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Abstract—WiFi interface is known to be a primary energy consumer in mobile devices, and idle listening (IL) is the dominant source of

energy consumption in WiFi. Most existing protocols, such as the 802.11 power-saving mode (PSM), attempt to reduce the time spent

in IL by sleep scheduling. However, through an extensive analysis of real-world traffic, we found more than 60 percent of energy is
consumed in IL, even with PSM enabled. To remedy this problem, we propose Energy-Minimizing idle Listening (E-MiLi) that reduces
the power consumption in IL, given that the time spent in IL has already been optimized by sleep scheduling. Observing that radio
power consumption decreases proportionally to its clock rate, E-MiLi adaptively downclocks the radio during IL, and reverts to full

clock rate when an incoming packet is detected or a packet has to be transmitted. E-MiLi incorporates sampling rate invariant
detection, ensuring accurate packet detection and address filtering even when the receiver’s sampling clock rate is much lower than

the signal bandwidth. Further, it employs an opportunistic downclocking mechanism to optimize the efficiency of switching clock rate,
based on a simple interface to existing MAC-layer scheduling protocols. We have implemented E-MiLi on the USRP software radio

platform. Our experimental evaluation shows that E-MiLi can detect packets with close to 100 percent accuracy even with
downclocking by a factor of 16. When integrated with 802.11, E-MiLi can reduce energy consumption by around 44 percent for

92 percent of users in real-world wireless networks.

Index Terms—Energy efficiency, CSMA wireless networks, idle listening, packet detection, adapting clock rate, dynamic frequency

scaling.
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1 INTRODUCTION

CONTINUING advances of physical-layer technologies have
enabled WiFi to support high data rates at low cost and

hence become widely deployed in networking infrastruc-
tures and mobile devices, such as laptops, smartphones, and
tablet PCs. Despite its high performance and inexpensive
availability, the energy efficiency of WiFi remains a challen-
ging problem. For instance, WiFi accounts for more than
10 percent of the energy consumption in current laptops [1].
It may also raise a smartphone’s power consumption 14
times even without packet transmissions [2].

WiFi’s energy inefficiency comes from its intrinsic CSMA
mechanism—the radio must perform idle listening (IL)
continuously, in order to detect unpredictably arriving
packets or assess a clear channel. The energy consumption
of IL, unfortunately, is comparable to that of active
transmission/reception [2], [3]. Even worse, WiFi clients
tend to spend a large fraction of time in IL, due to MAC-
level contention and network-level delay [4]. Therefore,
minimizing the IL’s energy consumption is crucial to WiFi’s
energy efficiency.

A natural way to reduce the IL’s energy cost is sleep
scheduling. In WiFi’s power-saving mode (PSM) and its
variants [1], [4], [5], [6], clients can sleep adaptively, and
wake up only when they intend to transmit, or expect to

receive packets. The AP buffers downlink packets and
transmits only after the client wakes up. PSM essentially
shapes the traffic by aggregating downlink packets, thereby
reducing the receiver’s wait time caused by the network-
level latency. However, it cannot reduce the IL time
associated with carrier sensing and contention. Through
an extensive trace-based analysis of real WiFi networks
(Section 3), we have found that IL still dominates the clients’
energy consumption even with PSM enabled: it accounts for
more than 80 percent of energy consumption for clients in a
busy network and 60 percent in a relatively idle network.

Since the IL time cannot be reduced any further due to
WiFi’s CSMA, we exploit an additional dimension—redu-
cing IL power consumption—in order to minimize its
energy cost. Ideally, if the exact idle period is known, the
radio could be powered off or put to sleep during IL, and
wake up and process packets on demand. However, due to
the distributed nature of CSMA, the idle time between
packets varies widely and unpredictably. Underestimation
of an idle interval will waste energy, while an over-
estimation causes the radio to drop all incoming packets
during the sleep.

So, one may raise an important question: “is it possible to
put the radio in a subconscious mode, where it consumes
little power and can still respond to incoming packets
promptly?” We answer this question by proposing Energy-
Minimizing idle Listening (E-MiLi) that reduces the clock
rate of the radio during its IL period. The power
consumption of digital devices is known to be proportional
to their voltage square and clock rate [7], [8]. Theoretically,
by reducing clock rate alone, E-MiLi reduces the IL’s
power consumption linearly.
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It is, however, nontrivial to ensure that packets can be
received at a lower clock rate than required. To decode a
packet, the receiver’s sampling clock rate needs to be at
least twice the bandwidth of the transmitted signal,
following the Nyquist’s Theorem. WiFi radios have already
been optimized under this theorem by matching the
receiver’s clock rate with the Nyquist rate.

E-MiLi meets this challenge via a novel approach called
Sampling Rate Invariant Detection (SRID). SRID separates the
detection from the decoding of a packet. It adds a special
preamble to each 802.11 packet, and incorporates a linear-
time algorithm that can accurately detect the preamble even
if the receiver’s clock rate is much lower than the
transmitter’s. SRID embeds the destination address into the
preamble, so that a receiver may only respond to packets
destined for it. Upon detecting this special preamble, the
receiver immediately switches to the full clock rate and then
recovers the packet with a legacy 802.11 decoder.

E-MiLi allows SRID to be integrated into existing MAC
or sleeping-scheduling protocols, using a simple Opportu-
nistic Downclocking (ODoc) scheme. ODoc enables fine-
grained, packet-level power management by adding a
downclocked IL (dIL) mode into the radio’s state machine.
ODoc exploits the burstiness and correlation structure of
real traffic to assess the potential benefit of downclocking,
and then downclocks the radio only if it is unlikely to incur
significant overhead.

We have implemented an E-MiLi prototype on the
GNURadio/USRP platform [9]. Our experimental evalua-
tion shows that E-MiLi can detect packets with close to
100 percent accuracy even if the radio operates at 1

16 of the
normal clock rate. Within a normal SNR range (>8 dB),
E-MiLi performs comparably to a legacy 802.11 detector.
Furthermore, from real traffic traces, we find that for the
majority of clients, the overall energy saving with E-MiLi

is close to that in pure IL mode with the maximum
downclocking factor. According to our measurements, this
corresponds to 47.5 percent for a typical WiFi card with a
downclocking factor of 4, and 36.3 percent for a software
radio with a downclocking factor of 8. Further, our
packet-level simulation results show that E-MiLi reduces
energy consumption consistently across different traffic
patterns, without any noticeable performance degradation.

In summary, thispapermakes the followingcontributions.

. Exploration of the feasibility and cost of fine-grained
control of radio clock rate to improve energy
efficiency.

. Design of SRID, a novel packet detection algorithm
that makes it possible to detect packets even if the
receivers are down clocked significantly.

. Introduction of ODoc, a generic approach to inte-
grating SRID with existing MAC- and sleep-schedul-
ing protocols.

. Implementation of E-MiLi on a software radio
platform and validation of its performance with real
traces and synthetic traffic.

The remainder of this paper is organized as follows:
Section 2 analyzes the energy cost of IL in WiFi networks
and describes the motivation behind E-MiLi. Section 3
presents a measurement study of the relation between

energy consumption and clock rate in WiFi and software
radio devices. Following an overview of E-MiLi (Section 4),
Sections 5 and 6 present the detailed design of SRID and
ODoc, respectively. Section 7 evaluates E-MiLi. Section 9
reviews related work and Section 10 concludes the paper.

2 WHY E-MILI?

In this section, we motivate E-MiLi by showing a large
fraction of time and energy spent in IL for real-world WiFi
users. We also briefly discuss the reasons for the high
power-consumption of IL by anatomizing a typical radio.

2.1 Cost of Idle Listening

We acquired packet-level WiFi traces from publicly avail-
able data sets: SIGCOMM’08 [10] and PDX-Powell [11]. The
former was collected from a WLAN used for a conference
session that has a peak (average) of 31 (7) clients. The latter
was collected from a public hotspot at a university book-
store, with a peak (average) of 7 (3) clients. We built a
simulator that can parse the traces and compute each
client’s sojourn time in different states, including:

. TX&RX. The client is transmitting or receiving a
packet.

. Sleep. The client is put to sleep. A client sets the
power-management field in its packet header to 1 if
it intends to sleep after the current frame transmis-
sion and ACK [5].

