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Abstract—The dynamic spectrum market (DSM) is a key economic vehicle for realizing the opportunistic spectrum access that will
mitigate the anticipated spectrum-scarcity problem. DSM allows legacy spectrum owners to lease their channels to unlicensed

spectrum consumers (or secondary users) in order to increase their revenue and improve spectrum utilization. In DSM, determining the
optimal spectrum leasing price is an important yet challenging problem that requires a comprehensive understanding of market

participants’ interests and interactions. In this paper, we study spectrum pricing competition in a duopoly DSM, where two wireless
service providers (WSPs) lease spectrum access rights, and secondary users (SUs) purchase the spectrum use to maximize their

utility. We identify two essential, but previously overlooked, properties of DSM: 1) heterogeneous spectrum resources at WSPs and
2) spectrum sharing among SUs. We demonstrate the impact of spectrum heterogeneity via an in-depth measurement study using a

software-defined radio (SDR) testbed. We then study the impacts of spectrum heterogeneity on WSPs’ optimal pricing and SUs’ WSP
selection strategies using a systematic three-step approach. First, we study how spectrum sharing among SUs subscribed to the same

WSP affects the SUs’ achievable utility. Then, we derive the SUs’ optimal WSP selection strategy that maximizes their payoff, given
the heterogeneous spectrum propagation characteristics and prices. We analyze how individual SU preferences affect market

evolution and prove the market convergence to a mean-field limit, even though SUs make local decisions. Finally, given the market
evolution, we formulate the WSPs’ pricing strategies in a duopoly DSM as a noncooperative game and identify its Nash equilibrium

points. We find that the equilibrium price and its uniqueness depend on the SUs’ geographical density and spectrum propagation
characteristics. Our analytical framework reveals the impact of spectrum heterogeneity in a real-world DSM, and can be used as a

guideline for the WSPs’ pricing strategies.

Index Terms—Cognitive radios, dynamic spectrum market, game theory, spectrum heterogeneity, spectrum pricing

Ç

1 INTRODUCTION

TO mitigate the impending spectrum-scarcity problem
[1], there have been continual efforts to deregulate

wireless spectrum resources, and promote dynamic spec-
trum access (DSA). Recently, the FCC has opened up the TV
spectrum band, allowing unlicensed devices to opportunis-
tically access it as long as the unlicensed users do not
interfere with legacy users’ communications [2]. Mean-
while, various standardization efforts, such as the IEEE
802.22 WRANs [3], and IEEE 802.11af (a.k.a. Super Wi-Fi)
[4] are being developed to utilize such spectrum white
spaces. However, licensed users, referred to as primary
users (PUs), have been reluctant to share their licensed
spectrum because of 1) concerns of interference from

(unlicensed) secondary users (SUs) that can lead to potential
loss of profit and 2) the lack of attractive incentives for
PUs to share their licensed spectrum bands. The fear of
interference can be overcome via recent advances in
spectrum sensing technologies [5], [6], [7], [8] and proposals
for a geolocation database [9], [10]. Thus, in order to realize
the potential benefits of DSA, we need to construct effective
mechanisms that incentivize the (licensed) spectrum owners
to share spectrum resources with SUs.

The dynamic spectrum market (DSM) will play a key role
in realizing DSA by facilitating spectrum trading between
legacy spectrum owners and secondary consumers.1 This
spectrum trading can be encouraged by a suitable pricing
model through which DSM provides attractive economic
incentives to legacy spectrum owners, and cost-effective
spectrum access to secondary consumers. This will, in turn,
enable more efficient and flexible usage of spectrum
resources. Such a DSM already exists in various forms, such
as mobile virtual network operators (MVNOs) [11] and
online spectrum markets (e.g., specex.com [12]).

Interactions among DSM participants can be modeled as a
3-tier structure [13], [14] (see Fig. 1) consisting of: 1) the
spectrum plane, where licensed spectrums are auctioned and
sold to wireless service providers (WSPs), 2) the service plane,
where WSPs sublease the spectrum by enticing SUs with
competitive prices and good spectrum quality, and 3) the user
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1. We use the terms spectrum consumer and secondary user interchangeably
throughout the paper.
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plane, where SUs choose the WSP that maximizes their utility.
Although spectrum pricing competition in DSM has been
studied extensively [15], [16], [17], [18], most existing work
has not considered spectrum heterogeneity as a primary
factor in establishing the pricing strategy (except [19]).

A wide range of heterogeneous frequency bands will be
available in a DSM considering the current trend of
deregulating wireless resources. For example, the TV white
space recently opened for unlicensed usage spans a wide
range of frequencies over the VHF/UHF bands. Given this
availability, it is natural for WSPs to want heterogeneous
spectrum bands so as to avoid the interference between
them. Due to the difference in propagation profile (i.e.,
frequency-dependent attenuation rate), heterogeneous
channels have different transmission and interference
ranges. For example, the lower the frequency band, the
better the signal propagation characteristics at the same
transmission power level. Rational secondary consumers
would be able to evaluate the value/utility of different
channels and exploit the capability of their software-defined
radios (SDRs) to access the different ranges of spectrum
bands available in the market.

Another important but largely overlooked feature of
DSM is the necessity of sharing leased spectrum bands with
other SUs, which is a common feature of wireless commu-
nications. This feature has implications in establishing the
way market participants interact with each other. In a DSM,
WSPs sublease their spectrum resources to multiple SUs in
the same geographical area to maximize their revenue,
exploiting the spatial reusability of wireless spectrum
resources. Such spectrum sharing complicates the spectrum
price-demand relationship, making the DSM different from
the traditional market where goods are owned exclusively
by buyers [20]. For example, when SUs share a leased
channel, quoting a low spectrum price will lead to
paradoxical results: A low price may attract more users,
but it will also increase the level of interference among SUs,
thus discouraging SUs from accessing it even at a low price.
Therefore, understanding this price-demand relationship
is of great importance to the design of WSPs’ optimal
spectrum pricing and SUs’ WSP selection strategies.

In this paper, we propose a new spectrum-pricing model
in a DSM, where, in order to maximize their profits, WSPs
compete with heterogeneous spectrum resources—channels
with disparate center frequencies and propagation profiles.
In our model, we assume the availability of a wide range of
heterogeneous bands in the spectrum plane, and analyze
the spectrum pricing-demand relationship between WSPs
(in the service plane) and SUs (in the user plane). In the user
plane, SUs sublease and share the spectrum that provides
the maximum utility. These features—spectrum heteroge-
neity and spectrum sharing—are essential for us to under-
stand the WSPs’ pricing competition in a DSM, but have not
been explored well.

