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Abstract—Multi-core System-on-Chip (SoC) has become a
popular execution platform for many embedded real-time
systems that require high performance and low power-
consumption. High temperature is known to accelerate the
failure of deep submicron chips. To prevent such acceler-
ated failures due to chip overheating, various thermal-aware
scheduling (TAS) algorithms and dynamic thermal management
(DTM) have been proposed and applied to mission/safety-
critical applications. To control on-chip temperature more
effectively, it is necessary to predict the thermal dynamics
of a multi-core chip in real time and trigger appropriate
power/temperature management before overheating the chip.
However, due to dynamically-changing runtime environments,
it is very difficult to estimate the chip temperature on-the-fly.

In this paper, we propose models of efficiently estimat-
ing multi-core chip temperature while accounting for the
system dynamics in real time. Based on these models, we
design a proactive peak temperature manager (PTM) which
periodically estimates future core temperature and triggers
proper DTMs on the estimated-to-be-overheated cores for their
cooling without violating applications timing constraints. Our
in-depth evaluation based on the HotSpot thermal simulator
has shown that the proposed method can predict the occurrence
of peak temperature in a core with 90–98% accuracy, and
using the estimated thermal model of a multi-core chip, PTM
can effectively keep core temperature below a given threshold
without violating any timing constraint.

I. INTRODUCTION

Use of multi-core chips to meet the non-functional re-
quirements of embedded real-time systems has been drawing
significant interest due mainly to their potential for high
performance and reliability at low cost. The state-of-the-art
CMOS scaling-down technology enables a chip to contain
more processing units on a single die to achieve higher per-
formance. However, as CMOS process technology continues
to scale down into the nano-meter, the power density on a
chip continues to rise, generating more heat and thermal
hotspots on the chip than ever before. High temperature
is known to accelerate the degradation/failure of electronic
circuits. High on-chip temperature also affects the functional
and timing correctness of the chip’s operation [1], and
will eventually cause irrecoverable failures. Hence, proper
temperature management on a multi-core chip is crucial
to reduction of the risk of failure resulting from thermal

hotspots, and satisfaction of the non-functional requirements
of embedded real-time systems.

To address the unreliability caused by high chip temper-
ature, various thermal-aware scheduling (TAS) algorithms
have been used for safety/mission-critical applications run-
ning on a uni/multi-core processor. Of these, the TAS
algorithms using dynamic voltage and frequency scaling
(DVFS) have been studied extensively [2], [3]. Assuming
that the chip thermal model is estimated to be linear, and also
available at system design time, both the timing and thermal
constraints are guaranteed by those methods at design time.
However, since the workload and surrounding environment
greatly affect the chip temperature at runtime, it is very
difficult to obtain an accurate linear thermal model at design
time without considering the runtime information.

To circumvent this difficulty in obtaining an accurate
chip thermal model, power/temperature management can be
triggered reactively at runtime, i.e., the system slows down a
core’s speed or turns it off for a certain period of time when
the core temperature exceeds a given threshold. However,
such reactive methods cannot prevent overshooting of the
chip temperature. To lower the chance of violating the peak
temperature constraint, we need frequent monitoring of core
temperature. All of these contribute to inefficient thermal
management and increase the runtime overhead. For efficient
thermal management, several proactive schemes based on
linear autoregressive (AR) models have been proposed [4],
[5]. Despite the simplicity of the linear AR model, its use of
a core’s past temperature traces makes it difficult to use for
the case of running multiple tasks on the core. In particular,
when the amount of heat generated by the executing tasks
varies significantly, a core’s temperature prediction based
solely on its past temperature traces becomes inaccurate
as they do not accurately reflect the core’s future thermal
behavior.

To remedy/mitigate the above problems, we first design a
runtime peak temperature manager (PTM), which is invoked
periodically to proactively avoid overheating a multi-core
chip. We assume that a given set of independent periodic
tasks are partitioned and assigned to cores so as to meet
the task timing constraints by a given scheduling algorithm.
The proposed PTM is then invoked periodically at runtime to
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operate on the given task partition and along with the given
scheduling algorithm. Depending on whether or not each
core has its own separate power domain, the PTM executes
locally or globally.

To predict the future thermal behavior of a core at the
time of PTM invocation, we propose a simple but effective
runtime method for estimating the thermal model of each
core. For a given time window, each core is categorized
as “overheated” or “not-overheated” using a temperature
threshold, which is a design parameter. We formulate the
chip-temperature prediction as a binary classification prob-
lem, and apply the Support Vector Machine (SVM), a popu-
lar machine learning technique. Thus, each core has its own
thermal model based on the SVM, and the PTM keeps the
thermal models up-to-date using runtime information. To de-
termine whether or not a core will be overheated before the
next PTM invocation, we use the thermal profiles (obtained
off-line) of tasks scheduled to execute during the next PTM
period, as well as the currently-measured core temperatures.
Then, depending on the underlying hardware support, the
PTM can apply DVFS or power-gating locally or globally.
Based on the proposed PTM and the thermal prediction mod-
els, we incorporate such temperature management schemes
to avoid overheating without violating any timing constraint.
The performance of PTM with temperature-management
schemes is evaluated via realistic simulation and analysis
in terms of effectiveness, time-complexity, and limitations.

