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Abstract—Coordinated Multi-Point (CoMP) transmission is
emerging as a concept that can substantially suppress interfer-
ence, thus improving the capacity of multi-cell wireless networks.
However, existing CoMP techniques either require sharing of
data and channel state information (CSI) for all links in the
network, or have limited capability of interference suppression.
In this paper, we propose distributed interference alignment
and cancellation (DIAC) to overcome these limitations. DIAC
builds on a key intuition of interference locality — since each
link is interfered with a limited number of neighboring links,
it is sufficient to coordinate with those strong interferers and
ignore others, in order to bound the overhead in CoMP. DIAC
realizes the localized coordination by integrating interference
cancellation and distributed interference alignment, and can be
applied to both the uplink and downlink of multi-cell wireless
networks. We validate DIAC using both model-driven and trace-
based simulation where the traces are collected by implementing
a MIMO-OFDM channel estimator on a software radio platform.
Our experiments show that DIAC can substantially improve the
degrees of freedom in multi-cell wireless networks.

I. INTRODUCTION

Recently, Coordinated Multi-Point (CoMP) transmission
has emerged as a promising communication paradigm for
multi-cell wireless networks. By allowing information shar-
ing and cooperation among multiple transmitters, COMP can
dramatically reduce inter-cell interference, thereby improving
the capacity of an entire network. Its advantages have been
validated both theoretically [1] and experimentally [2].

CoMP requires the transmitters to share channel-state-
information (CSI). By augmenting data sharing, interference
between neighboring links can be further suppressed. For
example, when using zero-forcing (ZF) precoding [3], multiple
links are combined into one MIMO via CSl/data sharing
between transmitters, and each link can transmit as if there
were no mutual interference. However, such schemes need to
group links into clusters. Links near the cluster edge still suffer
from interference from neighboring clusters. To eliminate such
edge effect and enable concurrent transmission of all links, the
entire network of links need to be grouped and cooperate with
each other. This becomes unrealistic for large networks, due to
limited capacity of the backhaul network used for information
sharing between links.

Interference alignment (IA) [4] is arguably the most promis-
ing mechanism that suppresses interference in CoMP systems.
In theory, it can achieve % total degrees of freedom (DOFs)
when there are K links in the network each with M x M
MIMO, i.e., half of the links can transmit concurrently. But this
ideal bound has not been realized due to practical constraints,

and approximate solutions based on precoding and projection
filtering have been proposed [5]. In [6], Gollakota et al.
implemented a preliminary version of interference alignment
called TAC which integrates IA with successive interference
cancellation (SIC) on the uplink. IAC is centralized and is
not scalable to large wireless networks, because it assumes
all links interfere and share information with each other.
Its achievable DOF is eventually limited by the number of
antennas on each node, and does not scale as the network size
Srows.

Distributed algorithms with limited information sharing
have also been proposed for CoMP. For example, NICE
[7] allows uplinks that can decode their frames to send the
decoded packets to other base stations (BSs), who then cancel
such known interference using SIC. MaxSLNR [8] suppresses
the leakage interference to neighboring links and only requires
CSI sharing between neighbors. However, existing distributed
algorithms for CoMP have limited capability for suppressing
interference.

In this paper, we propose distributed interference align-
ment and cancellation (DIAC), which overcomes the above
limitations by leveraging interference locality. Due to limited
interference range of transmitters, each link is interfered by
a limited number of neighboring links. So, it is sufficient
to allow each link to coordinate with the neighboring links
where dominant interference comes from. This in turn bounds
the traffic load on the backhaul network. However, it is not
straightforward to extend existing CoMP algorithms to support
such localized coordination. For example, when using ZF
precoding, the precoding vector designed for one link (and
its neighbors) may conflict with that of a neighboring link
(which may not have exactly the same set of neighbors).
Consequently, the precoded signals may become random inter-
ference to neighboring links, and the resulting SINR may be
even worse than without precoding. DIAC meets this challenge
by a joint design of localized interference cancellation and
distributed interference alignment.

