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Abstract Dynamic Spectrum Access (DSA) allows

unlicensed wireless devices to opportunistically access

unoccupied licensed spectrum bands. DSA yields efficient

spectrum utilization which can greatly improve wireless

networking performance. In this paper, we advocate

application-awareness to effectively manage the side-

effects of DSA that can offset its benefits by adversely

impacting application QoS. Simple application hints are

found to be able to serve as key inputs in evaluating current

spectrum conditions relative to application needs, leading

to an informed DSA mechanism that minimizes the impact

of undesirable DSA side-effects. Towards this goal, we

propose a wireless service architecture called Context-

Aware Spectrum Agility (CASA). The key elements of

CASA are: (a) semantic dependency equations that provide

the relationship between application-layer QoS state and

lower-layer DSA parameters, (b) CASA Algorithm that

adapts DSA parameters and activities to better suit appli-

cation needs, and, (c) a low overhead interface to provide

application context to DSA. CASA has been explicitly

designed with the goals of practical deployment, low

overhead operation, and is compatible with any DSA pro-

tocol. Compared to state-of-art DSA, the deployment of

CASA along with DSA protocols is shown to improve QoS

metrics, such as delay and jitter, by an average of 30 and

64%, respectively. CASA is also found to match the

application QoS demands for more than 90% of the dura-

tion of a communication session—a 300?% improvement

over conventional application-agnostic DSA.

Keywords Dynamic Spectrum Access (DSA) � Wireless

networks � QoS � Software-Defined Radio (SDR) �
Cross-layer � Application hints

1 Introduction

Dynamic Spectrum Access (DSA), Spectrum Agility (SA),

or White Space Networking [2] is a new wireless net-

working paradigm that aims to solve the spectrum scarcity

problem in wireless communications. DSA relies on

opportunistic exploitation of licensed channels by unli-

censed devices (also called secondary users or SUs). Such

unlicensed accesses must occur when authorized licensee

devices (also called primary users or PUs) are not con-

currently accessing the channel, i.e., during spectrum white

spaces. Recent surveys [3, 4] have shown existence of

abundant spectrum spaces in the licensed spectrum. The

potential benefits of spectrum-agile operations has led

regulatory bodies, like FCC, to move towards opening

licensed channels for DSA [5, 6]. A growing interest is

being witnessed in developing DSA-based products, espe-

cially for TV bands [7–9].

DSA is still in an early stage of development, and has a

much broader scope than TV bands. Fundamentally, DSA

is not limited to a particular spectrum region, and can

involve opportunistic switching of channels between dif-

ferent spectrum regions. We take this general view of DSA

here, in which, apart from switching channels, access

mechanisms (or the MAC-PHY protocols) may also need
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to be dynamically changed in order to accommodate dif-

ferent wireless characteristics of various spectrum bands.

The FCC’s establishment of rules that open up TV bands

for DSA [5] has stimulated efforts in advancing technolo-

gies for DSA across other licensed bands [10, 11].

Gap Between State-of-art DSA and Application QoS:

The main motivation behind this paper is our investigation

which reveals that though state-of-art DSA leads to gain in

spectral resource at the channel level (i.e., the link layer

bandwidth) it does not translate into corresponding gain in

application performance. DSA’s negative side-effects,

which are undesirable for network applications, constitute

the main cause behind this phenomena. Fundamental

operations involved in DSA, like spectrum sensing or

channel switches, could cause delays and disruptions to the

applications—thereby introducing QoS degradation. Con-

taining the interference to incumbents is the key require-

ment for opportunistic usage of licensed spectrum. Thus,

any PU activity adds to the interruptions suffered by SU

applications. Further, DSA may also result in link capacity

fluctuations due to a reduction in frequency-width or less-

efficient MAC-PHY schemes on a new channel. In the worst

case, session handovers, terminations and re-establishments

may occur, exacerbating application QoS degradation.

Therefore, contrary to the current perception in the DSA

research community, we argue that achieving gains in link

layer capacity is not good enough at the application level.

We make two mutually contradictory observations about

state-of-art DSA that define the main theme of this paper.

O1. DSA aims to improve network application

performance.

O2. State-of-art DSA is agnostic to application needs.

Clearly, O1 is orthogonal to O2. Hence, DSA incurs

unwarranted side-effects, directly impacting application

QoS. We postulate that there exists a tension between DSA

operations and a network application’s traffic requirements,

which necessitates cooperation between the two entities to

effectively achieve DSA’s goals.

While there have been recent work in accounting for

QoS in DSA [10, 12, 13], only low level QoS metrics have

been considered, e.g., link SNR and BER. Thus, they are

unable to accurately capture specific application-layer QoS

demands which have high-level semantics.

Proposed Approach: In this paper, we propose an

adaptive application-aware service framework for DSA in

order to improve application performance. We call this DSA-

enhancement Context-Aware Spectrum Agility (CASA),

where context comprises application QoS hints as well as

current spectrum conditions. The high level application

context is first processed through semantic matching to

determine their dependency on low level DSA parameters.

CASA exploits the short-term correlation of the recent

networking state with near future in making DSA applica-

tion-aware. The adaptivity scheme of CASA is built-upon

reward-based Reinforcement Learning [14] methods. The

main goal of CASA is to minimize the undesirable impacts of

DSA, and thus, re-enforce and enhance the merits of DSA as

a performance-improving feature in wireless devices. Our

evaluation shows that CASA deployment improves appli-

cation performance significantly during DSA operation, and

indirectly, makes DSA resilient under stringent application

QoS requirements.

Our solution is inspired by the advantages shown in the

areas of power management and wireless network selection

[15, 16], when application-awareness is incorporated in

corresponding optimization algorithms. These works

highlight that application behavior/demands are the most

significant aspect of networking context, and their effective

integration with networking protocols can be instrumental

towards improving application performance.

Contributions: The main contributions of this paper

are:

(1) Identification of the harmful side-effects in state-of-

art DSA that adversely impact applications;

(2) Introduction of the concept of semantic matching

between application state and lower-layer parameters

via the development of semantic dependency equations;

(3) Development of a low overhead, easily-deployed

service architecture (i.e., CASA) to make DSA

application-aware and mitigate its side-effects; and,

(4) Prototype implementation and comprehensive testbed

evaluation of CASA.

Organization: The paper is organized as follows. We

will begin with a description of the system model. Section

3 presents the necessary background and motivation.

Sections 4–8 detail the design of CASA, while Sect. 9

describes its implementation. Section 10 evaluates CASA,

and Sect. 11 discusses prior related work. Section 12

concludes this paper.

2 System model

We consider DSA in the secondary wireless service market

model, as described below. The service structure for the

secondary market is still evolving, but is expected to closely

resemble the currently existing consumer wireless service

model (e.g., cellular service), as their service infrastructure

already exists with proven effectiveness and success.

2.1 Principal model

Device: The devices in our system model are general-

purpose computing units with wireless networking
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capability (e.g., laptops and smartphones)—each equipped

with one DSA-capable wireless interface. The wireless

interface is composed of a highly-reconfigurable Software

Defined Radio (SDR) or cognitive radio (CR) together with

a highly-tunable antenna [17– 20]. A basic prototype of a

CR (though with limited capabilities) is the software

defined radio USRP2 [21].

We consider a single SDR-based data interface scenario

here because of its cost-size-design advantage and sim-

plicity of analysis. However, our proposed solution also

applies to multi-interface (or multi-SDR) devices.

To maintain the generality and compatibility of the

proposed solution, we do not assume any restrictions on the

actual DSA protocol. Thus, for example, the SU may uti-

lize the same interface for spectrum sensing or have a

separate specialized spectrum-sensor hardware to minimize

interruptions to data-transfers during sensing. External

sensing infrastructure (e.g., sensor network or sensing

server) can also be used for collecting spectrum-condition

information.

