtkÞÞ ¼ ð0; 0Þ;
PFA; if ð ~ZðtkÞ; ZðtkÞÞ ¼ ð0; 1Þ;
1� PMD; if ð ~ZðtkÞ; ZðtkÞÞ ¼ ð1; 0Þ;
PMD; ifð ~ZðtkÞ; ZðtkÞÞ ¼ ð1; 1Þ:

8>><
>>:

5 OPTIMAL SENSING SEQUENCE FOR MINIMAL

OPPORTUNITY-DISCOVERY LATENCY

In this section, we derive an optimal sensing sequence of
backup channels that incurs the minimal delay in discover-
ing a necessary amount of opportunities and propose a
computationally efficient sequence algorithm that provides
a near-optimal performance. As introduced in Section 4,
backup channels are characterized by a tuple of fT iI ; Ci; �ig
and the opportunity discovery is triggered at channel
vacation of an in-band channels, where the target amount
of bandwidth to discover is denoted by Btarget. For the
notational ease, we will use B to denote Btarget throughout
this section.

5.1 Problem Statement

Suppose there are N (�M) backup channels, and let S ¼
fs1; s2; . . . ; sNg 2 SS be an ordered list of N channels, where sj
is the channel index of the jth channel in the sequence (sj:
positive integer, 1 � sj � N) and SS is the set of all possible
channel sequences (jSSj ¼ N!). Also suppose T iI , Ci, and �i
are known a priori.

Our objective is to determine the optimal sensing-
sequence S� that minimizes the average delay in finding
idle channels whose cumulative capacity exceeds B. This
can be stated formally as:

Find S� ¼ arg min
S2SS

E��

XN
i¼1

TsiI � I�Pi�1

j¼1
Csj �ð1�Z

sj Þ<B
�" #
;

where

�� ¼ ð�1; �2; . . . ; �NÞ;

If?g ¼
1; if the statement ? is true;

0; otherwise:

�

In the above problem statement, the indicator function

If
Pi�1

j¼1
Csj �ð1�Z

sj Þ<Bg

implies that once B is achieved, the sequential sensing
stops.3

5.2 Offline versus Online Sensing Sequences

To find the optimal sensing sequence, we need to consider
two types of sensing sequence: Offline and online sequences.
In what follows, we will introduce the concept of the two
sequences and discuss the reason why the online sequence
must be considered to find the optimal sensing sequence.

5.2.1 Offline Sequence

An offline sensing sequence is a static sequence, which
strictly follows the initially determined sequence regardless
of the channel states observed during the sequential
sensing. The optimal offline sensing sequence is built by
considering �� while ignoring the actual channel states to be
observed, and the average discovery delay D of a given
offline sequence S ¼ fs1; s2; . . . ; sNg is given as

D ¼
X1

z1¼0

X1

z2¼0

. . .
X1

zN¼0

(YN
v¼1

ð�svÞ
1�zvð1� �svÞ

zv

� Ts1

I þ
XN
v¼2

TsvI � I�Pv�1

w¼1
Csw ð1�zwÞ<B

� !)
:

ð3Þ

Then, the optimal offline sequence is determined as the
sequence that minimizes (3) among N ! possible sequences.

As an example, let us consider the following scenario:

N ¼ 3; B ¼ 2:0; ðC1; C2; C3Þ ¼ ð0:5; 1:5; 2:0Þ;
ðT 1

I ; T
2
I ; T

3
I Þ ¼ ð1; 2; 3Þ; ð�1; �2; �3Þ ¼ ð0:5; 0:3; 0:1Þ:

ð4Þ

By defining ~�sj :¼ 1� �sj , (3) becomes

D ¼ ~�s1
~�s2

~�s3

	
Ts1

I þ T
s2

I þ T
s3

I



þ ~�s1

~�s2
�s3

	
Ts1

I þ T
s2

I þ T
s3

I



þ ~�s1

�s2
~�s3

	
Ts1

I þ T
s2

I þ T
s3

I � IfCs2<Bg



þ ~�s1
�s2
�s3

	
Ts1

I þ T
s2

I þ T
s3

I � IfCs2<Bg



þ �s1
~�s2

~�s3

	
Ts1

I þ T
s2

I � IfCs1<Bg þ T
s3

I � IfCs1<Bg



þ �s1
~�s2
�s3

	
Ts1

I þ T
s2

I � IfCs1<Bg þ T
s3

I � IfCs1<Bg



þ �s1
�s2

~�s3

	
Ts1

I þ T
s2

I � IfCs1<Bg þ T
s3

I � IfCs1þCs2<Bg



þ �s1
�s2
�s3

	
Ts1

I þ T
s2

I � IfCs1<Bg þ T
s3

I � IfCs1þCs2<Bg


:

ð5Þ
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3. In practice, �� must be updated after sensing each channel by
recalculating �is based on the elapsed time due to sensing of the last
chosen channel. Although updating �� is always possible by following the
procedure in [2], here we assume T iIs are small enough to make the impact
of adjusting �i’s negligible, for the purpose of easier illustration. In fact, this
assumption is applicable in most practical scenarios because T iI is usually in
the order of milliseconds (or even less) while the ON/OFF periods are
typically in the order of seconds or minutes.