. Idle listening. A state other than the above two. This
includes sensing the channel, waiting for incoming
packets, receiving packets not addressed to it, etc.
We exclude the SIFS time, which is a short interval
(9! 20 !s [5]) between two immediate packets (e.g.,
in between data/ACK). We also consider a client
disconnected if it does not transmit/receive any
unicast packets for 5 minutes or longer.

Fig. 1a plots the normalized fraction of time spent in the
three modes, distributed among all the clients in the
SIGCOMM ’08 trace. More than 90 percent of clients enable
power management and judiciously put their radios to
sleep. However, clients spend most of the time in IL, rather
than sleeping: the median IL time is 0.87, and is above 0.6
for more than 80 percent of clients. One may guess the
reason for this to be the excessive contention in this busy
network. However, even in the PDX-Powell trace (Fig. 1b),
the IL time exceeds 0.52 for more than 70 percent of clients.
In contrast, the actual TX&RX time is below 0.1 for more
than 90 percent of clients in both networks. Since WiFi’s
PSM cannot eliminate MAC-layer contention and queuing
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Fig. 1. CDF of the fraction of time spent in different modes for
(a) SIGCOMM ’08 trace and (b) PDX-Powell trace.



delays [6], the IL still dominates the TX&RX time by a
significant margin.

We further analyze the energy cost of IL. Since informa-
tion on the actual type of clients’ WiFi cards is unavailable,
we assume that their energy profile follows that of a typical
Atheros card [12, Section 10.1.5] (TX: 127 mW, RX:
223.2 mW, IL: 219.6 mW, Sleep: 10.8 mW). Although their
absolute power consumption differs, many widely used
WiFi cards have consistent relative power consumption
among different states [13]. Fig. 2a shows that in a busy
network, for more than 92 percent of clients, 90 percent of
energy is spent in IL, i.e., IL costs nine times more energy
than TX&RX for most clients. Moreover, although the sleep
time is substantial, the sleep power is negligible, whereas
the IL power is comparable to the TX/RX power, so the
majority of cost is still with IL. For a network with less
contention (Fig. 2b), IL costs less, yet still accounts for more
than 73 percent of energy cost for 90 percent of clients. Note
that the sleep energy may exceed the TX&RX energy, due to
the significant amount of sleep time.

The above evaluation reveals that IL accounts for the
majority of a WiFi radio’s energy cost, and optimizing the
IL time alone using PSM is not enough. If the IL power can
be reduced, it will clearly improve the energy efficiency of
PSM-like sleep scheduling protocols. In addition, for real-
time applications, the constant active mode (CAM) of WiFi
is preferable, since PSM may incur an excessive delay and
degrade the QoS [2]. By reducing IL power, even CAM can
achieve high energy efficiency.

2.2 Why Is Idle Listening So Costly?

Intuitively, a radio should consume less power when it is
not actively decoding or transmitting packets, but the IL
power of commodity WiFi and other carrier-sensing
wireless (e.g., ZigBee) devices is comparable to their TX&RX
power [2], [12], [14]. In what follows, we briefly discuss the
reason for this by anatomizing the radio hardware.

Fig. 3 illustrates the architecture of a typical WiFi
receiver (based on an Atheros 802.11 chip [15]). An
incoming signal is first passed through the RF and analog
circuit, amplified and converted from RF (e.g., 2.4 GHz) to
the baseband by a mixer. The analog baseband signal is
sampled by an Analog-to-Digital Converter (ADC), and the
resulting discrete samples are passed to the CPU (baseband
and MAC processor), which decodes the signal and re-
covers the original bits in the data frame. The entire radio is
driven by a 40 MHz crystal oscillator, which feeds two
paths. The first is the frequency synthesizer that generates
the center frequency used for the RF and analog mixer. The
other is the Phase-Locked-Loop (PLL) that generates the

clocking signal for the digital circuit: the sampling clock for
the ADC, as well as the main clock for the CPU.

Existing studies have shown the ADC and CPU to be the
most power-hungry components of a receiver. In the
Atheros 5001X chipset, for example, they account for
55.3 percent of the entire receiver power budget [16,
Table 5]. ADC and CPU power consumptions are also
similar (1.04:1 [17]). During IL, both the analog circuits and
the ADC operate at full workload as in the receiving mode.
Moreover, the decoding load of the CPU is alleviated, but it
cannot be put into sleep—it needs to operate at full clock
rate in order to perform carrier sensing and packet
detection. This is the reason why IL power consumption
is comparable to that of receiving packets.

A similar line of reasoning applies to other wireless
transceivers such as software radios. In software radios, the
ADC feeds the discrete samples to an FPGA, which may
further decimate (downsample) the samples and then send
them to a general processor that serves as the baseband
CPU. The similarity in hardware components implies that
software radios are likely to suffer from the same problem
with IL. Considering the trend of software radios getting
gradually integrated into mobile platforms to reduce the
area cost [18], it is imperative to incorporate a mechanism to
reduce its IL power.

3 IL POWER VERSUS CLOCK RATE

We propose to reduce the IL power by slowing down the
clock that drives the digital circuitry in a radio. Modern
digital circuits dissipate power when switching between
logic levels, and their power consumption follows P / V 2

ddf ,
where Vdd is the supply voltage and f the clock rate [7], [8].
Hence, a linear power reduction can be achieved by
reducing clock rate. In practice, due to the analog
peripherals, the actual reduction is less than ideal. For
example, in the ADC used by an Atheros WiFi chip [19],
halving the sampling clock rate results in a 31.4 percent
power reduction. Here, using detailed measurements, we
verify the actual effects of reducing the clock rate for both
WiFi NIC and the USRP software radio.

3.1 WiFi Radio

According to IEEE 802.11-2007 [5], the OFDM-based PHY
supports 2 downclocked operations with 10 MHz (half-
clocked) and 5 MHz (quarter-clocked) sampling rate, in
addition to thedefault full-clocked20MHzoperation.We test
these twomodes on the LinkSysWPC55AGNIC (version 1.3,
Atheros 5414 chipset), with a development version of
Madwifi (trunk-r4132), which supports eight half-clocked
and 18 quarter-clocked channels at the 5 GHz band. The
downclocked modes can be enabled by activating the “USA
with 1

2 and 1
4 width channels” regulatory domain on the NIC.
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Fig. 2. CDF of the fraction of energy spent in different modes for

(a) SIGCOMM 2008 trace and (b) PDX-Powell trace.

Fig. 3. Architecture of a WiFi receiver.



As to measurement of the WiFi’s power consumption,
our approach is similar to that in [13]. We attach the NIC to
a laptop (Dell 5410) powered with an external AC adapter,
and use a passive current probe (HP1146A) and voltage
probe (HP1160) together with a 1 Gsps oscilloscope
(Agilent 54815A) to measure the power draw. The actual
power consumption is the difference between the measured
power level in different radio modes and the base level
with the NIC removed. During the measurement, we tune
the WiFi to a channel unused by ambient networks. The IL
power is measured when the NIC is activated but not
transmitting/receiving packets. The TX/RX power is
measured when the WiFi is sending/receiving one-way
ping-broadcast packets at the maximum rate (100 packets
per second). The different clock modes are configured to
use the same bit rate (6 Mbps) and packet size (1 KB).
Table 1 shows the measurement results.

It can be seen that the power consumption decreases
monotonically with clock rate. In particular, compared to
a full-clocked radio, the IL power is reduced by 36 and
47.5 percent for half-clocked and quarter-clocked mode,
respectively. The absolute reduction is found different
from that reported in an existing measurement study [3].
We guess this discrepancy results from the use of a
different WiFi card (Atheros 5212) in their experiment. As
validated in [3], different NICs have very different power
profiles at different clock rates. To confirm that the power
consumption versus clock-rate relation is not limited to
the WiFi radio, we have also conducted experiments with
the USRP software radio.