We formulate WSPs’ pricing competition as a noncoo-
perative game, taking into account the SUs’ desire to
maximize their utility. Here, “utility” refers to spectrum
consumers’ judgments about the tradeoff between achievable
capacity and spectrum leasing cost. We examine the existence
and uniqueness of the spectrum price Nash equilibrium

(NE), which depends upon SU density (i.e., total spectrum
demand2) and spectrum heterogeneity. Our investigation
into the effects of three essential features—1) spectrum
heterogeneity, 2) spectrum sharing among SUs, and 3) total
spectrum demand (i.e., SU density)—provides useful in-
sights and practical guidelines for designing spectrum
pricing and purchase strategies in DSM.

In summary, this paper makes the following contributions:

. Introduction of a new DSM model where WSPs with
heterogeneous spectrum resources compete for a
higher market share. We demonstrate the impact of
spectrum heterogeneity via in-depth measurements
on a GNU Radio/USRP testbed. To the best of our
knowledge, this is the first attempt to analyze the
impact of spectrum heterogeneity in a DSM.

. Investigation of a new spectrum price-demand
model based on the desire of SUs to maximize their
utility, by evaluating the impact of spectrum
heterogeneity, spatial spectrum sharing, and total
spectrum demand.

. Derivation of SUs’ optimal WSP selection strategies
based on a mean-field approach to study how
spectrum heterogeneity affects market equilibrium.
Our mean-field approach simplifies the market
model using a set of differential equations, and is
shown to efficiently approximate an exact model
using large-dimension Markov chains.

. Modeling of the pricing strategies among WSPs as a
noncooperative game and identification of the key
factors that influence the NE points, taking into
account the price-demand relation caused by the
utility maximizing behavior of SUs.

The remainder of this paper is organized as follows:
Section 2 describes the duopoly DSM model and formulates
the pricing game among WSPs as a noncooperative game.
Section 3 shows the impact of spectrum heterogeneity via in-
depth measurements on a SDR testbed. Section 4 analyzes
the impact of SU density on their achievable utility by
analyzing mutual interference among SUs. Section 5 studies
the SUs’ optimal WSP selection strategies that maximize
achievable utility. Section 6 derives the WSPs’ optimal
spectrum pricing strategies based on a realistic price-
demand function. Section 7 reviews existing work for
spectrum pricing in a DSM. Finally, Section 8 concludes
the paper and discusses future research issues.

2 SYSTEM MODEL AND ASSUMPTIONS

In this section, we first present the DSM model and a signal
propagation model which will be used throughout the
paper. We then define the utility functions of SUs and WSPs.
Finally, we formulate the pricing competition of WSPs as a
non-cooperative game.

2.1 A Dynamic Spectrum Market Model

We consider a duopoly DSM where two WSPs compete in
the same geographical area, as illustrated in Fig. 1. Each WSP
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is assumed to have long-term access rights for a licensed
channel with a different center frequency, obtained from
primary spectrum owners, for example, via auction [21], [22].
WSPs then grant access rights to their channels to multiple
SUs by advertising the spectrum price, either via database
query or direct broadcasting over a dedicated control
channel. WSPs have access to complete information about
the customer population (i.e., SU density) and their
preferences (i.e., SUs’ utilities).3 Each WSP possesses a single
channel for leasing, and we focus on the case in which the
WSPs’ leased channels have considerably different center
frequencies, thus exhibiting disparate wireless signal pro-
pagation characteristics.

For the user plane, we consider an ad hoc secondary
network consisting of a set, N , of transmitter-receiver pairs,
referred to as SUs. Each pair constitutes a basic unit for
spectrum leasing; in essence, SUs purchase short-term
rights to access the channels from a WSP at a fixed
spectrum price set by the WSP. We assume that SUs are
SDR devices (e.g., USRP [23]) with cognitive radio cap-
ability. By exploiting the ability to access a wide range of
spectrum bands, SUs aim to maximize their utility (i.e., the
difference between channel capacity and spectrum leasing
cost in (2)) by choosing the “best” WSP. SUs are randomly
deployed in areas following a point Poisson process [24],
[25] with average density !, i.e., the distribution of the
number of active links within the deployment area, A, is
nA ! Poissonðn; !jAjÞ. Note that although we consider an
ad hoc secondary network, our analysis can also be applied
to an infrastructure-based network model, where commu-
nication between an access point (or base station) and its
associated clients is one-to-one at any given time.

2.2 Signal Propagation and Spectrum Reuse Model

Signal propagation is known to be affected by the center
frequency of each channel: the lower the frequency band, the

better the signal propagation characteristics. For ease of
analysis without losing key insights to be gained from
spectrum heterogeneity, we consider the following simple
signal propagation model that reflects the impact of
spectrum heterogeneity [26]:

PR ¼ Po gcðrÞ ¼ Po
! co
fc

""
r%"; ðWattsÞ ð1Þ

where PR is the received signal power, Po the transmission
power, co the speed of light, i.e., co ¼ 3& 108 m/s, fc the center
frequency of the channel c, r the distance between the
transmitter and receiver, and" ð> 2Þ the path-loss exponent.4

We assume that all the SUs in the network use the same fixed
transmission power level Po. While we use a simple signal
propagation model, more realistic models (e.g., [27]) could be
used for specific wireless environments (e.g., indoor or
outdoor) at the cost of complexity of analysis. Since shadow
or multipath fading is shown not to affect average inter-
ference significantly [28], we do not consider it in our model.

Buddhikot [29] suggested three different models for
spectrum sharing, which are referred to as exclusive use,
shared use, and commons models. These models overcome the
limitations of the traditional command-and-control model. In
order to focus on the impacts of spectrum heterogeneity in a
DSM, in this paper we consider the exclusive use model, in
which primary spectrum owners grant their exclusive
spectrum access rights to a third party (e.g., WSPs). This
exclusive model is suitable for spectrum bands with
relatively long ON/OFF primary activity periods, e.g.,
DTV channels. Besides, this model can provide high
quality-of-service (QoS) and reliability because it does not
require frequent performance of spectrum sensing by SUs,
or frequent service interruptions due to primary activities.
Interested readers are referred to [29].

2.3 Utility-Maximizing Spectrum Demand and User
Preference

One of our main contributions is to derive a realistic price-
demand function in the DSM, driven by SUs’ desire to
maximize their utility. Specifically, the utility function of SU
i 2 N , which is associated with WSP (channel) c,5 is defined
as the difference between the SUs’ achievable link capacity
and spectrum price:

UiðcÞ ¼ B log 1þ Pogc;i
Ic;i þNo

# $
% pc; ð2Þ

where B is the channel bandwidth, gc;i the channel gain
between the secondary transmitter and receiver, No the
noise power level, and Po the transmit power. (Per FCC
regulation, there is a cap on transmit-power levels for SUs.)
We consider a fixed (unit) bandwidth demand from SUs,
i.e., B ¼ 1 for all channels. The average of cumulative
interference power caused by the SUs on channel c at
the receiver of link i is denoted by Ic;i, and pc denotes the
spectrum price (per unit time). To simplify the analysis,
we assume that all the secondary transmitter-receiver pairs
are separated by the same distance, and thus the channel
gain gc;i only depends on channel frequency, i.e., gc;i ¼ gc 8i.
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Fig. 1. A duopoly dynamic spectrum market model: WSPs compete
with heterogeneous channels (leased from primary spectrum owners)
to entice more SUs in the same geographical area in order to maximize
profit.