Then, by comparing all 3! sequences, the optimal offline
sequence that minimizes (5) is found to be f1; 2; 3g.

5.2.2 Online Sequence

An online sensing sequence, on the other hand, is a
dynamic sequence that can update itself each time it sense
a channel in the sequence such that the remaining unsensed
channels are reordered to form an updated subsequence
according to the observed channel states. Such a dynamic
sequence is necessary to derive the optimal sensing
sequence because the optimality condition changes when-
ever we sense a new channel and observe its actual state.

To show the impact of online observation of channel
states, let us consider again the example in (4). Once the first
channel in the optimal offline sequence (i.e., channel 1) is
sensed, the capacity-to-go (i.e., the remaining capacity to
achieve at the subsequent sensing) is updated as

B0 ¼ B� Cs1
; if channel 1 is sensed idle;

B; otherwise:

�
ð6Þ

Then, we need to find the best channel to sense next to
minimize the subsequent sensing delay D0 in sensing
S0 ¼ fs2; s3g, where

D0 ¼ ~�s2
~�s3

	
Ts2

I þ T
s3

I



þ ~�s2

�s3

	
Ts2

I þ T
s3

I



þ �s2

~�s3

	
Ts2

I þ T
s3

I � IfCs2<B0g



þ �s2
�s3

	
Ts2

I þ T
s3

I � IfCs2<B0g


:

Using B0 and D0 and comparing all ðN � 1Þ! possible
subsequences, it can be seen that the optimal choice of s2

minimizing D0 is given as

s2 ¼
2; if channel 1 is sensed idle;
3; otherwise:

�

Therefore, the optimal offline sequence f1; 2; 3g is no longer
optimal if the first channel is sensed busy. Intuitively
speaking, when channel 1 is idle, we have B0 ¼ 1:5, and
thus, we may still want to sense channel 2 next because
C2 ¼ 1:5 is large enough to fulfill B0. When channel 1 is
busy, however, we have B0 ¼ 2:0 and we may want to sense
channel 3 instead since channel 2 cannot fulfill B0 while
channel 3 can (since C3 ¼ 2:0). That is, if s2 ¼ 2, the
subsequent delay always becomes ðT 2

I þ T 3
I Þ regardless of

the state of channel 2, whereas the delay might become T 3
I if

s2 ¼ 3 and channel 3 is sensed idle.

5.3 Optimal Online Sensing Sequence Algorithm

As shown in Section 5.2, we need to find the optimal online
sequence to minimize the opportunity discovery delay. To
find the optimal online sequence, we propose a dynamic-
programming-based search algorithm. We will also show
the optimal sequence takes a simple form for the special
case of homogeneous channel capacities.

Let us define an N-stage decision problem, where at
stage k we have ðN � kþ 1Þ channels to choose from and
ðk� 1Þ channels already sensed. Our objective is then, at
stage k, to make an optimal decision on which channel to
sense next, to minimize the overall delay in achieving the
target amount of bandwidth, based on the already-
discovered idle channels. For this, we define control uk as

the chosen channel to sense at stage k. We also define xk ¼
ðUk;BkÞ as the state at stage k, where Uk is the set of
remaining channels to choose from and Bk is the accumu-
lated bandwidth achieved from the idle channels among the
already sensed. Finally, we define gkðxk; ukÞ as the cost
incurred at stage k by the chosen control uk, which is in fact
the sensing time TukI of the chosen channel uk because our
goal is to minimize the overall sensing time.

Now, the DP algorithm for the optimal online sequence
is formulated as follows:

JNðxNÞ ¼ gNðxNÞ;
JkðxkÞ ¼ min

uk2Uk
E�� gkðxk; ukÞ þ Jkþ1ðxkþ1Þ½ �f g;

ukðxkÞ ¼ arg min
u2Uk

E�� gkðxk; uÞ þ Jkþ1ðxkþ1Þ½ �f g;
ð7Þ

where gkðxk; ukÞ ¼ TukI � IfBk<Bg. Then, (7) can be further
analyzed using

Ukþ1 ¼ Uk n fukg;

Bkþ1 ¼
Bk þ Cuk ; if channel uk is idle;

Bk; otherwise;

� ð8Þ

such that

JkðxkÞ ¼ min
uk2Uk

�
TukI � IBk<B þ �uk � Jkþ1ðUkþ1; Bk þ CukÞ

þ ð1� �ukÞ � Jkþ1ðUkþ1; BkÞ
�
:

As an initial condition, we have

U1 ¼ f1; 2; . . . ; Ng; B1 ¼ 0:

Fig. 4 presents the pseudocode of the proposed DP
algorithm.

5.3.1 Algorithm Complexity Analysis

Once JNðxNÞ is computed for every possible xN ’s, JkðxkÞ for
k � N � 1 can be iteratively derived. Therefore, the com-
plexity of the algorithm depends on the number of possible
combinations of UN and BN . Since UN is a set of a single
element, there are N possible choices of UN . For a given UN ,
BN is determined by considering all possible combinations
of the channel states (i.e., idle or busy) of the preceding
N � 1 channels—that is, 2N�1. As a result, there are N � 2N�1

possible choices of xN ¼ ðUN;BNÞ which gives us the
complexity of OðN � 2NÞ, and hence, the DP algorithm is
not a polynomial-time solution. In Section 5.4, we propose a
computationally efficient suboptimal algorithm that yields a
near-optimal performance.