3.2 Software Radio
The original USRP is driven by an internal 64 MHz clock,
which is used by both the ADC and FPGA. We enabled the
external clocking feature by resoldering the main clock
circuit, following the instructions in [9]. We use the USRP
E100 [9] as an external clock source, which has a
programmable clock generator (AD9522) that produces
reference clocks below 64 MHz.1

We mounted an XCVR2450 daughter board on the USRP,
which was then connected to the PC host (a Dell E5410
laptop). The IL mode runs the standard 802.11a/g carrier
sensing and packet detection algorithm (see Section 7 for
the details of our implementation). The TX mode sends a
continuous stream of samples prepended with 802.11
preambles. Since a complete 802.11 decoding module is
unavailable, we only measure the IL and TX power. We
measure the USRP power directly with the oscilloscope and
current/voltage probes, and then add the power consump-
tion of the external clock [20], which is 0.55 W and does not

vary with clock rates. Note that the normal clock rate of
USRP is 64 MHz, whereas the maximum signal bandwidth
sent to the PC is 4 MHz since the FPGA downsamples
(decimates) the signals. While reducing the clock rate, we
ensure the signal bandwidth is decreased by the same ratio
by adjusting the decimation rate.

Table 2 shows the measurement results. Similar to a WiFi
radio, the USRP power consumption decreases monotoni-
cally with clock rate. A power reduction of 22.5 percent
(36.3 percent) is achieved for a downclocking factor of 2 (8).
We found that at a 4 MHz clock rate (a downclocking factor
of 16), the USRP can no longer be tuned to the 2.4 GHz
center frequency, but the ADC can still be tuned correctly to
4 MHz sampling rate, and power consumption decreases
further.

Since the PC host consumes a negligible amount of power
when processing the 4 MHz signal, we have omitted its
power consumption in Table 2. Future mobile software
radio systems may incorporate dedicated processors to
process the baseband signals. By reducing the processors’
clock rate in parallel with the ADC and FPGA, the entire
software radio platform can achieve higher energy efficiency.

4 AN OVERVIEW OF E-MILI

E-MiLi controls the radio clock rate on a fine-grained, per-
packet basis, in order to reduce the energy consumption of
IL. It opportunistically downclocks the radio during IL, and
then restores it to full clock rate before transmitting or after
detecting a packet. Fig. 4 illustrates the flow of core
operations when E-MiLi receives and transmits packets.

E-MiLi prepends to each 802.11 packet an additional
preamble, called M-preamble. During its IL period, a
downclocked receiver continuously senses the channel
and looks for the M-preamble, using the SRID algorithm.
Upon detecting an M-preamble, the receiver immediately
switches back to full clock rate, and calls the legacy 802.11
decoder to recover the packet. The receiver leverages an
implicit, PHY-layer addressing mechanism in SRID to filter
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TABLE 1
Mean Power Consumption (in W)

of WiFi under Different Clock Rates

TABLE 2
Mean Power Consumption (in W)

of USRP under Different Clock Rates

Fig. 4. Idle listening and RX/TX operations in E-MiLi.

1. The USRP E100 cannot be tuned to signals below 32 MHz. So, we used
a signal generator to produce clock signals below 32 MHz, with the same
configuration as those produced by the E100.



the M-preamble intended for other nodes, and hence
prevents unnecessary switching of clock rate.

A TX operations follow the legacy 802.11 MAC, except
that the carrier sensing is done by SRID. If the radio is
downclocked during carrier sensing and backoff, it needs to
restore full clock rate before the actual transmission. The
exact restoration time is scheduled by another component
of E-MiLi, called Opportunistic Downclocking.

After completing an RX or TX operation, the radio cannot
downclock greedily. As we will verify experimentally in
Section 6, switching clock rate takes 9.5 to 151 !s for a
typical WiFi radio. During the switching, the clock is
unstable, and packets cannot be detected even with SRID.
To reduce the risk of packet loss, E-MiLi employs ODoc
again to make a downclocking decision using a simple
outage-prediction algorithm, which estimates if a packet is
likely to arrive during the clock-rate switching.

In addition, after sending the M-preamble, a transmitter
cannot wait silently during the receiver’s switching period;
it may otherwise lose the medium access and be preempted
by other transmitters. To compensate for the switching gap,
the transmitter inserts a sequence of dummy bits between
the M-preamble and the 802.11 packet. The dummy bits
cover the maximum switching period so that the channel is
occupied continuously. Note that the transmitter always
sends the M-preamble, dummy bits, and 802.11 packets at
the full clock rate. It need not know the current clock rate of
the receiver.

When multiple clients coexist, E-MiLi assigns a broad-
cast address as well as multiple unicast addresses, each
with a unique feature. This feature is embedded in the M-
preamble and detectable only by the intended receiver. To
reduce the overhead of M-preamble, E-MiLi incorporates
an optimization framework that allows multiple clients to
share addresses at minimum cost.

In summary, E-MiLi always runs at full clock rate to
transmit or decode packets, but downclocks the radio during
IL to detect implicitly addressed packets, whenever possible.
Next, we detail the design of components in E-MiLi.

5 SAMPLE RATE INVARIANT DETECTION

To realize E-MiLi, its packet-detection algorithm must
overcome the following challenges: 1) it must be resilient to
the change of sampling clock rate; 2) it must be able to
decode the address information directly at low sampling
rates; and 3) due to unpredictable channel condition and
node mobility, its decision rule should not be tuned at
runtime, and hence must be resilient against the variation of
SNR. We propose SRID to meet these challenges via a joint
design of preamble construction and detection.

5.1 Construction of the M-Preamble

E-MiLi constructs the M-preamble to facilitate robust,
sampling-rate invariant packet detection, while implicitly
delivering the address information. An M-preamble com-
prises CðC # 2Þ duplicated versions of a pseudorandom
sequence, as shown in Fig. 5 (where C ¼ 3).

Within the M-preamble duration, the channel remains
relatively stable, and therefore the duplicated sequences
sent by the transmitter maintain strong similarity at the

receiver. Hence, a receiver can exploit the strong self-
correlation between the C consecutive sequences to detect
the M-preamble. More importantly, since radios sample
signals at a constant rate, the receiver would obtain C
similar sequences even if it down samples the M-preamble.

To enhance resilience to noise, the random sequence inM-
preamble must have a strong self-correlation property—it
should produce the best correlation output only when
correlating with itself. The Gold sequence [21] satisfies this
requirement. It outputs a peak magnitude only for perfectly
aligned self-correlation, and correlating with any shifted
version of itself results in a low, bounded magnitude. For a
Gold sequence of length L ¼ 2l ! 1 (l is an integer), the ratio
between the magnitude of self-correlation peak and the
secondary peak is at least 2

l!1
2 . The original Gold sequence is

binary [21]. To make it amenable for WiFi transceivers, we
construct a complex Gold sequence (CGS), in which the real
and imaginary parts are shifted versions of the same Gold
sequence generated by the standard approach [21].

In addition, we use the length of the CGS to implicitly
convey address information. An address is an integer
number n, and corresponds to a CGS of length ðTB þ nDmÞ,
whereDm is the maximum downclocking factor of the radio
hardware. TB is the minimum length of the CGS used for the
preamble, also referred to as base length. To detect its own
address (e.g., n), at each sampling point t, the client simply
self-correlates the latest TB samples with the previous TB

samples offset by nDm. When the client is downclocked by a
factor ofD, it scales down the base length to TBD!1 and offset
to nDmD!1 accordingly. The nDm value ensures that
different addresses are offset by at least 1 sample, even if
the CGS is downsampled by the maximum factor Dm.

One challenge related to the Gold sequence is that it only
allows length of L ¼ 2l ! 1. Hence, not all of the ðTB þ nDmÞ
samples can be exactly matched to a whole Gold sequence.
We solve this problem by first generating a long CGS, and
then assign the subsequence of length ðTB þ nDmÞ to the
nth address.

Clearly, to meet its design objectives, an ideal random
sequence for M-preamble should have strong self-correla-
tion even after it is downsampled and truncated (since we only
use TB of the TB þ nDm samples to perform self-correlation).
We conjecture there does not exist such a sequence unless the
sequence length is very large and the downsampling factor is
small. We leave the theoretical investigation of this problem
as our future work. In this paper, we will empirically verify
that the CGS with a reasonable length suffices to achieve
high detection accuracy in practical SNR ranges.

5.2 Detection of the Preamble

We formally derive the detection algorithm in SRID by
modeling how the receiver down nsamples the M-preamble
and identifies it via self-correlation.
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Fig. 5. M-preamble construction and integration with an 802.11 packet.