3. Learning mechanisms can be used to infer such information when it is
not available [19].

4. We assume that the path-loss exponent is " > 2 so that cumulative
interference does not diverge as the network size grows.

5. We equate a WSP with its channel(s).



For a similar reason, we assume Ic;i ¼ Ic 8i. Henceforth, we
omit the subscript i for brevity.

Let C ¼ fc; ag denote the set of WSPs (channels) in a
DSM. Based on the utility function in (2), SU i selects the
WSP (channel) ci 2 C that maximizes expected utility, i.e.,

c(i ¼ arg max
c2C
UiðcÞ: ð3Þ

2.4 Spectrum Pricing Game between WSPs

The main objective of WSPs is to maximize their profit by
leasing the licensed channel to multiple SUs at the highest
possible leasing price. Therefore, WSPs play a pricing game
to compete for market share. The payoff (profit) function of
a WSP c 2 C is defined as:6

Vcðpc; p%cÞ ¼ Ncðpc; p%cÞ ) pc % bc; ð4Þ

where Nc is the number of SUs associated with WSP c
(spectrum demand), pc the spectrum leasing price, and bc
the fixed investment cost, i.e., the fee paid to the primary
spectrum owner for the long-term spectrum lease (per
unit time).

Note that analyzing the price-demand relationship, i.e.,
Ncðpc; p%cÞ, is not straightforward. Traditional economic
models tend to assume a known relation between WSPs’
prices and SUs’ demand. However, in our model, the
spectrum demand Nc, i.e., the number of SUs on channel c,
depends not only on WSPs’ spectrum leasing prices
fpc; p%cg, but also on the channel quality (capacity) deter-
mined by the frequency-dependent cochannel interference,
as shown in (2). SUs can freely choose the WSP that
maximizes their payoff. Thus, WSPs must consider spectrum
heterogeneity in devising an optimal spectrum pricing
strategy that maximizes profit.

Based on the WSPs’ utilities in (4), the spectrum pricing
game among WSPs can be defined as shown below.

Definition 1 (Spectrum pricing game between WSPs). A
spectrum pricing game between the WSPs can be formalized as
a strategic choice:

p(c ¼ arg max
pc2IR

Vcðpc; p%cÞ; ð5Þ

where p%c denotes the price chosen by the competing WSP.

In what follows, we first demonstrate the impact of
spectrum heterogeneity in Section 3, then analyze SU utility
in Section 4, and derive the optimal WSP selection and
spectrum pricing strategies in Sections 5 and 6, respectively.

3 CHARACTERISTICS OF SPECTRUM

HETEROGENEITY

In this section, we demonstrate the effects of spectrum
heterogeneity on received signal strength (RSS) via measure-
ments on our SDR testbed. We first describe our experi-
mental setup and then present the measurement results.

3.1 Experimental Setup

To evaluate the impact of spectrum heterogeneity, we
constructed a GNU Radio/USRP2 [30] testbed on the fourth

floor of the Computer Science and Engineering (CSE)
Building at the University of Michigan. This floor has
multiple offices and conference rooms and relatively
straight corridors, which allow us to evaluate the impact
of spectrum heterogeneity under both line-of-sight (LOS)
and non-line-of-sight (NLOS) settings.

We deployed five USRP2 nodes in the topology shown in
Fig. 2. We placed the transmitter at a fixed location in the
corridor (denoted as circled T in the figure), and purposely
placed four receiver nodes at different locations (e.g.,
corridors and offices, denoted as 1-4 in the figure) to test
various signal-propagation environments. The measure-
ments were done at night to minimize the effects of
environmental changes, such as moving people/obstacles
and interference from other networks. This allows us to focus
on evaluation of the impact of spectrum heterogeneity on
network performance without the need to deal with
transient network dynamics, e.g., the fluctuations in RSS
due to moving obstacles.

We equipped the USRP2 nodes with two different sets of
daughterboards and antennae that operate on different
spectrum bands. For high-frequency spectrum, we mounted
the VERT2450 (dual band 2,400-2,480 MHz and 4.9-5.9 GHz
omnidirectional antenna) on a XCVR2450 board (2.4-2.5 and
4.9-5.85 GHz dual-band daughterboard). For low-frequency
bands, we mounted the VERT900 (824-960 MHz omnidirec-
tional antenna) on a WBX board (50 MHz to 2.2 GHz
daughterboard). Both the XCVR2450 and WBX have the
same transmit power level (20 dBm).

We used the benchmark DBPSK encoding/decoding
module in GNU Radio to test the signal quality on
different spectrum bands. The bit rate was set to 0.1 Mbps
and each BPSK symbol went through a raised-root-cosine
filter with eight taps, resulting in a signal bandwidth of
50 KHz. Through experiments, we found that the transmit
power of the testbed increases linearly with transmit gain.
Therefore, we set the transmission gain of both XCVR2450
and WBX to the maximum, to ensure that they have the
same output power.

To evaluate the effect of spectrum heterogeneity, we
measured the signal-to-noise ratio (SNR) of a transmitted
signal on three different frequency bands, i.e., 907 MHz,
2.478, 5.728 GHz, at four different receiver locations.
Receiver location 1 was LOS setting, and the rest were
NLOS settings. The measurement lasted 5 minutes for each
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Fig. 2. Software-defined radio testbed: GNU Radio/USRP2 nodes were
placed at different locations on the fourth floor of the CSE Building at the
University of Michigan.

6. Let the subscript %c denote the competitor of WSP c.



experiment. Note that the USRP RF circuits have different
gains for different frequency bands. Hence, we first
calibrated the output power for different frequency bands,
so that they would have comparable SNRs at short distances.
In this way, the hardware artifacts were isolated and for each
link, the signal quality only depended on its frequency.

3.2 Experimental Results

Fig. 3 plots the empirical cumulative distribution function
(c.d.f.) of the measured SNR. The figure clearly indicates the
impact of spectrum heterogeneity: the lower the frequency,
the higher the SNR, regardless of the receiver locations.
Fig. 3d shows that, when the receiver is in the NLOS setting,
high frequency bands, i.e., 2.478 and 5.728 GHz, suffer from
significant deterioration in signal strength because of
obstacles (i.e., the walls between the transmitter and
receiver). On the other hand, the low-frequency band, i.e.,
907 MHz, achieves a relatively high SNR thanks to its good
wall-penetration characteristics.