5.3.2 A Special Case: Homogeneous Channel Capacity

In this section, we will prove that in a special case with
homogeneous channel capacities, i.e., Ci ¼ C, 8i, the
optimal online sensing-sequence takes a much simpler
form. In Lemma 1, we first prove that the optimal offline
sensing sequence takes a trivial form with Ci ¼ C, and then
in Theorem 1 we prove that the optimal offline sequence
becomes the optimal online sequence under the same
condition.

Lemma 1. IfCi ¼ C, 8i, then the optimal offline sensing-sequence
is built by sorting channels in ascending order of T iI=�i.
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Proof. Let L be the optimal sensing sequence and L0 be its
counterpart constructed by switching the order of the kth
and ðkþ 1Þth channels in L. That is,

L ¼ ðl1; . . . ; lk�1; lk; lkþ1; lkþ2; . . . ; lNÞ;
L0 ¼ ðl1; . . . ; lk�1; lkþ1; lk; lkþ2; . . . ; lNÞ:

On the other hand, DBL is defined as the average delay
in locating idle channels whose cumulative capacity
exceeds B, using a sensing-sequence L. PBL is defined as
the probability that the sum of capacities of idle channels
in a sensing-sequence L may be strictly less than B.

In addition, let us define the following ordered lists:

Lk�1 ¼ ðl1; l2; . . . ; lk�1Þ; Lk ¼ ðl1; l2; . . . ; lkÞ;
Lkþ1 ¼ ðl1; l2; . . . ; lkþ1Þ; Lckþ1 ¼ ðlkþ2; . . . ; lNÞ;

Lk�1;kþ1 ¼ ðl1; l2; . . . ; lk�1; lkþ1Þ;
Lk�1;kþ1;k ¼ ðl1; l2; . . . ; lk�1; lkþ1; lkÞ:

Since a channel is sensed only when those channels
preceding in the list provide less opportunities than B,
we can express DBL and DBL0 as

DBL ¼ DBLk�1
þPBLk�1

� T lkI þ PBLk � T
lkþ1

I þ PBLkþ1
� DBLc

kþ1
;

DBL0 ¼ DBLk�1
þPBLk�1

� T lkþ1

I þ PBLk�1;kþ1
� T lkI

þ PBLk�1;kþ1;k
� DBLc

kþ1
:

Since DBL � DBL0 and PBLkþ1
¼ PBLk�1;kþ1;k

, we have

PBLk�1
� T lkI þ PBLk � T

lkþ1

I � PBLk�1
� T lkþ1

I þ PBLk�1;kþ1
� T lkI ;

which reduces to

T lkI	
PBLk�1

� PB�ClkLk�1



�lk

� T lkþ1

I	
PBLk�1

� PB�Clkþ1

Lk�1



�lkþ1

; ð9Þ

because PBLk ¼ P
B
Lk�1
� ð1� �lkÞ þ P

B�Clk
Lk�1

� �lk .
By substituting C for Clk and Clkþ1

in (9), the inequality
condition reduces to:

T lkI =�lk � T
lkþ1

I =�lkþ1
; for 1 � k � N � 1; ð10Þ

which is a necessary condition for optimality. However,
because there exists a single and unique sequence
satisfying such a necessary condition,4 the condition also
becomes sufficient. Therefore, the resulting sequence
is optimal. tu
Now, using Lemma 1, we present the following theorem

on the optimal online sensing sequence.

Theorem 1. If Ci ¼ C, 8i, then the optimal online sensing

sequence is built in the same way as the optimal offline sensing

sequence, by sorting channels in ascending order of T iI=�i.

Proof. The optimal online sequence is built by repeatedly

searching for the optimal offline subsequences. Let us

denote byS the optimal offline sequence of allN channels.

According to Lemma 1, S is simply constructed by sorting

channels in ascending order of T iI=�i. Then, the first

channel in S, say s, becomes the first channel in the

optimal online sequence. Now, to find the next channel in

the optimal online sequence, we need to sort S n fsg,
again, according to Lemma 1. However, since (10) does

not depend on B, the sorted sequence of S n fsg is still the

same as S n fsg. Therefore, the second channel in the

optimal online sequence is the second entry of S. By the

same argument, S becomes the optimal online sequence,

which proves the theorem. tu

5.4 Suboptimal Sensing Sequence Algorithm

The proposed DP algorithm suffers from high computa-
tional complexity. Therefore, we propose a computation-
ally efficient algorithm that determines a suboptimal
sequence in polynomial time while providing a near-
optimal performance.

To derive the suboptimal sequence, we utilize the

necessary condition for optimality in (9). We first recognize

that the first channel in the sequence (i.e., k ¼ 1) satisfies

Lk�1 ¼ ;, and thus, we have PBLk�1
¼ 1 and

PB�ClkLk�1
¼ 0; if Clk � B;

1; otherwise;

�

by the definition of PBL .5 Then, we get

T lkI	
PBLk�1

�PB�ClkLk�1



�lk

¼ T lkI =�lk ; if Clk � B;
1; otherwise:

�
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Fig. 4. Pseudocode of the DP search algorithm (S�: optimal sequence).

