
Towards a Fault-Resilient Cloud Management Stack

Xiaoen Ju Livio Soares† Kang G. Shin Kyung Dong Ryu†

University of Michigan IBM T.J. Watson Research Center†

Abstract

Cloud management stacks have become a new important
layer in cloud computing infrastructure, simplifying the
configuration and management of cloud computing en-
vironments. As the resource manager and controller of
an entire cloud, a cloud management stack has signifi-
cant impact on the fault-resilience of a cloud platform.
However, our preliminary study on the fault-resilience of
OpenStack—an open source state-of-the-art cloud man-
agement stack—shows that such an emerging software
stack needs to be better designed and tested in order to
serve as a building block for fault-resilient cloud envi-
ronments. We discuss the issues identified by our fault-
injection tool and make suggestions on how to strengthen
cloud management stacks.

1 Introduction

Cloud computing has become an increasingly popular
computing platform. With this increasing popularity
comes the issue of how to efficiently manage such a new
computing infrastructure. Cloud management stacks
have been introduced to address this challenge, facilitat-
ing the formation and management of cloud platforms.

Since cloud platforms usually consist of hundreds or
thousands of commodity servers, failures are the norm
instead of the exception [1, 3]. Cloud platforms, as
well as applications running in the cloud, need to be
designed to tolerate failures induced by software bugs,
hardware defects and human errors. The scope of fail-
ures varies from one single process to an entire data cen-
ter, with a timescale ranging from subseconds to days.
The same requirement on fault-resilience also applies
to cloud management stacks, which themselves run in
the cloud environment. Unfortunately, to the best of
our knowledge, the fault-resilience of cloud management
stacks has not received enough attention from the cloud
computing community. Despite the widespread aware-

ness of the prevalence of failures, the community is still
largely focusing on how to enhance the functionality of
this emerging software stack.

We argue that fault-resilience should remain one of the
most important features of any software designed for the
cloud environment. Lack of fault-resilience significantly
weakens the usefulness of cloud-scale software. We be-
lieve that fault-resilience is so fundamental that it needs
to be deeply integrated into the design of cloud-scale
software instead of being treated as an optional feature
or an afterthought. This holds for cloud applications and,
more importantly, for cloud management stacks, due to
the latter’s significant impact on cloud platforms.

In this paper, we explore the fault-resilience of Open-
Stack, a popular open source cloud management stack
that has been drawing significant attention in recent
years. By reporting the issues discovered in our study as
well as making associated design recommendations and
suggestions, we would like to re-stress the importance
of fault-resilience for cloud management stacks and call
for a collaborative effort in addressing OpenStack’s fault-
resilience issues.

2 Methodology

OpenStack is a high-level cloud operating system that
builds and manages cloud platforms running on top of
commodity hardware. It functions via the coordination
and cooperation of its various service groups, such as
compute services for provisioning and managing virtual
machines (VMs) inside a cloud, image services for man-
aging template VM images, and an identity service for
authentication. Two major communication mechanisms
are employed in OpenStack, with the Advanced Message
Queuing Protocol (AMQP) for communications within
the compute service group, and the Representational
State Transfer (REST) mechanism for communications
among other services, as well as with external users.
OpenStack also relies on many external services, such



as local hypervisors and databases, and communicates
with them using libraries that fulfill their communica-
tion specifications, such as libvirt for hypervisors and
SQLAlchemy for database access.

We use fault injection to study the fault-resilience of
OpenStack. We define fault-resilience to be the ability
to maintain correct functionalities under faults. Specifi-
cally, we study the impact of faults on OpenStack’s ex-
ternal API interface and its persistent states. These two
aspects are important because OpenStack relies on the
persistent states (e.g., states in its databases) to manage
a cloud platform (i.e., which VMs are currently running
at which physical hosts), and OpenStack’s external API
is the interface for communicating with users. A well-
designed fault-resilient cloud management stack should
maintain correct information in its persistent states and
generate correct responses to users’ requests via the ex-
ternal API in a timely manner, despite faults.