Next, we studied the signal propagation characteristics of
different spectrum bands by measuring the RSS (in dB). We
placed the transmitter at a fixed location and varied the
transmitter-receiver separation from 15 to 45 m in an indoor,
LOS setting. Fig. 4 illustrates that the low-frequency band
shows consistent advantage for all the distance settings. In
addition, RSS linearly decreases when the logarithmic
distance, i.e., 10 log10ðrÞ, between the transmitter-receiver
pair increases, regardless of the center frequency. This again
verifies the trend predicted by the empirical propagation
model in (1).

4 ANALYSIS OF SECONDARY UTILITY UNDER

SPECTRUM HETEROGENEITY

In this section, we characterize cochannel interference (i.e.,
Ic;i in (2)) among SUs to capture the effects of spectrum

heterogeneity and spectrum sharing on the achievable
capacity of SUs.

For spectrum sharing among cochannel SUs, we consider
the physical model in [31] where all the SUs can transmit at
the same time, rather than the protocol model in [31].7 Note
that, although we consider the physical model, the main
insights would not be different for the protocol model. We
approximate the distribution of cochannel interference, Ic,
on channel c 2 C, by quantifying the interference from SUs
located inside and outside the interference range, Rc

I , which
is defined as Rc

I ¼
4

supfr 2 IR
%% Po gcðrÞ > #g where # is a

predefined threshold that depends on the desired data rate,
modulation scheme, etc.

We first approximate the sum of cochannel interference
caused by SUs located inside the interference range as a
Gaussian random variable. In practice, secondary systems
maintain a certain distance between them to avoid inter-
ference, so we assume that the minimum distance between
secondary transmitters is sufficiently large (e.g., > 10 m).
The total interference at a fixed point in a uniformly
distributed wireless network can be accurately approxi-
mated as a Gaussian random variable [32].

Let Gin;c ¼
P

Sc
gcðrÞ denote the normalized interference

(i.e., sum of channel gains) from a set Sc of cochannel SUs
located inside the interference range. Then, the probability
density function (p.d.f.) of Gaussian random variable Gin;c !
Nð$c;%2

cÞ is given as:

Gin;cðxÞ ¼
1ffiffiffiffiffiffi
2&
p exp

#
% ðx% $cÞ

2

2 %2
c

$
; ð6Þ

where the mean (m1) and variance (m2) of the interference
Gin;c is given as [33]:

mkð!; cÞ ¼ !c&ððRc
IÞ

2 % '2Þ
Z Rc

I

'

2r
''
Rc
I

(2 % '2
( ðgcðrÞÞkdr

¼ 2!c&

ðk"% 2Þ

#
co
fc

$"k# 1

'k"%2
% 1

ðRc
IÞ
k"%2

$
;

ð7Þ

where ' is the minimum separation distance from the
receiver.
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Fig. 3. Impact of spectrum heterogeneity: The distribution of measured
SNR depends significantly on the center frequency of the channel; the
lower the frequency, the higher the SNR due to the better signal
propagation characteristics.

Fig. 4. Signal propagation over heterogeneous spectrum: RSS
decreases almost linearly as the logarithmic distance between the
transmitter and receiver increases.

7. The physical and protocol models [31] are most widely-used for
modeling wireless interference. In the former, SUs can transmit data
concurrently but share the channel via a nonorthogonal multiplexing
protocol (e.g., CDMA). In the latter, SUs multiplex the channels using an
orthogonal scheme (e.g., OFDMA), and the per-user capacity is inversely
proportional to the number of interfering neighbors.



We now quantify the total interference caused by SUs
located outside the interference range.

Lemma 1. The total interference caused by SUs on channel c
located outside the interference region (i.e., unit disk of radius
Rc
I centered at the receiver) can be approximated as:

Iout;c ¼ 2& Po
! co
fc

"" !c
'
Rc
I

(2%"

"% 2
: ð8Þ

Proof. See Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2011.229. tu

Finally, based on (7) and (8), the interference caused
by SUs on channel c can be approximated as Ic ! N ð$c;%2

cÞ
where

$c ¼ E½Iin;c+ þ Iout;c ¼
co
fc

# $"2&!cPo
"% 2

1

'"%2

# $
; ð9Þ

%2
c ¼

!c&Po
"% 1

co
fc

# $2" 1

'2"%2
% 1

ðRc
IÞ

2"%2

 !
; ð10Þ

where !c is the density of SUs (links) on channel c. Similarly,
we can derive interference for channel a (i.e., $a and %2

a).
Equation (9) indicates that the total interference linearly
increases with SU density !c, which can be approximated as
!c , Nc

jAj where A is the entire network area.

The interference distribution in (9) and (10) is a function
of center frequency fc, which serves as the basis for
developing an optimal WSP selection strategy for analyzing
the pricing game among WSPs with heterogeneous spec-
trum bands.

5 OPTIMAL WSP SELECTION STRATEGY VIA

MEAN-FIELD APPROACH

In this section, we derive the optimal WSP selection strategy
for SUs using a mean-field approach, assuming that the
WSPs possess different spectrum bands. We begin with a
mean-field approximation for the evolution of the spectrum
market. We then prove its convergence, and derive the
optimal WSP selection strategy in the mean-field regime.

5.1 A Mean-Field Model for the Spectrum Market

The mean-field method [34] is a simple and effective way of
analyzing the state evolution of a large number of
interacting objects. In particular, it is suitable for analyzing
how the local behavior of individual nodes affects the
global properties of a large-scale network. In our problem,
an SU’s behavior is described by its type (i.e., its preferred
WSP), and the global properties are the steady-state
distribution of SU types.

Our mean-field approach uses differential equations to
approximate the evolution of the market, whose state
converges to the fixed point of the equation (namely, the
mean-field limit) under certain conditions [34]. In what
follows, we first use a mean-field model to describe how
the DSM evolves, and then justify the convergence of the
market to its mean-field.

5.2 Evolution and Convergence of the Market

We first provide the following key definitions:

. A link is defined as a connected transmitter-receiver
pair with active traffic. Therefore, a link can be
considered “newly joined” if it has just switched
from an idle period to a period of bursty transmission.

. Let N be the number of active links. Links can “join”
and “depart” according to a Poisson distribution.
However, we assume that the link population
evolves to a steady state, such that the departure
rate equals the arrival rate, and the total number of
links remains roughly constant.

. Let ( be the traffic rate of a link. We also assume that
the ON-OFF traffic pattern of a link is bursty,
following a Poisson distribution with rate (.

. Let NcðtÞ denote the total number of active links
using channel c at time t. Links are classified
according to the channel that they use, i.e., a link i
is of type c, if it selects channel c 2 C.

We study the evolution of the spectrum market within a
short period of time, !t. The number of newly joined
secondary links within this period is N ( !t. This is also the
number of departed links within !t, since we focus on a
steady state of the SU population when the departure rate
equals the arrival rate. Each newly joined link leases a
channel from a WSP with a short-term contract. Note that
active links that have already leased a channel are in
transmitting/receiving mode, and must maintain their
current channel (WSP) selection.