Let T ¼ CðTB þ nDmÞ be the total length of the M-
preamble (Fig. 5), and xðtÞ; t 2 ½0; T Þ, the transmitted
samples corresponding to the M-preamble. For a full-
clocked receiver, the received signals are

yoðtÞ ¼ e2"!fthðtÞxðtÞ þ nðtÞ; t 2 ½0; T Þ; ð1Þ

where nðtÞ is the noise, hðtÞ the channel attenuation (a
complex scalar representing amplitude and phase distor-
tion), and !f the frequency offset between the transmitter
and the receiver. When a receiver operates at the clock rate
of 1

D (i.e., with a downclocking factor of D), the received
signals become

zðkÞ ¼ e2"!fthðtÞxðtÞ þ nðtÞ; t ¼ kD; 0 ( k <
T

D

! "
:

Here,Dmust be an integer divisor of the base length TB of
the CGS, i.e., bTB

D c ¼
TB
D ¼4 T1. To detect M-preamble, at each

sampling point k, the receiver with address n performs self-
correlation between the latest T1 samples and the previous T1

samples offset by nDmD!1, resulting in

RðkÞ ¼
XkþT1!1

i¼k

zðiÞz)ði! T1 ! nDmD
!1Þ ð2Þ

*
XkþT1!1

i¼k

e2"!fiDhðiDÞxðiDÞ
#
e2"!fðiD!TB!nDmÞ

hðiD! TB ! nDmÞxðiD! TB ! nDmÞ
$)

ð3Þ

* eTBþnDm jhðkDÞj2
XkþT1!1

i¼k

jxðiDÞj2; ð4Þ

where ð+Þ) denotes the complex conjugate operator.
Equation (3) is derived based on the fact that the signal

level is usually much higher than the noise. Equation (4) is
based on the fact that 1) the random sequence xðtÞ
preserves similarity with its predecessor sequence, even
though it is downsampled; and 2) the channel remains
relatively stable over its coherence time, which is much
longer than the preamble duration. To see this, we note that
the coherence time can be gauged as To ¼ #ffiffi

2
p

"v
, where #

and v denote the wavelength of the signal and the relative
speed between the transmitter and the receiver [22]. At a
walking speed of 1 m/s, To equals 28.8 milliseconds,
whereas the M-preamble duration lasts for tens of micro-
seconds (see Section 5.3.1).

Meanwhile, the energy level of T1 samples is calculated as

EðkÞ ¼
XkþT1!1

i¼k

jzðiÞj2 * jhðkDÞj2
XkþT1!1

i¼k

jxðiDÞj2: ð5Þ

From (4) and (5), we get jRðtÞj * EðtÞ. By contrast, if no
M-preamble presents or an M-preamble with a different
address a is transmitted, then the self-correlation yields

jRðkÞj * jhðkDÞj2
&&&&&
XkþT1!1

i¼k

xðiDÞxðiD! TB ! aDmÞ)
&&&&& * 0:

This is because the sequence xðiDÞ; i 2 ½k; kþ T1 ! 1, is a
truncated CGS and has strong correlation only with itself.

Fig. 6 shows a snapshot of jRðtÞj and EðtÞwhen receiving
a packet prepended with M-preamble. jRðtÞj aligns almost
perfectly with EðtÞ in an M-preamble, even though the
receiver is downclocked. In contrast, jRðtÞj differs from EðtÞ
significantly if noise or uncorrelated signals are present.

Based on the above findings, SRIDuses the following basic
decision rule to determine the presence of an M-preamble:

H < jRðkÞj + ½EðkÞ,!1 < H!1; ð6Þ

where H is a threshold such that H *< 1. This decision rule
has several key advantages. First, it normalizes the self-
correlation with the energy level, so H need not be changed
according to the signal strength. We will show experimen-
tally (Section 7) that a fixed value ofH ¼ 0:9 is robust across
a wide range of SNR. Second, it does not require estimation
of the channel parameters or calibration of the frequency
offset, and hence can be used in dynamic WLANs with user
churn and mobility.

For further enhancement of resilience to noise, note that

the decision rule (6) is likely to be satisfied at all the sampling

points from the second to the Cth CGS (Fig. 5). There are
ðC!1ÞðTBþnDmÞ

D ¼4 T2 such points at a downclocking factor D,

which can offer high diversity in a noisy or fading

environment. To exploit this advantage, at each sampling

point k, SRID stores the decision for the past T2 samples in a

FIFO queue, and then apply the following enhanced rule:

for k! T2 < i ( k, the number of sampling points satisfying

(6) #H1T2, whereH1 is a tolerance threshold andH1 2 ð0; 1,.
In addition, during idle periods (i.e., when no signal is

present), both the self-correlation and the energy level may
be close to 0 and close to each other, and hence the decision
rule (6) may be falsely triggered. To prevent such false
alarms, we added an SNR squelch, which maintains a
moving average of incoming signals’ energy level, with the
window size equal to T1:

EaðkÞ ¼ T!1
1 EðkÞ þ

'
1! T!1

1

(
Eaðk! 1Þ: ð7Þ

The SNR squelch passes a sampling point to the self-
correlator only if its SNR exceeds a threshold Hs, which
corresponds to the minimum detectable SNR (set to 4 dB for
SRID). Since an idle period (noise floor) usually precedes
the M-preamble (with length TD!1) due to the MAC-layer
contention, the SNR level can be estimated as

SNR ¼ 10 log10
EaðtÞ

Eaðt! T Þ
: ð8Þ
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Algorithm 1 summarizes the detection of M-preamble in
SRID. For each time stamp (sampling point), both the self-
correlation in (2) and the energy level in (5) can be
computed by a single-step operation, which updates the
metrics with an incoming signal and subtracts the obsolete
signal. Hence, the algorithm has linear complexity with
respect to the number of samples, and is well suited for
implementation on an actual baseband signal processor.

Algorithm 1. Detecting the M-preamble using SRID.
1. Input: new sample zðkþ T1 ! 1Þ at sampling point

kþ T1 ! 1
2. Output: packet detection decision at sampling point k
3. =)Update energy level of past T1 samples)=
4. EðkÞ Eðk! 1Þ þ jzðkþ T1 ! 1Þj2 ! jzðk! 1Þj2

5. =)Update average energy level)=
6. EaðkÞ T!1

1 EðkÞ þ ð1! T!1
1 ÞEaðk! 1Þ

7. =)Update self-correlation with predecessor sequence)=
8. RðkÞ Rðk! 1Þ þ zðkþ T1 ! 1Þzðk! nDmD!1 ! 1Þ)

9. !zðk! 1Þzðk! 1! T1 ! nDmD!1Þ)

10. =)Apply SNR squelch and self-correlation decision)=

11. if 10 log10
EaðkÞ

Eaðk!TD!1Þ > Hs && H < jRðkÞj
EðkÞ < H!1

12. then decisionQ  push 1
13. else decisionQ  push 0
14. fi
15. if sum(decisionQ) > H1 + ðC!1ÞðTBþnDmÞ

D
16. then return 1
17. fi
18. return 0

5.3 Address Allocation

5.3.1 Minimum-Cost Address Sharing

Since M-preamble uses sequence length to convey address
information, the addressing overhead increases linearly
with network size. For a network with N nodes, the M-
preamble has a maximum length of CðTB þNDmÞ. In our
implementation, the base length TB ¼ 64, and CGS repeti-
tion C ¼ 3. For a medium-sized network, say N ¼ 5, and a
maximum downclocking factor Dm ¼ 4, the entire M-
preamble would have a length of 252. When transmitted
at a 20 MHz sampling rate, the M-preamble only takes
252

2-107 s ¼ 12:6 !s channel time, which is comparable to the
16 !s overhead of the 802.11a/g preamble [5]. However, for
a large network, e.g., N ¼ 50, the M-preamble overhead
increases to 69:6 !s, which may be overly large, especially
for short packets.

To reduce the addressing overhead, E-MiLi allows
multiple clients to share a limited number of addresses.
Address sharing, however, introduces side effects: clients
may unnecessarily trigger each other, thus incurring extra
energy consumption. E-MiLi makes a tradeoff by carefully
allocating addresses according to clients’ relative channel
usage, i.e., the ratio of each client’s TX&RX time to the total
TX&RX time of the WLAN. The intuition behind this is that
a client that transmits/receives packets more frequently
should share his address with a fewer number of other
clients, so as to minimize the cost of sharing.

