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ABSTRACT
WiFi interface is known to be a primary energy consumer in mo-
bile devices, and idle listening (IL) is the dominant source of en-
ergy consumption in WiFi. Most existing protocols, such as the
802.11 power-saving mode (PSM), attempt to reduce the time spent
in IL by sleep scheduling. However, through an extensive analysis
of real-world traffic, we found more than 60% of energy is con-
sumed in IL, even with PSM enabled. To remedy this problem,
we propose E-MiLi (Energy-Minimizing idle Listening) that re-
duces the power consumption in IL, given that the time spent in IL
has already been optimized by sleep scheduling. Observing that ra-
dio power consumption decreases proportionally to its clock-rate,
E-MiLi adaptively downclocks the radio during IL, and reverts to
full clock-rate when an incoming packet is detected or a packet has
to be transmitted. E-MiLi incorporates sampling rate invariant
detection, ensuring accurate packet detection and address filtering
even when the receiver’s sampling clock-rate is much lower than
the signal bandwidth. Further, it employs an opportunistic down-
clocking mechanism to optimize the efficiency of switching clock-
rate, based on a simple interface to existing MAC-layer scheduling
protocols. We have implemented E-MiLi on the USRP software
radio platform. Our experimental evaluation shows that E-MiLi
can detect packets with close to 100% accuracy even with down-
clocking by a factor of 16. When integrated with 802.11, E-MiLi
can reduce energy consumption by around 44% for 92% of users in
real-world wireless networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless Communications; C.2.2 [Computer-
Communication Networks]: Network Protocols
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1. INTRODUCTION
Continuing advances of physical-layer technologies have enabled

WiFi to support high data-rates at low cost and hence become widely
deployed in networking infrastructures and mobile devices, such
as laptops, smartphones, and tablet PCs. Despite its high perfor-
mance and inexpensive availability, the energy-efficiency of WiFi
remains a challenging problem. For instance, WiFi accounts for
more than 10% of the energy consumption in current laptops [1].
It may also raise a smartphone’s power consumption 14 times even
without packet transmissions [2].

WiFi’s energy-inefficiency comes from its intrinsic CSMA mech-
anism—the radio must perform idle listening (IL) continuously, in
order to detect unpredictably arriving packets or assess a clear chan-
nel. The energy consumption of IL, unfortunately, is comparable
to that of active transmission/reception [2, 3]. Even worse, WiFi
clients tend to spend a large fraction of time in IL, due to MAC-level
contention and network-level delay [4]. Therefore, minimizing the
IL’s energy consumption is crucial to WiFi’s energy-efficiency.

A natural way to reduce the IL’s energy cost is sleep schedul-
ing. In WiFi’s power-saving mode (PSM) and its variants [1, 4–6],
clients can sleep adaptively, and wake up only when they intend to
transmit, or expect to receive packets. The AP buffers downlink
packets and transmits only after the client wakes up. PSM essen-
tially shapes the traffic by aggregating downlink packets, thereby
reducing the receiver’s wait time caused by the network-level la-
tency. However, it cannot reduce the IL time associated with carrier
sensing and contention. Through an extensive trace-based analysis
of real WiFi networks (Sec. 3), we have found that IL still domi-
nates the clients’ energy consumption even with PSM enabled: it
accounts for more than 80% of energy consumption for clients in a
busy network and 60% in a relatively idle network.

Since the IL time cannot be reduced any further due to WiFi’s
CSMA, we exploit an additional dimension—reducing IL power
consumption—in order to minimize its energy cost. Ideally, if the
exact idle period is known, the radio could be powered off or put to
sleep during IL, and wake up and process packets on demand. How-
ever, due to the distributed nature of CSMA, the idle time between
packets varies widely and unpredictably. Under-estimation of an
idle interval will waste energy, while an over-estimation causes the
radio to drop all incoming packets during the sleep.



So, one may raise an important question: “is it possible to put the
radio in a subconscious mode, where it consumes little power and
can still respond to incoming packets promptly?” We answer this
question by proposing Energy-Miminizing idle Listening (E-MiLi)
that reduces the clock-rate of the radio during its IL period. The
power consumption of digital devices is known to be proportional
to their voltage-square and clock-rate [7, 8]. Theoretically, by re-
ducing clock-rate alone, E-MiLi reduces the IL’s power consump-
tion linearly.