Let Pc be the probability that, for a randomly selected
link i, channel c provides the maximum utility, i.e.,

Pc ¼ Pr
n
c ¼ arg max

c(2C
Uiðc(Þ

o
; 8c 2 C; ð11Þ

where the utility UiðcÞ is defined in (2). Then, among the
newly joined links within !t, the number of links selecting
channel c is N ( !t Pc.

The total number of channel c SUs, i.e., links using
channel c, in the network at time ðtþ!tÞ is

Ncðtþ!tÞ ¼ NcðtÞ þN ( !t Pc %NcðtÞ ( !t: ð12Þ

Equation (12) describes the evolution of a market. The
market equilibrium can be defined as a fixed point of the
market evolution:

@NcðtÞ
@t

¼ Ncðtþ!tÞ %NcðtÞ
!t

¼ N ( Pc %NcðtÞ ( ¼ 0

() Pc ¼
NcðtÞ
N

:

ð13Þ

Equation (13) indicates that the probability that an SU
selects WSP c is equivalent to the fraction of SUs using
channel c, which is referred to as the channel occupancy
measure, i.e., "cðtÞ ¼ NcðtÞ=N . Intuitively, the occupancy
measure, "cðtÞ, reflects the market share of WSP c at time t.

Proposition 1 (Convergence of channel occupancy). The
channel-occupancy measure " ¼ f"a;"cg converges to a
deterministic process in the continuous-time domain.

Proof. See Appendix B, available in the online supplemental
material. tu
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From now on, we will focus on deriving the channel (WSP)
selection probability Pc in the mean-field model of (12),
which depends primarily on three key factors: 1) amount of
interference Ic on channel c, 2) spectrum leasing prices pc,
and 3) total spectrum demand !. Note that the interference
intensity Ic depends on the occupancy measure of channel c,
which, in turn, affects the channel-selection probability Pc.
This circular dependency eventually converges to a fixed
point, i.e., the mean-field limit of market dynamics.

5.3 SUs’ Optimal Selection of WSPs
We now analyze the SUs’ optimal channel (WSP) selection
strategies, assuming that each SU is a rational market entity
which selects a WSP to maximize his utility. To make a
strategic choice, each SU takes into account the achievable
capacity and leasing cost, but cannot directly affect the price
set by the WSPs. This model mirrors a real-world market
economy where customers are obedient price-takers, but
the joint effect of their choices causes the sellers to compete
and reach an equilibrium price.

We derive the optimal WSP selection strategy in a mean-
field regime for given spectrum prices p ¼ fpa; pcg. For an
arbitrarily-chosen SU in a DSM, the probability that channel
c provides better utility is

Pc ¼ Pr
'
Uc % Ua > 0

(

¼ Pr log
Pogc

Ic þNo

# $
% log

Poga
Ia þNo

# $
> pc % pa

# $

¼ Pr log
Ia þNo

Ic þNo

# $
> pc % pa % " log

fa
fc

# $# $

¼ Pr Ia þNo % epc%pa
fc
fa

# $"
ðIc þNoÞ > 0

# $
;

ð14Þ

where pc (pa) and fc (fa) are the price and center frequency
of channel c (a), respectively.

Remark. Note that a more commonly used approach for
analyzing the equilibrium state is to equate the user’s
utility, i.e., U iðcÞ ¼ UiðaÞ (e.g., [17]). However, such an
equilibrium state may not be reached depending on the
network environment, as will be shown in Section 6.4.
Moreover, our approach can be easily extended to an
oligopoly market, in which more than two WSPs compete
with each other to entice SUs (see Section 5.5).

For given prices, the channel-selection probability Pc
depends solely on the interference statistics on channel c. In
(14), the interference power on each channel can be
approximated as a normal random variable as derived in
(9) and (10) in Section 4.

Let Ica ¼ Ia þNo % )caðIc þNoÞ where )ca ¼ epc%paðfcfaÞ
".

Note that No and )ca are constants, and Ica is thus the
difference between the two Gaussian random variables,
which is also Gaussian. Then, Ica ! N ð$ca;%2

caÞ where

$ca ¼ $a þNo % )cað$c þNoÞ; ð15Þ

%2
ca ¼ %

2
a þ )

2
ca%

2
c ; ð16Þ

where the mean ($c) and variance (%2
c ) of the interference

are shown in (9) and (10). Then, the channel-selection
probability is

Pc ¼ PrðIca > 0Þ ¼ Pr
Ica % $ca
%ca

>
%$ca
%ca

# $
¼ Q %$ca

%ca

# $
; ð17Þ

where QðxÞ ¼ 1
2&

R1
x e%

t2

2 dt. Using (9), (10), (16), and (17), one
can derive the channel-selection probabilities.

Proposition 2 (WSP selection strategy). For the case with two
WSPs (channels) c and a, the mean-field limit of the channel-
selection strategy Pc and Pa follows (18) and (19).

Pc ¼ Q
#
co
fa

$" 2&!Po
"% 2

#
1

'"%2

$
ðepc%paPc % PaÞ

)#

þNo epc%pa
#
fc
fa

$"
% 1

# $*, #
co
fa

$" ffiffiffiffiffiffiffiffiffiffiffiffi
&!Po
"% 1

r(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pa

#
1

'2"%2
% 1

ðRa
IÞ

2"%2

$
þ e2ðpc%paÞPc

#
1

'2"%2
% 1

ðRc
IÞ

2"%2

$s )!

;

ð18Þ

Pa ¼ 1% Pc; ð19Þ

Proposition 2 indicates that the mean-field limit of the
WSP selection strategy is influenced not only by spectrum
prices, but also by the channel heterogeneity reflected by
interference ranges (Rc

I , R
a
I ) and center frequencies (fc, fa).

This clearly indicates that spectrum heterogeneity can affect
the optimal spectrum pricing that maximizes the WSP’s
profit. Proposition 2, however, shows that SUs’ traffic
intensity ( does not affect the system’s steady-state.

Proposition 3 (Asymptotic behavior of WSP selection
strategy). The optimal WSP selection probability becomes
more uniform as SU density increases, i.e.,

Pc ! 0:5 as !!1; ð20Þ

where ! is the average SU density, which can be approximated
as ! , N

jAj .

Proof. As !!1, the WSP selection probability Pc in (18)
reduces to

lim
!!1

Pc ¼ Q
'
þ1 ðepc%paPc % PaÞ

(
: ð21Þ

Then, we have

lim
!!1

Pc ¼

1 Pc <
Pa

epa%pa
;

0:5 Pc ¼
Pa

epa%pa
;

0 Pc >
Pa

epa%pa
:

8
>>>>><

>>>>>:

ð22Þ

In (22), there exists a unique solution, i.e., lim!!1 Pc ¼
0:5 when pc ¼ pa. On the other hand, when pc 6¼ pa, there
is no solution because pc ¼ pa is the unique NE point
under the condition !!1. We will detail the price NE
in Section 6. tu

Proposition 3 indicates that the WSP selection prob-
ability becomes independent of spectrum heterogeneity
when the number of SUs in the network, N , approaches
infinity. This is because, when there exist a large number
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of interferers, interference power dominates noise power,
i.e., Ic - No, and as a result, the benefit from low
frequency becomes negligible.