The rest of this paper is organized as follows. Section
II states the assumptions and describes the system models.
Section III presents the proposed PTM and formulates the
thermal model estimation problem. Section IV describes
a method for constructing temperature prediction models
using SVM for its online use. Section V presents various
temperature-management schemes that the proposed PTM
can use. Section VI evaluates the performance of the PTM
using extensive simulations. Section VII discusses the re-
lated work, followed by the concluding remarks in Section
VIII.

II. SYSTEM MODELS

To design the runtime PTM for multi-core chips, we need
to define a set of models, including the processor, the task
and the scheduler models.

A. Processor and Chip Models

A single-chip system S with M cores is represented by
S = {corei}Mi=1. All cores may be identical or heteroge-
neous.

To measure the core temperature at runtime, we assume
that on-chip temperature sensors are deployed on a multi-
core chip. In practice, it is difficult to obtain accurate core
temperature values due to measurement noise and sensor
placement. It was reported that the error of temperature
measurement is around 1◦C and the accuracy is further
improved with more sensors [6]. In this paper, we assume

that a sufficient number of accurate temperature sensors
have been deployed on a chip to minimize the measurement
errors, and the maximum hotspot temperature in each core
can be acquired from the temperature sensors on the core.

Also, the thermal dynamics of a core are coupled with
the thermal activities of its neighbor cores in a multi-
core chip. Therefore, the knowledge of the chip’s physical
layout of cores is essential for the estimation of each core’s
temperature. To this end, the neighbor cores of corei in S are
assumed known. For example, the neighbor cores of core2
in Fig. 1 are {core1, core3, core5, core6, core7}.

core 1

core 2

core 3

core 4

core 5 core 6

core 7

core 8

Figure 1. Layout of 8 cores on a chip.

B. Thermal Dynamics on a Multi-core Chip

The thermal behavior of a multi-core chip can be de-
scribed by its equivalent thermal circuits, where each com-
ponent (such as cores, heat spreads, heat sinks, inter-
connectors, etc.) is considered as a thermal node [3], [7].
By assuming that thermal dynamics of a chip is a linear
and time-invariant (LTI) system and the number of thermal
nodes on a chip except cores is H , the thermal dynamics
of a chip can be described as a discrete-time linear state
equation as [8]:

x(n) = Ax(n− 1) + Bu(n− 1) (1)

where x(n− 1) and u(n− 1) are (M +H)-element vectors
representing the temperatures and power consumption at the
thermal nodes at time t = n · ∆t. For convenience, we
assume that corei’s temperature and power dissipation is
the i-th element in the corresponding vector. Also, A and
B are (M + H) × (M + H) matrices. The PTM does not
require any prior knowledge of A and B at both system
design time and runtime.

C. Task Model

The task system under consideration is composed of N
independent periodic tasks T = {τi}Ni=1. We assume that
each task τi is executed only on its designated core, and let
Tj denote a set of tasks designated on corej . A task τi is
modeled as τi = (ei, êi, pi,Θi) where ei is the worst-case
execution time, êi the average-case execution time, pi the
period of τi and Θi an additional parameter to represent the
amount of heat generation during the task execution. Task τi
is invoked every pi and each such invocation is called a job.
We assume that the relative deadline of a task is equal to
its period, meaning that each job must be completed before
the next job of the same task is released. In a case where
a multi-core chip can change its operating frequency using
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DVFS, let ei and êi denote the worst-case and average-case
execution times of τi when the operating frequency is set to
the maximum speed, fmax.

In addition, the core temperature depends on the power
consumption of the tasks executing on it. Different tasks
consume different amounts of power. For accurate prediction
of the cores’ thermal behavior, we thus need a metric to
identify the relative amount of heat generated during each
task execution. For this purpose, we define an additional
parameter, Θi, called the thermal profile of τi. For example,
the average power consumption of τi’s execution can be
used as Θi. However, because on-chip power sensors are
not widely used in modern microprocessors, a steady-state
temperature during the execution of a task is used to define
its thermal profile in this paper.

Let P̂i denote the average power consumption of τi’s
execution. We assume that τi is executed repeatedly on its
designated core, corek in S, for a sufficiently long period
of time while other cores are in sleep mode. Using Eq. (1),
the cores’ steady-state temperatures are expressed as:

x(∞) = Ax(∞) + Bũ

where ũj,1 = P̂i for j = k and ũj,1 = ε(' 0) otherwise.
Thus, P̂i ' Θi/Dk,k where D = (I−A)−1B, meaning that
Θi/Θj = P̂i/P̂j for any τi and τj in Tk.

When the task set T is given at system design time, the
steady-state temperature of each task can be obtained off-
line by recording the on-chip temperature sensor readings
while repeatedly executing the task on its designated core
without any DTM mechanism for a sufficiently long period
of time. For this, the inputs of each task should be known
at design time, because the amount of power consumption
varies with its task execution path. This process is akin to
the empirical estimation of task execution time.

All of the thus-obtained tasks’ thermal profiles are used
for classification and estimation of the future core tem-
peratures at runtime. Since a thermal profile is used to
differentiate the relative amount of heat generated by a task
from others’, the operational environment at design time,
such as room temperature, need not be the same as that
at runtime. Using the same processor model in the HotSpot
thermal simulator, we obtained the steady-state temperatures
of MiBench programs as given in Table I.

