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Abstract—The amount of energy consumed by computer sys-
tems can be lowered through the use of more efficient algorithms
and software. Unfortunately, software developers lack the tools
to pinpoint energy-hungry sections in their code and therefore
have to rely on their intuition when trying to optimize their code
for energy consumption. We have developed eprof, a profiler
that relates energy consumption to code locations; it attributes
both the synchronously consumed energy in the CPU and the
asynchronously consumed energy in peripheral devices like hard
drives, network cards, etc. Eprof requires minimal changes to
the kernel (tens of lines of code) and does not require special
hardware to energy-profile software. Therefore eprof can be
widely used to help developers make energy-aware decisions.

I. INTRODUCTION

The growing energy consumption of IT systems is quickly

becoming a major concern for users, ranging from corporations

trying to keep the total cost of ownership low, to end-users

who expect their mobile devices not to run out of battery while

on the run.

Choices that developers make in their software architecture

and software algorithms have a significant effect on the energy

usage of a system. All hardware has a baseline or idle power

draw which the hardware consumes regardless of the activity

of the system; on top of this, current hardware has a large

dynamic energy component caused by the specific interactions

of software with hardware components. Aside from improving

hardware to reduce its energy consumption, the system energy

consumption can be reduced by optimizing the interaction of

software with hardware.

When trying to write energy-efficient software, developers

currently have to rely on their intuition, because few tools and

methods exist which give insight into the energy consumption

of software. To this end, we have developed the eprof software

energy profiler, a tool which relates the consumed dynamic

energy back to the software that caused this consumption.

Using eprof , software developers can make informed choices

about which algorithms use less energy.

For example, a developer might have to choose between

using CPU resources to evaluate a function each time it is

used versus using memory accesses to look up precomputed

values in a table. Or, he might have the choice between storing

data in a compressed form on a disk, which requires extra

CPU resources versus using an uncompressed format, which

requires more disk accesses. In both cases eprof allows the

developer to understand how much energy is consumed for

each option. Moreover, if a software developer must optimize a

large code-base to use less energy, he can use eprof to identify

the code locations that use most energy, in order to rewrite

them. Seemingly simple functions with short execution times

may, in fact, consume vast amounts of energy because they

make asynchronous disk accesses or other device I/O.

While classic performance profiling might help in reduc-

ing runtime and therefore energy consumption in the CPU,

this CPU-centric approach ignores any energy consumed

in peripheral devices. However, especially on smartphones

and notebooks, the peripheral devices are significant energy

consumers. Eprof accounts for the energy consumed in devices

and attributes this energy to code locations that are responsible

for the device activity.

In contrast to currently available tools, eprof does not

require instrumentation of the source and generates energy-

usage information at a fine granularity; it can identify the

energy used by individual functions. After a calibration phase,

eprof does not require any external devices or circuitry and

thus enables the average developer to profile his software for

energy consumption.

The contributions of this paper are:

• attribution of energy consumed in asynchronous device

interaction to the responsible code;

• profiling for software energy consumption without the

need for external instrumentation; and

• design and implementation of eprof.

II. BACKGROUND AND CHALLENGES IN ENERGY

ACCOUNTING AND PROFILING

Software energy consumption is one of the two types of

energy consumption in a computer system: A static component,

the idle power, is always used, independent of the activities of

the system; on top of this exists a dynamic component which

depends on the activities of the system. Software executing on

the system will influence this software energy by computation

in the CPU, memory accesses and device interaction.

In modern ULV (Ultra-Low Voltage) processors and special-

ized mobile hardware, the dynamic portion can significantly

exceed the idle power draw. In such systems, the reduction

of dynamic energy has a large impact on the overall energy

consumption. We therefore posit that an energy profiler is

needed to help the developers gain insight into the distribution

of energy consumption among the code locations.

One difficulty in generating energy profiles is that hardware

does not track energy-usage information. However, other
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Figure 1. Eprof system overview. The profiled code executes, causing activity
in CPU and devices. This activity is observed by eprof, which records the
code location of the activity and estimates the energy consumed via an energy
model. Both estimated energy and code location are assembled to form an
energy profile of the executed code.

metrics obtained from the devices can be used as proxy for the

consumed energy, by means of an energy model (Section III-C).