It is, however, nontrivial to ensure that packets can be received at
a lower clock-rate than required. To decode a packet, the receiver’s
sampling clock-rate needs to be at least twice the bandwidth of the
transmitted signal, following the Nyquist’s Theorem. WiFi radios
have already been optimized under this theorem by matching the
receiver’s clock-rate with the Nyquist rate.
E-MiLi meets this challenge via a novel approach called Sam-

pling Rate Invariant Detection (SRID). SRID separates the detec-
tion from the decoding of a packet. It adds a special preamble to
each 802.11 packet, and incorporates a linear-time algorithm that
can accurately detect the preamble even if the receiver’s clock-rate
is much lower than the transmitter’s. SRID embeds the destination
address into the preamble, so that a receiver may only respond to
packets destined for it. Upon detecting this special preamble, the
receiver immediately switches to the full clock-rate and then recov-
ers the packet with a legacy 802.11 decoder.
E-MiLi allows SRID to be integrated into existing MAC or

sleeping-scheduling protocols, using a simple Opportunistic Down-
clocking (ODoc) scheme. ODoc enables fine-grained, packet-level
power management by adding a downclocked IL mode into the ra-
dio’s state machine. ODoc exploits the burstiness and correlation
structure of real traffic to assess the potential benefit of downclock-
ing, and then downclocks the radio only if it is unlikely to incur
significant overhead.

We have implemented an E-MiLi prototype on the GNURa-
dio/USRP platform [9]. Our experimental evaluation shows that
E-MiLi can detect packets with close to 100% accuracy even if
the radio operates at 1

16
of the normal clock-rate. Within a normal

SNR range (> 8dB), E-MiLi performs comparably to a legacy
802.11 detector. Furthermore, from real traffic traces, we find that
for the majority of clients, the overall energy saving with E-MiLi
is close to that in pure IL mode with the maximum downclocking
factor. According to our measurements, this corresponds to 47.5%
for a typical WiFi card with a downclocking factor of 4, and 36.3%
for a software radio with a downclocking factor of 8. Further, our
packet-level simulation results show that E-MiLi reduces energy
consumption consistently across different traffic patterns, without
any noticeable performance degradation.

In summary, this paper makes the following contributions.

• Exploration of the feasibility and cost of fine-grained control
of radio clock-rate to improve energy-efficiency.

• Design of SRID, a novel packet detection algorithm that makes
it possible to detect packets even if the receivers are down-
clocked significantly.

• Introduction of ODoc, a generic approach to integrating SRID
with existing MAC- and sleep-scheduling protocols.

• Implementation of E-MiLi on a software radio platform and

validation of its performance with real traces and synthetic
traffic.

The remainder of this paper is organized as follows. Sec. 2 an-
alyzes the energy cost of IL in WiFi networks and describes the
motivation behind E-MiLi. Sec. 3 presents a measurement study
of the relation between energy-consumption and clock-rate in WiFi
and software radio devices. Following an overview of E-MiLi
(Sec. 4), Secs. 5 and 6 present the detailed design of SRID and
ODoc, respectively. Sec. 7 evaluates E-MiLi. Sec. 8 reviews re-
lated work and Sec. 9 concludes the paper.

2. WHY E-MiLi?
In this section, we motivate E-MiLi by showing a large fraction

of time and energy spent in IL for real-world WiFi users. We also
briefly discuss the reasons for the high power-consumption of IL by
anatomizing a typical radio.

2.1 Cost of Idle Listening
We acquired packet-level WiFi traces from publicly available

datasets: SIGCOMM’08 [10] and PDX-Powell [11]. The former
was collected from a WLAN used for a conference session that has
a peak (average) of 31 (7) clients. The latter was collected from
a public hotspot at a university bookstore, with a peak (average)
of 7 (3) clients. We built a simulator that can parse the traces and
compute each client’s sojourn time in different states, including:

• TX&RX: the client is transmitting or receiving a packet.

• Sleep: the client is put to sleep. A client sets the power-
management field in its packet header to 1 if it intends to
sleep after the current frame transmission and ACK [5].

• Idle listening (IL): a state other than the above two. This
includes sensing the channel, waiting for incoming packets,
receiving packets not addressed to it, etc.. We exclude the
SIFS time, which is a short interval (9–20µs [5]) between
two immediate packets (e.g., in between data/ACK). We also
consider a client disconnected if it does not transmit/receive
any unicast packets for 5 minutes or longer.