Table I
ESTIMATED STEADY-STATE TEMPERATURE OF TESTBENCH PROGRAMS

(◦C)

bitcnt fft gsm dijkstra rijndael sha qsort susan
89.31 76.18 82.94 90.97 75.23 89.9 80.44 91.0

D. Scheduler and PTM Models

We assume that each core has its own local scheduler.
Before the system starts, the tasks in T are assigned to
the cores in S so as to satisfy the schedulability condition

on every core with the assigned tasks, assuming that the
operating frequency of all cores are set to fmax.

At runtime, the local scheduler and the PTM cooperate
with each other. First, the PTM is invoked every pt, which is
chosen at the system design time. At the beginning of every
pt, the PTM interrupts its corresponding cores to monitor
their temperature, and estimates whether or not a core will
be overheated during the next pt using the given temperature
threshold and the temperature prediction model. If a core
is expected to be overheated during the next pt, the PTM
applies DTM to cool it. Here, we choose two DTM schemes,
DVFS and power-gating, and discuss how to incorporate
them into PTM in Section V. The PTM operates either
locally or globally. Depending on the underlying hardware
implementation, the power domain of each is separated from
others’, or is shared by all cores in S. If each core has its
own power domain, each core has its own PTM, but when
it shares the power domain with all other cores, there exists
one PTM in S, and executed on a randomly-selected core
in S.

The local scheduler on a core executes the released jobs
under the earliest-deadline-first (EDF) scheduling policy.
The following variables on corel are updated by its local
scheduler at runtime:
1) Completed portion ci of the job of τi ∈ Tl, which

is currently running on the core. Given τi’s execution
time ei and êi, it is used to calculate the average-
case remaining execution time of jobs, which is then
used to estimate the core’s future thermal behavior. The
completed job portions are also used by the PTM to
check the available time slack on the core when applying
the proper DTM.

2) Event of peak-temperature occurrence on corel during
every pt interval. Depending on the underlying hardware
support, peak temperature reaching the peak temperature
during each pt can be alerted by an interrupt [9], or
obtained by sampling the core temperature.

The local scheduler keeps and updates these variables at
the next PTM invocation time.

III. PROBLEM STATEMENT

Our PTM is designed with two constraints in mind: (1)
meeting all timing constraints of the given task set, and (2)
maintaining the peak temperature of the cores below a given
threshold throughout the system operation. It may not be
feasible to meet both constraints in certain cases due to the
limit of hardware resource capacity and the tightness of task
timing constraints. In such a case, our algorithm treats the
constraint (2) as soft, but treats the constraint (1) as hard.

To effectively control the temperature on a multi-core
chip, the PTM relies on the chip temperature prediction
models to avoid overheating any part of the chip. As the
PTM is invoked every pt, it should be able to predict the
thermal behavior of a core(s) during the next PTM interval
upon its invocation.
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Figure 2. Classification of the overheated core with pt = 10 and ps = 1.

Upon invocation of the PTM at t = t, a core is said to
be “overheated” if its temperature is estimated higher than
the given threshold at some time during [t, t+ pt) when the
core clock frequency is set to fmax. Fig. 2 illustrates how a
core is classified as overheated. We assume that ps is given
as a design parameter where ps is a divisor of pt and the
power dissipation on each core is almost constant during ps
interval. Also, let t = n ·∆t and ps = x ·∆t. Using Eq. (1),
the core temperature at time t = t+ k · ps is derived as:

x(n+ kx) = Akxx(n) +

k−1∑
j=0

x∑
l=1

Akx+jx−lBũ(j)

where ũ(l) is the expected power vector at t = t + l · ps.
Since the power dissipation on each core is assumed not
to vary during ps, if the core’s temperature is below the
threshold at t = t+ k · ps (0 ≤ k ≤ pt/ps), it is guaranteed
not to be overheated during [t, t+pt). For simplicity, corei’s
temperature at t = t+ k · ps is expressed as:

xi,1(n+ kx) = gi,k({xj,1(n)}j∈Ni
, {ũi,1(j)}k−1j=0 ) + ∆i,k

(2)
where gi,k(·) is a linear function of its inputs, Ni is the
set of corei’s neighbors and ∆i,k the sum of other remain-
ing terms, which are not dependent on {xj,1(n)}j∈Ni and
{ũi,1(j)}k−1j=0 . When pt is chosen smaller than the thermal
time constant of a chip, the first term in Eq. (2) becomes
dominant. Also, because the thermal profile of a task is
proportional to its average power consumption, xi,1(n+kx)
can be approximated as a linear function of {xj,1(n)}j∈Ni

and the thermal profiles of tasks executing at time t = t+jps
(0 ≤ j ≤ k − 1). Thus, for the given temperature threshold,
Θthres, overheating corei can be predicted using:

pt/ps∏
k=1

u−1(Θthres − xi,1(n+ kx)) (3)

where u−1(·) is the unit step function. However, since A
and B are unknown, and the temperature of some thermal
nodes (e.g., heat sinks and heat spreads) on a chip cannot be
measured, Eq. (3) cannot be used directly in the PTM. Thus,
using the chip model, the task model, and the scheduler
model, the temperature-prediction problem in our PTM can
be defined formally as follows.