Challenges

The existing large body of work on building accurate

energy models does not permit the developer to associate

code locations with the consumed energy. This task requires

the equivalent of a profiler that attributes energy, instead of

straightforward CPU utilization, to lines of code.

Moreover, the energy models are typically designed to treat

the system elements (CPU, memory, cache, etc.) as synchronous

entities and do not account for asynchronous requests (e.g.,

disk). The same applies for the traditional profilers that do not

deal with asynchronous devices. This presents an additional

challenge in profiling for energy.

It might be tempting to estimate the energy consumed by

a given code block or even a single line by creating a testing

harness that will exercise the desired code in a tight loop, and

measure the consumed energy. While doing so can be accurate

on simple systems, this approach fails in complex systems

where cache locality, CPU superscalar execution, or operating

system buffering effects obscure the results.

III. Eprof

An energy profile requires two types of information: the

amount of energy spent, and the code location which caused

this energy consumption. For every device, the eprof profiler

therefore implements two components: observation of energy-

relevant activity and estimation of the amount of energy

consumed by this activity (see Fig. 1).

When activity is observed in the CPU or in a device, eprof
records a stack trace to capture the code location where this

activity originated; the process when and where to capture

this stack trace depends on whether the activity is happening

synchronously or asynchronously. Eprof also estimates the

energy consumed for a particular CPU or device activity by

using a energy model. These two pieces of information, stack

trace and energy estimate, form the data required for the energy

profile of the tested code.

The CPU and memory subsystem consume energy syn-
chronously, i.e. the consumption happens while the code

is executing; computation, execution, and access to various

stages of the memory hierarchy will consume energy right

while they are being processed. Capturing the code location

Code
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        syscall();
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Figure 2. Flow of an asynchronous device request and profiling of its energy
consumption. (1) Code executes syscall to perform device I/O. (2) Kernel
allocates new request data structure and places it into a queue; eprof obtains
stack trace. (3) Driver dequeues device request and sends it to device. (4)
Device consumes energy while executing request. (5) Device notifies kernel
about request completion; eprof estimates energy for request. Energy estimate
and stack trace update the energy profile.

responsible for this activity is therefore straightforward. On

the other hand, devices consume energy asynchronously; a

process might initiate a read request to the hard drive, but both

the operating system and the device might queue the request

before processing it. When the request is finally processed

by the device, other code will be executing on the CPU.

This complicates the association between device activity and

originating code.

A. Profiling CPU Energy Consumption

For CPU and memory energy profiling, we use statistical

profiling via hardware performance event counters (HPCs).

Eprof observes activity by programming the HPCs to gen-

erate an interrupt whenever a counter threshold is reached.

When serving this interrupt, eprof captures a stack trace of

the currently running thread. Using a calibrated CPU and

memory energy model, eprof programs the HPCs as sampling

performance counters with thresholds set so that each sample

corresponds to a fixed amount of energy. In our prototype, we

use the perf subsystem of the Linux kernel to capture HPC

events and to report the profile.

B. Profiling Device Energy Consumption

Profiling for device energy consumption is significantly more

complicated than profiling for CPU energy consumption due

to the asynchronous nature of devices and device requests. We

will first give an overview of how a device request travels

through the system and we will then explain how eprof ties

into the system to obtain profiling data for code using devices.

Fig. 2 shows how a device request originates and flows

through a computer system:

(1) Code executes and calls into the kernel to perform some

device activity, such as disk or network I/O.

(2) The respective kernel subsystem eventually allocates a new

device request structure and places this request structure

into a request queue; this ends the synchronous execution

path and the thread blocks until request completion.

(3) Later the request gets dequeued asynchronously and the

request is sent to the device, possibly after being reordered.

The device may queue and reorder the requests internally

as well.
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(4) The device processes the request and therefore consumes

energy.

(5) Once the device finishes processing, it asynchronously noti-

fies the kernel about the completion. Later the kernel wakes

up the waiting thread which then returns synchronously to

userspace.