Network: We consider infrastructure networks similar

to typical wireless service provider networks for our system

model. Each SU, by virtue of its DSA capability, can

migrate to a suitable licensed channel where it can connect

to the secondary gateway/base-station of such networks.

Thus, the SU is a client in such first/last-mile wireless

access networks, as shown in Fig. 1. The SU employs DSA

to select channels flexibly across the wireless spectrum in

order to avail of network services.

Example: A typical scenario would consist of a PDA-

like convergent DSA-capable device, which is in the range

of multiple edge access networks on different channels,

possibly of different types (e.g., WiMAX, cellular, 802.22,

etc). One or more of the networks can be primary to the

device (i.e., authorized to use it at any time), while other

networks are available on a secondary basis and can be

accessed opportunistically.

2.2 Other models

As clear from the prior discussion, we focus primarily on a

device-centric model, e.g., clients in edge access networks.

For completeness sake, we also mention below other types

of system models where our proposed solution CASA can

be incorporated with minor changes.

CASA can be applied to generic one-hop point-to-mul-

tipoint DSA networks, such as WRANs in the IEEE 802.22

standard [22]. However, in these cases, network-wide DSA

decisions need to be coordinated properly in order to avoid

conflicts. Effective DSA coordination together with a

central decision-making entity (e.g., a base station) in these

type of networks can avoid any spectrum management

conflicts.

Further, mobile devices in a fully ad-hoc/distributed

DSA network can also deploy the proposed CASA service

architecture to optimize local DSA performance. However,

coordination of CASA-related actions in the network

introduces additional overhead and may require complex

modifications to the existing DSA protocols. We leave this

as our future work.

Fig. 1 Client devices in first- or

last-mile wireless access

networks constitute the system

model

Fig. 2 Functional model of a typical DSA protocol
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2.3 Assumptions

We make two minor and non-restrictive assumptions dur-

ing development of CASA.

• The average raw physical layer data-rate and the appli-

cation layer efficiency for each of the MAC-PHY scheme

to be deployed on a channel is assumed to be known.

• The average utilization fraction of the channels,

including their primary and secondary user utilization

components, are known. These values are typically

available from the underlying DSA protocol.

• The packet arrival rate at the link layer during very short

durations is assumed to be constant. This assumption is

especially valid for many QoS-sensitive traffic like

Internet multimedia streaming and VoIP [23].

3 Background and motivation

3.1 Background

To better understand the issues of focus in this work, we

first provide a brief overview of contemporary (or state-of-

art) DSA architecture.

DSA, as a networking module, spans physical and link

layers. The physical layer aspect is captured by SDRs/CRs

which provide the radio capability necessary for DSA.

More relevant to this paper are the higher-layer MAC

aspects that manage how DSA operates. There have been

numerous DSA protocol proposals in literature [24–27].

The process for DSA standardization has also begun [22,

28]. However, at the time of writing this paper, there is no

consensus in the research community on a standard DSA

protocol. Thus, instead of selecting one protocol proposal

and disregarding others, we consider the state-of-art DSA

from a functional abstraction viewpoint.

Our study of several DSA protocols reveals that state-of-

art DSA protocols share certain key functions that must be

performed to achieve DSA (Fig. 2). This observation

enables us to create an abstract model of DSA which forms

the basis of our solution development. Our approach

ensures the generality of our analysis and proposed meth-

ods, despite the evolving nature of current DSA research. It

permits as to study and understand the behavior of funda-

mental DSA components, without incurring incompatibil-

ity problems or selectivity bias of choosing one (or a few)

specific DSA protocols.

From a functional abstraction perspective, DSA consists

of three main components: spectrum sensing, spectrum-use

decision making, and coordination (see Fig. 5).1

The spectrum sensing component scans channels in the

spectrum and acquires relevant time-variant characteristics

for each channel. A DSA protocol typically maintains a list

of channels together with their average spectrum white-

spaces. This list is referred to as the Spectrum Opportunity

Map (SOM) [29].

The spectrum-use decision making component deter-

mines the channel for secondary devices to use, and

invokes the channel-switching and coordination procedure,

if needed. For this, it analyzes the information gathered by

the sensing component. For instance, it is invoked when an

incumbent signal is detected on the current channel.

The coordination component orchestrates DSA deci-

sions in a multi-node DSA network. For instance, the

coordination component ensures that the SUs are on the

same channel, thus maintaining their inter-communication.

Many of the proposed DSA protocols use control channels

to exchange control information in order to accomplish this

coordination.

As seen from its abstract function model, state-of-art

DSA’s main design objective is to gain as much spectral

resources as possible. Channel utilization is the the main

decision metric used for this purpose. Gain in spectral

resource is expected to translate into additional link layer

bandwidth, thus resulting in performance advantage of

DSA. For more details on the design and techniques

involved in the aforementioned DSA components, inter-

ested readers are pointed to the references described in

Sect. 11.

3.2 Motivation

As seen in Sect. 3.1, there are various functionally-disjoint

components in DSA. Therefore, their overhead and inter-

play may have unwarranted side-effects on end-user

applications in typical networking environments. This

observation motivated us to investigate the behavior of

DSA in direct relation to application QoS requirements.

Based on our analysis, we confirmed the existence of the

following problem with state-of-art DSA: Despite resulting

in gain of spectral resources, DSA produces unwanted

impact on application QoS performance due to disruptive

side-effects produced by its basic functions. We next

elaborate on the main causes for the observed problem, and

also present experimental proof confirming the same.

While [30, 31] also discuss some of these DSA’s side-

effects, their investigation is limited to transport layer

rather than application QoS which is of focus here.

Impact of spectrum sensing: Effective spectrum

sensing requires scheduling of quiet periods (QPs), during

which no data can be transmitted/received. Depending on

the channel characteristics and the sensing scheme used,

each QP may vary from tens to hundreds of milliseconds.

1 These functions are realized through the underlying MAC (e.g., for

coordination) and PHY schemes (e.g., for sensing).
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For example, a QP in IEEE 802.22 [22] may last for 25 ms.

Further, a QP may be scheduled very often, as frequent

sensing improves DSA performance. Frequent spectrum

sensing is also required to comply with regulatory guide-

lines on quick incumbent detection [5]. FCC requires

incumbent signal to be detected within 2 s in TV bands [5].

Thus, the overhead of sensing (due to QPs) can

adversely impact application QoS by introducing extra

delay & jitter, and reducing usable bandwidth in the pro-

cess (see Fig. 3). The negative side-effects of sensing are

magnified when the channel is narrowband and offers

lower capacity (e.g., TV bands are 6 MHz wide). Some-

times, due to size/cost/hardware constraints, a separate

spectrum-sensor may not be available. In such cases, ‘‘out-

of-band‘‘ sensing will add to ‘‘in-band’’ sensing impact by

significantly multiplying the amount of QPs scheduled on

the only available wireless interface. External sensing

approaches (e.g., sensing database) may mitigate the

sensing impact at the cost of additional infrastructure.

However, this does not fully eliminate sensing overhead as

in-device sensing would still be required for validation

purpose and to detect any unexpected incumbent activity,

or when external sensing data is unavailable.

Some prior works like [32–35] attempt to reduce the

impact of spectrum sensing by estimating the channel

model, or by incorporating sensing history in predicting the

future state of the channels. However, these methods are

one-dimensional as they do not exploit their optimization

strategy in relation to the actual application QoS demands

in the system. This limits the effectiveness of such

approaches.

Impact of switching channels: Channel-switching is

fundamental to DSA. Like spectrum sensing, it has a

similar disruptive side-effect. A channel-switch interrupts

application-traffic for durations lasting several millisec-

onds. This includes the time to reset the wireless inter-

face(s), and more importantly, loading MAC-PHY

protocols to access the new channel and complete man-

agement tasks like association or authentication with the

secondary base-station.

Channel-switching may not happen as frequently as

spectrum sensing, and hence, its delay/jitter impact is

lower. However, it can produce the adverse side-effect of

reducing the available bandwidth for application traffic.