5.4 Numerical Results

Here, we present numerical results that show the behavior
of the channel-occupancy measure under different DSM
settings.

Fig. 5a shows the impact of heterogeneous channel
frequencies on the channel occupancies, "a and "c. In the
simulations, we fix the center frequency of channel a at
fa ¼ 500 MHz and increase the frequency fc up to 2.5 GHz.
We set spectrum prices to pa ¼ pc ¼ 1, to eliminate the
effect of prices on channel occupancy. The figure shows
that, when fc < fa, "c > 0:5, due to the favorable signal-
propagation characteristics of channel c; on the other hand,
when fc > fa, "c < 0:5 for the same reason. Interestingly,
channel occupancy depends on average secondary network
density (i.e., total spectrum demand) !. This is because, in
a dense network where interference power exceeds noise
power, i.e., No . Ic, the benefit of favorable signal-
propagation characteristics diminishes. As a result, the
channel-occupancy curve becomes flatter, confirming Pro-
position 3. Note that when fc ¼ fa, "c ¼ "a ¼ 0:5, regard-
less of SU density.

Fig. 5b shows the channel-occupancy measure while
varying average SU density in the range ! 2 ½0; 200+=km2.
Here we fix the center frequencies at fa ¼ 500 MHz and
assume fc 2 f500 MHz; 750 MHz; 1 GHzg. The figure indi-
cates that the channel occupancy "a is always greater than
or equal to 0.5 due to its favorable signal-propagation
characteristics. When SU density is low, the channel
occupancy "a is close to 1 as most SUs tend to enjoy the
favorable signal-propagation characteristics of channel a
without worrying about mutual interference. Under these
conditions, the DSM behaves monopolistically. However, as
SU density increases, the channel-occupancy measure "a

decreases because, in such a high interference regime, it
becomes harder for SUs to exploit the benefits of favorable
signal-propagation characteristics. Thus, the DSM behaves
like a duopoly. The figure also shows that the occupancy

measure approaches 0.5 in all the tested cases, again
confirming the correctness of Proposition 3.

5.5 Optimal WSP Selection in Oligopoly DSM

Although we primarily focus on a duopoly DSM, in real-
world environments, there could be more than two WSPs
that compete with each other, forming an oligopoly DSM.
Our derivation of the optimal WSP-selection strategy in (14)
can be easily extended to the oligopoly setting. Let us define
the probability that WSP j provides a higher utility than
that of WSP k as Pjk ¼ PrðUj > UkÞ, and Pkj ¼ 1% Pjk.

Suppose there is a set C of WSPs where jCj > 2. Then, the
probability that channel j provides the highest expected
utility can be calculated as:

Pj ¼
Q

k2Cnfjg Pjk
P

s2C

!Q
t2Cnfsg Pst

" ; 8j 2 C; ð23Þ

where Pjk can be calculated using (18) and (19).
As we observed in the previous sections, the channel-

selection probability depends on multiple factors, such as
spectrum heterogeneity, spectrum price, spectrum demand,
etc., and no closed-form solution exists due to their complex
interactions. However, (23) can serve as a basis to under-
stand the spectrum pricing game in an oligopoly DSM,
which is part of our future work.

6 EQUILIBRIUM OF THE SPECTRUM-PRICING GAME

In this section, we study the impact of spectrum price on the
WSP’s profit as defined in (4), and characterize the NE
points of pricing strategies.

6.1 Impact of Spectrum Price on WSP’s Profit

Here we evaluate the impact of the WSPs’ spectrum-pricing
strategy p ¼ ðpa; pcÞ on their achievable profits. Without
loss of generality, we set the heterogeneous spectrum
bands at fa ¼ 500 MHz and fc ¼ 1 GHz, i.e., the frequency
of WSP a is always lower than that of WSP c. However, we
observed similar patterns for different frequency bands. We
fixed SU density at ! ¼ 50=km2, and set the investment
costs in (4) at ba ¼ bc ¼ 0 to eliminate their impact on WSPs’
profits, which will be studied separately in Section 6.6.

Fig. 6 shows that WSP a always achieves a higher profit
than WSP c, i.e., Va > Vc, thanks to its favorable spectrum
profile. Fig. 6a shows that the profit of WSP a (i.e., Va)
monotonically increases as competing WSP c increases its
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Fig. 5. Characterization of channel-occupancy measure: (a) The
occupancy of channel c, "c, increases as the frequency ratio fc

fa
decreases, and (b) channel occupancy becomes less sensitive
to spectrum heterogeneity as network density increases. The para-
meters are set to ' ¼ 100 m, and Po ¼ 100 mW, and spectrum prices are
fixed at pa ¼ pc ¼ 1.

Fig. 6. Profit of WSPs: The achievable profit of WSPs depends on
spectrum leasing prices p ¼ ðpa; pcÞ and spectrum heterogeneity (i.e.,
channel frequency). We fix the center frequencies at fa ¼ 500 MHz and
fc ¼ 1 GHz, and set SU density to ! ¼ 50=km2.



price pc. This is because WSP a tends to entice more
customers due to channel a’s better signal-propagation
characteristics. The advantage becomes more pronounced
when the competitor WSP c sets a higher price and loses
part of its market share. In contrast, as shown in Fig. 6b,
when WSP c quotes a higher price than that of WSP a, its
achievable profit remains 0, i.e., WSP a monopolizes the
market. This indicates that channel c is not competitive
unless the price of channel a rises above a certain threshold.

Fig. 7 shows the impact of relative price, pc
pa

, on WSPs’
profits with respect to SU density ! (i.e., spectrum demand).
We set price pa ¼ 1 and vary the price pc from 0 to 2.5. Here,
we have made three observations. First, the relationship
between price ratio and profit is a concave function as
shown in Fig. 7. When the price ratio is relatively low, WSP
c’s profit decreases as the price ratio further decreases.
Despite the fact that a lower price attracts more SUs, the
advantage is limited by increased interference among them.
When the ratio is relatively high, the profit also decreases as
the ratio further increases, due to the significant decrease in
the number of customers. Second, when the price ratio, pcpa ,
is above a certain price threshold, the profit Vc becomes 0
(i.e., the profit curve becomes flat) since the high price
makes channel c unattractive to customers. However, such a
threshold increases with an increasing SU density (i.e.,
spectrum demand) because WSPs can take advantage of a
large number of customers. Third, in a sparse network with
low SU density, profit Vc is maximized when pc . pa
because the interference on channel a remains negligible,
even when most users are associated with WSP a. In
contrast, in a dense network, Vc is maximized when pc , pa
because all SUs will suffer from high interference regardless
of the channel characteristics. Therefore, WSP a loses its
competitive advantage of superior signal propagation
characteristics. Note that this corresponds to our findings
in Proposition 3 in Section 5.3.