The asynchronous nature of steps (3) to (5) means that

energy may be consumed before or after the responsible code

is executed. For example, energy might be spent in a radio

when writing data to a network socket, which will later lead to

a network packet being transmitted; the submitting code can

be seen as being responsible for the energy consumption of the

transmission, even though it executes before the energy will

be consumed by the radio. Likewise, a read from a file might

lead to energy consumed in the hard drive servicing the read

request; the code requesting the file read will be running while

it is submitting the read, but because of multiprogramming,

another process will be active while the hard drive services

this request.

The provenance of a device request must therefore be

recorded while the thread is executing synchronously. We

identify and discuss three obvious opportunities to do so during

the request flow: syscall entry, insertion of the request to the

processing queue, or allocation of the request data structure.

Capturing at the syscall entry: The syscall entry of a kernel

is a limited API and thus is a single, defined location that

needs to be instrumented to capture the stack trace. During

syscall entry, there is not enough information to determine

whether the syscall will eventually lead to a device request:

because operating systems extensively use buffering and request

merging, a read syscall might never lead to a disk request being

made because the requested data might already be present in

the buffer cache; likewise, send syscalls do not always lead

to a separate network packet being transmitted; data might be

queued until more data allows for more efficient transmission

(Nagle’s algorithm), or packets might be compressed or

fragmented for transmission.

Capturing at the driver level: Capturing a stack trace when

the request gets inserted into the driver device queue is the

last opportunity in the synchronous processing flow. At this

point, it is also definite that a request will be submitted to the

device, avoiding the uncertainty problem of the syscall entry

approach. However, pinpointing where exactly in the code the

stack trace should be captured requires high familiarity with

the code of the kernel subsystem and it might even require

modification of each driver.

Capturing in the device subsystem: The final option is

to record the stack trace when the request data structure is

allocated. Within the request flow, this option is located between

syscall and request enqueueing. It combines the certainty of

request submission of the enqueue location with the limited

API of the syscall entry location. Request data structures

are commonly allocated by one specialized function for each

request type; for example, in the Linux kernel, network packets

get allocated by __alloc_skb and disk I/O request are allocated

by bio_init. These functions are well-defined interfaces for each

TABLE I. REQUIRED KERNEL CODE CHANGES FOR eprof .

Kernel Location LOC modified/added

Generic eprof support 269
Disk energy provenance 15
Paging energy provenance 25
Network energy provenance 33

kernel subsystem, therefore avoiding tedious study of every

driver; instead, they are easy to locate for each request type.

They are always called in the synchronous code path, but at

the same time they are only called when a request will be

submitted to a device; if a syscall does not lead to a device

request due to buffering or request merging, no data structure

will be allocated by the kernel. In eprof we therefore follow

the principle of capturing provenance information whenever a

device request structure is allocated. Table I shows the amount

of kernel changes required for our prototype.

C. Energy Models

In our prototype of eprof , we use previously published energy

modeling concepts. If required, more sophisticated models

could be used, such as state machine-based device models [1],

models including dynamic voltage and frequency scaling [2],

or more detailed hard drive energy estimation [3], [4]. We

train all models separately for each platform by measuring the

system power draw during a set of benchmarks.

CPU and Memory Energy: The CPU and memory energy

model is a linear model based on hardware performance

counters [5]; it is trained using the SPEC CPU 2006 benchmark

suite. We select the set of performance counters that yields

the best energy model; this optimization also determines the

coefficients for the model [2].

Like [6], we use captured sequences of HPCs and externally

measured energy to train a linear model for each valid

combination of counters. We select the one combination of

counters which provides the lowest residual error. This selection

process also determines the coefficients for the linear model.

Hard Drive Energy: Disk energy consumption is modeled

using a simple linear relation between request duration and

energy [3]. We train the model using a micro-benchmark that

varies disk load intensity and disk seek distances.

D. Unifying CPU and Device Energy

Because device energy usage is quantified by a device-

specific energy model, while CPU energy usage is captured

through statistical profiling, eprof must merge these separate

sources into a single combined dataset. We do this by

transforming the device energy information to be compatible

with the statistical profiling samples. As a result, existing

statistical profiling tools can be used to analyze the combined

dataset.