4. Note that since �i 2 ½0; 1�, it is not likely to have ties with the same
TiI=�i. If it happens, we can still sort them uniquely in ascending/
descending order of channel index i.

5. Note that the sum capacity of idle channels in an empty set is equal to
zero.



Therefore, to satisfy (9), the first channel should be the one

with the smallest T iI=�i among all unsensed channels

satisfying Ci�B. In case all unsensed channels have Ci<B,

we have PB�ClkLk�1
¼ 1, and thus, the term PBLk�1

� PB�ClkLk�1
in (9)

cancels out. As a result, the first channel in this case

(i.e., Ci < B for all unsensed channels) is found as the one

with the smallest T iI=�i.
Once the first channel is determined, we sense the

channel and observe its channel state. Depending on the
state, we update B as in (6) and find the next channel to
sense. Since the problem becomes identical to the initial
problem of finding the first channel except the updated B
and the set of unsensed channels (i.e., one less unsensed
channels by excluding the one just sensed), we can apply
the same procedure described above to find the next
channel. Finally, the procedure completes when the
updated B satisfies B � 0.

The pseudocode of the proposed suboptimal sequence
algorithm is described in Fig. 5. Its near-optimal perfor-
mance will be shown in Section 8.

5.4.1 Algorithm Complexity Analysis

The algorithm sorts ðN � kþ 1Þ channels at stage k, where
k ¼ 1; 2; . . . ; N . Therefore, the number of computations
required is N þ ðN � 1Þ þ � � � þ 1 ¼ NðN þ 1Þ=2, and thus,
we have OðN2Þ. Therefore, the suboptimal algorithm is
solvable in polynomial time, significantly reducing the
computational overhead compared to the DP algorithm.

5.5 Impact of Channel-State Conversion

During a sequential sensing, it is possible that some in-
band channels convert their states to “busy,” which is
defined as channel-state conversion. Channel-state conver-
sion is detected by in-band sensing [5], which is performed

independently of out-of-band sensing (footnote 1). Upon
detection of such an event, it increases the optimality
condition B by Cconv, the capacity of the channel in which
the conversion occurs, thus making the previously derived
optimal sequence (in Section 5.3) no longer optimal.
Therefore, an optimal sequence should be recalculated at
the time of each channel-state conversion.

Fortunately, in the case of suboptimal sequence
(Section 5.4), it is not necessary to recalculate the entire
sensing sequence as in the optimal case. When channel-
state conversion occurs, it can be incorporated in the
suboptimal algorithm (Fig. 5) by updating B :¼ Bþ Cconv.
Then, the algorithm will correspondingly determine the
next best channel to sense, given the increased B, instead
of finding the entire sensing sequence again. This is
because the suboptimal algorithm is independent of the
initial B, but only depends on the current B at stage k.

Since channel-state conversion increases the target

bandwidth B, it inflates the latency of opportunity dis-

covery. To better understand the inflation effect, we

introduce the probability pconv that state conversion occurs

per sequential sensing:

pconv ¼ 1�
Y
i2Sin

piOFF ð�seqÞ;

where Sin is the set of in-band channels and piOFF ð�seqÞ is the

probability that in-band channel i stays OFF during the

sequential sensing delay of �seq, which depends on the pdf

of OFF periods. For instance, an exponentially distributed

OFF period gives piOFF ð�seqÞ ¼ e� 
i
OFF

�seq .
Assuming �seq represents an average sequential sensing

delay without state conversion, the inflated delay due to

state conversion is given as

X1
i¼0

ðpconvÞið1� pconvÞ � ðiþ 1Þ�seq ¼
�seq

1� pconv
: ð11Þ

That is, the latency is inflated by a factor of fconv ¼ 1=ð1 �
pconvÞ. In Section 8, we measure how much the latency is

inflated in the tested scenarios and compare it with the

derived model fconv.

5.6 Retry of Sequential Sensing

A CRN may sometimes fail to find the necessary amount of

opportunities (i.e., B) after searching all N channels. In such

a case, the CRN must retry opportunity discovery after

waiting for a certain amount of time, and it should keep

retrying until enough opportunities are discovered. The

reason for waiting is that the channels sensed busy may still

be in the same state if the CRN performs an instant retry.

We denote the period of such retries by tRETRY, which is a

design parameter.
Once the first opportunity discovery fails, the total

discovery delay to accomplish B depends more on tRETRY

due to the subsequent retries. Therefore, it is desirable to

have an enough number of “good” channels in BCL to

promote successful opportunity discovery at the first trial.

The construction of such a BCL will be discussed in

Section 6.
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Fig. 5. Pseudocode of the proposed suboptimal sensing sequence
algorithm (S�: near-optimal sequence).