Given a set of periodic independent tasks T, a
multi-core system S, and a temperature thresh-
old Θthres, find a runtime temperature-prediction
model for each corei in S that generates the same

results of Eq. (3) during [t, t+pt) when the PTM
is executed at time t = t.

To solve this problem, we adopt the SVM-based thermal
prediction model as detailed in Section IV. When a core is
predicted to be overheated, the PTM applies its available
DTM to the core as follows.
• Adjust the core speed (DVFS): The core’s speed is set to

the lowest clock frequency below fmax without violating
the timing constraints of tasks in T. Otherwise, the core
operates at fmax.

• Perform power-gating: The PTM calculates the maximum
available time slack during [t, t+pt) on the core and turns
it off during the time slack without violating the timing
constraints of tasks in T.
Each DTM scheme can be applied globally or locally.

Also, when the core is slowed down or turned off, all the
assigned tasks should not miss their deadlines: this will be
detailed in Section V.

IV. THERMAL PREDICTION MODEL

The temperature of a core changes dynamically during
runtime and is affected by many factors, such as the work-
load, the temperature of its neighbor blocks, the material,
the room temperature and the cooling mechanisms on the
chip. As a result, the PTM requires a temperature-prediction
model for each core to estimate its temperature at runtime.
Due to the high complexity of the underlying thermal dy-
namics of a multi-core chip, we cannot determine a complex
thermal model analytically at runtime. Thus, we adopt a
binary classification method and the SVM-based model to
predict whether or not the core will be overheated at each
PTM invocation. Since the cores on a chip are placed at
different locations, each core has its own prediction model.
So, we need to obtain M thermal prediction models for a
multi-core chip S for use at runtime.

The SVM is a well-known supervised machine learning
method in which each feature vector contains a set of numer-
ical features, which are deemed important in representing
the target system. The SVM takes a set of feature vectors as
input, along with their corresponding labels, which are used
for training the prediction models. Then, the thus-learned
models are used to predict the label of future input data.
In this paper, a core’s thermal behavior during [t, t+ pt) is
represented as a feature vector, and each feature vector is
labeled as “overheated” or “not overheated.” To guarantee
high prediction accuracy with minimum runtime overhead,
it is essential to select a good feature vector. From Eqs. (2)
and (3), one can see that a core’s thermal behavior during
[t, t + pt) is affected mainly by the following parameters
attributing to the feature vector during that interval.
1) The measured temperatures of the core and its neighbors

at t = t. Because all cores are on the same die, the
core’s future temperature is affected by the temperature
of all cores. However, for runtime efficiency, only the
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measured temperatures of its neighbors are included in
the feature vector.

2) The average thermal profiles of tasks scheduled to exe-
cute on the core at each ps time interval. For example,
two tasks τ1 = (2, 2, 4,Θ1) and τ2 = (2, 2, 7,Θ2) are
assigned on the core and ps = 1, pt = 3. We assume
that the first jobs of τ1 and τ2 consume their worst-
case execution times, but the second job of τ1 only
consumes 1 time unit. As shown in Fig. 3, {Θ1,Θ1,Θ2}
are the thermal profiles of tasks executing during [0, 3) in
this case. However, due to the variation of jobs’ actual
execution times, there exist other cases with different
thermal profiles of tasks during the same interval. To
account for this, the average thermal profiles among all
possible thermal profiles are used in the feature vector.
In this example, because the average response times of
the first jobs of τ1 and τ2 are 2 and 4, respectively,
{(Θ1 + Θ2)/2, (Θ1 + Θ2)/2,Θ2} are included in the
feature vector during [0, 3)

T1	   T1	  
0 1 2 3 4 5 6 

T2	  
time 

(Ɵ1, Ɵ1, Ɵ2) (Ɵ2, Ɵ1, Ɵidle) 

PTM invocation PTM invocation PTM invocation 

Figure 3. An example of tasks’ thermal profiles.

Once the feature vector is obtained for [t, t + pt), its
class label can be assigned after time t = t + pt from
the local scheduler as described in Section II-D. Using this
information, the SVM-based thermal model is initialized,
and trained online. We first present the method for deriving
the average thermal profiles of tasks included in the feature
vector, and then describe the methods for initializing the
model parameters in SVM, and training the SVM-based
thermal model online.

A. Feature Vector

To predict whether the peak temperature will occur in a
core during [t, t + pt) at the PTM invocation time t = t,
the PTM should construct a feature vector for this interval.
It includes the measured temperatures of the core and
the neighbor cores at time t = t, which can be easily
obtained from the on-chip temperature sensors, but requires
the expected thermal profiles of the tasks scheduled to
execute on the core during this interval. However, due to
the unpredictability of the actual execution time of the tasks,
the PTM should consider the average-case scenario from the
thermal perspective.