We formalize this intuition with an optimization frame-
work. Given the number of clients N , and the maximum

address Km, we seek the optimal address allocation that
minimizes the overhead of E-MiLi, as follows:

min
XKm

k¼1

Lk

XN

i¼1

piuik

 !
XN

i¼1

uik

" #

ð9Þ

s:t:
XKm

k¼1

uik ¼ 1; 8i 2 ½1; N ,; ð10Þ

uik 2 f0; 1g; 8i 2 ½1; N ,; 8k 2 ½1; Km,; ð11Þ

where Lk is the overhead when the address k is used. pi is
client i’s relative channel usage, and uik a binary variable
indicating whether or not client i uses address k. Intuitively,
the objective function (9) represents the sum of the
overhead of each address, weighted by sum of the channel
usages of all clients sharing that address and further
multiplied by the number of such clients. The multiplication
is necessary because a packet with address k triggers all
clients with address k. Equation (10) enforces the constraint
that each client uses only one address.

This optimization problem is a nonlinear integer pro-
gram, which is NP-hard in general. In our actual imple-
mentation, we approximate the solution by relaxing the
integer constraint (11) to 0 ( uik ( 1, solving the resulting
quadratic optimization program, and then rounding the
resulting uik back to its integer value. To implement the
address sharing algorithm, the AP needs to periodically
(e.g., every 1 minute) compute the relative channel usage pi,
and then broadcast the new allocation to all clients.

To test the effectiveness of the approximation, we run
the address sharing algorithm on the SIGCOMM ’08 trace
(assuming Km ¼ 5 and Lk ¼ kDm) and plot the total
address overhead of E-MiLi in Fig. 7. We observe that
the integer-rounding-based solution closely approximates
the lower bound enforced by the quadratic optimization
over 0 ( uik ( 1. On average, the approximate solution
exceeds the lower bound by only 1.8 percent. Fig. 7 also
shows the mean overhead of an algorithm that randomly
assigns an address for each client (error bar shows standard
deviation over 20 runs). We observe that the approximation
algorithm can save more than 50 percent of overhead over
the random allocation.

5.3.2 The Broadcast Address

In addition to the address designed for each node, E-MiLi
assigns a broadcast address known to the AP and all clients.
It corresponds to an M-preamble with address n ¼ 0.
Therefore, each node needs to maintain a self-correlator with
offset nDm ¼ 0, in addition to the one with its own address.
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For the carrier sensing purpose, a node also needs to
identify the existence of packets from other transmitters.
Similar to the original 802.11, SRID can perform both energy
sensing and preamble detection. The former is achieved by
following (7). When downclocked by a factor of D, a node
can only sense D!1 of the energy compared with a full-
clocked receiver. Hence, it reduces the energy detection
threshold to D!1 of the original. When preamble-based
carrier sensing is necessary, it can be realized by prepend-
ing an additional broadcast preamble. When this first
preamble is detected, the node determines the channel to
be busy, and continues to track the energy level of the entire
packet. However, it will restore full clock rate only when it
detects a second preamble, which is either addressed to it or is
another broadcast preamble.

E-MiLi can coexist with 802.11a/g clients even in the
preamble detection mode. The 802.11a/g [5] employs self-
correlation to detect a short preamble, which corresponds to
a random sequence in the frequency domain, and a periodic
sequence (period 16, with 10 repetitions) in the time
domain. It can be considered as a subset of SRID, with
base length TB ¼ 16, sequence repetition C ¼ 10, node
address 0 and no downclocking, and thus can be easily
detected by E-MiLi clients. On the other hand, by replacing
the first preamble with an 802.11 preamble, E-MiLi nodes
can be detected by legacy 802.11 as well.

6 OPPORTUNISTIC DOWNCLOCKING

We now present the ODoc module, which schedules the
downclocking to balance its overhead and maintain
compatibility with existing MAC and sleep scheduling
protocols. We start by inspecting the overhead in switching
clock-rates.

6.1 Delay in Switching Clock Rates

When switching to a new clock rate, the radio needs to be
stabilized before transmitting/receiving signals. Since the
frequency synthesizer and analog circuit’s center frequency
remain the same, the time cost mainly comes from
stabilizing the digital PLL (driving the ADC and CPU).
This is only several microseconds in state-of-the-art WiFi
radios. For example, the PLL takes less than 8 !s to stablize
itself in the MAXIM 2831 RF transceiver [23, p. 17], and the
digital circuit (ADC and CPU) needs only 1:5 !s to reset [24,
Section 7.1], so the total switching time is below 9:5 !s.

We have also measured the switching delay of the
Atheros 5414 NIC. We modified the ath5k driver that can
directly access the hardware register and reset the clock
rate. After changing the clock-rate register, we repeatedly
check a baseband testing function until it returns 1 (a
conventional way of verifying if the ADC and baseband
processor have become ready to receive packets in ath5k),
and then record the duration of this procedure.

According to our experimental results, switching between
clock-rate 1 and 1

4 takes 139 to 151 !s, whereas switching
between 1 and 1

2 takes 120 to 128 !s. We note that this is a
conservative estimation of the actual switching delay. To
switch to a new rate, the Atheros NIC needs to reset not just
the PLL, but also all registers for the OFDM decoding and
MAC blocks in the CPU, so that the entire receiver chain can

run a valid 802.11 mode. In contrast, E-MiLi only needs to
reset thePLL,while keeping the registers in theCPU intact. In
addition, the latency induced by the baseband testing
function and its interface to the PC host is unknown, but is
included in the switching delay in our measurement.

We will henceforth use the 9:5 !s switching delay for the
MAXIM 2831 chip as a lower bound, and use the
measurement result for Atheros 5414 as an upper bound,
although the ODoc module is not restricted to these bounds.

6.2 Scheduling of Downclocking

6.2.1 Control Flow

E-MiLi interacts with the WiFi MAC/PHY using a simple
interface. On the one hand, WiFi calls E-MiLi (the SRID
module) to assess the channel availability. On the other
hand, E-MiLi obtains the radio’s state machine from the
WiFi MAC and the sleep scheduler. Whenever the radio
transits to IL, E-MiLi calls its ODoc module to determine
whether and when to switch clock rate.

Fig. 8 illustrates the state machine of E-MiLi. In dIL
mode, the radio runs SRID continuously, and switches to
the full-clocked RX mode immediately upon detection of an
M-preamble. When there are packets to be transmitted,
carrier sensing is performed by SRID, but the MAC
schedule strictly follows the 802.11 CSMA/CA algorithm.
ODoc continuously queries the 802.11 backoff counter, and
reverts the radio to full clock rate when the countdown
value of the backoff counter is less than Tc þ SIFS, where
Tc is the maximum switching delay, and SIFS is the short
interframe space defined in 802.11 [5]. ODoc mandates the
radio to perform carrier sensing within this SIFS interval
after switching to full-clock rate, in order to ensure the
channel remains idle after switching. Otherwise, it needs to
continue carrier sensing and backoff according to 802.11.

The state-transitions TX$ Sleep and RX$ Sleep are
managed by 802.11 or other sleep-scheduling protocols.
Whenever a TX or RX completes and the radio is not put to
sleep, ODoc decides whether to switch to dIL or the normal
IL mode. It makes this decision using an outage prediction
scheme, as detailed next.

6.2.2 Outage Prediction

ODoc’s outage prediction mechanism decides if the next
packet is likely to arrive before the radio is stabilized to a
new clock rate (referred to as an outage event). It first checks
if there will be a deterministic operation, i.e., an immediate
response of the previous operation. For example, CTS,
DATA, and ACK packets are all deterministic operations to
follow an RTS. Such packets are separated only by an SIFS,
which is usually shorter than or comparable to the switch-
ing time, so the radio must remain at full rate in between.
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When a series of deterministic operations end, ODoc
checks if an outage occurred recently. It maintains a binary
history for each nondeterministic packet arrival, with “1”
representing that the interpacket interval is shorter than Tc,
and “0” otherwise. It asserts that an outage is likely to occur
and remains at full clock rate, if the recent history contains a
“1.” The key intuition lies in the burstiness of WiFi traffic—a
short interval implies an ongoing transmission of certain
data, and is likely to continue multiple short intervals until
the transmission completes.