We use three fault types in our study: server crashes,
transient server non-responsiveness and network parti-
tions. These fault types, albeit simple, are common
cases that lead to failure situations in a cloud environ-
ment. We inject faults into OpenStack at the locations
where two services communicate. Take server crash
faults as an example. In our single-fault-injection ex-
periments, for a message sent from one service to an-
other, we inject a crash fault to the sender service in
one experiment, before the message is sent, and a crash
fault to the receiver service in another experiment, before
the message is received. We believe that our message-
flow-driven fault injection can effectively reveal fault-
resilience issues, because (1) message flows indicate the
execution paths inside OpenStack for request processing,
(2) heinous bugs affecting the fault-resilience of cloud
systems such as OpenStack are usually related to the in-
teraction of several services, which can be characterized
by their message flows, and (3) bugs and issues within
a single service can be located and resolved by mature
single-process debugging techniques.

Faults are injected to three OpenStack services—
authentication, image and compute services—as well as
external supporting services such as database services,
local hypervisor managers and AMQP brokers. We tar-
get at these services because they are indispensable for
running OpenStack. We consider extending the coverage
to other services (e.g., object store) our future work.

Our fault-injection tool consists of three components:
a logging and synchronization module, a fault-injection
module and a specification checking module. The log-
ging and synchronization module logs messages among
OpenStack services and coordinates the execution of
OpenStack and the fault-injection tool via logging events
(e.g., packet send/receive). The fault-injection module
injects faults into OpenStack along message flows cap-

OpenStack 

Logging 
and 

Synchroni
zation 

Fault 
Injection 

Fault Injection 
Controller 

Test Plan 
crash receiver 

Specs 
expect State S’ 

Spec Checking 

1. A is communicating with B 

2. Crash B 

3. Resume A 4. Result: State S 

5. Expect State S’ 

6. Detect violations 

Figure 1: Fault-injection workflow example. 1: Detect
fault-injection opportunity and pause execution. 2: Inject
fault. 3: Resume execution. 4: Report results. 5: Check
specifications. 6: Detect violations.

tured by the logging module. The specification checking
module verifies whether OpenStack, with injected faults,
complies with specifications related to its expected per-
sistent states and its responses to users.

We focus on the fault-resilience of OpenStack during
the processing of the most commonly used external re-
quests, such as VM creation and deletion. For each re-
quest, we first execute it and record the message flows
among OpenStack services. We then generate an execu-
tion graph from the message logs, which characterizes
the execution path of OpenStack during the request pro-
cessing. A node in the graph represents a communica-
tion event, recording the communicating entity (e.g., an
API server process of the compute service) and the type
of communication (e.g., an outgoing RPC message). An
edge in the graph connects the sender and the receiver of
a communication event. Based on the execution graph
and a predefined fault-specification1, we generate a col-
lection of test plans, each consisting of a fault to be in-
jected into a certain location in the execution graph. We
then conduct fault-injection by initializing OpenStack
into the same state as in the logging procedure, replay-
ing the external request and injecting faults according to
the test plans. After the tests complete, we collect re-
sults (both user observable responses from OpenStack
and its internal persistent states) and verify them with
predefined specifications. Upon verification failure, we
manually examine OpenStack’s implementation to iden-
tify bugs causing the invalid results. Figure 1 illustrates
the fault injection process.

We use a simplistic experiment setting (similar to
OpenStack’s default setting) in which all OpenStack and
external supporting services have only one instance. Up
to three nodes are used in each fault-injection test for

1A predefined fault-specification indicates the fault type injected to
an execution, e.g., a sender server crash.

2



Table 1: Summary of Fault-Resilience Issues
Category Count
Out-of-the-box fault resilience solution 1
Timeout mechanism 2
Cross-layer coordination 1
Supporting library interference 1
Periodic check 5
Miscellaneous programming bugs 3

proper fault isolation.

3 Fault-Resilience Issues in OpenStack

Using the fault-injection tool described in the previ-
ous section, we identify several fault-resilience issues in
OpenStack (Essex version), which, unless solved prop-
erly, lead to undesirable results in the cloud environment
managed by OpenStack. Note that we only categorize
and discuss the issues uncovered by our tool, which are
by no means close to a complete set of fault-resilience
issues in OpenStack or other cloud management stacks.
Yet based on our own experience with OpenStack de-
ployment as well as what other users have reported, we
believe that the following issues, summarized in Table 1,
are commonly found in real-world scenarios. It is also
worth noting that, although the number of issues dis-
cussed in this study seems limited, some of them, such
as the lack of timeout in REST communications (cf. Sec-
tion 3.2) and the state transition deficiency (cf. Sec-
tion 3.5), are repeatedly manifested with faults injected
in common execution paths of OpenStack.