Fig. 1(a) plots the normalized fraction of time spent in the three
modes, distributed among all the clients in the SIGCOMM’08 trace.
More than 90% of clients enable power management and judiciously
put their radios to sleep. However, clients spend most of the time
in IL, rather than sleeping: the median IL time is 0.87, and is above
0.6 for more than 80% of clients. One may guess the reason for
this to be the excessive contention in this busy network. However,
even in the PDX-Powell trace (Fig. 1(b)), the IL time exceeds 0.52
for more than 70% of clients. In contrast, the actual TX&RX time
is below 0.1 for more than 90% of clients in both networks. Since
WiFi’s PSM cannot eliminate MAC-layer contention and queueing
delays [6], the IL still dominates the TX&RX time by a significant
margin.

We further analyze the energy cost of IL. Since information on
the actual type of clients’ WiFi cards is unavailable, we assume
that their energy profile follows that of a typical Atheros card [12,
Sec. 10.1.5] (TX: 127mW, RX: 223.2mW, IL: 219.6mW, Sleep:
10.8mW). Although their absolute power consumption differs, many
widely used WiFi cards have consistent relative power consumption



(a) (b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n 
of

 u
se

rs

Fraction of time

TX&RX
Sleep

IL

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n 
of

 u
se

rs

Fraction of time

TX&RX
Sleep

IL

Figure 1: CDF of the fraction of time spent in different modes
for (a) SIGCOMM’08 trace and (b) PDX-Powell trace.
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Figure 2: CDF of the fraction of energy spent in different modes
for (a) SIGCOMM’08 trace and (b) PDX-Powell trace.

among different states [13]. Fig. 2(a) shows that in a busy network,
for more than 92% of clients, 90% of energy is spent in IL, i.e., IL
costs 9 times more energy than TX&RX for most clients. More-
over, although the sleep time is substantial, the sleep power is neg-
ligible, whereas the IL power is comparable to the TX/RX power,
so the majority of cost is still with IL. For a network with less con-
tention (Fig. 2(b)), IL costs less, yet still accounts for more than
73% of energy cost for 90% of clients. Note that the sleep energy
may exceed the TX&RX energy, due to the significant amount of
sleep time.

The above evaluation reveals that IL accounts for the majority of
a WiFi radio’s energy cost, and optimizing the IL time alone using
PSM is not enough. If the IL power can be reduced, it will clearly
improve the energy-efficiency of PSM-like sleep scheduling pro-
tocols. In addition, for real-time applications, the constant active
mode (CAM) of WiFi is preferable, since PSM may incur an exces-
sive delay and degrade the QoS [2]. By reducing IL power, even
CAM can achieve high energy-efficiency.

2.2 Why Is Idle Listening So Costly?
Intuitively, a radio should consume less power when it is not ac-

tively decoding or transmitting packets, but the IL power of com-
modity WiFi and other carrier-sensing wireless (e.g., ZigBee) de-
vices is comparable to their TX&RX power [2, 12, 14]. In what
follows, we briefly discuss the reason for this by anatomizing the
radio hardware.

Fig. 3 illustrates the architecture of a typical WiFi receiver (based
on an Atheros 802.11 chip [15]). An incoming signal is first passed
through the RF and analog circuit, amplified and converted from RF
(e.g., 2.4GHz) to the baseband by a mixer. The analog baseband
signal is sampled by an Analog-to-Digital Converter (ADC), and
the resulting discrete samples are passed to the CPU (baseband and
MAC processor), which decodes the signal and recovers the origi-
nal bits in the data frame. The entire radio is driven by a 40MHz
crystal oscillator, which feeds two paths. The first is the frequency
synthesizer that generates the center frequency used for the RF and
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Figure 3: Architecture of a WiFi receiver.

analog mixer. The other is the Phase-Locked-Loop (PLL) that gen-
erates the clocking signal for the digital circuit: the sampling clock
for the ADC, as well as the main clock for the CPU.

Existing studies have shown the ADC and CPU to be the most
power-hungry components of a receiver. In the Atheros 5001X
chipset, for example, they account for 55.3% of the entire receiver
power budget [16]. ADC and CPU power consumptions are also
similar (1.04:1 [17]). During IL, both the analog circuits and the
ADC operate at full workload as in the receiving mode. Moreover,
the decoding load of the CPU is alleviated, but it cannot be put into
sleep—it needs to operate at full clock-rate in order to perform car-
rier sensing and packet detection. This is the reason why IL power
consumption is comparable to that of receiving packets.