For example, the new channel may have a lower fre-

quency-width (narrowband channel) than the previous

channel, which could result in a sudden decrease in link

capacity. Capacity reduction can also be contributed by the

usage of a comparatively less-efficient MAC-PHY schemes

in the new channel, even though the channel is better in

terms of utilization and radio characteristics.

Certain approaches, like [28, 36], advocate the mainte-

nance of Backup Channels to reduce the overhead of

channel switching. While useful to a certain extent, the

channels are monitored and picked in an application-

agnostic fashion—based only on the wireless channel

conditions.

Impact of incumbent protection: Very limited inter-

ference to the PUs is of critical importance to DSA (ideally

there should be no interference to incumbents). Hence, a

SU must stop its transmission or switch channels, when-

ever it detects PU activity. If incumbent activity is pro-

longed, then SU application traffic is effectively stopped,

resulting in severe application QoS degradation. Even

short-term incumbent activity can adversely affect QoS-

sensitive applications if they occur frequently. Thus,

average incumbent utilization metric may not be sufficient

to determine the quality of a channel with respect to

application requirements—information about incumbent

access pattern must be taken into account.

Other unwanted QoS impacts of DSA: Additional

delays can also be introduced due to coordination of

devices in a multi-SU or adhoc-type networks. Though not

the primary focus of this work, many contemporary DSA

protocols require periodic listening to a control channel for

coordination [2], which can be a significant disruption to

application-traffic in single-interface systems.

Compounding impact of side-effects: The decline of

service quality because of the negative side-effects of DSA

usually turns out to be more significant and lasts for a much

longer duration, because other layers in the protocol stack

may perceive incorrect network conditions. For example,

TCP may view the sensing-introduced delays as congestion

in the network. Similarly, QoS-centric protocols like RTP

[37] will experience frequent short-term adjustment

periods. Further, application sessions may be completely

disrupted, leading to additional overheads of their

re-establishment.

Experimental demonstration of the problem: We

conducted simple testbed experiments to study the impact

of DSA side-effects on application traffic. A laptop

equipped with an Atheros wireless interface emulates a SU

device that accesses network services through secondary

wireless access-points in different channels. To emulate

state-of-art DSA, we implemented its function model
Fig. 3 Disruptions caused by DSA operations result in a fractured

flow of application traffic
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(as described in Sect. 3) in the 802.11 MadWifi driver [38].

We use 802.11a as the base MAC-PHY because of its

research accessibility in designing experiments to demon-

strate the DSA issues. Note that our goal is not to develop

any new DSA protocol, but to implement its abstract

function model. More implementation details for our test-

bed can be found in Sect. 9.

The experiment setup consists of three channels with

average incumbent utilization of 0.7, 0.5 and 0.3, respec-

tively. Channels 1 and 2 can support the highest 802.11a

raw capacity (54 Mbps), while channel 3 is constrained to

30% of the maximum possible value (e.g., TV channels

may be freer than ISM channels, but have low capacity due

to narrow spectrum-width). The sole secondary user com-

municates with a fixed host on the Internet and bootstraps

on channel 1. We keep the application bandwidth demand

at 10 Mbps, which is enough to support multiple high-

quality QoS streams (e.g., each G.711 audio ? H.261 video

typically requires 460 kbps [23]) along with other types of

network traffic.

Figure 4 shows the typical behavior of state-of-art DSA

in a sample experiment run. The impact of DSA on

application traffic in terms of three QoS parameters—

throughput, end-to-end (roundtrip) delay, and jitter—are

plotted. The graphs show their average values over each

second through a 30-second period of the communication

session. As seen, the throughput target is not met: in fact, it

drops significantly at around 9 s. As channel utilization is

the state-of-art DSA’s key decision parameter, the SU

switches to channel 3 as it has the lowest utilization.

However, it fails to take into account its lower capacity

relative to the application bandwidth requirements (which

is 10 Mbps). This scenario may occur quite often when

SUs switch to channels/protocols in different spectrum

regions. For example, from a highly utilized unlicensed

2.4 GHz channel to less utilized (but lower capacity) 4G

uplink cellular channel opened by its operator for unli-

censed operation.

Though the delay and jitter are found to be acceptable

on average, they are found to fluctuate significantly on a

short time-scale. In particular, jitter is as high as 10 ms in

many cases.

Since DSA is perceived as a performance-enhancing

benefit, any degradation of service because of introducing

DSA would not be attractive, especially for those appli-

cations that require certain minimum bandwidth, delay, and

jitter guarantees. Therefore, gain in spectral resources must

be effectively passed on to the applications.

4 Context-Aware Spectrum Agility (CASA) overview

We propose a novel wireless networking service architec-

ture, called Context-Aware Spectrum Agility (CASA),

which augments state-of-art DSA by making it application-

aware in order to address the issues identified in Sect. 3.2.

CASA introduces application-awareness to DSA through

the CASA Algorithm which takes context information (both

application and lower-layer context) as input, and updates

key DSA parameters as necessary. CASA Algorithm exe-

cutes periodically as part of the Controller as shown in

Fig. 5. This period is referred to as CASA Epoch (scasa).

CASA also provides a low overhead interface called Cross-

Layer Interaction Framework (CLIF) to enable applica-

tions to export their QoS context information.

CASA is designed according to the following principles.

• Be aware of the operational context. CASA provides

the mechanism to provide application hints, while also

collecting the lower-layer information.
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Fig. 5 CASA’s main component is the CASA Algorithm, that

augments the ‘‘Decision-Maker‘‘ to form ‘‘Controller’’ in a typical

DSA design model, as shown
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• Be adaptive to changing operating environment.

CASA strives to match application requirements

by adapting DSA operations through the CASA

Algorithm.

• Be practical, generic, and ensure minimal overhead.

CASA utilizes well-known low overhead techniques

(e.g., exponential averaging) in its design, and can be

applied with any DSA protocol.

• Utilize correlation of recent past with near future.

This is a simple but highly effective principle that has

been utilized successfully in many areas of computing,

including OS (e.g., CPU scheduling), and networking

(e.g., TCP congestion/flow control). CASA uses this

principle to guide DSA behavior in immediate future by

using recent context information.

Details on various elements involved in CASA are

provided in oncoming sections.

5 Context information

5.1 Application context

The application context comprises conventional applica-

tion QoS attributes. Specifically, they are thresholds for

three important QoS metrics for a network application—

minimum bandwidth, maximum delay, and maximum jitter.

These are considered on an end-to-end and per-session

basis from application layer perspective. The ‘‘bandwidth’’

here implies the average end-to-end throughput for an

application. Similarly, ‘‘delay’’ implies the average end-to-

end latency of the packets in the communication stream,

while ‘‘jitter’’ is the variability of the delay parameter. If

t1, t2, and t3 represent the time at which 3 successive

packets are received by an application, then the jitter is

ðt3 � t2Þ � ðt2 � t1Þj j (MPPDV method [37]).

Bandwidth, delay, and jitter are specifically chosen

because they are directly impacted by DSA side-effects (as

seen in Sect. 3.2). This set of QoS parameters provides a

simple but effective abstraction of application-layer QoS

demands. These fundamental application QoS parameters

capture all of the qualitative QoS phenomena observed for

any application from an end-user perspective [23]. For

instance, voice/video distortion that is sometimes observed

during a video conference session, is the direct outcome of

the associated delay and jitter

Currently, CASA does not include the packet loss metric

in its set of input application QoS parameters. It relies on

existing error detection and retransmission features in the

networking stack (e.g., TCP/link retransmissions) to take

care of any packet loss along the end-to-end path. From an

application QoS perspective, the effect of packet error/loss

is primarily reflected in the end-to-end delay and jitter

parameters, as well as bandwidth, which is included in the

current scheme.