3.1 Out-of-the-Box Fault-Resilience
To the best of our knowledge, OpenStack has not
been designed to enable a straightforward out-of-the-box
fault-resilience solution via a unified deployment proce-
dure. This may arise from a plausible opinion in the
OpenStack community: fault-resilience is not manda-
tory for all use cases. Given the critical role OpenStack
plays in the cloud, however, it would be reasonable to
expect that production-level OpenStack deployment re-
quires fault-resilience, which should be easily enabled
across all services in the stack. Our experience shows
that OpenStack falls short in this aspect.

For example, supporting services, such as the lib-
virt service, cannot be configured within OpenStack to
restart automatically upon crashes. Similarly, the ser-
vice failover feature—a key ingredient of high availabil-
ity systems—can only be enabled outside OpenStack, via
the support of services such as Pacemaker. Another ex-
ample is that, when using Qpid as OpenStack’s AMQP

broker service, third-party modules need to be separately
downloaded, compiled and configured in order for the
durable queue features—a default Qpid setting inside
OpenStack—to function properly. A unified deployment
procedure delivered out of the box, aggregating all nec-
essary configuration options relevant to fault-resilience,
will significantly improve user experience.

3.2 Timeout Mechanism

Timeout is a common mechanism in distributed systems
to prevent the malfunctioning of one component from
blocking the rest of the system. One known difficulty
in employing this mechanism is the selection of a proper
timeout value. A timeout value that is too short leads to
unnecessary disruption of system operation due to pre-
mature activation of the recovery logic. A timeout value
that is too long, on the other hand, delays failure detec-
tion, thus negatively affecting the progress of the system.

Being a distributed system itself, OpenStack uses
timeout values as a safety net for service coordination.
For example, OpenStack associates a timeout value (60
seconds by default) for RPC calls, preventing the caller
from indefinitely waiting for a reply. However, our tool
shows that there are cases in common execution paths
inside OpenStack where critical timeout values remain
unspecified. For example, OpenStack uses the WSGI
module in the Eventlet library to coordinate its services
during the processing of external requests. The WSGI
module in turn utilizes the httplib2 library for commu-
nication. Probably, due to backward compatibility con-
siderations, httplib2 associates a timeout value only with
connection establishment and request sending operations
but not with response obtaining operations (e.g., via
HTTPConnection class’s getresponse function). As
a result, if a network partition occurs between two com-
municating services, after a service sends a request to the
other but before it obtains a response, then the request is-
suing service will remain blocked indefinitely. In this
case, associating a proper timeout value for the response
obtaining operation would solve the problem.

As discussed at the beginning of this section, however,
timeout selection is no easy task. This problem is exac-
erbated by the fact that OpenStack relies on many ex-
ternal services, which may have their own timeout set-
tings. Without fine-tuning these external timeout set-
tings, OpenStack may demonstrate unexpected behav-
iors when faults occur in the external services. For ex-
ample, if configured to use MySQL as its database ser-
vice, OpenStack then uses the MySQLdb library to com-
municate with the database service. In this setting, our
tool identifies that if a network partition occurs between
an OpenStack service and the MySQL database, after
a connection has been established but before the Open-

3



Stack service can issue a SQL statement execution com-
mand, then the OpenStack service may remain blocked
for about 930 seconds—a common behavior among ap-
plications using the MySQLdb library. OpenStack does
not provide a default timeout value specific to its services
for SQL statement execution. Admittedly, such a value
may be difficult to specify. But relying on the default
behavior of supporting libraries may not be the optimal
solution for OpenStack services, either.

We recommend the design of innovative approaches
to systematic configuration of timeout values scattered
in management stacks themselves as well as in support-
ing libraries and services, thus better orchestrating cloud
management stacks in their entirety.