6 BCL MANAGEMENT

The objective of BCL is to maintain “good” channels among
the excessively many licensed channels, e.g., 68 TV
channels in the VHF/UHF bands [28], to achieve the
following goals: 1) Increase the chance of finding spectrum
opportunities as much as necessary at each opportunity
discovery; and 2) mitigate an overhead in ordering
channels by keeping a minimal number of backup channels.
To achieve both objectives, we propose a BCL management
strategy that constructs and periodically updates the
entries of BCL via importing and exporting channels.

Fig. 6 illustrates how a channel changes its association
among in-band, backup and candidate channels, according
to our BCL management strategy. A backup channel
becomes an in-band channel if it is sensed idle during
opportunity discovery, and channel vacation of an in-band
channel makes it a backup channel again. Channel exports/
imports/swaps are triggered to update the entries of BCL:
1) If the BCL contains backup channels more than necessary,
the backup channels with “poor” quality can be exported to
CCL; 2) if the BCL needs more channels to provide enough
spectrum opportunities, a set of candidate channels can be
imported to BCL; and 3) a channel swap exchanges the
worst backup channel with the best candidate channel.

6.1 Construction of Initial BCL

Initially, we assume there are M licensed channels with no
prior knowledge on their channel availability (i.e., �i),
because samples are not yet collected from those channels.
Without knowing �i, we construct the initial BCL by
randomly selecting N channels from the M channels. From
the thus-chosen N channels, the CRN finds in-band
channels to start its network with by performing an initial
scan. Then, the remaining ðM �NÞ channels are placed in
the initial CCL. Note that we define BCL as a combination
of in-band channels and (out-of-band) back-up channels,
and thus, N will henceforth be used to denote the number
of in-band channels plus the number of back-up channels.

One may want to restrict N within some range such as
Nlower � N � Nupper, where Nlower and Nupper are design
parameters. Nlower helps reserve a minimal number of
backup channels so that opportunity discovery may be
successful. On the other hand, Nupper upper bounds the
computational overhead in sorting backup channels.

6.2 Periodic BCL Update

The entries of BCL should keep updated because 1) as
sensing accumulates samples of backup channels,6 channel

parameters are estimated more accurately and �i can be
predicted more reliably, and 2) the parameters of the ON/
OFF distribution may vary with time.

Our goal is to maintain “good” N channels so that
they may contain opportunities more than Breq with
probability thPOTENTIAL, which is a predefined threshold
(e.g., thPOTENTIAL ¼ 0:9). More formally, we build a
sequence of channels LN ¼ fl1; l2; . . . ; lNg where in-band
channels are placed first (in any order) and the backup
channels are placed last in descending order of Ci � �i which
is called effective capacity of channel i. Then, we calculate
CBreq

LN
, capacity potential of Breq in LN , representing the

probability that LN may contain more opportunities than
Breq, such that

CBreq

LN
:¼
X1

z1¼0

X1

z2¼0

. . .
X1

zN¼0

(YN
v¼1

ð�lvÞ
1�zvð1� �lvÞ

zv

� If
PN

w¼1
Clw ð1�zwÞ�Breqg

� �

¼ 1� PBreq

LN
:

Using CBreq

LN
, we propose an efficient and lightweight BCL

update strategy that sorts BCL or CCL separately and only
when necessary. In this strategy, BCL is updated periodi-
cally every tUPDATE seconds, and at BCL update CBreq

LN
is calculated using the most recent channel estimates.
According to CBreq

LN
, one of the following actions is taken:

Channel export (BCL! CCL), channel import (BCL CCL),
and channel swap (BCL $ CCL).

6.2.1 Channel Export

If CBreq

LN
> thPOTENTIALupper, we export a certain number of

least preferred channels from BCL because it contains more
channels than necessary. We use thPOTENTIALupper ¼
thPOTENTIALþ �1 (�1 > 0) to avoid any impetuous chan-
nel export. To export channels, we first determine the optimal
N ¼ N� such that

N� ¼ min N jCBreq

LN
� thPOTENTIAL

n o
:

Then, we export the last minfN �N�; Nbackupg channels in
the sequence to CCL, where Nbackup implies the number of
backup channels. Here, the term Nbackup is necessary to
avoid exporting current in-band channels.

6.2.2 Channel Import

If CBreq

LN
< thPOTENTIALlower, a number of candidate

channels are imported from CCL to satisfy CBreq

L0
N
�

thPOTENTIAL, where L0N is an extended BCL after

importing the CCL channels. We use thPOTENTIALlower ¼
thPOTENTIAL� �2 (�2 > 0) to avoid impetuous channel

import. To import channels, candidate channels are sorted

in descending order of Ci � �i and are imported to BCL one

by one to augment LN by adding the imported channels

at the end, until CBreq

L0
N
� thPOTENTIAL is met. In case the

imported channel has never been sensed, we assume it has

�i ¼ 1=2.

6.2.3 Channel Swap

When Nlower and Nupper are used, channel export (or import)
cannot be processed if N� ¼ Nlower (or Nupper). In such a
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Fig. 6. Transition of channel association.

6. As discussed in Section 4.2, the samples are collected via opportunity
discovery (if the channel is a backup channel) and/or extra sampling
scheduled by the central controller.



case, we swap the least preferred backup channel with the

most preferred candidate channel if the swap helps

decrease/increase CBreq

LN
as desired.