An important parameter in ODoc is the size of history. A
large history size may predict an outage when it does not
occur, thus missing an opportunity of saving energy by
downclocking. On the other hand, a small history size results
in frequent misdetection of packets arriving within Tc.
Fortunately, a misdetection causes only one more retransmission,
because a missed packet will be detected in its next
retransmission, when the receiver has already been stabi-
lized. Therefore, a small history size is always preferred
when energy efficiency is of high priority. Aswill be clarified
in our experimental study, a history size of between 1 and 10
is sufficient to balance the tradeoff between false prediction
and misdetection.

7 EVALUATION

In this section, we present a detailed experimental evalua-
tion of E-MiLi. Our experiments center around two
questions: 1) How accurate can E-MiLi detect packets in
a real wireless environment, and with different down-
clocking rates? 2) Howmuch of energy can E-MiLi save for
real-world WiFi devices and at what cost?

To answer these questions,wehave implementedE-MiLi

on software radios and network-level simulators as follows:

. We have implemented the SRID algorithm, includ-
ing the M-preamble construction and detection, on
the GNURadio platform and verify it on a USRP
testbed. As a performance benchmark, we have also
implemented the 802.11 OFDM preamble encoding/
detection algorithm (Section 5.3.2).

. E-MiLi’s energy efficiency depends on the relative
time of IL, which, in turn, depends on network delay
and contention, and hence, we leverage real WiFi
traces again to evaluate the energy efficiency of E-
MiLi. We implemented the ODoc framework and
address allocation algorithm by extending the trace-
based simulator (Section 3), and then integrating
results from the SRID experiments.

. We have also implemented ODoc in ns-2.34, which
can be used to verify the performance of E-MiLi

with synthetic traffic patterns (e.g., HTTP and FTP)
independently.

7.1 Packet-Detection Performance

We test the detection performance of SRID under different
SNR levels and downclocking factors. The SNR is estimated
as SNR ¼ Es!EN

EN
, where Es is the average energy level of

incoming samples when a packet is present, and EN is the
noise floor, both smoothed using a moving average with the
window size equal to the length of the M-preamble. Note

that this SNR value overestimates the actual SNR experi-
enced by the decoder, since the decoding modules will raise
the noise level by around 3.5 dB [12]. Given that 802.11
needs at least 9.7 dB SNR to decode packets [17], SRID must
be able to detect packets accurately above 9.7 dB SNR.

We set the base length of SRID’s CGS to TB ¼ 64, and
maximum downclocking factor Dm ¼ 16. We fix the self-
correlation threshold H ¼ 0:9, and the tolerance threshold
H1 ¼ 0:6 (Section 5). We will show that these thresholds are
robust across different experiment settings.

7.1.1 Single Link

We first test SRID on a single link consisting of two USRP
nodes within Line-of-Sight (LOS). We downclock the
receiver by different factors, and vary the link’s SNR by
adjusting the transmit power and link length/distance.
Since the USRP fails to work when the external clock is
downclocked to 1

16 , we scale its FPGA decimation rate by 16,
which is equivalent to downsampling the signals by a factor
of 16. Under each SNR/clock-rate setting, the transmitter
sends 106 packets at full clock rate with constant interarrival
time. The misdetection probability (Pm) is calculated by the
fraction of time stamps where a packet is expected to arrive
but fails to be detected, and vice versa, for the false-alarm
probability (Pf ).

Fig. 9 plots Pm and Pf as a function of a link’s time-
averaged SNR (rounded to integer values). Pm drops
sharply as SNR increases, and approaches 0 as SNR grows
above 8 dB. It tends to be higher under a high downclocking
factor, mainly because fewer sampling points are available
that satisfy the decision rule (6) and thus, SRID is more
susceptible to noise. When SNR ¼ 4 dB and D ¼ 16, Pm

grows up to 6 percent. Under practical SNR ranges (above
9.7 dB), however, Pm is consistently below 1 percent for all
the clock rates. In addition, SRID shows a comparable
detection performance with 802.11. In fact, it may have
lower Pm when the down-clocking factor D is below 16.
This is because SRID uses a longer self-correlation sequence
than 802.11 (64 versus 16), which increases its robustness to
noise. The false-alarm probability Pf in Fig. 9b shows a
trend similar to Pm.

Recall SRID uses nDm, the spacing between repetitive
CGS to convey address n. A natural question is: how large
can n be to ensure a high detection accuracy? Fig. 10 plots
the detection performance as n increases. For a stationary
link, both Pm and Pf remain relatively stable. This is
because even for the address n ¼ 100, two self-correlation
sequences are separated by 1,600 samples, corresponding to
400 !s at the 4 MHz signal bandwidth of USRP, which is
well below the channel’s coherence time. For a mobile client

ZHANG AND SHIN: E-MILI: ENERGY-MINIMIZING IDLE LISTENING IN WIRELESS NETWORKS 1449

Fig. 9. SRID performance for a single link.



(created by moving the USRP receiver around the trans-
mitter at walking speed), the detection performance is only
slightly affected by the address length, since the low
mobility causes SNR variations, but does not change the
coherence time significantly.

7.1.2 Testbed

We proceed to evaluate SRID on a testbed consisting of nine
USRP2 nodes (one AP and eight clients) deployed in a
laboratory environment with metal/wood shelves and glass
walls. Fig. 11 shows a map of the node locations. Node D is
moving between point D and E at walking speed, and all
others are stationary. This testbed enables the evaluation of
SRID in a real wireless environment subject to effects of
multipath fading, mobility, and NLOS obstruction. More
importantly, it allows testing the false-alarm rate due to
cross correlation between different node addresses.

Due to the limited number of external clocks, we create
the effect of downclocking by changing the USRP2’s
decimation rate, so that the receiver’s sampling rate becomes
1 to 1

16 of the transmitter’s. We allow the AP to send
106 packets to each client in sequence. Fig. 12a shows that,
depending on node locations, Pm varies greatly. In general,
nodes farther away (e.g., H) or obstructed by walls (e.g., F )
from the AP has higher Pm. The mobile node D may have
higher Pm than a node farther from the AP but is stationary
(e.g., nodeE). Consistent with the single link experiment, the
downclocking factor 4 results in comparable Pm with 802.11.

Fig. 12b shows the false-alarm probability due to cross
correlation, i.e., the probability that a client detects packets
addressed to others. The relative Pf for different clients
shows a similar trend as Pm, depending on the location and
mobility. Unlike the single link case, the Pf tends to be
larger than Pm, because the cross correlation between
sequences has stronger effects on Pf than pure noise.
Remarkably, even for the worst link and with D ¼ 16, Pf is
below 0.04, implying negligible energy cost due to false
triggering. We note that for 802.11, the address field must be
decoded from the packet, so Pf here is not meaningful for it.

From the above experiments, we observe that SRID has
close to 100 percent detection accuracy (and is comparable to

802.11) under practical SNR ranges and with downclocking
rate up to 16. Hence, it can be used to realize E-MiLi in
practical wireless networks.

7.2 Improving WiFi Energy Efficiency

7.2.1 Real WiFi Traffic

We now evaluate E-MiLi’s energy efficiency through trace-
based simulation. We obtain WiFi and USRP power-
consumption statistics from actualmeasurements (Section 3).
We use the 151 !s switching time of the Atheros AR5414
NIC as the worst case estimate of switching delay, assuming
the power consumption during clock switching is the same
as in full-clocked mode. As we will clarify, an outage due to
the switching delay occurs with a less than 4.2 percent
probability, so we assume an outage event does not affect
the WiFi traces except causing one retransmission. In
addition, we adopt the Pm and Pf values at 8 dB as a
conservative estimation of the packet loss or false alarm
caused by SRID. Unless mentioned otherwise, 15 addresses
are allocated and shared among all clients, and a history size
of 5 is used in ODoc.