In DIAC, each link shares data and CSI with, and cancels
the interferences from only neighboring links (i.e., a small
set of coordination points). On the uplink, the base station
receives decoded data from neighbors, reconstructs the in-
terfering signals, and cancels them using successive inter-
ference cancellation (SIC). The downlink operation is more
involved. Since clients cannot share data and perform SIC, the
interference needs to be pre-cancelled at BSs. As mentioned
above, existing pre-cancellation strategies for CoMP (e.g., ZF-



precoding) become ineffective due to conflict of precoding
vectors. DIAC solves this problem using a localized version
of dirty-paper-coding (DPC), which only needs the composite
DPC-coded information from neighbors. DIAC further applies
distributed interference alignment (DIA) [5] that attempts to
align interferences to a dimension orthogonal to the useful
signals. This is realized by allowing links to share CSI with
neighbors, and then iteratively design the precoding/projection
matrix at the transmitter/receiver side, so as to minimize
leakage interference to neighbors.

We evaluate the performance of DIAC using trace-driven
simulation. We implement a MIMO-OFDM channel estimator
on a WARP [9] software radio testbed, collect channel matrices
between the transmitters and receivers, and then feed these
traces to a Matlab simulator for DIAC. Our evaluation shows
that DIAC can enable concurrent transmissions of multiple
links even with a limited number of antennas. To further
understand the performance of DIAC at large scale, we
simulate DIAC under an empirical propagation model. Our
experiments have revealed that the number of antennas and
the scale of coordination may affect DIAC, but the effects
diminish as both factors increase. Therefore, to exploit the
benefits of DIAC while bounding the coordination overhead,
it is sufficient for each link to restrict the coordination to a
small set of neighboring links.

The remainder of this paper is structured as follows. In
Sec. II, we present our system models and details of the
DIAC algorithm. Sec. III, we introduce the design and im-
plementation of the MIMO-OFDM channel estimator in the
WARP platform. Sec. IV describes our experimental results
and finally, Sec. V concludes the paper.

II. ALGORITHM DESIGN FOR DIAC

A. Basic models

1) Precoding/projection model: We consider a multi-cell
network (wireless LANs or LTE cellular networks) consisting
of K cells. Each cell includes one link (also referred to as one
user) between a base station (BS) and a client. The AP and
the client have M and N antennas, respectively. d streams of
data are transmitted over each link, with d < min(M, N).

Let X[ be the d x 1 vector of data symbols to be
transmitted by user k, V' be the M x d precoding matrix for
the transmitter, U the N x d projection matrix for the receiver,
H the M x N channel matrix for transmitter [ and receiver
k. Using the superscript [k] to denote variables for user k, the
received signal of user k is:

K
vk — (U[k])T (Z H[kl]v[l])([l}) + zI (1)
=1

where Z[* is the AWGN matrix; ()T is the complex conjugate
operator. We assume equal power allocation among data
streams, i.e., each stream has power of %, where P is the
total power of a transmitter.

2) Localized coordination: CoMP systems may require
coordinating base stations to share both data and CSI in real-
time, and therefore, the backhaul wired network connecting
them must have sufficiently large capacity and low latency to
effectively support such coordination [10]. However, as the
network size grows, such requirements become infeasible in
practice.

In DIAC, we restrict the scale of coordination within
the locality of each user, thereby bounding the amount of
shared data/CSI and their propagation distance along the wired
backhual. We define the locality of coordination according to
potential interference. The potential interference of link j to
link 7 is: P

_ L
I; P, 2
where P;; is the signal power leaked from link j’s transmitter
to link 7’s receiver. A neighboring link j is included into link
i’s set of coordinating points R(7), only if I;; is larger than a
threshold 73, i.e.,
R(i) ={j: Lij > Ti,j # i} 3)

As a result, each user ¢ only needs to collect data/CSI from a
small set of |R(7)| neighbors, and suppress interferences from
them.

Note that j # R(i) may still cause interference to ¢, but
DIAC does not attempt to suppress such interference, so that
the locality of coordination (|R(¢)|) can be bounded. |R(3)]
essentially reflects a tradeoff between the performance of
DIAC and its overhead — a large R(i) improves decoding
performance by suppressing interference from more users, but
meanwhile it requires the data and CSI to be shared with more
users (i.e., heavier load on the backhaul). We will evaluate such
effects in our experiments (Sec. IV).

B. The DIAC Algorithm

In DIAC, we design a localized interference cancella-
tion algorithm, and integrate it with distributed interference
alignment (DIA), such that the network can support a large
number of concurrent transmissions. In what follows, we first
introduce the cancellation algorithm (for downlink and uplink,
respectively), and then discuss how it can incorporate DIA.