A similar line of reasoning applies to other wireless transceivers
such as software radios. In software radios, the ADC feeds the
discrete samples to an FPGA, which may further decimate (down-
sample) the samples and then send them to a general processor
that serves as the baseband CPU. The similarity in hardware com-
ponents implies that software radios are likely to suffer from the
same problem with IL. Considering the trend of software radios get-
ting gradually integrated into mobile platforms to reduce the area
cost [18], it is imperative to incorporate a mechanism to reduce its
IL power.

3. IL POWER VS. CLOCK RATE
We propose to reduce the IL power by slowing down the clock

that drives the digital circuitry in a radio. Modern digital circuits
dissipate power when switching between logic levels, and their
power consumption follows P ∝ V 2

ddf , where Vdd is the supply
voltage and f the clock-rate [7,8]. Hence, a linear power reduction
can be achieved by reducing clock-rate. In practice, due to the ana-
log peripherals, the actual reduction is less than ideal. For example,
in the ADC used by an Atheros WiFi chip [19], halving the sam-
pling clock-rate results in a 31.4% power reduction. Here, using
detailed measurements, we verify the actual effects of reducing the
clock-rate for both WiFi NIC and the USRP software radio.

3.1 WiFi radio
According to IEEE 802.11-2007 [5], the OFDM-based PHY sup-

ports 2 downclocked operations with 10MHz (half-clocked) and
5MHz (quarter-clocked) sampling-rate, in addition to the default
full-clocked 20MHz operation. We test these two modes on the
LinkSys WPC55AG NIC (version 1.3, Atheros 5414 chipset), with
a development version of Madwifi (trunk-r4132), which supports
8 half-clocked and 18 quarter-clocked channels at the 5GHz band.
The downclocked modes can be enabled by activating the “USA
with 1

2
and 1

4
width channels” regulatory domain on the NIC.

As to measurement of the WiFi’s power consumption, our ap-
proach is similar to that in [13]. We attach the NIC to a laptop (Dell
5410) powered with an external AC adapter, and use a passive cur-



rate = 1 rate = 1/2 rate = 1/4
Idle 1.22 0.78 0.64
RX 1.66 1.44 0.98
TX 1.71 1.46 1.21

Table 1: Mean power consumption (in W) of WiFi under dif-
ferent clock-rates.

rate=1 rate=1/2 rate=1/4 rate=1/8 rate=1/16
IL 10.27 7.96 7.07 6.54 5.88
TX 6.36 5.69 5.18 4.70 4.47

Table 2: Mean power consumption (in W) of USRP under dif-
ferent clock-rates.

rent probe (HP1146A) and voltage probe (HP1160) together with a
1Gsps oscilloscope (Agilent 54815A) to measure the power draw.
The actual power consumption is the difference between the mea-
sured power level in different radio modes and the base level with
the NIC removed. During the measurement, we tune the WiFi to
a channel unused by ambient networks. The IL power is measured
when the NIC is activated but not transmitting/receiving packets.
The TX/RX power is measured when the WiFi is sending/receiving
one-way ping-broadcast packets at the maximum rate (100 packets
per second). The different clock modes are configured to use the
same bit rate (6Mbps) and packet size (1KB). Table 1 shows the
measurement results.

It can be seen that the power consumption decreases monotoni-
cally with clock-rate. In particular, compared to a full-clocked ra-
dio, the IL power is reduced by 36% and 47.5% for half-clocked
and quarter-clocked mode, respectively. The absolute reduction
is found different from that reported in an existing measurement
study [3]. We guess this discrepancy results from the use of a dif-
ferent WiFi card (Atheros 5212) in their experiment. As validated
in [3], different NICs have very different power profiles at different
clock-rates. To confirm that the power consumption vs. clock-rate
relation is not limited to the WiFi radio, we have also conducted
experiments with the USRP software radio.

3.2 Software radio
The original USRP is driven by an internal 64MHz clock, which

is used by both the ADC and FPGA. We enabled the external clock-
ing feature by resoldering the main clock circuit, following the in-
structions in [9]. We use the USRP E100 [9] as an external clock
source, which has a programmable clock generator (AD9522) that
produces reference clocks below 64MHz1.