In our prototype, we use the perf subsystem of the Linux

kernel to capture and report the profile. Perf, like most profilers,

does not allow for quantitative weights for the recorded

samples. This means that every sample corresponds to the

same amount measured. For example, in traditional profiling
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based on sampling, each sample would represent a fixed unit of

time, e.g., 10ms. With traditional sampling hardware profiling

counters, one sample would represent the fixed threshold

of the hardware counter, e.g., 10000 L2 cache misses. In

eprof , every sample represents a fixed amount of energy, e.g.,

100mJ. The asynchronously consumed device energy, Edev,

will rarely match exactly this fixed value, Esample. We address

this problem by recording the call trace in the profiling data m
times rather than merely once, where m = �Edev/Esample�.
That is, we record many samples so that the aggregate recorded

equivalent energy E′
dev = m × Esample does not exceed

the real consumed energy Edev. The remainder in energy,

ΔEdev = Edev − E′
dev, is preserved and added to the energy

of the next request. This way, no energy consumption is

left unreported, while maintaining the properties of statistical

profiling. For example, given Esample = 0.1 J, the real

consumed energy Edev = 0.87 J will be recorded as m = 8
samples in the profiling data, and ΔEdev = 0.07 J will be

added to the next request energy.

IV. EVALUATION

We evaluate eprof on two hardware platforms: (1) an Asus

EeePc 1005P netbook with an Intel Atom N450 CPU (2) a Dell

OptiPlex 755 MT with an Intel Core 2 Quad Q6600 CPU We

obtain all energy measurements using a WattsUp .Net power

meter.

We use the SPEC CPU2006 benchmark suite2 in reference

size to train the profiler and to evaluate its accuracy over a large

range of different applications. Leave-one-out cross-validation

over the benchmark shows an average CPU model energy

estimation error below 10%; the maximum runtime overhead

of eprof across this benchmark is 2.7%.

The tables containing profiling results list the locations

energy was spent; userspace function names are formatted

plain, kernel functions are in [brackets]. For disk-related energy

consumption, we indicate that a function of interest appears as

part of a stack trace by setting it in italics and prepending an

ellipsis (. . . ). For example, . . . [sys_read] indicates that the given

amount of energy was spent in the disk, and the stack trace

contained [sys_read], the read system call function. In particular,

[copy_user_generic_string] is used to move data from the buffer

cache to userspace memory, and vice versa.

A. Attribution correctness

We show and evaluate the attribution accuracy of eprof .

Attribution accuracy is independent of any used model; an

accurate attribution will assign defined quantities to correct

code locations.

We demonstrate that eprof correctly attributes energy on

the function level by profiling a microbenchmark application.

The first part of the benchmark is a CPU-intensive repeated

generation of an SHA1 hash, using the OpenSSL library; this

computation consists of SHA1_Update, sha1_block_data_order and

memcpy. These functions are marked with (C) in the profiling

2We omit 401.perlbench, 447.dealII, 481.wrf, and 483.xalancbmk because
they do not compile or run due to the compiler version used.

TABLE II. ENERGY PROFILE OF THE CPU INTENSIVE TASK. Real energy
measured was 923 J, an error of 4.3%.

Fraction % Energy J Location

60.14 579 (C) sha1_block_data_order
18.75 180 (C) SHA1_Update
13.47 129 (C) memcpy
2.49 23.9 (C) main

Total 963

TABLE III. ENERGY PROFILE OF THE MEMORY INTENSIVE TASK. Real
energy measured was 1396 J, an error of 6.8%.

Fraction % Energy J Location

47.18 613 (M) memcpy
30.85 401 (M) msort_with_tmp
12.45 162 (M) cmpfn
4.98 64.8 (M) main

Total 1301

TABLE IV. ENERGY PROFILE OF THE MIXED TASK. Real energy measured
was 2291 J, an error of 3.6%. (C) denotes functions of the CPU-intensive
task, (M) denotes functions of the memory-intensive task.

Fraction % Energy J Location

31.36 692 (M+C) memcpy
27.92 616 (C) sha1_block_data_order
18.63 411 (M) msort_with_tmp
7.24 159 (M) cmpfn
7.18 158 (C) SHA1_Update
3.20 70.6 (M+C) main

Total 2208

tables. The second part is the memory-intensive repeated sorting

of a 50MB array of integers, alternating the sort order each

time. This is done with qsort, which in turn calls msort_with_tmp,

cmpfn and memcpy. Those functions are marked with (M) in the

profile tables.