1) Challenges for localized cancellation: Existing work
has explored centralized algorithms for integrating interference
cancellation with interference alignment in a fully-connected
network (i.e., every link interferes and coordinates with all
other links) [6]. The basic idea is to first order the links, and
ensure one link (e.g., link 1) is decodable after interference
alignment, and cancel its signals from link 2; and then cancel
link 1 and link 2’s signals at link 3, efc.. However, it is
non-trivial to generalize it for practical partially-connected
networks (i.e., each link coordinates only with a limited
number of neighboring links), because for such networks, no
closed-form interference alignment solution exists that can
ensure a specific link is decodable, and it is unknown how
the links can be ordered to jointly perform cancellation and
alignment.
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Fig. 1. An example of localized downlink cancellation in DIAC.

The localized downlink interference cancellation is even
more challenging and to our knowledge, has not been explored
in previous works. Intuitively, the downlink cancellation can
be realized by joint precoding between neighboring BSs.
However, in partially-connected networks, joint precoding be-
comes infeasible due to conflicting precoding vectors between
different neighboring sets. For example, this happens in Fig. 1
when locality of coordination is restricted to adjacent links.
It is feasible for BS2 to jointly design the precoder with
BS1 and BS3, and BS3 with BS2 and BS4. But the resulting
precoding vectors of BS2 and BS3 will conflict with each
other, as they take into account information from different sets
of links. Thus a straightforward application of the precoding
may cause random interference, and perform even worse than
without precoding.

2) Localized downlink interference cancellation: On the
downlink, each user ¢ pre-cancels interference from neighbors
in R(7) in a distributed manner. Simply put, whenever a user
j € R(i) is decodable (i.e., it has sufficient SINR to decode its
data), its BS shares the to-be-sent data (interference for other
users) with users {k : j € R(k)} (which includes ¢). Then
BS ¢ encodes and pre-cancels the interference using dirty-
paper-coding (DPC) [3], based on the channel matrix from
the transmitters in R(¢) and its own receiver. Afterwards, the
receiver of link 7 no longer experiences any interference from
the transmitter of link j. Note that DIAC also requires the
channel matrix between dominant interferers (those in R(3))
and the receiver of 4. The estimation of channel matrix between
each transmitter and receiver will be discussed in Sec. III.

A key feature of the downlink cancellation in DIAC is
decentralization: it only requires neighboring users to ex-
change encoded signals, without accounting for other interfer-
ers. Fig. 1 illustrates an example of such localized downlink
cancellation, where we restrict the locality of coordination to
adjacent users. Suppose user 1 is able to decode its packet
(possibly because of shorter link distance and higher SINR),
then the corresponding transmitter (BS1) will pass the encoded
samples X[ of each frame to the transmitter of user 2
(i.e., BS2) through the wired backhaul. BS2 then encodes
these samples using DPC in order to pre-cancel them. The
resulting samples sent by BS2 will be a function of X[
and its own data samples X2/, We denote this operation as:
x? < DPC(X [, X2, After cancelling interference from
user 1, user 2 may have sufficient SINR to decode its own
frames (despite the unknown interference from user 3). Then,
BS2 will pass its signals x[? to the neighboring user 3 who
cannot decode its signals yet. This procedure continues until
no further pre-cancellation is possible. Afterwards, the users

Algorithm 1 Downlink operations of each user ¢ in DIAC.

1. Input: vector of data X!"I; receiver projection matrix U
and transmitter precoding matrix V7.
/¥ Ul is calculated from Eq. (6) to Eq. (7); VI is
calculated as its dual (Sec. II-B4) */
. I* BS operations: */
x1 = VI X[ /# Precoding for interference alignment */
. while link ¢ is not decodable and received no sync
do
. Receive shared data x!*! from the BS of
{k : k € R(3), k is decodable} .
7. Encode to precancel the interference:
X[« DPC (1, x[*])
8.  if No update within the current round
9.  BS ¢ sends notification message to coordinator.
10.  endif
11. done
12. if link ¢ is decodable
13. pass X' to the BS of
{j :i € R(j),Jj is not decodable}
14. BS 4 waits for sync message and then send x!%.
15. endif
16. /* Client’s operations: */
17. After reception, client ¢ applies interference projection:
Y« Ulilylid and then decode.
18. /* Coordinator’s operations: */
19. foreach time slot
20.  if received notification message from all BSs

- RV I NI )

21. Broadcast sync message
22.  endif
23. endfor

can transmit concurrently. Although the downlink interference
cancellation is restricted within R(%), we will show in Sec. IV
it can still substantially improve the number of concurrent
transmissions.