Since most modern QoS-sensitive network applications

already monitor and manage QoS metrics, application QoS

hints can be provided without significant modifications or

additional overhead. For example, multimedia streaming

applications typically use RTP [37], which monitors traffic

characteristics including QoS information through its

RTCP component. Thus, RTP/RTCP can be easily lever-

aged to provide the necessary application context.

We formalize the application context as follows.

Assume that there are n network applications running on a

SU device. For every ongoing communication session,

application i exports the required bandwidth (breq
i ), end-to-

end delay (dreq
i ), and jitter (jreq

i ). Here we show the analysis

for one communication session per-application in interest

of presentation clarity. However, CASA supports any

number of sessions for each application.

Similar to the ‘‘requirement parameters’’, the applica-

tions also provide the current ‘‘observation parameters’’—

bandwidth (bobs
i ), delay (dobs

i ), and jitter (jobs
i ), for the

corresponding communication sessions.

Individual applications contexts are combined to gen-

erate the following cumulative application context.

(1) Breq
app =

P
i=1
n breq

i ,

(2) Dreq
app = min {dreq

i }, 1 B i B n,

(3) Jreq
app = min {jreq

i }, 1 B i B n.

(4) Bobs
app =

P
i=1
n bobs

i ,

(5) Dobs
app = max {dobs

i }, 1 B i B n,

(6) Jobs
app = max {jobs

i }, 1 B i B n.

Thus, the complete application-layer context is the pairs:

(Breq
app, Bobs

app), (Dreq
app, Dobs

app), and (Jreq
app, Jobs

app).

Aggregation of all application QoS hints in thus-

defined manner simplifies CASA design, allowing it to

manage diverse set of requirments under a single struc-

ture. Thus, it avoids high complexity overhead and sca-

lability issues associated with servicing individual

requirements. At the same time, this method guarantees

that fulfillment of any aggregated requirement parameter

corresponds to the fulfillment of the corresponding indi-

vidual application QoS requirement, with a very high

likelihood. Analogous reasoning can be easily applied for

‘‘observation parameters’’.

In the CASA architecture, applications can update and

export their QoS requirements/observation pairs whenever

they change. Providing all three of the parameter pairs is

optional—an application may also provide a subset of these

parameter pairs (or none of them) depending upon its

operational needs.

It must be pointed out that there is a subtle but important

difference between the QoS abstractions corresponding to
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delay/jitter (Dreq
app, Dobs

app, Jreq
app, Jobs

app), and those correspond-

ing to bandwidth (Breq
app, Bobs

app). Delay or jitter is transit-

additive in nature—individual network segments traversed

along the communication path contribute to produce the

cumulative end-to-end delay/jitter as seen by applications.

Thus, each link or network segment along the communi-

cation path must minimize its individual contribution to

these metrics for better application QoS. On the other hand,

bandwidth is transit-reductive in nature—the overall

bandwidth experienced by the application is the least

bandwidth experienced along the entire communication

path. Therefore, bandwidth provided by each network

segment must be sufficiently high for acceptable end-to-

end bandwidth. This distinction is key to how we derive

estimates from raw lower layer context to semantically

match application QoS abstractions. Semantic context

matching is elaborated in Sect. 6 (Table 1).

5.2 Lower-layer context

Basic physical layer data are known natively through the

CR/DSA MAC-PHY parameters. They include the set of

channels C (or the spectrum)2 available for DSA, and the

corresponding access protocols to use in each spectrum

region. Consider any channel c 2 C: The overall channel

utilization factor is represented by u(c), which is the

average fraction of time that the channel c was used for

communication. If TON represents the total duration for

which the channel saw activity over a period of time

T, then u(c) = TON/T. The average channel utilization by

PUs (upu(c)), and by SUs (usu(c)), is also known through

the SOM via spectrum sensing (as discussed in Sect. 3).

The total utilization seen on channel c is therefore:

uðcÞ ¼ upuðcÞ þ usuðcÞ ð1Þ

Average ON/OFF durations of PUs (E[Ton
pu(c)], E[Toff

pu(c)])

and SUs (E[Ton
su(c)], E[Toff

su (c)]) on channel c are also

known, as they are used to calculate upu(c) and usu(c) [34].

The expected spectrum sensing duration (tsense(c)) and

the rate of sensing schedule (rsense(c)) are obtained from

spectrum scheduling scheme of DSA. The values of rsense

and tsense are chosen from a range determined by the PHY

sensing mechanisms and regulatory policies. Also, the set

of their allowed values can be different for different

channels in the spectrum.

In contrast to the above mentioned MAC-PHY param-

eters, some of the required lower layer information may not

be directly available. In such cases, low overhead estima-

tion techniques are used, as discussed next.

The physical layer data-rate (b(c)) and the application

layer efficiency (e(c)) for each of the MAC-PHY scheme

on channel c is assumed to be known, as mentioned in

Sect. 2.3 b(c) is the raw bit-rate that the MAC-PHY

protocol can support, which depends on factors like

modulation, encoding/decoding schemes, etc. If the

MAC-PHY protocol has a dynamic rate adaptation fea-

ture, then recent historical information on data-rate

employed will be used to compute the weighted average

estimate for b(c). Weights are based on the duration for

which the data-rate was used. If no history is available

yet, a median of available data-rates is selected as the

initial value. The efficiency value e(c) represents the

average useful fraction of the raw bit-rate b(c) available

on channel c (from an application’s viewpoint). It cap-

tures the overhead introduced into the communication

stream by lower layer processing (e.g., link/physical layer

protocol headers).

kpkt is the cumulative rate of packets arriving at link

layer transmission queue from all the applications running

on the device. As noted in Sect. 2.3, kpkt can be safely

assumed to be constant across the short epoch (scasa)

duration.

tswitch(c1, c2) denotes the average time for the wireless

interface to enter the ready state for data transfer in a new

channel c2 after switching from the current channel c1. It

includes the time to deactivate/activate new MAC-PHY

mechanisms (if needed), as well as, associating with the

new secondary service gateway or base station. If tswitch(c1,

c2) values are not available statically beforehand (for any

c1, c2 pair), CASA builds this information progressively

Table 1 List of symbols

Symbol Description

kpkt Rate of app. packets generation

Breq
app, Dreq

app, Jreq
app App. layer bandwidth, e2e delay & jitter reqs.

C Set of channels in the spectrum

c A channel, c 2 C

u(c) Total utilization of c

upu(c), usu(c) Utilization by PUs and SUs, respectively in c

Ton
pu(c), Toff

pu(c) Random var. for PU’s ON/OFF durations in c

Ton
su(c), Toff

su (c) Random var. for SU’s ON/OFF durations in c

tsense(c), rsense(c) Duration and rate of sensing in c

tswitch(c1,c2) Overall time to switch from channel c1 to c2

B(c) App. bandwidth estimate for channel c

D(c), J(c) Additional delay and jitter when using c

e(c) Efficiency of MAC-PHY protocols used on c

scasa CASA Epoch duration

Pcurr, Ppast Current and past push factors

PMAX Normalization constant for push factor

N History window (no. of past epochs)

2 ‘‘Channel’’ implies ‘‘licensed channel’’, unless otherwise

mentioned.
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from recent historical observations by calculating their

average.

6 Semantic alignment of contexts

In order to adapt DSA to application needs there must be a

semantic congruence between application QoS abstractions

and lower-layer DSA attributes that impact them. Albeit

limited to application and MAC/PHY layers in this paper,

we believe that semantic context alignment is a significant

step towards realizing fully cognitive networks [39, 40].

Note, however, that the concept of semantic matching

introduced here is at a high level and generic. For example,

it is different from predicting the expected share of a

channel’s airtime, as in [24].

To achieve the semantic matching of application and

lower-layer context, we process the raw MAC-PHY

information to provide a reasonable estimate of attainable

application-layer QoS. As noted in our design principles

(Sect. 4), we trade some accuracy for low overhead and

implementable system design. Thus, we avoid restrictive

assumptions and complicated modeling. Instead, we

employ average values and approximate estimates in

translating low level context to compare with application-

level QoS abstractions.