Thus, to estimate the average-case thermal profiles of the
tasks during [t, t + pt), let Si be a set of integers between
bt/pic and b(t+ pt)/pic. Then, for ∀k ∈ Si, the k-th job of
τi is either a job stored in the job queue at t = t or a job

which will be released during [t, t+pt). Let Ri,k denote the
average-case response time of the k-th job of τi, then the
average-case thermal profile of a task at t = t + jps (0 ≤
j < pt/ps) on corel will be obtained as:

1

Nt,j

∑
∀τi∈Tl

fi(t+ jps) (4)

where Nt,j is the number of tasks in Tl such that fi(t +
jps) 6= 0, and

fi(x) =

{
Θi kpi ≤ x < Ri,k for any k ∈ Si
0 otherwise,

Thus, to construct a feature vector and predict the thermal
behavior of a core during the interval [t, t+ pt), we need to
obtain Ri,k for ∀k ∈ Si and ∀τi ∈ Tl. For this, Wi(t, x)
is defined as a function of the average-case remaining
workload in the job queue on the core at time t which
should be completed before x · pi. Using this definition,
kpi +Wi(max(t, kpi), k+ 1) is the average-case response
time of the k-th job of τi without considering the blocking
time by the higher-priority jobs of other tasks released
during (kpi, (k+ 1)pi]. To obtain Wi(max(t, kpi), k+ 1),
Wi(t, k+1) on corel is initialized using the recent runtime
information from the local scheduler as:

Wi(t, k + 1) =
∑
τj∈Tl

bt/pjc(pj+1)≤(k+1)pi

h(êj − cj , ej − cj).

where h(a,b) = b if a ≤ 0, and a otherwise. Wi(kpi, k+
1) is then obtained using the iterative method as:
x′ ← x

x← min
∀τj∈Tl

(b x
pj
c+ 1)pj , ∆ = x− x′

Wi(x, k + 1)← u−1(Wi(x
′, k + 1)−∆) +

∑
τj∈Nl(x)

êj

where u−1(x) = max(x, 0) and Nl(x) is the set of tasks on
corel whose new jobs are released at t = x and x + pj ≤
(k + 1)pi for ∀τj ∈ Nl(x). The above iteration stops when
x = max(t, kpi).
Ri,k is initialized as kpi +Wi(kpi, k + 1). By applying

the iterative method again, Ri,k can be obtained as:
R′i,k ← Ri,k

Ri,k ← kpi +Wi(kpi, k + 1) +
∑
τj∈Tl

Xj êj

where Xj = u−1(min(b (k + 1)pi
pj

c+ 1, b
R′i,k
pj
c)− bkpi

pj
c).

The iteration stops when Ri,k = R′i,k or Ri,k ≥ t + pt.
Overall, the runtime complexity of the above two iterative
procedures is O(dpt/pmine) where pmin = minτj∈Tl

pj .
Since the size of Si is proportional to dpt/pie and dpt/pie ≤
dpt/pmine, the worst-case runtime complexity to construct
a feature vector on corel at the PTM invocation is O(|Tl| ·
dpt/pmine2).
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B. Initialization of Model Parameters (Off-line Step)

The accuracy of SVM depends on the several unknown
parameters used in the SVM. Hence, the model-selection
procedure is required to determine such unknown parameters
and to avoid the performance loss caused by over-fitting.
For this purpose, we need a sufficient start-up period for
initializing the model parameters before the system enters
its normal operation. During this period, the PTM constructs
a training data set which is only used for determining the
model parameters in SVM. In this paper, the Gaussian kernel
is chosen as the SVM kernel function, and 5-fold cross-
validation is applied to determine the model parameters. The
details of this procedure can be found in [10].

C. Model Training

At runtime, the thermal dynamics of a multi-core chip is
affected by the chip’s surrounding temperature. Since the
room temperature can change during the system’s mission,
An online SVM is adopted for the PTM [11].

As described in Section II-D, the local scheduler updates
the actual label of the feature vector over the last pt time
interval at the beginning of the PTM invocation. When no
DTM is triggered over the last pt interval, the PTM uses this
information as a new training data and stores it in a queue
to update the core’s thermal model. For this, we assume
that a thermal-model updating task τptm runs on each core
every pt with the execution budget eptm. Like a polling
server, it is scheduled with other tasks assigned on the core
and consumes its execution budget every pt to update the
thermal model with a batch of new training data inputs stored
in the queue. The thermal-model updating task suspends its
execution when it consumes eptm time units or is suspended
by other higher-priority tasks assigned on the core.

The thermal-model updating task executes two proce-
dures, called the incremental and the decremental learning.
When a new training data is added to the SVM, the in-
cremental procedure updates the SVM from the previously-
updated model. The decremental part is a pruning procedure
which removes an old training sample from the existing
training data set. When the ambient temperature changes,
the thermal model should be able to adapt itself to the new
environment by eliminating the out-of-date data from the
training set. Also, this pruning part is essential to improve
the runtime efficiency. Thus, the thermal-model updating
task checks whether the number of training data is larger
than Ntrain, which is given as a design parameter, after
executing the incremental part. Then, it removes the least
important support vector from the existing support vectors,
and updates the SVM again.

V. TEMPERATURE MANAGEMENT APPLICABLE TO PTM

Using the temperature models, the PTM can detect
whether the peak temperature will occur in a core proactively
and determine when to cool it down at runtime. In this
section, we briefly describe how the existing DTMs are

incorporated with the PTM and applied to the cores that
are predicted to be overheated.