7 CHANNEL PARAMETER ESTIMATION

In Section 4, we described how to predict �i, an element

indispensable to the formulation of the optimal sensing

sequence. There we also showed that �i is a function of the

ON/OFF distribution parameters, and thus, the estimation

of the channel parameters’ accuracy is a key to the

performance of the optimal sensing sequence.
In [2], we introduced an ML estimator of the channel

parameters, showing that the sampling period must be

proportional to minfE½T iON �; E½T iOFF �g to maintain a similar

level of parameter estimation accuracy over channels. To

achieve such sampling rates, the central controller of a CRN

needs to perform extra sampling on backup channels in

addition to the samples produced from opportunity

discovery. However, the extra sampling may not be

practical for the channels with short ON/OFF periods due

to the high-sensing overhead, making the ML estimator an

unsuitable choice.
To overcome this problem, we introduce a hybrid of ML

and Bayesian estimation. Unlike large-sample asymptotic

estimators (e.g., ML) whose estimation accuracy degrades

with infrequent samples, Bayesian estimation is known to

perform reasonably well even if the number or frequency

of samples is limited [7]. Exploiting such features, we

propose the following hybrid estimation strategy:

. Class-S channels: Perform Bayesian estimation and

. Class-L channels: Perform ML estimation,

where class-S channels imply the channels with short ON/

OFF periods and class-L channels imply the channels with

long ON/OFF periods.
In what follows, we first introduce single-step Bayesian

inference and its extension to multistage iterative estima-

tion. We will then discuss how to reduce the computational

complexity of the Bayesian estimation.

7.1 Single-Step Bayesian Inference

A single-step Bayesian inference [7] is summarized as

follows: Suppose we have a vector of samples from channel

i such as Zi
k¼ðZiðt1Þ; Ziðt2Þ; . . . ; ZiðtkÞÞ, whose joint pmf is

fðZi
kj  iÞwhich depends on the vector  i 2 �i of the channel

parameters of fTi
ON
ðtÞ and fTi

OFF
ðtÞ. Denoting by �ð iÞ a prior

distribution of  i, the posterior distribution of  i after

observing Zi
k, denoted by �ð ijZi

kÞ, is given as

�ð ijZi
kÞ ¼

�ð iÞfðZi
kj iÞ

fðZi
kÞ

¼ �ð iÞfðZi
kj iÞR

�i �ð iÞfðZi
kj iÞd i

;

where fðZi
kÞ is the marginal joint pmf of Zi

k. Then, the

estimates of  i are obtained as

 ̂i ¼ E½ i�;

where E½�� is taken over the distribution �ð ijZi
kÞ.

7.2 Iterative Bayesian Inference

We extend the single-step procedure in Section 7.1 to
provide an iterative Bayesian process, where estimates are
produced each time a new sample is collected. Fig. 7
illustrates the concept of our iterative Bayesian inference.
The process starts with an initial prior distribution �ð iÞ,
and the first stage begins upon collection of the first two
samples. Upon arrival of the ðkþ 1Þth sample (i.e., at
stage k), the kth pair of new estimates are computed by
using �ð iÞ and fðZi

kþ1j iÞ of ðkþ 1Þ samples. We will,
henceforth, omit the channel index i unless it causes
ambiguity.

For an illustrative purpose, we use exponentially dis-
tributed ON and OFF periods with pdfs of (1) to present the
proposed procedure. Then, channel parameters to estimate
are given as

  ¼ ð ON;  OFF Þ; � ¼ f0;1g� f0;1g:

It should be noted, however, that the proposed procedure
can be applied to TON and TOFF with general pdfs.

The initial prior distribution �ð Þ is usually chosen with
subjective reasoning. The criteria in selecting the prior is
based on the prior knowledge of  . For exponentially
distributed ON and OFF periods, �ð Þ ¼ �ð ON;  OFF Þ
should be chosen to satisfy the following:

 ON > 0;  OFF > 0; ð12Þ

by the definition of exponential distribution. On the other
hand, if some statistics are available on average ON and
OFF periods on a large time scale (e.g., a day or a week),
such knowledge can be reflected in the choice of the prior.
For example, suppose �ON and �OFF are the average ON and
OFF periods in a day. Then, the prior knowledge can be
used to form �ð Þ such that

�ON ¼ 1=E½ ON �; �OFF ¼ 1=E½ OFF � ð13Þ

because  ON ¼ 1=E½TON � and  OFF ¼ 1=E½TOFF �.
Here, we assume �ON and �OFF are given, and the prior

distribution is set as

�ð ON;  OFF Þ ¼ �ONe��ON ON � �OFF e��OFF OFF or

�ðu;  OFF Þ ¼ �ON�OFF eð�ON��OFF��ON=uÞ OFF ;

where  ON and  OFF are assumed to be exponentially
distributed with mean �ON and �OFF , respectively.7 Setting
the prior distribution as above can satisfy the conditions
(12) and (13).

Considering the fact that an alternating renewal process
is semi-Markov [22], fðZkþ1j Þ at stage k becomes
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Fig. 7. Iterative Bayesian inference.