We mounted an XCVR2450 daughter board on the USRP, which
was then connected to the PC host (a Dell E5410 laptop). The IL
mode runs the standard 802.11a/g carrier sensing and packet detec-
tion algorithm (see Sec. 7 for the details of our implementation).
The TX mode sends a continuous stream of samples prepended
with 802.11 preambles. Since a complete 802.11 decoding mod-
ule is unavailable, we only measure the IL and TX power. We
measure the USRP power directly with the oscilloscope and cur-
rent/voltage probes, and then add the power consumption of the
external clock [20], which is 0.55W and does not vary with clock-
rates. Note that the normal clock-rate of USRP is 64MHz, whereas
1The USRP E100 cannot be tuned to signals below 32MHz. So,
we used a signal generator to produce clock signals below 32MHz,
with the same configuration as those produced by the E100.
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Figure 4: Idle listening and RX/TX operations in E-MiLi.

the maximum signal bandwidth sent to the PC is 4MHz since the
FPGA downsamples (decimates) the signals. While reducing the
clock-rate, we ensure the signal bandwidth is decreased by the same
ratio by adjusting the decimation rate.

Table 2 shows the measurement results. Similar to a WiFi ra-
dio, the USRP power consumption decreases monotonically with
clock-rate. A power reduction of 22.5% (36.3%) is achieved for a
downclocking factor of 2 (8). We found that at a 4MHz clock-rate
(a downclocking factor of 16), the USRP can no longer be tuned to
the 2.4GHz center frequency, but the ADC can still be tuned cor-
rectly to 4MHz sampling rate, and power consumption decreases
further.

Since the PC host consumes a negligible amount of power when
processing the 4MHz signal, we have omitted its power consump-
tion in Table 2. Future mobile software radio systems may incor-
porate dedicated processors to process the baseband signals. By
reducing the processors’ clock-rate in parallel with the ADC and
FPGA, the entire software radio platform can achieve higher energy-
efficiency.

4. AN OVERVIEW OF E-MiLi
E-MiLi controls the radio clock-rate on a fine-grained, per-

packet basis, in order to reduce the energy consumption of IL. It
opportunistically downclocks the radio during IL, and then restores
it to full clock-rate before transmitting or after detecting a packet.
Fig. 4 illustrates the flow of core operations when E-MiLi receives
and transmits packets.
E-MiLi prepends to each 802.11 packet an additional preamble,

called M-preamble. During its IL period, a downclocked receiver
continuously senses the channel and looks for the M-preamble, us-
ing the sampling rate invariant detection (SRID) algorithm. Upon
detecting an M-preamble, the receiver immediately switches back
to full clock-rate, and calls the legacy 802.11 decoder to recover
the packet. The receiver leverages an implicit, PHY-layer address-
ing mechanism in SRID to filter the M-preamble intended for other
nodes, and hence prevents unnecessary switching of clock-rate.

A TX operations follow the legacy 802.11 MAC, except that the
carrier sensing is done by SRID. If the radio is downclocked during
carrier sensing and backoff, it needs to restore full clock-rate before
the actual transmission. The exact restoration time is scheduled by
another component of E-MiLi, called Opportunistic Downclock-
ing (ODoc).

After completing an RX or TX operation, the radio cannot down-
clock greedily. As we will verify experimentally in Sec. 6, switch-
ing clock-rate takes 9.5 to 151 µs for a typical WiFi radio. During
the switching, the clock is unstable, and packets cannot be detected
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even with SRID. To reduce the risk of packet loss, E-MiLi em-
ploys ODoc again to make a downclocking decision using a simple
outage-prediction algorithm, which estimates if a packet is likely to
arrive during the clock-rate switching.

In addition, after sending the M-preamble, a transmitter cannot
wait silently during the receiver’s switching period; it may other-
wise lose the medium access and be preempted by other transmit-
ters. To compensate for the switching gap, the transmitter inserts a
sequence of dummy bits between the M-preamble and the 802.11
packet. The dummy bits cover the maximum switching period so
that the channel is occupied continuously. Note that the transmitter
always sends the M-preamble, dummy bits, and 802.11 packets at
the full clock-rate. It need not know the current clock-rate of the
receiver.

When multiple clients coexist, E-MiLi assigns a broadcast ad-
dress as well as multiple unicast addresses, each with a unique fea-
ture. This feature is embedded in the M-preamble and detectable
only by the intended receiver. To reduce the overhead of M-preamble,
E-MiLi incorporates an optimization framework that allows mul-
tiple clients to share addresses at minimum cost.

In summary, E-MiLi always runs at full clock-rate to transmit
or decode packets, but downclocks the radio during IL to detect
implicitly-addressed packets, whenever possible. Next, we detail
the design of components in E-MiLi.