B(c) denotes the average application-layer bandwidth

expected on channel c, which is estimated as follows.

BðcÞ ¼ bðcÞ:eðcÞ:f1� uðcÞg: ð2Þ

B(c) is the effective throughput of useful data (i.e., appli-

cation traffic) expected on channel c, when DSA is active.

Delay and jitter are transit-additive parameters, as

mentioned in Sect. 5. Therefore, we calculate the ‘‘addi-

tional‘‘ delay and jitter contributed by the DSA network,

rather than their overall end-to-end values. In our system

model, only the one-hop wireless link behavior changes

due to DSA, while other aspects of the end-to-end traffic

flow remain the same.

Since PUs repeat an ON/OFF cycle of channel access, it

is sufficient to consider a unit cycle of average duration

Tcycle(c) = E[Ton
pu(c)] ? E[Toff

pu(c)] for channel c.

To calculate the additional delay, we take into account

the following observations. First, communication is stop-

ped during PUs’ ON durations. Second, communication is

delayed when the channel is shared with other SUs. In the

worst case, a SU can be delayed for the entire duration

during which other SUs access the channel. Third, com-

munication is stopped during sensing periods. Finally,

during the rest of the time, Tfree = Tcycle - (E[Ton
pu(c)] ?

E[Ton
su(c)]), the communication continues without addi-

tional delay due to DSA. Therefore, the average additional

delay is given as:

DðcÞ ¼ 1

kpktTcycle
ðkpktE½Tpu

on ðcÞ�Þ:
E½Tpu

on ðcÞ�
2

�

þðkpktE½Tsu
onðcÞ�Þ:

E½Tsu
onðcÞ�
2

þkpkt:ðtsenseðcÞrsenseðcÞTfreeÞ:
tsense

2
þ 0
o

¼upuðcÞ:E½T
pu
on ðcÞ�
2

þ usuðcÞ:E½T
su
onðcÞ�
2

þ f1� uðcÞgrsenseðcÞ:
t2
sense

2
:

ð3Þ

In the above equation, E[Ton
pu(c)]/2 and E[Ton

su(c)]/2 are

approximate estimates of the average extra delay when

incumbents and other secondary devices access the chan-

nel. Sensing impact on delay, when the traffic is already

stopped due to incumbent access or sharing, is not con-

sidered. Note that kpktTcycle is the average number of

application packets generated during the entire cycle for

channel c.

To derive the additional jitter, again consider a cycle of

duration Tcycle(c). Additional jitter is typically introduced

due to the difference in delays encountered when the

channel is occupied by incumbents and other SUs, as

compared to a completely free channel. We use the standard

mean packet-to-packet delay variation (MPPDV) metric,

which is the basis of jitter calculation in RTP/RTCP as

defined in RFC 3550 [37]. Note that the MPPDV jitter

formula is defined from an end-to-end perspective, and is

not additive in strict mathematical sense. However, here we

are concerned with ‘‘transit-additive’’ nature of jitter along

intermediate hops. Thus, the average extra jitter is given by:

JðcÞ ¼ 1

kpktTcycle
ðkpktE½Tpu

on ðcÞ�Þ:
1

kpkt

�

þðkpktE½Tsu
onðcÞ�Þ:

1

kpkt

þkpkt:ðtsenseðcÞrsenseðcÞTfreeÞ:
1

kpkt
þ 0

�

¼ 1

kpkt
uðcÞ þ ð1� uðcÞÞtsenseðcÞrsenseðcÞf g:

ð4Þ

We observe that bandwidth and additional delay estimates

(Eqs. (2) and (3)) do not depend on packet-arrival rate kpkt.

All the derivations above are based on uniform application

packet arrival (which is valid considering the short epoch

duration and QoS-sensitive traffic characteristics), but it

can be shown that the semantic dependency equations (2),

(3), and (4) are the same for other distributions like the

Poisson packet-arrival process.

As seen from our experiment results in Sect. 10.3.3, the

semantic context matching equations (2), (3), and (4) are

sufficiently accurate in estimating the higher-layer QoS

abstractions from lower-layer information.
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7 CASA Algorithm

CASA Algorithm (see Algorithm 1) executes at the

beginning of every CASA Epoch (scasa), after

B(c), D(c) and J(c) values are updated using the semantic

dependency equations. At an abstract level, CASA Algo-

rithm is a greedy reward-based algorithm and is loosely

derived from Reinforcement Learning (RL) techniques,

e.g., Q-Learning [14], in which rewards are assigned to

actions based on past history of success.

RL techniques have been previously found to be directly

useful in DSA optimization, e.g., for channel selection and

spectrum sharing [13, 41]. Though we build upon the well-

studied RL approach, CASA Algorithm is not a direct

adaptation of any RL algorithm. Further, unlike such prior

works in DSA, CASA Algorithm is utilized for optimizing

DSA operations in relation to application QoS parameters.

CASA Algorithm strives to move DSA to a state where

all application requirements are met by giving higher

rewards to channels and DSA parameter combinations that

achieve this goal to a higher degree. The abstraction of

rewards is captured through the push factor value, which is

explained below.

The algorithm first initializes the current push factor

Pcurr to 0. The cumulative weight of previous push factors

up to the last epoch (a history window of size N), is rep-

resented by Ppast. We use simple exponential function to

compute Ppast. If 0 is the most recent epoch and N - 1 the

least recent, then Ppast =
P

i=0
N-1Piw

i, where w is the positive

non-zero weight unit (w \ 1). Clearly, the push factor in

the most recent epoch has the highest weight and decreases

for epochs in less recent epochs. This computation scheme

captures the short-term correlation of near future with

recent past in terms of the networking state experienced by

the SU device. Note that Ppast ? Pcurr should be bounded

above by PMAX, and hence, PMAX must be chosen based on

window size N and weight unit w.

After the initialization step, CASA Algorithm performs

multiple checks for potential application requirement viola-

tions and takes decisions to adapt DSA operations. In the first

two decision-making steps, the algorithm adjusts rsense and

tsense on the current channel, if feasible, in order to meet the

delay and jitter requirements (Dreq
app and Jreq

app). This prevents

violation of these requirements during spectrum sensing.

In addition to adjusting DSA parameters, the push factor

Pcurr is concurrently updated by checking the extent to

which the application requirements are satisfied. Any

shortfall in meeting a requirement increases the push fac-

tor. Based on the combined push factor, Pcurr ? Ppast, if

there is a better channel available, CASA goes for a

channel-switch in a probabilistic fashion. A random value

in [0,1] is generated, and a channel-switch occurs if the

generated value is less than (Pcurr ? Ppast)/(PMAX ? 1).

Clearly, a higher push factor implies better chances for a

channel-switch, and vice versa. Probabilistic channel-

switching prevents overcrowding a single channel, which

could happen if multiple SU devices switch to a channel

that is globally perceived to be the best at the moment.

Note that this channel-switching invocation is independent

of the deterministic channel-switching that may occur due

to other DSA events. On every channel-switch, the device

initializes the sensing parameters (rsense, tsense) to its

highest possible values, so that sensing is most aggressive.