3) Localized uplink interference cancellation: The uplink
differs from the downlink in the content of information sharing
— only decoded data needs to be shared between neighboring
links. Take the network in Fig. 1 as an example. When BS1
can decode the data from clientl, it will pass the digital data
X[ sent by client] to BS2. BS2 then cancels the interferences
from clientl using successive interference cancellation (SIC).
More specifically, it needs to reconstruct the interfering signals
based on X[ and the channel matrix from clientl to BS2,
and then subtract them from the composite signals (Y'?) it
received. Afterwards, if BS2 is able to decode its data, it
will pass the original data X[ in the same way (instead of
passing a function of the data from both BS1 and BS2, as in
the downlink case).

4) Matrix design for distributed interference alignment:
Besides the localized cancellation, DIAC employs distributed
interference alignment (DIA) [5], [11], which calculates the
precoding/projection matrix, so as to align interferences into



a space orthogonal to useful signals. For the sake of com-
pleteness, we briefly introduce the matrix design for DIA,
and then describe how it can be integrated with the localized
cancellation algorithms in Sec. II-BS5.

In classical interference alignment, all interferers’ signals
are aligned into the null space of each receiver k’s projection
matrix [5]. Equivalently,

(U gkl yll = 0,vj £ k “)

This is often an over-constrained system of equations, and
the closed-form solution remains an open problem. However,
DIA [5] can be used as an approximate solution to the
interference alignment problem, and is guaranteed to converge.
The basic idea is to iteratively design the matrix U and V to
minimize the LHS of Eq. (4). In each iteration, each receiver
i calculates the projection matrix U!Y to minimize the leakage
to j:i€ R(j):

gl — arg min 76— r (U[k])TQ[i]U[k]] (5)
U

where QU= 37 % HEW VY ) )
JER(i)
is the interference covariance matrix at receiver k. The solution
to the minimization problem is [5]:

U = uq[Q]] (7)

where ug[A] denotes the d eigenvectors corresponding to the
d smallest eigenvalues of matrix A. Then, given U, DIAC
designs the precoding matrix V' in a similarly way, but reverses
the roles of the transmitter and receiver. The procedure iterates
until the leakage interference I is below a small threshold.
The resulting precoding/projection matrices are used as input
to the localized cancellation algorithms.

5) Summary of DIAC: Based on the above description of
operations, we summarize the downlink DIAC in Algorithm 1.

On the downlink, before applying DPC, the BS must
precode the information bits (line 3) and then use the precoded
data as input to the cancellation procedure. We assume the
data/CSI sharing (before the actual transmission) can be done
in a time-slotted, round-based manner. In each slot, each BS
performs decodability check, information sharing, and pre-
cancellation. If no operation can be done in the current time
slot, it sends a notification message to a central coordinator
(which can be one of the base stations). Once the coordi-
nator receives the notification message from all users within
the same slot, this time slot is used as a synchronization
barrier — the coordinator will send a sync message to all
BSs, allowing them to transmit concurrently. Operations (e.g.,
channel estimation and CSI feedback) before the synchronized
transmission can be realized by traditional medium access
mechanisms, such as TDMA or OFDMA.

The uplink operations can be done in a similar manner (we
omit the details to avoid duplication). Note that DIAC requires
the clients to send frames concurrently. We assume this is
realized by synchronizing all BSs, and then allowing each BS
to send a sync message to its client. The cancellation procedure
is performed in a time-slotted manner similar to the uplink,

and the coordinator will broadcast a stop message if it receives
a notification message from every BS.