A. DVFS
Chip-wide DVFS and per-core DVFS are the two main

types of DVFS [12]. The chip-wide DVFS mechanism
treats the entire chip as a single unit, while the per-core
DVFS implements an on-chip voltage regulator on each core
to isolate the power domain of a core from others’. To
incorporate existing DVFS schemes in the PTM, we first
introduce the concept of job density of a task τk, which is
introduced in [13], and defined as

denk(x) =


ck(x)·fmax

pk
if the job released at t = b x

pk
cpk

is completed before t = x,
ek·fmax

pk
otherwise,

where ck(x) is the actual execution time of a job of τk
during [b x

pk
c · pk, (b x

pk
c+ 1) · pk], and it is obtained from

the local scheduler. Since the clock speed should always be
equal to or higher than the total sum of job densities of
the tasks assigned on the core at any time [13], the unused
cycles of the worst-case execution time are used to reduce
the clock speed. Since the frequent voltage/frequency scaling
results in switching overhead from the regulators, once the
operating voltage/frequency of each core is adjusted at the
current invocation time of the PTM, it remains unchanged
until the next invocation of the PTM.

First, when per-core DVFS is available in the system,
the sum of job densities of the tasks on corel at the PTM
invocation time t = t is equal to

∑
τk∈Tl

denk(t). During
[t, t + pt), the sum of job densities of the tasks changes
at each job release time. By defining the job release list
of corel, denoted by Rl(t, x), which contains a set of
job release times during [t, x] on corel, the lowest clock
frequency, fl, at which corel can operate is obtained as:

max
x∈Rl(t, pt)

∑
τk∈corel

denk(x) ≤ fl.

Thus, when corel is predicted to be overheated at time
t = t, the PTM adjusts the clock speed of corel during
[t, t+pt) to the lowest clock frequency among all operating
clock frequencies which are higher than fl, and is set back
to fmax at the next invocation of the PTM. Likewise, when
chip-wide DVFS is applied, the clock speeds of all cores in
S are adjusted to maxcorel∈S fl.

B. Power-Gating
Power-gating is a well-known technique for efficient

reduction of leakage power by inserting sleep transistors
between logic transistors and power/ground [14]. Similarly,
it can be implemented at either core level or chip level.

To determine how long the overheated core will be turned
off, the PTM obtains the available time slack on the core
at time t = t, which can be calculated by using the similar
methods in [15], [16]. If a core is predicted to be overheated,
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then the PTM turns it off during its available time slack. If
it has some tasks to be released while the core is turned off,
their releases are put off until the core wakes up after the
cool-off. Like chip-wide DVFS, when the power domains of
all cores are shared, and the entire chip needs to be turned
off, the maximum allowable cooling time is determined by
the core which has the minimum time slack.

VI. PERFORMANCE EVALUATION

The accuracy and the runtime overhead of the SVM-based
thermal prediction model are evaluated while considering
various model parameters and the runtime dynamics. Based
on the thermal model, the performance of PTM with DVFS
and power-gating is evaluated in terms of the percentage of
peak temperature occurrence during runtime. This evaluation
is done using the HotSpot thermal simulator with a set of
synthetic tasks running on a target chip specified in the
selected simulator.

A. Experiment Setup
We use the well-known HotSpot thermal simulator [7]. An

8-core chip is chosen as a target platform in which each core
is set to operate at 1.5Ghz for its clock and 1.2V for its Vdd.
The chip’s layout is shown in Fig. 1, which replicates the
Alpha 21264 floorplan with a scaled-down physical size of
12.6853mm2, considering 45nm CMOS process technology.

The application in the simulations consists of a set of
synthetic tasks, each of which is generated with its period
uniformly distributed in [20, 200]ms, and its utilization
uniformly distributed in (0, 0.8]. The tasks are generated
one-by-one and allocated to all cores using the First-Fit (FF)
until the sum of task utilization in each core reaches 0.85,
i.e.,

∑
τi∈Tl

ei/pi > 0.85 for ∀corel ∈ S.
To model the realistic power dissipation on the target

core model, we ran several embedded benchmark programs
with various inputs in MiBench benchmark suites [17] on
the Wattch power simulator [18], and obtained dynamic
power dissipation samples during the execution of each
application. Since the Wattch simulator does not support the
selected target microprocessor and technology, we applied
linear scaling methods (similar to those in [19]) to the
Wattch-produced power traces for accurate estimation of
dynamic power dissipation on the target core model. Then,
the dynamic power characteristics of each application in
MiBench benchmark are assigned randomly to the task in
the task set. To obtain the leakage power consumption on
the target core model, the McPAT power simulator [20] is
used in our experiments.

Considering the fact that the convection resistance of
the heat sinks for desktop processors is typically around
0.5˜2K/W [21], we chose 1.0K/W as the convection re-
sistance of the chip’s heat sink. The temperature threshold
Θthres is set to 85◦C. We assume that the room temperature
is 45.15◦C when the thermal profiles of the tasks and
the unknown parameters in the SVM models are estimated
before runtime.

B. Accuracy of Temperature Prediction Model

The accuracy of the prediction model is evaluated in
terms of the missed detection rate (MDR) of overheating
and the false alarm rate (FAR) for various runtime and
design parameters. The MDR is derived by calculating the
conditional probability, P (Y {|H), where H is the set of
events at which the peak temperature actually occurs in a
core during the PTM period and Y is the set of events when
the core is predicted (by the model) to be overheated at
that interval. Likewise, the false alarm rate is calculated as
P (Y |H{).