3.3 Cross-Layer Coordination

As described above, OpenStack uses many external ser-
vices, such as Qpid, libvirt and MySQL, for efficiently
achieving a rich set of functionalities. These services
usually provide client libraries to facilitate communi-
cations between service applicants and providers. The
common design pattern in OpenStack is to insert an-
other set of layers of abstraction between OpenStack
services and those external services, defining a uniform
protocol for each category of services (e.g., database
service category, local hypervisor management category
and AMQP communication category) and abstracting
away the incompatibility among lower-level supporting
services (e.g., between SQLite and MySQL). The advan-
tages related to such an encapsulation design are numer-
ous. However, our study indicates that such additional
abstraction layers, when implemented without sufficient
caution, may introduce subtle bugs. Below we use a con-
crete example to elaborate this argument.

Consider the communication between OpenStack and
Qpid service. Qpid provides a client library for bind-
ing to a Qpid service (functioning as an AMQP bro-
ker). On top of this library, OpenStack implements its
own wrapper library for Qpid, whose functions are in
turn invoked by a higher-level AMQP abstraction layer
in OpenStack. A configuration option is exposed from
the lower-level Qpid library via OpenStack wrappers to
system administrators in order to set the upper bound of
connection retries from the client side to a Qpid broker.
Upon loss of connectivity when an OpenStack service
sends an RPC message to a Qpid broker, the client-side
Qpid library retries to connect back to the broker until
the configured upper bound is reached. The state of the
connection is considered temporarily erroneous during
the connection retires. Once the retry limit is reached,
the Qpid library transits the state of the connection to a
permanent erroneous state and stops reconnection. How-
ever, this configuration option is not honored by the in-

direction layers in OpenStack. Specifically, OpenStack’s
Qpid wrapper keeps polling the state of the connection
without differentiating whether the connection resides in
a temporary or permanent erroneous state. This behavior
is undesirable because the connection maintained by the
lower-level Qpid library, once becoming permanently er-
roneous, will not be set to operational even if the root
cause for the loss of connectivity (e.g., a network par-
tition between the OpenStack service using the Qpid li-
brary and the Qpid broker) is resolved. The implementa-
tion of OpenStack’s Qpid wrapper unnecessarily blocks
the RPC issuer service in this case.

3.4 Supporting Library Interference

Issues related to the use of external libraries in Open-
Stack are not confined to the OpenStack-and-external-
library boundaries. External libraries can, in reality, in-
terfere with each other in unexpected ways. Notably,
OpenStack utilizes the Eventlet and Greenlet libraries for
cooperative threading. With those libraries, user-level
threads in an OpenStack service are scheduled cooper-
atively: one thread continues executing without preemp-
tion until it reaches a scheduling point defined by the li-
braries, at which point the control flow is switched to
another thread (if such a thread exists). This user-level
thread scheduling requires the modification of certain
blocking standard Python library calls, such as sleep,
in order to prevent the caller thread from blocking the
entire OpenStack service. The Eventlet library provides
standard library function patches to achieve the coopera-
tive scheduling. However, those patches are not 100 per-
cent compatible with the standard library. Their subtle
nuances may negatively affect the functionality of other
external libraries used in OpenStack.

Consider the client library of Qpid again. Before an
OpenStack service can use the connection objects pro-
vided by the Qpid client library to communicate with a
Qpid broker, a connection pool needs to be instantiated.
During this procedure, the Qpid client library internally
uses a pipe to synchronize a waiter object which waits for
the connection to a Qpid broker to be established and a
connection engine object responsible for the connection
establishment. The Qpid library implements this conven-
tional consumer/producer synchronization by having the
waiter issuing a select call on the read end of the pipe
and, when the call returns with a file descriptor ready for
reading, issuing a read call on the file descriptor.

However, our tool shows that this design causes the
blocking of an entire OpenStack service if, at the con-
nection pool creation time, no Qpid broker is active. The
OpenStack service in question remains blocked even if
a Qpid broker becomes active after the pool creation at-
tempt. This bug is caused by the fact that in OpenStack,

4



the select function call is patched by the Eventlet li-
brary, and there is an incompatibility issue related to the
patched version. The standard library version of select
returns a non-empty collection of file descriptors in the
read file descriptor list only if they are ready for read-
ing. The Eventlet implementation, however, returns such
a non-empty collection if the file descriptors are ready
for reading or if there are exceptional conditions asso-
ciated with them (such as the occurrence of a POLLERR
or a POLLHUP event, due to the fact that select is im-
plemented by poll in Eventlet). This nuance makes it
possible for the Qpid library to read a not-yet-ready file
descriptor after the return of a preceding select call,
which in turn causes the blocking.