To allow for flexible operational control in practice,

CASA Algorithm incorporates configuration parameters

Algorithm 1 CASA Algorithm

Require: (Breq
app, Bobs

app), (Dreq
app, Dobs

app), (Jreq
app, Jobs

app)

Require: C; 8c 2 CBðcÞ;DðcÞ; JðcÞ; tsenseðcÞ; rsenseðcÞ
Ensure: C is sorted in increasing order of u(c)

1: Let chan current channel

2: Calculate Ppast

3: Pcurr  0 {Initialize current push factor}

4: if Bobs
app \ Breq

app then

5: Pcurr  Pcurr þ 1

6: end if

7: if Dobs
app [ Dreq

app then

8: Pcurr  Pcurr þ 1

9: Reduce rsense(chan), tsense(chan), if possible

10: end if

11: if Jobs
app [ Jreq

app then

12: Pcurr  Pcurr þ 1

13: Reduce rsense(chan), tsense(chan), if possible

14: end if then

15: if (Pcurr ? Ppast) [ 0 then

16: for each c 2 C; c 6¼ chan do

17: if B(c) C (1/cB)Breq
app then

18: Pcurr  Pcurr þ 1

19: end if

20: if D(c) B cDDreq
app then

21: Pcurr  Pcurr þ 1

22: end if

23: if J(c) B cJJreq
app then

24: Pcurr  Pcurr þ 1

25: end if

26: if tswitch(chan, c) B cDDreq
app

27: Pcurr  Pcurr þ 1 then

28: end if

29: if (Pcurr ? Ppast)/(PMAX ? 1) [ rand[0,1] then

30: Switch to channel c

31: break

32: end if

33: end for

34: end if
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for its comparison process. For instance, cD acts as an

administrative control knob that determines allowable

limits on additional delay relative to end-to-end delay

bound, depending on the deployment environment char-

acteristics. For instance, in realistic deployments, cD would

typically be less than 0.2. Similarly, cJ and cB are the

control knobs for jitter and bandwidth comparisons,

respectively.

In summary, N, w, PMAX, cD, cJ, and cB constitute the

configurable design parameters. CASA Algorithm has very

low runtime and space complexity—linearly proportional

to size of set C, thus reflecting the design principle of

providing low overhead and easily deployed application

QoS adaptation for DSA. While we argue that CASA has a

strong engineering design for effective tradeoff between

accuracy and overhead when providing QoS management

in DSA, it cannot achieve the near-optimal state under

circumstances which do not have proper configuration

parameter settings. Some initial training may be necessary

to come up with best values for configuration parameters.

For instance, the history window size (N) should be set

according to the spectral characteristics of the spectrum

region, and should also be based on the administrative

necessity to make CASA more/less reactive. For example,

if the spectral environment exhibits rapidly changing

behavior (small PU ON/OFF time-scales), smaller N

should be preferred to quickly purge out the history that

may be inaccurate at the current moment.

In some scenarios, there could be additional traffic

during an epoch, e.g., due to legacy applications that may

not provide any information to CASA. We approximate

their impact by again relying on the principle of correlation

of future with recent past. The key idea is to monitor the

MAC packet queue to calculate the exponential moving

average of the actual bandwidth at link layer, and compare

it with the expected Breq
app value. If actual bandwidth is

found to be greater, then their ratio is added to cB, cD, and

cJ.

8 Cross-Layer Interaction Framework (CLIF)

For CASA to be effective, an efficient cross-layer mecha-

nism is needed to access the application-layer context. This

task is accomplished through CLIF (see Fig. 6), which

exposes the interface for applications to export their hints.

CLIF also provides low overhead maintenance of the cur-

rent state of application context. Such state maintenance of

context is necessary because CASA takes an epoch-based

approach to adaptation, rather than instantaneous adapta-

tion (which will have very high operational overhead), due

to continuous variability expected at lower layers during

DSA.

CLIF consists of two components: the Network

Parameters Repository (NPR), and the Interface Functions.

Network Parameters Repository is a central storehouse

of parameters exported by the application layer. The link

layer can query this module to get the parameter values,

and hence, gain additional context information. NPR stores

the parameters in a two dimensional hash table for fast

lookups and updates. This module also incorporates a

processing component in order to calculate basic aggre-

gation functions, e.g., adding up individual bandwidth

requirements to determine Breq
app.

Interface Functions consists of a well-defined list of

functions (Fig. 7) for accessing and updating the NPR.

9 Implementation

Figure 8 shows our implementation model of CASA. We

build CASA on an implementation of the abstract function

model of DSA (described in Sect. 3). CLIF is implemented

as a loadable Linux kernel module. Applications link with

a user-level library implementation of the CLIF’s Interface

Functions. The CLIF implementation also provides an

Application Adaptation Layer (AAL) to simplify interac-

tion with multiple applications. CLIF has been imple-

mented in the kernel-space rather than user-space, in order

to improve performance by reducing user-kernel boundary

crossings. This is because the frequency of access to CLIF

module by lower-layer-resident CASA Algorithm is

expected to be significantly higher than the rate of appli-

cation context exports/updates.

DSA-based wireless interfaces are not yet commercially

available as DSA protocols are still undergoing

Fig. 6 Schematic overview of CLIF in relation to the network stack

Fig. 7 Important Interface Functions
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standardization process. Further, we lack the license to

transmit in the licensed spectrum. Hence, we use 802.11

protocol as the base MAC protocol to implement and test

the CASA framework. We use Atheros cards (specifically,

Linksys WPC55AG cards) in 5.2 GHz band (802.11a) with

the MadWifi driver [38] in Ubuntu Linux based on 2.6.24-

23 preemptible kernel.

Modifications were made to the MadWifi driver code to

emulate periodic sensing (i.e., scheduling quiet periods).

Incumbent detection is accomplished by reserving specific

ESSIDs only for the incumbent networks. A channel-

switch involves changing to a new 802.11a channel and

associating with the the network on the new channel. For

incumbent nodes, several changes are introduced in the

MadWifi code to emulate the PUs’ behavior, e.g., carrier

sense was turned off by disabling Transmit Opportunity (or

TXOP), as well as, by utilizing transmission power

asymmetry between PU and SU networks. Click modular

router [42] was used in conjunction with MadWifi in

incumbent nodes to generate short duration ON/OFF

periods with sufficient accuracy. We also had to resort to

high resolution timers (hrtimers) in the kernel to pro-

vide interrupts with millisecond precision.

10 Evaluation

10.1 Evaluation metrics

We use the term ‘‘state-of-art DSA’’ to denote a DSA

protocol that does not utilize the CASA service architec-

ture. We compared the performance of DSA operating with

CASA against state-of-art DSA in terms of the following

metrics.

• Average application throughput (i.e., goodput), delay,

and jitter during an application session run.

• Bandwidth fulfillment quotient (Fb)—fraction of ses-

sion time during which the application bandwidth

requirement is met.

• Delay fulfillment quotient (Fd)—fraction of session

time during which the application delay requirement is

met.

• Jitter fulfillment quotient (Fj)—fraction of session time

during which the application jitter requirement is met.

Since the ultimate goal of DSA is to improve application

performance, our metrics are application-centric, not of a

lower-layer focus.

There are two important overheads introduced by

CASA.

• Cross-layer communication delay (CD).

• Possible suboptimal channel selection and switches

(CS).

CD occurs due to additional cross-layer communication

related to export of application hints.

CS is introduced because CASA adjusts rsense and tsense

as well as control channel-switch decisions in response to

application requirements. A reduction in these parameters

lead to stale information about channels, and may lead to

poorer spectrum management decisions in DSA.

10.2 Testbed setup

Our experimental setup consists of AP-client laptop pairs—

each pair is a part of 802.11 infrastructure-type first/last-

mile access network. In each experiment, at least two

secondary networks and one primary network are active.

Every secondary network is composed of 3–5 clients paired

with an AP. The test AP (i.e., the AP of the secondary

network being tested) is connected to the Internet via our

University ethernet. At application level, the test client

connects to a fixed host in the wired segment through the

test AP. This setup is in accordance with our system model

(see Sect. 2).

We deploy the fixed host on a different subnet of the

university LAN in an attempt to increase the number of

hops in the end-to-end communication path. However, the

machines are part of the same campus network—resulting

in lower end-to-end latency and jitter compared to those

typical on the open Internet. Nevertheless, this setup is

adequate for testing CASA—the observed trends and

insights remain valid for the generic DSA deployments.

Figure 9 shows the testbed topology.