The design parameter, ps, was set to 2ms. The prediction
accuracy depends on the size of the training data set and
the PTM period. Thus, the thermal prediction model was
evaluated with pt = 50 and 80ms, and different sizes of
training data. In this paper, we only include the results with
Ntrain = 200 and 300, because only a small improvement
is shown to be made on the prediction accuracy when the
size of training data grows larger than 300. In addition to the
design parameters, we consider the following runtime con-
ditions which are unknown, but affect the thermal behavior
of a chip significantly at runtime.

• Variation of actual task execution time at runtime: The
prediction accuracy is affected by the variation of the
actual execution time of tasks. To account for this, we
first measure the prediction accuracy with the strong
assumption that the PTM has the exact knowledge of
the actual execution time of all released jobs on cores
and that the room temperature at runtime is fixed and
identical to the temperature at design time without
measurement errors. This is denoted as “ideal.” However,
the actual tasks’ execution times are random variables,
and it is very difficult to obtain their true distribution. So,
we assume that the tasks’ actual execution times follow a
Gaussian distribution as in [22]. Specifically, we assume
the ratios of tasks’ actual execution times to worst-case
execution times are normally distributed with mean 0.6
and standard deviation 0.2, which is denoted by C1.

• Different room temperatures at design and run times:
The thermal profiles of tasks are determined at design
time. Thus, the prediction accuracy is affected by the
difference of the room temperature at design time and
at runtime. For this, we set the room temperature to
50.15◦C, 5◦C higher than the room temperature at design
time, and increased the room temperature by 1◦C every
20 minutes during our simulation. With the variation of
the jobs’ actual execution times, this condition is denoted
by C2.

• Measurement noise: There may be measurement errors,
thus making the prediction model learn inaccurately. The
errors are mainly due to the inaccuracy and wrong place-
ment of temperature sensors. To account for the impact
of measurement errors, we added a random Gaussian
noise with standard deviation σ = 0.1 or 0.5◦C to the
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temperature measurements. Each value is set to be the
average error of the temperature measurement for sparse
and dense architectures when 36 sensors are employed per
core, respectively [6]. Overall, C3 denotes the case when
all of the three conditions are considered together in the
simulation.
For performance comparison, we consider the following

methods.
• First-order model: With the cores’ temperature and the

thermal profiles of the executed tasks recorded over time,
the thermal model in Eq. 1 is obtained using a regression
method. To estimate the model, only cores’ temperatures
are used, but the temperatures on other components on
a chip are excluded from the regression process, because
their temperatures cannot be measured. This method is
denoted by FOM.

• Linear AR method: With this method, multiple linear AR
models are devised on each core to predict the temper-
ature during the next PTM period. The methods for the
prediction model creation in [4] are adopted. We denote
this method by AR.
For all parameters, the system continued operation for 120

simulation minutes after the core temperature got stabilized.
The prediction model errors are plotted in Fig. 4.

Overall, the MDR and FAR using the SVM-based pre-
dictor with pt = 50ms in C1 is shown to be around 8.4–
8.8% and 6.4–7.4%, respectively. Due to the randomness of
the actual execution times of the jobs, the MDR and FAR
of the SVM-based predictor is degraded up to 5.3% and
4.2%, respectively. Also, from the results in C2, when the
room temperature changes slowly, the MDR of the SVM-
based predictor is observed to be decreased by 1.1% due to
the delay of adapting the model to the changed surrounding
temperature. Also, the MDR is observed to be not affected
by the and measurement error. However, in the presence of
measurement errors, the FAR is increased by around 3.4%
in this case.

When pt = 80ms, FAR using the SVM-based predictor is
increased by up to 7.7% and 8.1%. When pt is increased, the
percentage of training data with “overheated” is increased
more than the case with a smaller pt in the training set.
Also, because more jobs are executed over a longer interval
than a shorter one, the chance of creating incorrect feature
vectors is increased as well due to the variation of the
jobs’ actual execution times. The possibility of being biased
against non-overheated cases is thus increased. Note that
a high FAR increases the overhead of DTM (e.g., the
switching overhead of DVFS and the overhead from data
retention when overheated cores are turned off), but the
runtime overhead of the PTM is decreased, Thus, the value
of pt should be chosen by considering the tradeoff between
the overhead of DTM trigger and the overhead of PTM
invocation.

The results also show that the performance of AR and
FOM. To achieve high accuracy with AR, the thermal

behavior on the core should be a stationary process [4],
which is not the case when multiple tasks with different
power characteristics are executing with relatively short
periods, which is usually on the order of few milliseconds.
Also, because the temperature information of other internal
thermal nodes on a chip cannot be measured, the simplified
FOM cannot capture the thermal behavior of a multi-core
chip correctly.
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Figure 4. Missed detection and false alarm rates of the thermal model of
an 8-core chip.