Table II shows the profile for the CPU-intensive computation

running alone, Table III shows the profile for qsort running alone.

The total energy for both separate computations is estimated

with a low error (4.3% and 6.8%).

We now combine these two computations into a single

benchmark application and compare its profile to the profiles

of the separate runs. For the attribution to work correctly,

we expect that the attributed amount of energy for each

computation stays constant and is not influenced by running

both computations together.

The resulting profile is shown in Table IV. Compared to

the real energy measured, the total energy consumption is

estimated with 3.6% error. The profile of the combined run

matches the sum of the total energy for both separate runs very

closely: 1.2% error for measured energy and 2.5% error for

estimated energy.

When looking at the energy attribution to specific functions

used in the computations, a similar picture emerges. For

example, msort_with_tmp is attributed 411 J for the combined

run and 401 J in the separate run (2.4% error). The other
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Figure 3. Median error of the CPU/memory energy estimation using different
energy models. All is an ideal energy model using all captured performance
counters and selected is the model selected as described in Section III-C.
Cycles is a model only using CPU cycles, mimicking a conventional execution
time profiler.

functions exhibit similar results (cmpfn 1.9%, SHA1_Update
13.9%, sha1_block_data_order 6.0%).

Two functions are shared by both computations, main and

memcpy. The sum of memcpy in the separate runs (742 J) also

matches closely the attribution of the combined run (692 J,

7.2% error). The sum for main does not match the combined

run well. However, this is expected because main executes

the main benchmark loop and therefore duplicates much of

the work during the separate runs; in the combined run, this

duplication does not occur, therefore reducing the total energy

consumption by estimated 25.6%.

The results of this microbenchmark show that eprof can

accurately attribute software energy to functions and allows

the developer to precisely determine which parts of the code

consume how much energy.

B. Energy and run time are not proportional

One might surmise that energy consumed by the program is

proportional to the time spent running it. While this tends to

be true in general, it does not accurately capture the amount of

energy spent. Fig. 3 shows that profiling only for CPU cycles

results in an energy model with a significantly higher estimation

error. Furthermore, profiling for CPU cycles does not capture

asynchronous energy used by devices. In our experiments,

we experienced as much as 33% of the total energy being

consumed in asynchronous requests. In Tables V and VI, all

energy spent on disk I/O, listed as functions . . . [sys_write],
. . . [sys_read] and . . . [do_truncate] would go unnoticed. On the

Atom, this energy amounts to 25% of the total energy; on the

Core2, it amounts to 33%. This underlines the importance of

capturing and attributing asynchronous device energy.

V. REAL-WORLD APPLICATIONS

We now study the energy profile of a real-world application

and how energy profiling might guide development. In contrast

to performance optimization, energy-conscious development is

still in its infancy, and therefore best practices in algorithms

and data structures to lower energy consumption have not yet

been thoroughly studied. In this paper, we will not venture

TABLE V. ENERGY PROFILE OF PROCESSING A LARGE TEXT FILE ON THE

ATOM. Read_and_xlate in tr performs the processing, the other functions do
disk I/O; other tables also show processes gunzip and gzip, which are used
for decompression and compression of the data. Disk I/O uses 28% of the
total energy, the text processing uses 17%.

Frac. % Energy J Proc. Location

17.21 44.6 tr read_and_xlate
13.84 35.9 tr . . . [sys_write]
9.15 23.7 tr . . . [sys_read]
2.77 7.19 tr [copy_user_generic_string]
2.14 5.55 tr . . . [do_truncate]

Total 260

TABLE VI. ENERGY PROFILE OF PROCESSING A LARGE TEXT FILE ON THE

CORE2. Disk I/O uses 42% of the total energy, text processing uses 8%.

Frac. % Energy J Proc. Location

16.86 80.3 tr . . . [sys_read]
15.14 72.1 tr . . . [sys_write]
9.45 45 tr [copy_user_generic_string]
8.00 38.1 tr read_and_xlate
1.18 5.62 tr . . . [do_truncate]

Total 476

TABLE VII. ENERGY PROFILE OF PROCESSING A COMPRESSED TEXT FILE

ON THE ATOM. De- and re-compression use 75% of the total energy, text
processing uses 6.6%. Disk I/O energy is negligible.