6.2 Nash Equilibrium for Pricing Game

In a DSM, WSPs must carefully set the spectrum price, since
too high a price results in loss of market share, while too low a
price will limit their achievable profits. We capture this
tradeoff with the notion of NE.

Definition 2 (Spectrum price Nash equilibrium). A NE in
the duopoly game is defined as a strategy set fp(c ; p(ag that
satisfies

p(c ¼ arg max
pc
Vcðpc; p(aÞ; ð24Þ

p(a ¼ arg max
pa
Vaðp(c ; paÞ: ð25Þ

Intuitively, an NE strategy set implies that no player can
increase its profit by unilaterally adjusting the price. With
the above definition, we can derive the NE of the duopoly
game. Unfortunately, it is difficult to find a closed-form
expression for the NE. Hence, we numerically solve (23)
and (24) using a simple iterative search algorithm to obtain
the NE price.

6.3 Existence and Uniqueness of Nash Equilibrium

Based on the above definition of NE, we examine the
existence and uniqueness of the NE points when SU density
changes, which is equivalent to changing the spectrum
demand over the entire network. In the simulation, we
consider a representative scenario in which the frequency of
WSP a is lower than that of WSP c, i.e., fa ¼ 500 MHz and
fc ¼ 1 GHz, and thus, we expect the NE points to be formed
such that p(a > p(c .

8

Fig. 8 shows the best responses for WSPs under different
SU densities. We have made three key observations. First,
the WSP c’s best response (solid lines) increases as the
spectrum price pa increases, and vice versa. This is because
WSPs compete over the same pool of customers in a given
network coverage area, and hence, WSPs’ optimal spectrum
pricing is always relative to the competitors’ spectrum
prices. That is, if WSP a quotes a high spectrum price, then
the SUs’ achievable utilities from WSP a will decrease,
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Fig. 7. Impact of price ratio: There exists an optimal pricing ratio that
maximizes profit, and the effect of pricing is coupled with the SUs’
density.

Fig. 8. Best response functions for the WSPs: The existence and
uniqueness of the NE depends on the spectrum heterogeneity as well as
the secondary network density. In the simulation, we set fa ¼ 500 MHz,
fc ¼ 1 GHz, and ba ¼ bc ¼ 0.

8. Although we presented the NEs for a specific set of frequencies, we
observed from simulations a similar behavior for other frequency bands.



changing their preference to the competitor, i.e., WSP c. This
will allow WSP c to increase its price pc to reach an
equilibrium point.

Note that this relative behavior of spectrum pricing
provides an economic incentive to WSPs for collusion.
However, such collusion can be prevented in practice for
the following reasons. There will be alternative technologies
to access the wireless spectrum, e.g., IEEE 802.11, and
hence, WSPs will lose their competitiveness as they
advertise unreasonably high prices. Moreover, rational
SUs would not purchase the spectrum if their achievable
utility (i.e., difference between capacity and price) is too
low, e.g., less than 0. Therefore, WSPs cannot set spectrum
prices arbitrarily to increase their profit.

Second, when SU density is low, i.e., ! ¼ 10=km2, the
price NE does not exist because total spectrum demand is
not high enough for WSPs to make a profit. Although pc ¼
pa ¼ 0 can also be considered as an NE point, the WSPs will
avoid this strategy since this NE point will provide a
negative revenue to both WSPs. That is, to attract
customers, WSPs have to lower their prices until they reach
0, and thus, there is no economic incentive for WSPs to
participate in the market. In contrast, with high SU density,
i.e., ! > 20=km2, the NEs are formed at positive values, thus
providing economic incentives to WSPs.

Third, Fig. 8 indicates that the best responses exhibit
phase transitions (the transition thresholds denoted as 1, 2,
3), resulting in a different number of NEs depending on
market settings. For example, the figures show that the
growing rate of the best responses of WSP a (dashed lines)
changes at certain thresholds (denoted as 1). This is
because when pa remains below the threshold, it is optimal
for WSP a to increase the price pa at a higher pace than pc,
i.e., !pa

!pc
> 1, to take advantage of channel a’s superior

spectrum characteristics. However, when pa increases
beyond the threshold, the high spectrum price limits the
growth of the utility of SUs. As a result, channel c becomes
more attractive than channel a, and thus, !pa

!pc
< 1. Similarly,

the best response of WSP c has the threshold property
denoted as 2 and 3 in the figures.

One interesting observation is that, in dense networks,
i.e., ! ¼ 50; 100=km2, the price pc increases faster than pa
until pa reaches the threshold 3. This is because, despite
channel a’s higher quality, when the price pa is too low
compared to the NE price, WSP c can quote a higher price,
i.e., pc > pa, to maximize its own profit, benefiting from a
large number of customers.

6.4 Market Dynamics under Various SU Densities
As we observed in Section 5, SU density (or spectrum
demand) is a critical factor in WSPs’ pricing competition.
Here, we investigate the impact of SU density on market
dynamics by examining the NE prices, WSPs’ profits, and
SUs’ utilities.

Fig. 9a shows the difference between the NE prices, i.e.,
p(a % p(c , as a function of SU density. When the density is
low, i.e., ! < 10=km2, NE does not exist as we observed in
Fig. 8a, and WSPs cannot make a profit because the market
(spectrum demand) is too small. As the density increases,
however, the NE price of channel a (p(a) grows drastically,
whereas the price p(c remains 0 due to its inferior spectrum
profile. This means WSP c cannot make profit if they quote
a price greater than pc > 0. As a result, WSP a monopolizes
the market, as more clearly shown in Fig. 9b (shaded
region). As the density increases further, however, WSP c
starts to share the market, i.e., duopoly, because the SUs on
channel a begin to suffer from cochannel interference.

Fig. 9b shows WSPs’ profits defined in (4) for various SU
densities. As we discussed, when density is low, WSP a
dominates (monopolizes) the market, i.e., Va > 0 and Vc ¼ 0,
thanks to its superior spectrum profile. As the SU density
increases beyond a certain density threshold (i.e.,
! ¼ 12=km2), the market becomes a duopoly and the
difference in achievable profit decreases as the size of the
market grows. Such a threshold density depends on
spectrum heterogeneity. Fig. 10 clearly shows that the range
of SU density below which WSP a monopolizes the market
increases as the center frequency of channel c increases. For
example, when fc ¼ 2fa ¼ 1 GHz, WSP a will dominate the
market until SU density becomes larger than ! ¼ 13=km2. In
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Fig. 9. Impact of secondary network density under heterogeneous and homogeneous spectrum bands: (a) The difference in NE prices, i.e., p(a % p(c ,
decreases with increasing SU density where fa ¼ 500 MHz and fc ¼ 1 GHz, and (b) the NE prices increase with SU density. We assume zero
investment cost, i.e., ba ¼ bc ¼ 0, in the simulation.



addition, such a boundary of SU density increases super-
linearly, partly because of the relationship between received
signal strength and center frequency, i.e., PR / f%"c , as
indicated in (1).