Energy savings. Fig. 13a illustrates the energy saving of
E-MiLi, assuming clients are using WiFi devices with a
maximum downclocking factor of 4. For a large network
(SIGCOMM ’08 traces [10]), the energy saving ranges from 41
to 47.3 percent. Its CDF is densely concentrated—for around
92 percent of clients, the energy saving ranges between 44
and 47.2 percent, which is close to the 47.5 percent energy
saving when a client remains in downclocked IL mode
(Section 3). In a small network (PDX-Powell traces [11]) with
less contention, IL induces less energy cost, so the energy-
saving ratio of E-MiLi is relatively low. However, since IL
time still dominates, the median saving remains around
44 percent, and minimum 37.2 percent. Fig. 13b plots the
results assuming clients’ power consumption is the same as
the USRP device with a maximum downclocking factor of 8.
Again, the energy saving is concentrated near 36.3 percent,
the saving in pure IL mode (Section 3).
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Fig. 11. Network topology for evaluating SRID in a testbed.

Fig. 12. SRID performance in a USRP testbed.

Fig. 13. Energy saving ratio for (a) WiFi, maximum downclocking factor
of 4; (b) USRP, maximum downclocking factor of 8.



These experiments reveal that E-MiLi can explore the
majority of IL intervals to perform downclocking. Its
energy-saving ratio can be roughly estimated as $ ¼ $cPIL,
where $c is the energy-savings ratio in pure IL mode using
the maximum downclocking factor, and PIL the percentage
of idle listening energy during a radio’s lifetime. Since PIL is
close to 1 for most clients, $ is close to $c.

Overhead of E-MiLi and effect of ODoc. The overhead
of E-MiLi comes from misdetection (and retransmission)
due to a packet arriving in between the switching time.
Such events can be alleviated by ODoc’s history-based
outage prediction mechanism. In this experiment, we
evaluate the cost of such outage and the effectiveness of
ODoc in alleviating it. Fig. 14a shows that when history size
equals 1, 4.2 percent packets may need to be retransmitted
for some clients. With a history size of 10, retransmission is
reduced to below 0.8 percent for 90 percent of clients. A
further increase of the history size to 100 shows only a
marginal improvement. On the other hand, Fig. 14b shows a
small history size results in higher energy efficiency,
implying that the energy savings from aggressive down-
clocking dwarfs the small waste due to retransmissions.
Hence, a small history size is preferable for ODoc if energy
efficiency is of high priority.

7.2.2 Synthetic Traffic Patterns
To further understand E-MiLi’s benefits and cost under
controllable network conditions, we implement and test it
in ns-2.34. We compare performance of the legacy WiFi
(including both CAM and PSM), and E-MiLi-enhanced
WiFi (referred to as CAMþ E-MiLi and PSMþ E-MiLi). We
modified the PHY/MAC parameters of ns-2 to be consistent
with that in 802.11g, and fix the data rate to 6 Mbps. We
implement the ODoc based on 802.11, and configure it in a
similar manner to the trace-driven simulator. The PSM
module builds on the 802.11 PSM extension to ns-2 [25], and
the power consumption statistics follow our measurement
of AR5414 (Section 3). We evaluate two applications: web
browsing and FTP, which have different performance
constraints.

Web browsing.We simulate a web-browsing application
using the PackMIME http traffic generator in ns-2, which
provides realistic stochastic models of HTTP flows. The
network consists of one HTTP server connecting to a WLAN
AP via an ADSL2 link, with 1.5 Mbps (0.5 Mbps) downlink
(uplink) bandwidth and exponentially distributed delay
withmean 15ms. TheAP serves oneHTTP client (withmean
page request interval of 30 s) and multiple background
clients. Similar to [6], we study the effect of background
traffic by running fixed-rate (200 Kbps, 512-byte packet size)
UDP file transfer between theAPand the background clients.

Fig. 15a shows the energy usage of a 5-minute web-
browsing session. PSM shows around 18 percent energy
saving over CAM.CAM+E-MiLi saves 39.8 percent of energy
over CAM without background traffic, and 47.1 percent
when the number of background clients grows to 10. Since
PSM optimizes the sleep schedule of clients, the ratio of IL
time is less, compared to CAM, and thus PSMþ E-MiLi
achieves less energy saving (33 to 37.1 percent) than
CAMþ E-MiLi. Also, note that E-MiLi is relatively insensi-
tive to background traffic, as it can enforce address filtering
even at low clock rate.

Fig. 15b plots the average per-page delay during the web-
browsing session. Clearly, E-MiLi incurs a negligible delay
when integrated into legacyWiFi. Although theM-preamble
and clock switching costs channel time, it is much shorter
than the network and contention delay. Notably, PSM incurs
a longer delay than CAM due to its sleep scheduling
mechanism, and CAMþ E-MiLi has a shorter delay, yet
higher energy efficiency than PSM.We expect an even better
energy-delay tradeoff to be achieved by jointly designing the
PSM sleep scheduling algorithm and E-MiLi. We leave
such an optimization as our future work.

FTP.Weproceed to evaluate E-MiLi using the FTP traffic
generator in ns-2, assuming a client downloads a 20 MB file
(with packet size 1 KB) directly from the AP. Compared to
the fixed-duration web browsing, the FTP’s energy usage is
more sensitive to the background traffic (Fig. 16a), because
the downloading duration is prolonged by MAC-layer
contention. PSM is found to consume 36.8 to 39.4 percent
more energy than CAM, due to the fact that it may result in
higher energy-per-bit than CAM [1]. In addition, although
E-MiLi achieves a similar level of energy saving as in the
web browsing, it may degrade the FTP throughput by up to
4.4 percent in the absence of background traffic (Fig. 16b).
This is due mainly to its overhead, i.e., the switching delay,
the extra channel time of the M-preamble, and the imperfect
detector and outage predictor that incur MAC-layer retrans-
missions. Moreover, note that we assume no end-to-end
delay and the throughput depends only onMAC contention,
which zooms in the overhead from E-MiLi.
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Fig. 14. Effects of history size (SIGCOMM ’08 trace). Fig. 15. Performance of a 5-minute web-browsing session.

Fig. 16. Performance when downloading a 20 MB file using FTP.



Overhead in high-rate applications. One caveat to
E-MiLi is that the duration of the M-preamble and the
switching delay are fixed, whereas the channel time for
transmission of useful data decreases as the data rate
increases. The overhead of E-MiLi will thus be amplified
at a high data rate. We illustrate this effect by varying the
PHY-layer data rate for an FTP file transfer with the number
of contending clients fixed at 6. Other parameter settings are
the same as in the FTP experiments above. The correspond-
ing M-preamble takes 10:1 !s and the switching delay is
again configured to 151 !s. Fig. 17 shows that as the data rate
increases, CAMþ E-MiLi causes CAM more throughput
degradation, and the amount of energy saving decreases due
to the longer time in transferring the data.When the data rate
reaches 54Mbps,CAMþ E-MiLi degrades the throughput of
CAM by 17.6 percent (the actual throughput is much lower
than 54 Mbps due to inherent overhead and collision
induced by TCP when running over 802.11 [26]), while
saving 23.1 percent of energy. However, when taking
advantage of the short switching delay of recentWiFi chipset
(e.g., 9:5 !s with MAXIM 2831), the throughput degradation
is negligible, and the energy saving ratio is consistently
around 40 percent for all data rates. In addition, E-MiLi sees
no throughput degradation when integrated with PSM, and
the resulting energy saving is kept around 30 percent.

Noted that the effect of fixed preamble overhead is an
inherent problem of high data-rate 802.11 protocols, and can
be resolved by standard solutions such as the packet
aggregation in 802.11n. Further, the effects of overhead of
E-MiLi becomes less severe in a busy network, where
contention is high and the channel time consumed by
preamble and switching overhead becomes negligible
compared to the contention delay. In addition, throughput
is a critical metric only for rate-intensive applications like
FTP.Mobilewireless devices aremore likely to be dominated
by elastic traffic such as VoIP andHTTP. Such traffic patterns
tend to incur a significant amount of idle listening timewhich
overwhelms the channel time consumed by E-MiLi’s
preamble and switching delay. As already exemplified in
our web-\textbackslash browsing experiments, they can
make substantial energy saving by using E-MiLi.