We mainly use iperf to generate traffic on secondary

devices and to record the performance metrics. A custom

script issues iperf commands and uses the CLIF user-level

library to issue application hints. The traffic requirement

mirrors the typical requirement of QoS-sensitive networking

applications (e.g., VoIP/video streaming) [23, 43]. In partic-

ular, the bandwidth requirement is kept at 10 Mbps which

reflects the traffic demands of many simultaneously running

high-quality multimedia communication applications. Also,

Fig. 8 Implementation model of CASA
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we use delay requirement as 50 ms, and jitter requirement as

2 ms, based on typical single network SLA agreements [44].

Further, to compare actual consumer application performance

with/without CASA, we use the open-source Ekiga softphone

[45] (formerly known as GnomeMeeting) to generate video-

conferencing sessions.

The spectrum C consists of seven channels (802.11a

channels 36, 38, 40, 42, 44, 46, and 48). There are seven

incumbent networks, one on each channel. They generate

different random ON/OFF traffic with the average

TON ? TOFF = 50 ms. Additional secondary devices are

also enabled on the channels such that the average spec-

trum availability varies across the spectrum—70, 60, 50,

40, 30, 20, and 10% utilization on channels 36, 38, 40, 42,

44, 46, and 48, respectively. The raw physical-layer

capacity is 54 Mbps for channels 36–44, while it is reduced

to two-third and one-third of 54Mbps for channels 46 and

48, respectively.

This spectrum setup emulates the expected environment

for DSA networking, where certain licensed channels

exhibit higher utilization (e.g., because of lower DSA

access-cost/physical capacity ratio) while others have

lower utilization (e.g., because of higher DSA access-cost/

physical capacity ratio). Note that secondary market busi-

ness model will play a major role in governing DSA net-

works, but they are still under active development [9, 46,

47] and beyond the scope of this paper.

For emulating state-of-art DSA, we use rsense = 2 (per

second), and tsense = 0.05 s. We use the following CASA

parameter values for all channels (unless otherwise noted):

(1) rsense 2 f4; 2; 1; 0:5; 0g (per second).

(2) tsense 2 f0:1; 0:05; 0:025; 0:0125; 0g (second).

(3) scasa = 1 (second).

(4) w = 0.5, and PMAX = 6.

(5) N = 8 epochs.

(6) cJ = 0.2, cD = 0.2, cB = 0.5

DSA parameter values described here are based on their

typical values in standard drafts, e.g., 802.22 [22]. Addi-

tional discussion on selecting the values for rsense and tsense

can be found in [29, 34]. Values for CASA-related

configuration parameters (e.g., scasa) have been chosen

keeping in view the values of key DSA parameters and

through calibration from initial experiments.

10.3 Results and discussion

10.3.1 Overhead analysis

We characterize the overhead CD through a timing study of

CLIF system calls in the Linux kernel. The average delay

with CLIF interface function calls is observed to be around

1 ls on average. This is insignificant compared to

acceptable network delays and traffic-burst time (which are

in the order of tens of ms) of applications, especially as

there are only a few interface function calls associated with

each application communication session. Further, the

additional memory space taken by CASA is found to be

quite low on average (around 20 kB, with 3 kB SD)

throughout our evaluation. Note that these averages are

calculated from observations across all the experiments

outlined in Sects. 10.3.3–10.3.5. Thus, they include the

impact of variation across several test factors, like spec-

trum size, incumbent ON/OFF duration, application type,

etc. As seen later, we can conclude that CASA’s overhead
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important nodes are shown to
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is negiligible in comparison to the performance gains

acheived.

10.3.2 Accuracy of DSA implementation

To test that DSA features are properly implemented (e.g.,

primary traffic must not be interfered) on base 802.11

MAC, we conducted simple microbenchmark experiments.

In this experimental setting, we have one primary and one

secondary network and the spectrum is limited to one

channel (c = channel 36), with PHY capacity set at

24 Mbps. Both the primary and secondary transmitters are

saturated with UDP traffic, i.e., they always have packets to

transmit. We allow the primary transmitter to operate at a

specified channel utilization. The rest of the channel-time

is available for opportunistic secondary utilization. Each

experiment run lasts for 2 min, and we conducted 100 test

runs. Figure 10 shows the average throughput plotted

against primary traffic load. As seen from the graph, the

primary traffic gets preferential channel access, as it

should, when DSA is deployed. The primary throughput is

limited only by its own channel utilization. When more

opportunities are available on the channel, the secondary

network (both for state-of-art DSA as well as CASA-based

DSA) shows greater throughput, as expected. Thus, apart

from showing that our implementation is accurate, the

result also shows the impact of primary traffic load on

secondary communication.

Even in this simple scenario, using CASA results in

better performance than state-of-art DSA, especially at

higher primary utilizations. The throughput improvement is

around 8% when PU utilizatin is 0.4, while the improve-

ment margin increases to 51% when PU utilization is 0.8.

This outcome is due to CASA dynamically managing DSA

parameters to accommodate application traffic needs

without violating DSA’s constraints. Note that this

improvement can be even better if the spectrum consists of

more channels—this is shown in results discussed later.

Thus, CASA is found to improve application performance

for DSA and also make it more resilient.

10.3.3 Accuracy of semantic matching

Semantic dependency equations are microbenchmarked in

a controlled environment to ascertain their validity in terms

of their estimation accuracy. For this purpose, we again use

a single channel (c = channel 36) with one secondary

network as the test candidate. The PHY-layer capacity is

set at 54 Mbps. Both primary and background secondary

transmitters are present on the channel. The total utilization

u(c) is changed for each set of experiments, with upu(c):

usu(c) = 4:1 in each case.

Also, due to the transit-reductive nature of bandwidth

parameter (see Sect. 5), saturation-level UDP traffic is used

to quantify the maximum bandwidth available for different

values of u(c). For the delay/jitter case, we use UDP traffic

at 10 Mbps, with packet size of 500 bytes (kpkt = 2500).

Further, e(c) & 0.6 for 802.11 MAC using UDP. CASA

Algorithm is disabled—only semantic matching is per-

formed. The sensing parameters, therefore, are fixed at

rsense = 2 s-1 and tsense = 0.05 s.

Figure 11 shows that the observed values from experi-

ments closely match the predictions from the semantic

dependency equations. For each of bandwidth, delay, and

jitter parameters, the average observed values (with 95%

confidence interval) are within 8% of their predictions.

Thus, the proposed semantic matching is found to be highly

accurate. For higher channel utilizations (&[0.7), the

predicted values diverge slightly from the observed values.

This arises primarily due to unaccounted MAC effects that

are significantly more prominent at a very high contention

level, e.g., unusually large backoff duration. However, the

observed difference is very small, and further, very high

utilization channels are unlikely to be used for DSA.

10.3.4 CASA performance

To analyze the end-to-end performance of CASA, we use

the setup described earlier in Sect. 10.2. Figure 12 shows

the temporal variation for throughput, delay and jitter in a

30 s period starting from the beginning of the session. Each

point on the graphs denotes the average value over the past

1 s window. Note that we measure the QoS metrics for

several minutes, but skip the full duration in the plots as the

long-term behavior is similar.

As seen from the graphs, CASA-based DSA produces

significant improvements for each metric. In particular,

throughput is found to dip starting at around 8 s mark for

state-of-art DSA. This corresponds to a channel-switch

event to channel 48. State-of-art DSA is found to switch

to a channel with lower utilization without considering
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the expected QoS performance in the new channel. Thus,

the throughput drops as the new channel cannot support

the 10 Mbps bandwidth. With CASA, while the second-

ary group still switches channels at approximately the

same time, the new channel is selected such that it can

support the application’s bandwidth demand. Conse-

quently, the throughput requirement is continued to be

met throughout.

The end-to-end delay and jitter (Fig. 12b, c) is also

found to be higher (with considerably more variation) for

state-of-art DSA. Again, the reason for this is that CASA

Algorithm results in a better channel selection, where

packets are delayed less and the variability is lower.