6) SINR analysis: After obtaining the V' and U matrix, the
SINR of the [-th stream of k-th receiver is:

Wihratsy i) ol) p

SINRy; = ; : (®)
(Uil])TB[kl]Uil] d
where P
Bkl — Z > ZH[kj]V*[(Z](V*[é])T(H[kj])T +Inw (9
JER(E) el

is the interference covariance matrix. Uilf] denotes the [-th
column of matrix U*,

Assuming interferences are perfectly cancelled, after can-
celling interference from user ¢, the resulting interference
covariance matrix becomes:

Bk — | Z Fi ZH[kJ]{/*[i](V*[g])T(H[kJ])T + Iy
JER(k),j#i e#l
(10
III. IMPLEMENTATION OF MIMO-OFDM CHANNEL
ESTIMATOR

Our implementation consists of two parts: Matlab based
simulation of the DIAC algorithm, and software radio
(WARPLab [9]) based implementation of MIMO channel
estimation algorithm, which is used to obtain traces of channel
matrix between multiple links.

Fig. 2 and Fig. 3 show the transmitted packet format for
channel estimation, and the corresponding detection and esti-
mation procedure at the receiver. The MIMO-OFDM packet
preamble format follows that of the 802.11n standard [12]. An
802.11 preamble (also referred to as STF) has 160 complex
samples and occupies 64 subcarriers. From time-domain per-
spective, the STF is a periodic signal that repeats every 16
complex samples [13]. The receiver performs self-correlation
between the latest 16 samples and previous 16 samples,
which has an outstanding output only if two consecutive
sequences of samples match (i.e., an STF appears), and the
corresponding output is comparable to the signal’s energy level
[13]. After detecting the STF, the receiver further performs
cross-correlation between the received STF samples and the
original samples in the STF. An outstanding peak appears only
when the received samples align with the known STF, and the
peak position is used as a synchronization point marking the
start of the packet.

To estimate the channel coefficients (including magnitude
attenuation and phase distortion) of each subcarrier and the
frequency offset between transmitter and receiver, an addi-
tional preamble is used, called long-training field (LTF). LTF
comprises two duplicated versions of a random sequence
(consisting of 1 and -1) of length 64 carried by the 64
subcarriers [14]. To obtain the channel coefficients and fre-
quency offset, the receiver performs self-correlation between
the two truncated random sequences and normalizes it by the
magnitude, similar to an 802.11 channel estimator [13].
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Fig. 3. Packet detection and channel estimation procedure.

When running MIMO, all the transmit antennas share the
same STF, but their LTFs are transmitted sequentially, i.e.,
while one antenna is transmitting, all others are silent (trans-
mitting zero-power signals). Meanwhile, each receive antenna
can estimate the channel between the active transmit antenna
and itself.

Our ongoing work involves a full-fledged implementation of
DIAC on WARP. As DIAC requires synchronization between
neighboring base stations, we have modified the FPGA module
in WARP to synchronize the carrier frequency, sampling clock,
and packet starting time between multiple MIMO transmitters.
We plan to implement a real-time version of DIAC on this
platform, and demonstrate its performance in real environment.

IV. EXPERIMENTAL RESULTS

We evaluate DIAC using i) trace-driven simulation, which
collects real channel traces from a WARP MIMO testbed. ii)
model-driven simulation, which applies an empirical pathloss
and fading model to a synthetic topology. As benchmark
comparison, we also consider the following distributed algo-
rithms that can be applied to partially-connected networks,
where each link either transmit independently, or only needs to
collect data/CSI from neighboring links that interfere with it. i)
Single-user MIMO beamforming via SVD [3]. ii) Maximizing
signal to leakage-interference and noise ratio (maxSLNR) [8].
iii) Distributed interference alignment (DIA) [5], [11], which
is equivalent to the alignment iteration of DIAC, i.e., each user
attempts to align interference from others without cancellation.

A. Trace based simulation

We set up a WARP testbed consisting of four 4 x 2 MIMO
links located in an office environment. Fig. 4 shows the node
locations. Two links are located within two different offices
separated by two walls and a corridor; the other two links
are located in the corridor. Due to the short transmission
range of WARP radios, the distance between each transmitter
and receiver is 2 to 5 meters; and the distance between each
transmitter and neighboring transmitters is 4 to 8 meters. Given
this topology, we test the DIAC and benchmark algorithms
based on the MIMO-OFDM channel estimation results.