Frac. % Energy J Proc. Location

19.86 116 gzip longest_match
18.66 109 gzip deflate
17.46 102 gzip fill_window
6.65 38.9 tr read_and_xlate
6.55 38.4 gzip updcrc
5.99 35.1 gunzip flush_window
3.61 21.1 gunzip inflate_codes
2.13 12.4 gzip ct_tally

Total 586

TABLE VIII. ENERGY PROFILE OF PROCESSING A COMPRESSED TEXT FILE

ON THE CORE2. De- and re-compression use 83% of the total energy, text
processing uses 3.5%. Disk I/O energy is negligible.

Frac. % Energy J Proc. Location

23.92 253 gzip longest_match
14.86 157 gzip deflate
14.79 156 gunzip flush_window
12.85 136 gunzip updcrc
10.54 111 gzip fill_window
3.94 41.7 gunzip inflate_codes
3.55 37.6 tr read_and_xlate
2.29 24.2 gzip compress_block

Total 1060

into proposing how to program more efficiently, but instead we

demonstrate how tools might be used to enable energy-aware

development.
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A. Use compression to reduce disk I/O?

We now study the energy profile of a real-world application

and how energy profiling might guide development.

Many data-intensive applications, such as Google’s BigTable,

choose to work with compressed data to reduce the amount of

I/O they need to perform. Compression has also been suggested

[7] as a way to reduce energy consumption, based on the

assumption that the CPU can handle the decompression and

compression tasks using less energy than when transferring

large amounts of data from and to the hard drive. We use eprof
to check whether this hypothesis holds.

To compare compressed and uncompressed file processing,

we perform text replacement on a large log file, using the UNIX

tr utility. In the uncompressed case, the input file (1.7GB)

is fed directly to tr, and the output is written to disk. In

the compressed case, a compressed version of the input file

(101MB) is decompressed on the fly by gunzip and piped to

tr; its output is piped to gzip, which re-compresses the data on

the fly and writes it back to disk.

Tables V and VI show the energy profile for the uncom-

pressed file processing on Atom and Core2, respectively.

Tables VII and VIII show the energy profile for the compressed

case. The energy used in the compression/decompression is

significantly higher than the amount of energy used by the

disk (for both of our platforms). This finding shows that the

common wisdom is incorrect, at least for the popular systems

that we consider. In addition, this real-world case demonstrates

the need for an energy profiler, such as eprof.

Next, we discuss the relative energy consumption of Atom

vs. Core2. As expected, the Atom (a more energy-efficient

platform) consumes significantly less energy for the same task

in both the compressed (1.83x) and uncompressed case (1.89x).

The increase due to the use of compression is less for the

Atom (2.15x) than the Core2 (2.2x). This result agrees with

the intuition, as the Core2 system has a higher-performance

CPU and disk, leading to a higher joule-consumed-per-amount-

of-work-performed.

Surprisingly, the energy profile for the uncompressed case

is quite different between the CPUs: On the Atom the largest

single consumer is the actual text processing routine, using

17% of the total energy (44 J). However, on the Core2, the

text processing only makes up 8% of the energy (38 J), which

amounts to less absolute amount of energy than on the Atom.

A significantly larger portion of energy is spent on disk I/O

(both disk energy and copying of buffer cache data) on the

Core2 (41%) than on the Atom (25%).

This profile shows that energy use can differ greatly between

architectures and it underlines the necessity to use a profiling

tool instead of simply relying on best practices and intuition

when it comes to producing energy-efficient software. Although

a developer could use an external power meter to compare the

energy consumption of both approaches, he would not be able

to analyze which parts of the system use how much energy.

TABLE IX. ENERGY PROFILE OF VIDEO DECODING ON THE ATOM.

Fraction % Energy J Location

25.38 475 th_decode_packetin
21.40 400 oc_state_frag_copy_list_mmx
7.41 138 oc_huff_token_decode
6.88 128 oc_frag_recon_inter2_mmx
5.55 103 oc_dec_residual_tokens_unpack
5.05 94.5 oc_idct8x8_mmx
3.69 69 oc_dec_mv_unpack_and_frag
2.56 47.9 oc_state_frag_recon_mmx
2.26 42.2 oc_frag_recon_inter_mmx
1.17 21.8 . . . [sys_read]

Total 1872

TABLE X. ENERGY PROFILE OF VIDEO DECODING ON THE CORE2.