This issue, as well as the one in Section 3.3, clearly in-
dicates that examining the fault-resilience of one module
in an isolated environment is insufficient for guarantee-
ing the overall fault-resilience. We would thus suggest
that cloud management stack developers conduct thor-
ough testing on the overall fault-resilience of the stacks,
with a focus on the compatibility of external libraries.

3.5 Periodic Check

Periodic checks are widely used in OpenStack, mainly
for monitoring the well-being of various services. Our
study suggests that this mechanism be extended to other
aspects of OpenStack as well.

One such aspect is the persistent states of the cloud en-
vironment maintained by OpenStack. For example, our
study shows that during the processing of a VM creation
request, if the scheduler or the compute service crashes
or restarts, then the created VM may remain in the tran-
sient BUILD state. This is an undesirable behavior be-
cause a created VM should enter a stable state—ACTIVE
if the creation is successful and ERROR otherwise—in a
timely manner. Having aborted the VM creation due
to service crashes yet marking the VM creation as in
progress would confuse users. A periodic service for
checking the progress of request processing and resetting
related VMs to their according stable states will prove
useful in this case.

Similarly, if an RPC cast message related to the deal-
location of a fixed IP is lost during the deletion of a VM,
the IP remains in the allocated state while its associated
VM has been deleted and the lease of that IP address
has expired. Such an IP address cannot be reused by
other VMs, causing network resource leakage. A peri-
odic check is needed in this case to reap orphan IPs.

The Falcon spy network [2] seems a promising poten-
tial enhancement to existing periodic checking mecha-
nisms in OpenStack. Falcon proposes the use of a hierar-
chical probing architecture in which heartbeat messages
from one layer are monitored by the layer underneath it.

In a cloud management stack, we may reuse the idea and
design a layered spy network, within which the upper-
most spy monitors the processing of requests in a service
(e.g., the processing of a VM creation request by a given
compute service), and the rest spies monitor lower ab-
straction layers in the management stack.

3.6 Miscellaneous Programming Bugs
Our fault-injection tool has also found bugs which seem
to result from occasional inadvertence. For example, one
flaw in OpenStack’s Qpid wrapper is that, when an ex-
ception occurs during an open-connection operation to
a Qpid broker, the wrapper constantly retries open with-
out first using close to reset certain internal states main-
tained by the connection, causing subsequent calls to fail.
Another example is that, when a user invokes an external
compute API but the authentication operation fails due to
an internal error condition in the authentication service,
the compute API service replies a confusing error mes-
sage to the user, mistakenly attributing the failed authen-
tication to the use of an invalid token instead of reporting
the internal error.

4 Conclusions

In this paper, we described our first attempt to address the
fault-resilience issues related to the emerging cloud man-
agement stacks. With a preliminary fault-injection tool,
we studied the fault-resilience of OpenStack, provided
in-depth discussions on six categories of fault-resilience
issues, and proposed suggestions on how to strengthen
this software layer.

Acknowledgment

We thank Dilma Da Silva, David Oppenheimer (our
shepherd) and the anonymous reviewers for their valu-
able suggestions. The work reported in this paper was
supported in part by the US Air Force Office of Scien-
tific Research under Grant No. FA9550-10-1-0393.

References
[1] AMAZON. Summary of the Amazon EC2 and Amazon RDS ser-

vice disruption in the US east region. http://aws.amazon.com/
message/65648/. Retrieved in March, 2013.

[2] LENERS, J. B., WU, H., HUNG, W.-L., AGUILERA, M. K., AND
WALFISH, M. Detecting failures in distributed systems with the
falcon spy network. In SOSP’11.

[3] MICROSOFT. Summary of Windows Azure service disruption on
Feb 29th, 2012. http://blogs.msdn.com/b/windowsazure/
archive/2012/03/09/summary-of-windows-azure-

service-disruption-on-feb-29th-2012.aspx. Retrieved
in March, 2013.

5