C. Runtime Overhead

Upon availability of new training data, the thermal model
of a core is updated by the thermal-model update procedure
on the core with period pt and execution budget eptm. Thus,
to determine the proper value of eptm, we should consider
the runtime overhead of the incremental and decremental
procedures in the SVM, which is affected by the number
of training samples and the dimension of the feature vector.
Considering these, we measured the runtime overhead of the
training procedure in the SVM by executing the algorithm
on the SimpleScalar micro-processor simulator [23]. The
processor speed is set to 1.5Ghz, which is the same as
the core speed used in our simulation, and the results are
plotted in Fig. 5. When Ntrain ≤ 200, the time required for
updating the thermal model is less than 1.5–2.0 ms when
pt = 50 and 80 ms. Thus, by allocating 3.9% and 2.5%
of the total utilization to the thermal-update procedure/task

192



in each core, the PTM is able to update the thermal model
when the surrounding temperature varies at runtime.
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Figure 5. The runtime overhead of updating the thermal model with a
new training data with pt = 50 and 80 ms

D. Percentage of Temperatures Exceeding Threshold
We now evaluate the performance of DVFS and power-

gating in the PTM considering all conditions in C3 with
σ = 0.5 and Ntrain = 200. The metric used for performance
comparison is the statistics of the sampled core temperatures
exceeding the threshold during runtime. When we ran the
given task set on the multi-core chip without DTM, the
percentage of the total sampled core temperatures above
the threshold was found to be around 14.7% on average
for a sufficient long period. We assume that there are four
DVFS levels: 0.8, 1.0, 1.2 and 1.5 GHz. Fig. 6 shows the
percentage of the sampled core temperatures exceeding the
threshold when different DTM schemes are applied to the
cores.
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Figure 6. The percentage of sampled core temperatures.

When per-core DVFS is applied, the percentage of tem-
peratures exceeding the threshold was observed only to be
0.048% with pt = 80ms, which is much smaller than 0.195%
with pt = 50ms. However, with pt = 80ms, the PTM
unnecessarily adjusts the operating frequency of cores due
to a high false-alarm rate.

Also, when the global DVFS is used in the PTM, the
percentage of peak temperatures is increased by up to
1.7% and 0.4% when pt = 50 or 80ms, respectively. The
performance is degraded due to the existence of cores with
minimum time slack when other cores are predicted to
be overheated. Overall, the performance of power-gating is
worse than the global DVFS, and the performance difference
is around 4.3% or 1.4% when pt = 50 or 80ms, respectively.

VII. RELATED WORK

A large body of research has been done on power
and temperature management in real-time and/or embedded

systems. Chen et al. [2] proposed a proactive real-time
scheduling algorithm on a uniprocessor that minimizes the
job completion times under the maximal thermal constraints,
or minimizes the temperature under both the timing and
maximal thermal constraints. Based on the simple chip
thermal model, approximated by Fourier’s Law, a processor
speed schedule was derived statically. Similarly, Fisher et
al. [3] studied thermal-aware scheduling on a multi-core
platform, in which the optimal speed schedule of cores is
derived, assuming that the thermal model of a multi-core
chip is given at design time. Using similar assumptions and
models, Wang et al. [24] proposed another speed scheduling
algorithm that minimizes the energy consumption subject to
thermal and timing constraints.

Using these approaches, the both thermal and timing
constraints are guaranteed to be met at system design time,
only when the thermal model of a chip is correctly estimated
and given at system design time. However, even though these
thermal models are correctly estimated at system design
time, the actual thermal behavior of a chip could differ
significantly from those estimated at design time, because
the room temperature may differ at runtime. Also, the power
consumption of computationally-intensive tasks is higher
than that of others with less intensive workloads. However,
most of these papers do not consider such non-uniform
power/thermal characteristics of tasks.

For temperature management at runtime, Fu et al. [25]
proposed a control-theoretic algorithm to meet the desired
temperature requirement on a multi-core chip subject to
timing constraints. However, since it does not include tem-
perature prediction, it cannot avoid the occurrence of peak
temperature during the sampling period. Wang et al. [26]
also applied control theory to power and temperature man-
agement without considering real-time constraints.

For temperature prediction models, Coskun et al. [4]
studied the autoregressive moving average (ARMA) model
to predict the future temperature of a processor, but they
assume that the phases of the given workload are stationary
processes, which does not hold for the systems where mul-
tiple tasks with different thermal characteristics are invoked
periodically and scheduled together on the same core. Zhang
et al. [27] proposed a new method for tracking statistical
characteristics of the rocessor’s power state and predicting
any change of the power state using Kalman filter. However,
none of these addresses the timing constraints of mission-
critical applications.

VIII. CONCLUSIONS

In this paper, we presented a new, runtime peak temper-
ature manager to meet both timing and thermal constraints
of real-time applications running on a multi-core platform.
The PTM uses a proactive mechanism to predict the future
thermal dynamic behavior of a target multi-core chip using
SVM-based prediction models. The models are based on
the thermal profiles of the tasks obtained off-line, which
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are, in turn, used to determine when to apply the existing
DTMs to overheated cores to meet the thermal constraints
without violating the application timing constraints. Also,
using the runtime information, the PTM trains the thermal
models of a multi-core chip online, and predicts the future
thermal behavior of each core at its invocation time.

We have evaluated the effectiveness of our PTM using a
combination of several widely-used power/thermal simula-
tors and a set of synthetic tasks with realistic power char-
acteristics obtained from well-known testbench programs
running on an 8-core chip model with 45nm technology. Our
evaluation results have shown that the proposed models can
predict the occurrence of peak temperature in a core with the
miss rate of 8.8–10.0% and the false alarm rate of 6.3–9.2%
at the expense of system resource utilization of 3.0–3.9%,
which is used to update the thermal models of a multi-core
chip. Given the encouraging results of our PTM, we plan
to conduct an extensive evaluation of the proposed solution
for more complex cases. Other hybrid DTM methods under
various system assumptions will also be incorporated into
the proposed PTM.
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