Fig. 6(a) shows the resulting SINR distribution when each
link uses 4x2 MIMO to send one data stream. The interference
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alignment based approaches (i.e., DIA and DIAC) outperform
beamforming and maxSLNR by around 50dB, implying that
they may completely suppress interference and enable con-
current transmissions, whereas alternative approaches result
in collisions. Notably, DIAC shows marginal gain over DIAC
under this setting. This is because the 4x2 MIMO is sufficient
for DIA to suppress all interferences even without cancellation.
When using 2x2 antennas, however, DIA alone is unable to
achieve perfect alignment. All 4 links have less than 18dB
SINR (Fig. 6(b)). In contrast, by integrating interference
cancellation, DIAC achieves more than 40dB gain over DIA,
thereby maintaining concurrent transmission of all links.

B. Model-driven simulation

Due to a limited number of WARP nodes, the trace-driven
simulation only involves 4 MIMO links. To fully understand
the factors that affect DIAC’s performance in general network
topologies, we further conduct model-driven simulation. We
use an empirical propagation model recommended by the
IEEE 802.15 for 2.4GHz indoor environment [15] to model
large-scale fading. At distance d, the signal’s path-loss (in dB)

is:
40.2 + 201og((d),

58.5 + 331og,,(d/8),

d<8m
d>8m

Lap(d) = {

For small-scale fading, we use the Rayleigh fading model.
When running DIAC, we assume the SNR threshold for
decoding is 10 dB. The transmit power of each node is
P, = 15dBm. We further assume the receiver noise power
is 1078 of the transmit power level.

We first generate a line topology in which 16 APs are
located on a straight line, with 30m separation. Each AP
has one client, randomly located within a circle (radius 15m)
around it. For simplicity, we define locality of coordination
using hop-distance for this topology. We set the locality
to 4, i.e., each link coordinates (share data and CSI) with
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neighbors within 4 hops. Fig. 5 shows the resulting SNR
distribution of all 16 links with 2x2 antennas and single-stream
transmission. In this network, each link may be interfered by
many other links. Therefore, when using DIA, the 2x2 MIMO
is insufficient to align all interferences to a space orthogo-
nal to the desired signals of each link. Consequently, DIA
only performs slightly better than beamforming. maxSLNR
outperforms beamforming for low-SINR links that suffer from
severe interference, but has lower performance for high-SINR
links because it dissipates part of the power to suppressing
leakage interference, instead of focusing all power towards
the intended receiver. Again, by combining cancellation with
alignment, DIAC outperforms all other algorithms by around
10dB for all links.

Fig. 7 shows the effect of locality on the mean SINR of
all links when using DIAC. When locality is small, SINR
increases quickly with locality. However, further improving
locality to large numbers gains marginal improvement, mainly
because links further away cause negligible amount of inter-
ference. Therefore, even if we localize the coordination scale
to a small number of neighbors, DIAC is still able to enable
concurrent transmission of all links.

Fig. 8 shows the effect of the number of antennas on mean
SINR. maxSLNR outperforms beamforming only when a large
number of antennas are used to suppress interference. Both
schemes have around 20dB lower SINR than DIA and DIAC.
When using a small number of antennas, DIA may have much
lower SINR than DIAC, implying that interference alignment
highly depends on the available antennas. By combining
cancellation, DIAC is able to maintain high SINR for all links
even with a small number of antennas.

We further evaluate DIAC in a random topology resembling
real-world multi-cell wireless LANs. As shown in Fig. 4, the
base stations are randomly generated within a 300mx300m
field, but neighboring base stations are separated by at least
30m. Then a client location is randomly generated within a
radius of 10m around each BS. The resulting SINR distribution
is plotted in Fig. 10, where we configure locality according to
T, = —45dB,Vi. We observe that DIA may perform even
worse than beamforming, mainly because in this topology,
each link suffers from a larger number of interferers than in
the line topology. Whereas with DIAC, SINR is above 15dB
for most of the links, implying that DIAC is able to achieve
a high level of concurrent transmissions even in real-world
network topologies.
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V. CONCLUSION

Fig. 9. Node locations in a random Fig. 10.
topology.

In this paper, we have proposed DIAC, a distributed al-
gorithm that improves the performance of CoMP systems
by leveraging the locality of interference. DIAC integrates
localized interference cancellation algorithms with distributed
interference alignment, is applicable to both uplink and down-
link transmissions, and only requires data/CSI sharing be-
tween close-by neighboring base stations. Both trace-driven
simulation and model-driven simulation have shown DIAC to
substantially improve the number of concurrent transmissions,
even with a limited number of antennas.
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