Fraction % Energy J Location

34.02 1477 th_decode_packetin
15.52 673 oc_state_frag_copy_list_mmx
9.49 412 oc_huff_token_decode
6.75 293 oc_frag_recon_inter2_mmx
6.24 270 oc_idct8x8_mmx
6.06 263 oc_dec_residual_tokens_unpack
2.80 121 oc_state_frag_recon_mmx
2.57 111 oc_dec_mv_unpack_and_frag
1.98 85.9 oc_frag_recon_inter_mmx
1.85 80.3 0x0000000021e6c0

Total 4342

B. Video decoding

Video playback is a common and increasingly important use

case for mobile devices. Here we show the energy profile of

decoding a 720p Xiph Theora video, for both Atom and Core2

systems (Tables IX and X). As expected the Atom has a “flatter”

profile among the CPU-intensive functions. A developer might

further use these profiles to select functions that allow for a

trade-off in video quality and energy spent.

C. Audio encoding choices and adaptation

Voice-over-IP applications can use different codecs to adapt

to the current bandwidth constraints while maintaining high

voice quality. Developers programming for energy-constrained

devices also have to keep track energy consumed in the

coding/decoding process.

To demonstrate how a developer might use eprof to compare

the energy-efficiency of different codecs, we contrast the eprof -

reported energy-efficiency of two popular VoIP codecs, the

GSM full rate speech codec that operates at 13.2kbits/s, and the

older G.726 ADPCM codec at 16kbit/s. As can be seen from

Tables XI and XII (for the Atom case), the GSM codec uses

more energy than G.726, while only providing a slightly lower

bitrate. Surprisingly, the G.726 energy efficiency drops slightly

for higher bitrates (result not shown). A developer could also

program software that can adapt the codec at runtime not only

to the bandwidth constraints, but also to the available energy.
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TABLE XI. ENERGY PROFILE OF GSM ON THE ATOM.

Fraction % Energy J Location

18.40 11.7 Calculation_of_the_LTP_paramet
16.92 10.7 Short_term_analysis_filtering
14.77 9.39 av_resample
6.89 4.38 Gsm_LPC_Analysis
4.85 3.08 Gsm_RPE_Encoding
3.84 2.44 . . . [sys_read]
3.24 2.06 Gsm_Preprocess
2.32 1.47 audio_resample
1.55 0.986 memcpy
1.41 0.897 av_build_filter

Total 63.6

TABLE XII. ENERGY PROFILE OF G.726 ON THE ATOM.

Fraction % Energy J Location

41.26 20.3 g726_decode
19.05 9.41 av_resample
4.87 2.0 . . . [sys_read]
4.38 2.16 g726_encode_frame
2.99 1.47 audio_resample
2.22 1.09 [ext4_readpages]
1.82 0.899 av_build_filter
1.62 0.8 memcpy
1.35 0.667 [copy_user_generic_string]

Total 49.4

VI. LESSONS LEARNED

In the course of creating a working software energy profiler,

we made several observations worth sharing. We first tried

profiling for system energy using a full-system emulator, which

turned out to be complex and imprecise. Following this, we

turned to estimating energy using linear models, which turned

out deceivingly easy to mis-train.

Experience with full-system emulation: Instead of hardware

performance counters, the first version of eprof used a

qemu-based full-system emulator to estimate CPU energy

consumption, based on the intuition that different opcodes

or opcode classes consume different amounts of energy. Using

qemu’s binary translation system, we added instrumentation

that could attribute the estimated per-opcode energy to basic

blocks, and a simplified cache model kept track of cache and

memory accesses. The energy model was trained in advance

using micro-benchmarks that consisted of a single opcode

executed repeatedly in succession.

This method of training resulted in a largely imprecise

energy model. Further investigation showed that single-opcode

benchmarks would allow the CPU to pipeline execution

and, due to superscalar execution, retire multiple instructions

in parallel. The principal problem here is that one given

benchmark would always exhibit the effect in its extreme,

while another benchmark would inhibit the effect entirely.