7. Note that modeling  OFF and  ON to be exponentially distributed has
nothing to do with exponentially distributed ON and OFF periods.



fðZkþ1j Þ ¼ fðZt1 j ÞfðZt2 jZt1 ;  Þ � � � fðZtkþ1
jZtk ;  Þ:

The derivation of the transition probability fðZtjþ1
jZtj ;  Þ,

j ¼ 1; 2; . . . ; k, for arbitrarily-formed fTON ðtÞ and fTOFF ðtÞ can
be found in [22]. For example, with exponentially distrib-
uted ON and OFF periods, we can show

fðZt1 j Þ ¼ ð1� uÞ
1�Zt1uZt1 ;

fðZtjþ1
jZtj ;  Þ ¼ ð1� uÞ

1�Ztjþ1 � uZtjþ1 þ ð�1ÞZtjþZtjþ1 �
u1�Ztj � ð1� uÞZtj � e� OFF�j=u;

ð14Þ

where �j ¼ tjþ1 � tj.
Now, fkðZkþ1Þ at stage k is derived as

fkðZkþ1Þ ¼
Z 1

0

Z 1
0

�ð ÞfðZkþ1j Þd ONd OFF

¼
Z 1

0

Z 1
0

�ðu;  OFF Þ � ð1� uÞ1�Zt1uZt1

�
Yk
j¼1

fðZtjþ1
jZtj ;   Þ

( )
�  OFF

u2

� �
d OFFdu;

which provides a closed-form solution by transforming the
product of sums with k terms,

Qk
j¼1 fðZtjþ1

jZtj ;  Þ, into a
sum of products with 2k terms. We then obtain two
estimates  ̂ON and  ̂OFF at stage k as in (15) where both
of which provide closed-form estimators with the same
transformation as in fkðZkþ1Þ. The derived Bayesian
estimators work as fast as ML estimators since both are
expressed in closed forms

 ̂ON;k ¼
Z 1

0

Z 1
0

 ON � �ð jZkþ1Þd ONd OFF

¼
Z 1

0

Z 1
0

1

u
� 1

� �
�ðu;  OFF ÞfðZkþ1j Þ

fkðZkþ1Þ

�  OFF
u

� �2

d OFFdu;

 ̂OFF;k ¼
Z 1

0

Z 1
0

 OFF � �ð jZkþ1Þd ONd OFF

¼
Z 1

0

Z 1
0

�ðu;  OFF ÞfðZkþ1j Þ
fkðZkþ1Þ

�  OFF
u

� �2

d OFFdu:

ð15Þ

7.3 Complexity Reduction

Despite its good performance, Bayesian inference suffers
from computational complexity inherent in integration of
pdfs to produce fkðZkþ1Þ and  ̂. In case there are no closed-
form solutions for them, the complexity grows exponen-
tially as the number of stages increases, although the
number of samples increases linearly.

To overcome this problem, we make a few adjustments
to the proposed scheme. First, MAX_BS_STAGE, a design
parameter, is introduced such that the process resets to
stage 1, whenever the current stage number reaches
MAX_BS_STAGE. When it resets, the prior distribution
�ð Þ is updated with the most recent estimates. That
is, �ON and �OFF in �ð Þ are replaced by 1= ̂ON and
1= ̂OFF , respectively, where  ̂ON and  ̂OFF are the most
recent estimates.

Next, a precomputed look-up table is used to evaluate the
integrals. When an integration does not provide an analytical

solution, numerical integration (e.g., Simpson’s rule) or
Monte Carlo integration [7] can be used. Through a series of
computations, the estimates of unknown parameters can be
precomputed for each possible pair of sample values and
their timestamps. This way, the computational complexity
of Bayesian estimation can be bounded reasonably small.

8 PERFORMANCE EVALUATION

To demonstrate the efficacy of the proposed schemes, we
conducted two types of simulation. First, Section 8.1
compares the average opportunity-discovery delay of the
proposed near-optimal sequence with the optimal DP-based
sequence and previously proposed probabilistic sequences
(i.e., sorting channels in descending order of �i) in [2], [9].
Second, Section 8.2 demonstrates the performance improve-
ment of the BCL update strategy compared to the case
without BCL update.

The simulation parameters for the tests are summarized
in Table 2. For channel i, we set

T iI ¼ TmaxI � ð2 � TmaxI � 26Þ � ði� 1Þ=ðM � 1Þ in msec;

ui ¼ 0:4 � ði� 1Þ=ðM � 1Þ þ ð�u� 0:2Þ;

where TmaxI and �u are shown in Table 2.
Channels are simulated as alternating renewal processes

with exponentially distributed ON and OFF periods. The
channel parameters  ON and  OFF are assumed time
varying and increasing/decreasing by 10 percent every
100 seconds. In addition, Test 1 sets 1:0 � E½T iON � � 1:45 (in
seconds) and Test 2 uses 12 channels with 1:0 � E½T iON � �
1:45 and six channels with E½T iON � 2 f15; 20g.

For every test, a single simulation ran for 1,000 seconds,
and the same test was repeated 10 times to take the average
performance. Other test parameters are set as follows:
tRETRY ¼ 0:1, tUPDATE ¼ 5, thPOTENTIAL ¼ 0:9,
thPOTENTIALlower ¼ 0:88, thPOTENTIALupper ¼ 0:93,
Nlower ¼ 5, and Nupper ¼ 10.