Adaptation of sensing parameters also contributes towards

achieving better delay/jitter performance.

Figure 13 shows the normalized values (together with

the 95% confidence interval) for the QoS metrics obtained

relative to their requirements, for both state-of-art and

CASA-based DSA. The observations are made over a 120 s

duration. Also, Fig. 14 shows the fulfillment quotient of the

QoS demands (Fb, Fd, and Fj) over the same duration.

From the two graphs, CASA-based DSA outperforms

state-of-art DSA in fulfilling the requirements, especially in

supporting QoS demands through the full duration of the

communication session. For example, the throughput for

CASA is &10Mbps (Fig. 13), as required, for more than

90% of the communication session (Fig. 14). Similarly,

average delay and jitter are 30 and 64%, respectively,

lower than the requirement for more than 90% of the ses-

sion run time. CASA is observed to be especially effective

in reducing jitter to a very low level as compared to state-

of-art DSA. Thus, even the stringent jitter requirement of

2 ms is satisfied for almost the entire session.

State-of-art DSA is also found to be somewhat effective

in matching up to the delay metric. We attribute this to the

topology bias of our testbed. In particular, the network path

traversed by the packets is quite small (the end-hosts lie on

the same network domain) with very few intermediate

hops. Thus, the end-to-end delay typically does not exceed

the application-mandated requirement despite DSA side-

effects. In general, we expect state-of-art DSA to perform

significantly worse in the open Internet scenario, where the

end-to-end delay is significantly higher. Thus, the benefits

of CASA would be more pronounced than that demon-

strated in our setup.

To study the performance of consumer-oriented appli-

cations, we run 6 videoconferencing sessions on the test

secondary network using Ekiga VoIP softphone [45]. Each

videoconferencing session requires around 460kbps (G.711
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audio with H.261 video codecs used) of application

throughput. Figure 15 shows the comparison of perfor-

mance (on QoS metrics) when CASA is used as compared

to state-of-art DSA. With CASA enabled, the VoIP session

is able to consistently achieve the required goodput

demand—an improvement of 33% over state-of-art DSA.

Similarly, the delay and jitter found to reduce by 28 and

67%, respectively—thus illustrating CASA’s ability to

match up to QoS demands in realistic settings.

10.3.5 Effects of design parameters

Experiments were also conducted to study the impact of

CASA’s design parameters. In brief, following are the key

observations.

Increasing PMAX reduces channel-switches, and hence,

applications do not get sufficient bandwidth in situations

where a channel is shared by a large number of secondary

users.

Increasing the history window size N (beyond the cur-

rent value of 8) does not lead to any significant change in

the observed behavior. However, reducing N results in

frequent channel-switches (especially when N B 2) leading

to poorer performance on all metrics.

The effect of changing the epoch duration (scasa) is

found to be similar to that of modifying N.

10.3.6 Summary of evaluation results

As is evident from the evaluation results, the overheads CD

and CS (which are implicitly incurred in all the experi-

ments) do not offset the advantages of CASA. The appli-

cation-centric context-awareness introduced by CASA

improves application performance significantly. Average

delay and jitter are improved by 30% on average. Also,

CASA fulfills QoS demands for more than 90% of the

duration of a communication session, which is more than

triple of state-of-art DSA. Hence, CASA increases the

resilience of DSA protocols in supporting application

demands to a greater degree, especially in unfavorable

environment.

11 Related work

There have been several proposals for DSA protocols in

literature [22–26, 48, 49], as well as, their component

technologies, e.g., spectrum sensing [33, 34, 50], spectral

resource allocation [51], and cognitive radios [52, 53].

Though all of these prior work incorporate channel-

awareness, they do not consider DSA’s side-effects on

specific application-layer QoS requirements.

Certain recent works attempt to account for QoS and

context-awareness in DSA [10, 12, 13] using either Rein-

forcement Learning or Game Theory. However, the QoS

considered in these proposals is not the high level appli-

cation QoS metrics, but link level metrics like SNR and

BER [10] or number of successful link layer transmissions

[13]. Clearly, the main drawback of these papers is their

narrow QoS context which results in coarse-grained ‘‘one-

size fits all’’ solution. This approach does not work in

realistic situations given DSA’s side-effects identified in

our work. Network applications and services (like VoIP)

have QoS requirements which are not defined in terms of

such low level parameters. Application QoS demands (like

goodput, delay, and jitter) have higher level semantics and

their dependency on link level parameters is not considered

in such prior works, which we rigorously define through

proposed semantic matching in CASA. Consequently,

CASA is able to provide effective, fine-grained, and

dynamic adaptation to application QoS demands during

DSA operation.
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Apart from narrow QoS context, the adaptive responses

in [10, 12, 13, 54] are also limited and just include channel

selection and spectrum sharing schemes—typically for

every packet transmission which incurs very high over-

head. No adaptation of DSA’s fundamental parameters

(like sensing duration, etc) is considered. Finally, the

implementation and practical issues are not analyzed or

evaluated. On the other hand, our prototype implementa-

tion and evaluation shows that CASA can be easily

deployed, and has low operational overhead while pro-

viding significant QoS benefits to consumer applications in

realistic settings.

Our approach is inspired by the benefits shown for

adaptation based on application behavior/requirements in

several other system optimization strategies, including

power management of wireless interfaces [15] and wireless

network selection [16]. In principle, CASA adopts a similar

approach, providing a cross-layer framework in order to

provide necessary application context to the underlying

DSA protocol which can then adapt intelligently (through

CASA Algorithm) to accommodate application QoS

requirements.

The necessity of upper-layer assimilation with DSA has

been pointed out in [2] and the associated QoS issues have

been studied in [36, 55]. There has been some work on

higher-layer adaptation given the presence of heteroge-

neous wireless technologies at lower layer [56]. A new

transport protocol, called TP-CRAHN, has been proposed

in [31] to address TCP performance issues when DSA is

deployed. Transport layer impact of DSA is also studied in

[30] in context of end-to-end connections. Traffic load has

been used as the key metric in designing adaptive spectrum

management schemes in [57] and [58]. Both of these works

target enterprise Wifi LANs (specifically, access points

rather than client devices), and do not consider application

QoS needs like jitter or delay. Further, they offer adaptive

channel allocation/management as the only solution, rather

than adaptation of DSA parameters.

12 Concluding remarks

12.1 Conclusion

We argued for, and showed the importance of application-

awareness in making DSA intelligent and more robust. We

proposed a systems-based optimization mechanism toge-

ther with the service architecture, called Context Aware

Spectrum Agility (CASA), that combines application-

awareness with channel-state knowledge in DSA. CASA

targets wireless client-type end-devices, and has been

designed for easy deployment and implementation. The

key component of CASA is the CASA Algorithm, which

dynamically adapts DSA to accommodate specific appli-

cation QoS requirements. We derived semantic depen-

dency equations for matching application context with

lower layer MAC-PHY information, which play a critical

role in the CASA Algorithm. CASA can operate with any

DSA protocol without introducing any significant modifi-

cation or overhead. Our evaluation has shown CASA to

increase the resilience of the DSA protocols significantly in

supporting stringent application QoS requirements with

intelligent, application-aware decisions. CASA illustrates

that application-centric adaptivity of DSA parameters is

effective in managing DSA side-effects, thereby enhancing

the benefits of DSA in consumer wireless networks.

12.2 Future work

Our short-term goal is to observe CASA’s behavior on

different types of traffic distributions or traffic classes.

Improving the ‘‘context‘‘ information given to CASA can

lead to a further improvement in application performance

when DSA is utilized. In particular, we intend to investi-

gate the impact on packet loss rate due to DSA, and extend

semantic matching to the loss metric so that it can be

incorporated in the CASA service architecture. Further, we

intend to provide support for priority classes in CASA.

This will allow preferential treatments for satisfying QoS

demands for different types of applications during DSA.
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