8 DISCUSSION

Scalability to MIMO radios. The overhead of E-MiLi is
fixed even if the NIC were equipped with a MIMO

transceiver. The overhead of E-MiLi mainly comes from
the preamble and the clock switching delay. For MIMO
systems suchas 802.11n, all theRF chains of a receiverdetect a
single preamble embedded in each packet, and then uses
different preambles for channel estimation. Similarly, when
using E-MiLi, they can share the same M-preamble for
packet detection. In addition, the clock switching delay
depends on the PLL settling time of each RF chain. Modern
MIMO transceivers may either allow the RF chains to share
the samePLL [27], or equip eachRF chainwith a separate PLL
[28]. In the former case, the switching delay is fixed and
shared amongall RF chains. In the latter case, the settling time
of all RF chains is similar and can overlap with each other.

In summary, neither the preamble overhead nor the
switching delay increases with the number of antennas in a
MIMO system. Therefore, E-MiLi works for modern
MIMO NICs without introducing any extra overhead
compared to the case of SISO NICs.

Enabling virtual carrier sensing.2 An E-MiLi receiver
employs SRID to detect packets intended for itself, and is
able to carrier sense other packets via energy detection.
However, energy sensing alone may not be enough to
address a pathological case, i.e., the hidden terminal
problem. In IEEE 802.11, virtual carrier sensing is an
optional solution, which requires an RTS/CTS handshake
before the actual data transmission. The RTS/CTS packet
piggy-backs a duration of the forthcoming data packet.
Neighboring transmitters overhear the RTS/CTS and extend
the channel’s busy time by the corresponding duration.

In E-MiLi, virtual carrier sensing can be simply realized
as follows: A transmitter/receiver prepends RTS/CTS with
the broadcast preamble, so that all neighboring nodes can
detect the RTS/CTS, restore full-clock rate and decode the
duration field using a legacy 802.11 decoder. Then, as in the
802.11 virtual carrier sensingmechanism, if the forth-coming
data packet is not intended for it, a node will enter the sleep
mode and remain there throughout the packet duration.
Since the data packets’ duration is usually much longer than
the RTS/CTS, the energy consumption in decoding RTS/
CTS is dominated by the energy savings with sleep, and the
savings in IL energy remain the same. Hence, with this
simple mechanism, E-MiLi will retain its advantages over
legacy approaches with virtual carrier sensing enabled.

Note that the RTS/CTS-based virtual carrier sensing is
necessary only when a hidden terminal is a critical problem.
It has been shown that a hidden terminal rarely occurs in
WiFi networks when the rate adaptation is enabled [29] and
even rarer under a light traffic load. Most WiFi devices
disable the virtual carrier sensing by default, so as to save
the overhead caused by RTS/CTS. Hence, E-MiLi without
RTS/CTS is more preferable in practice.

Association process. When E-MiLi coexists with legacy
WiFi, the AP needs to discriminate them and prepend the
M-preamble only for packets destined for E-MiLi-capable
clients. The discrimination should be initialized during the
association process, when a newly joining E-MiLi client
notifies the AP about its capability, and subsequently the
AP runs the address allocation algorithm to assign an
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Fig. 17. FTP performance when data rate varies. “E-MiLi(short)” denotes
E-MiLi with a short switching time (9:5 !s).

2. This issue was brought up by Sunghyun Choi during the ACM
MobiCom 2011, Las Vegas, Nevada.



address to it (and possibly reassign addresses to existing
E-MiLi clients using the address allocation algorithm).

9 RELATED WORK

Energy-efficient protocols for WiFi. Energy efficiency has
long been a paramount concern for portable WiFi devices.
Many MAC-level scheduling protocols have been proposed
to reduce the energy wasted by IL. For example, NAPman
[6] carefully isolates PSM clients’ traffic using an energy-
aware fair scheduler, so as to reduce unnecessary IL caused
by background traffic. SleepWell [30] further isolates the
traffic from different WLAN cells, by scheduling their wake-
up time in a distributed TDMA manner. !PM [4] adopts a
more fine-grained scheduler that aggressively puts clients to
sleep even in between short packet intervals. E-MiLi can be
integrated with these and other MAC-level energy-saving
solutions, by adding the downclocked IL mode into their
state machine (Section 6.2). E-MiLi can also work in CAM,
thus overcoming the excessive delay typically seen in PSM-
style protocols.

An alternative way of reducing the cost of IL is to wake
up the receiver on demand. The wake-on-wireless scheme
[31] augments a secondary low-power radio for packet
detection, and triggers the primary receiver only when a
new packet arrives. E-MiLi also adopts the philosophy of
on-demand packet processing. Its energy saving may be less
than wake-on-wireless, because it needs to keep the analog
circuit active in IL. Its advantage is that no extra radio is
required. In fact, it only requires a change of firmware to
support the construction and detection of M-preamble, and
adjustment of clock rate. E-MiLi can also be used with
wake-on-wireless to optimize the power consumption of the
secondary radio.

Low-power listening (LPL) in sensor networks. In
sensor networks, a popular MAC-layer energy saving
mechanism is LPL, which is used by S-MAC [32], B-MAC
[33] and many derivatives. Since sensor networks typically
run low-rate, small duty-cycle applications, LPL shifts more
power consumption to the transmitter side, thus reducing
the time spent in idle listening. Specifically, a receiver
periodically wakes up to detect packets from the transmitter,
and the transmitter uses a long preamble that spans that
period to ensure detectability. Similar to the WiFi’s PSM,
LPL is a sleep scheduling mechanism that reduces the IL
time, and can be enhanced by integrating with E-MiLi. For
example, since E-MiLi reduces IL power, it can shorten the
receiver’s wake-up period, thereby shortening the transmit-
ter’s preamble length and lowering its power consumption.

Packet detection. The general idea of correlation-based
packet detection is not new. As mentioned in Section 5.3.2,
the 802.11 OFDM PHY incorporates a preamble that
allows self-correlation-based detection. Its variants have
also been used in other software-radio implementations
[34]. In E-MiLi, we have designed a new preamble
mechanism that preserves the self-correlation property
even when it is downsampled. Cross-correlation-based
packet detection (i.e., correlating the incoming signal with
a known sequence) is an alternative way of detecting
packets [35], [36], but cannot detect downsampled signals
and is more susceptible to the frequency offset.

Dynamic voltage-frequency scaling (DVFS). DVFS is a
mature technology used in microprocessor design [7]. It
exploits the variance in processor load, lowering the voltage
and clock rate when few tasks are pending, and raising it
when the processor is heavily loaded. It has also been
proposed for Gigabit wireline links [37], and for audio
signal processing [8]. The key idea is to observe the peak
frequency of the incoming workload, and then limit the
processor’s clock rate to that level.

DVFS has not been used for improving the energy
efficiency for wireless radios, due mainly to a well-known
paradox: the radio should be activated only after detecting a
packet, but to detect the packet, the radio must always be
active at its full sampling rate. We overcome this paradox
by separating packet detection and decoding, and perform-
ing both at different rates. Our approach is partly inspired
by the experiments by Chandra et al. [3], who found WiFi
NIC’s power consumption to scale linearly with the
sampling bandwidth, and proposed the SampleWidth
algorithm to adjust the bandwidth according to the traffic
load. SampleWidth uses the same clock rate for detection
and decoding, and can only adjust clock rate at a coarse-
grained level, because the transmitter and the receiver must
agree on the same clock rate before packet transmissions.

10 CONCLUSION

We have presented E-MiLi, a novel mechanism for
reducing the energy cost of IL that dominates the energy
consumption in WiFi networks. Our goal was to exercise
fine-grained IL power control by adjusting clock rate
without compromising packet-detection capability. We
met this goal by devising a sampling-rate invariant packet
detector, which enables a downclocked radio to detect
packets with accuracy comparable to that of a full-clocked
radio. We have also introduced an opportunistic down-
clocking scheme to balance the overhead in changing clock
rate and minimize its negative influence on network
performance. Our experimental evaluation and trace-based
simulation confirm the feasibility and effectiveness of
E-MiLi in real WiFi networks with different traffic patterns.

E-MiLi has wider implications for wireless design than
what we have explored in this paper. Its simple MAC/PHY
interface facilitates its integration with other carrier sensing-
based wireless networks, such as ZigBee sensor networks.
In addition, we only explored the benefits of downclocking
in E-MiLi due to hardware limitation. By changing the
voltage along with clock rate, additional energy savings can
be achieved. This is a matter of our future inquiry.
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