Fig. 11 shows SUs’ achievable utilities on each channel,
i.e., Ua and Uc. The figure shows that, when ! < 13=km2, the
utility on channel a exceeds that of channel c, i.e., Ua > Uc,
thus forming the monopoly market. On the other hand, in
the duopoly market, there is no difference in achievable
utilities, and thus the market is stabilized.

6.5 Price NE under Spectrum Homogeneity
To demonstrate the impact of SU density, while separating it
from spectrum heterogeneity, we consider three homoge-
neous spectrum bands, i.e., fa; fc 2 f500; 600; 700 MHzg, and
plot the corresponding NE points in Fig. 12. Due to spectrum
homogeneity, the NE prices are equal, i.e., p(a ¼ p(c , regard-
less of the SU density. We set the leasing cost ba ¼ bc ¼ 0 to
eliminate its impact on NE prices. From Fig. 12, we have two
main observations. First, the equilibrium price increases
with increasing SU density (i.e., total spectrum demand) due
to the increasing number of customers. In addition, the
lower the frequency band, the higher the price for any given
SU density, since low-frequency bands return higher utility
(i.e., capacity minus spectrum price) to the SUs. Second, the

equilibrium price converges faster with low-frequency
bands due mainly to the large interference power (range)
of low-frequency bands. This is because the potential benefit
of using low-frequency bands (i.e., a longer transmission
range) diminishes faster with SU density due to the large
interference range.

6.6 Impact of Spectrum Investment Cost
Our analysis on WSPs’ pricing game can provide a
practical guideline for WSPs’ spectrum investment deci-
sions, such as a strategy for purchasing from the spectrum
owners (e.g., via auction) in the spectrum plane, as shown
in Fig. 1. Let us consider a spectrum market where WSP a
operates with a channel at frequency fa ¼ 500 MHz, which
is obtained at cost ba ¼ 1. Then, WSP c ponders whether to
join the market by purchasing a channel with fc from
legacy spectrum owners at price bc, which we refer to as
spectrum investment cost.

Fig. 13 shows the maximum investment cost bmaxc , beyond
which the profit becomes negative, i.e., WSP c cannot make
a profit in the market. The maximum investment cost
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Fig. 10. Monopoly versus duopoly DSM: Market can be monopolized
(gray area) by WSP a when the channel frequency fc of the competitor,
WSP c, is relatively higher than fa and the SU density is low. We assume
that fa is fixed at 500 MHz.

Fig. 11. Behavior of secondary utility: The achievable secondary utility
differs only when SU density is low (i.e., monopoly market), and remains
the same in the duopoly market.

Fig. 12. The behavior of NE prices in a DSM with homogeneous
spectrum bands: The equilibrium prices increase with SU density and
converge at different rates; the lower the center frequency, the faster the
convergence due to their large interference range.

Fig. 13. Maximum investment cost: WSP c’s maximum investment cost
bc for making profit in the market is determined by the channel frequency
fc and SU density. We assume fa ¼ 500 MHz and ba ¼ 1 for the
competitor (i.e., WSP a).



depends on spectrum heterogeneity as well as SU density.
The figure indicates that the maximum investment cost bmaxc
is always lower than ba ¼ 1 due to channel c’s inferior
spectrum profile, but it approaches ba as the SU density
increases in the market or channel c has a better spectrum
profile, i.e., a lower value of fc.

7 RELATED WORK

The problem of optimal spectrum pricing in the spectrum
market has been studied extensively, and we discuss some
of the work closely related to ours. Niyato and Hossain [16]
analyzed spectrum pricing competition in cognitive radio
networks with multiple primary service providers. Inalte-
kin et al. [15] considered heterogeneous channel conditions
due to nodes’ physical distances from the base station in
wireless IP networks. Jia and Zhang [14] studied the
duopoly wireless spectrum market where two WSPs
compete for bandwidth and price to maximize their profit.
Duan et al. [18] studied WSPs’ investment and pricing
mechanisms by considering SUs’ physical-layer wireless
characteristics. In [35], they also studied WSPs’ optimal
spectrum investment and pricing decisions in cognitive
radio networks where spectrum availability dynamically
changes due to the unpredictability of PUs’ channel usage
patterns. Gaji#c et al. [36] studied pricing competition among
WSPs via a two-stage multi-leader-follower game. Mutlu
et al. [37] studied measurement-based online pricing for
secondary spectrum access and developed a pricing frame-
work for an unknown demand function and call-length
durations. However, none of the above studies considered
the heterogeneity of a wide range of available spectrum
bands in the spectrum market and spectrum sharing among
colocated SUs in accessing the leased spectrum resources.

The closest to our study is [22] which considered two CR-
specific features: 1) bandwidth (supply) uncertainty due to
PUs’ activities, and 2) spatial reuse of wireless spectrum.
They studied an interesting market scenario where multiple
WSPs compete with each other by jointly optimizing the
spectrum price based on time and location-dependent
spectrum availability. Such fine-grained coordination, how-
ever, might not be suitable for a highly dynamic wireless
environment due to its high computation and communica-
tion overhead. In contrast, we assume a decentralized DSM
where individual spectrum consumers purchase the payoff-
maximizing spectrum, just as in a real-world market
economy. Spectrum price stabilizes when multiple WSPs
competing for market share reach a Nash equilibrium.

8 CONCLUSION AND FUTURE WORK

The dynamic spectrum market is a promising paradigm to
provide economic incentives that facilitate dynamic spec-
trum access. In this paper, we identified two key factors in a
DSM—spectrum heterogeneity and spectrum sharing
among SUs—and studied their impact on price competition
among WSPs in a three-step approach. We first observed
that SUs must share the wireless spectrum in a spatial
domain, and established the effect of SU density (spectrum
demand) on achievable utility when they are associated with
the same WSP. We then derived the SUs’ optimal
WSP selection strategy that maximizes utility, for a given
spectrum profile and leasing prices. Finally, we formulated

WSPs’ spectrum pricing as a noncooperative game and
identified its Nash equilibrium points. Our analysis demon-
strates that spectrum heterogeneity significantly influences
WSPs’ spectrum pricing, especially in a sparse network. In a
dense network, the benefit of a lower frequency band
diminishes due to severe cochannel interference, and thus,
spectrum heterogeneity has less impact on spectrum pricing.

In the future, we would like to investigate the impact of
spectrum heterogeneity on WSPs’ auction strategies in the
spectrum plane. It would also be interesting to extend the
analytical framework to a DSM with multiple WSPs. More-
over, we plan to study the dependency of an optimal
spectrum price on other system parameters, e.g., maximum
transmission power.
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