For all tests, we use the average delay as a yardstick in
discovering opportunities. The average discovery delay is
captured by considering two different cases: 1) when
opportunity discovery completes during the first round of
searching backup channels (called Type-I delay); and
2) when it completes during the successive retries,
provided the first round failed (called Type-II delay). The
Type-I delay says how efficient a sensing sequence is,
whereas the Type-II delay shows how efficiently the BCL is
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TABLE 2
Test-Specific Simulation Parameters, i 2 f1; . . . ;Mg



constructed/updated so that opportunity discovery may be
successful at early rounds.

In our simulations, we assume perfect estimates and
perfect sensing (i.e., PMD 	 0 and PFA 	 0) to focus on
the efficacy of the proposed sensing sequence and BCL
update strategies. It should be noted, however, that this
assumption is made only for an illustrative purpose, and
our schemes can adopt the schemes in Section 7 for
estimation and Section 4.2.1 for imperfect sensing.

8.1 Test 1: Performance of Proposed Sequence

In this test, the proposed suboptimal sensing sequence is
compared with the optimal sequence given by the DP
algorithm, along with the probabilistic sequence that sorts
channels in descending order of �i and a random sequence.
We tested three scenarios where either �u, Breq, or TmaxI

varies. The case of varying TmaxI corresponds to the
standard deviation of T iIs varying from 1 to 8. In addition,
no BCL update is performed to focus on the performance of
the sequences.

Fig. 8 plots the simulation results. The proposed
suboptimal sequence shows a near-optimal performance
in all three scenarios incurring only a 0.002-1.25 percent
(average: 0.44 percent) longer delay than the optimal
performance. Moreover, the proposed scheme is shown to
enhance the delay by 20.4-51.6 percent (average: 42.5 per-
cent) against the probabilistic sequence and by 15.8-
39.3 percent (average: 31.8 percent) against the random
sequence. Interestingly, the previously proposed probabil-
istic sequence performs even worse than the random one in
the tested scenario, since the channels with smaller ui (i.e.,
lower-indexed channels) incur larger sensing-time while

providing smaller capacities. This shows that the optimal
sequence can only be derived by considering all three
channel characteristics defined by the tuple of ðCi; T iI ; �iÞ.

We have also evaluated the probability of channel-state
conversion occurrence (pconv) and the inflation factor fcon,
and presented them in Table 3 (each column represents
varying x-axis values in Fig. 8). As shown, state conversion
occurs with probability 0.025-0.13 (average: 0.059) and
inflates the opportunity-discovery delay only up to
4.7 percent. The impact of state conversion is moderate
because sequential sensing is triggered by the vacation of a
single in-band channel, and thus, it suffices to discover a
few more idle channels—in the test scenarios each
sequential sensing senses an average of 4.4 channels.
Table 3 also shows the accuracy of the model in (11) by
deriving fmodel from the measured pconv and by comparing
it with fconv. It is observed that the model overestimates
the inflation factor by an average of 3.2 percent.

8.2 Test 2: BCL Update versus No BCL Update

In this test, the efficiency of the proposed BCL update
strategy is evaluated and compared with another scheme
with no BCL update. Both schemes initialize their BCL
assuming no prior knowledge on the ON/OFF usage
patterns. As the simulation progresses, however, the
proposed scheme updates BCL via channel import/
export/swap and adjusts the BCL size accordingly,
whereas the latter scheme always stays with its initial
BCL entries. In addition, both schemes use the proposed
suboptimal sequence.

In Fig. 9, we plot the average “overall” delay (i.e., Type-I
and Type-II combined) with the delay-type ratio between
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Fig. 8. Test 1: performance of the proposed sequences.

TABLE 3
Impact of Channel-State Conversion in Test 1

Fig. 9. Test 2: Proposed BCL update versus no update.



the number of Type-I events and that of Type-II events. The

proposed BCL update scheme flexibly adjusts its BCL size

from 5 to 10 to maximize the chance of successful

opportunity discovery at the first round of sequential

sensing, and thus, the BCL update case incurs more Type-I

events than Type-II events compared to the no-update

case (as shown for �u � 0:45) reducing the overall delay by

7.3-49.6 percent (average: 35.6 percent). This is because the

Type-II delay is more costly due to the huge delays in

retrying sequential sensing.

9 CONCLUSIONS

In this paper, we proposed a DP-based optimal sensing-

sequence and a computationally efficient near-optimal

sensing-sequence for fast discovery of spectrum opportu-

nities to promote seamless service provisioning of CRNs

while minimizing QoS degradation. To support the pro-

posed fast opportunity discovery mechanism, we also

proposed an efficient BCL management algorithm and a

hybrid estimation strategy of ML and Bayesian inference for

reliable estimation of channel-usage patterns.
In future, we plan to extend the problem to the scenario,

where colocated CRNs have overlapping channels. In such

a case, a CRN should treat its local-only channels and

shared channels differently in sorting channel, to avoid

collision between CRNs.
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