Because this behavior is significantly more pronounced in

micro-benchmarks than in general-purpose code, the energy

estimate results in skewed, unreasonable values. By introducing

a magic constant, we tried correcting for this problem by

measuring the average instructions-per-cycle in general-purpose

code, and adjusting our energy model accordingly.

Even then, we could not consistently achieve acceptable

estimation errors for general-purpose benchmarks. Apart from

the coarse correction for superscalar execution, we believe that

the simplified emulated cache architecture could not capture

all nuances in processor and memory access behavior, such as

prefetcher operation or speculative execution.

Linear models are easy to get wrong: While working on the

linear energy models for eprof , no matter if using hardware

performance counters or software metrics for disk accesses, it

became apparent that it is easy to obtain a linear model that,

while appearing to be correct, turns out to be quite wrong.

We will illustrate the problem using a performance counter-

based model. When training such a model, the naïve approach

is to capture the total consumed energy (or average power

draw) and the total number of hardware performance events;

the linear model is then trained using values from multiple

benchmarks. Given a large enough number of benchmarks, this

approach will result in a generic model with acceptable error.

Yet, generally, this model will only be accurate for full

benchmark runs; when applying this model to short capture pe-

riods to obtain a time series of the energy consumption (power

draw), large discrepancies between model and measurements

will emerge.

We believe that this is most likely due to averaging effects

in the power draw and performance counter values which

often cancel each other. In the end this leads to a model that

appears correct when being checked against the same type

of measurements, but breaks down when faced with a higher-

resolution estimation task.

Based on other works that deal with energy or power

modeling, both submitted for review or already published,

we believe that others might also have fallen into this trap

without noticing. Once realized, it is easy to address: avoid

averaging or aggregating data when training or checking your

models.

VII. RELATED WORK

The existing techniques for CPU energy profiling can be split

into two distinct categories: In per-opcode modeling [8], [9],

[10] an emulator estimates the energy based on the opcodes

executed, leading to an accurate yet slow approach. Lower

overhead is achieved by probabilistic profiling, which can

either use an external power meter [11], [12], [13] or hardware

performance counters [14], [15], [6], [16], [17]. Eprof uses a

probabilistic sampling hardware performance counter model

to estimate CPU and memory energy.

Several previous systems perform energy estimation on a full

system scale [18], [19], [20], [21], [22]; however, they do not

allow for fine-grained attribution of energy. Eprof provides a

per-function attribution of both synchronous and asynchronous

energy.

Pathak et al. [1] build a set of finite state machines that model

the power behavior of the hardware used in their evaluation

platforms. Their profiler for smartphones [23] is similar to
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eprof in that they allow fine-grained attribution of energy;

however, they require instrumentation of application source

code and perform tracing at the system call level. Eprof has

significantly lower overhead, works on unmodified binaries and

obtains attribution information on the subsystem level where

kernel requests are no more ambiguous.

VIII. CONCLUSION

Hardware is becoming increasingly energy-proportional and

mainstream computing starts to encounter power delivery limits.

It thus becomes crucial for developers to be able to obtain

energy profiles of their code because dynamic energy accounts

for the majority of the total system energy.
Unfortunately, traditional tools can only characterize en-

ergy behavior on a per-application basis, without being able

to attribute energy to specific code locations or accurately

attributing energy consumed by asynchronous devices. Ex-

ternal instrumentation using a power meter cannot obtain a

correct software energy profile; it only works when profiling

exclusively for synchronous energy, but fails for asynchronous

energy. Without recording of request provenance, the externally

determined amount of asynchronously consumed energy cannot

be mapped back to the originating software location.
To address these issues, we have designed and implemented

eprof, a software energy profiler. Eprof makes it possible to

calibrate a hardware platform once (using a power meter), and

then use the calibration data to obtain energy profiles of the

software running on that platform, without requiring the use of a

power meter. Eprof accounts for the asynchronously consumed

energy in device requests and attributes used dynamic energy

to code locations. While we use this feature to study real-world

scenarios involving energy used by a hard drive, we think that

the techniques described in this paper can be applied to any

asynchronous device; we identify generally applicable rules on

how energy can be tracked back to code locations.
Eprof currently runs on the x86-64 platform and supports

attribution of energy consumed by CPU, memory, disk, and

wireless radios. The source code to eprof is available at

labos.epfl.ch/eprof.
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