5. SAMPLE RATE INVARIANT DETECTION
To realize E-MiLi, its packet-detection algorithm must over-

come the following challenges: (i) it must be resilient to the change
of sampling clock-rate; (ii) it must be able to decode the address
information directly at low sampling rates; and (iii) due to un-
predictable channel condition and node mobility, its decision rule
should not be tuned at runtime, and hence must be resilient against
the variation of SNR. We propose SRID to meet these challenges
via a joint design of preamble construction and detection.

5.1 Construction of the M-preamble
E-MiLi constructs the M-preamble to facilitate robust, sampling-

rate invariant packet detection, while implicitly delivering the ad-
dress information. An M-preamble comprises C(C ≥ 2) dupli-
cated versions of a pseudo-random sequence, as shown in Fig. 5
(where C = 3).

Within the M-preamble duration, the channel remains relatively
stable, and therefore the duplicated sequences sent by the trans-
mitter maintain strong similarity at the receiver. Hence, a receiver
can exploit the strong self-correlation between the C consecutive
sequences to detect the M-preamble. More importantly, since ra-
dios sample signals at a constant rate, the receiver would obtain C
similar sequences even if it down-samples the M-preamble.

To enhance resilience to noise, the random sequence in M-preamble
must have a strong self-correlation property—it should produce the
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Figure 6: Detecting M-preamble using SRID (clock-rate=1/4).

best correlation output only when correlating with itself. The Gold
sequence [21] satisfies this requirement. It outputs a peak mag-
nitude only for perfectly aligned self-correlation, and correlating
with any shifted version of itself results in a low, bounded magni-
tude. For a Gold sequence of length L = 2l − 1 (l is an integer),
the ratio between the magnitude of self-correlation peak and the
secondary peak is at least 2

l−1
2 . The original Gold sequence is bi-

nary [21]. To make it amenable for WiFi transceivers, we construct
a complex Gold sequence (CGS), in which the real and imaginary
parts are shifted versions of the same Gold sequence generated by
the standard approach [21].

In addition, we use the length of the CGS to implicitly convey
address information. An address is an integer number n, and cor-
responds to a CGS of length (TB + nDm), where Dm is the max-
imum downclocking factor of the radio hardware. TB is the mini-
mum length of the CGS used for the preamble, also referred to as
base length. To detect its own address (e.g., n), at each sampling
point t, the client simply self-correlates the latest TB samples with
the previous TB samples offset by nDm. When the client is down-
clocked by a factor of D, it scales down the base length to TBD−1

and offset to nDmD−1 accordingly. The nDm value ensures that
different addresses are offset by at least 1 sample, even if the CGS
is downsampled by the maximum factor Dm.

One challenge related to the Gold sequence is that it only allows
length of L = 2l − 1. Hence, not all of the (TB + nDm) samples
can be exactly matched to a whole Gold sequence. We solve this
problem by first generating a long CGS, and then assign the sub-
sequence of length (TB + nDm) to the n-th address.

Clearly, to meet its design objectives, an ideal random sequence
for M-preamble should have strong self-correlation even after it is
downsampled and truncated (since we only use TB of the TB +
nDm samples to perform self-correlation). We conjecture there
does not exist such a sequence unless the sequence length is very
large and the downsampling factor is small. We leave the theoreti-
cal investigation of this problem as our future work. In this paper,
we will empirically verify that the CGS with a reasonable length
suffices to achieve high detection accuracy in practical SNR ranges.

5.2 Detection of the Preamble
We formally derive the detection algorithm in SRID by modeling

how the receiver down-samples the M-preamble and identifies it via
self-correlation.

Let T = C(TB + nDm) be the total length of the M-preamble
(Fig. 5), and x(t), t ∈ [0, T ), the transmitted samples correspond-
ing to the M-preamble. For a full-clocked receiver, the received



signals are:

yo(t) = e2π∆fth(t)x(t) + n(t), t ∈ [0, T ). (1)

where n(t) is the noise, h(t) the channel attenuation (a complex
scalar representing amplitude and phase distortion), and ∆f the
frequency offset between the transmitter and the receiver. When a
receiver operates at the clock-rate of 1

D
(i.e., with a downclocking

factor of D), the received signals become:

z(k) = e2π∆fth(t)x(t) + n(t), t = kD, 0 ≤ k < b T
D
c.

Here D must be an integer divisor of the base length TB of the
CGS, i.e., bTB

D
c = TB

D
, T1. To detect M-preamble, at each sam-

pling point k, the receiver with address n performs self-correlation
between the latest T1 samples and the previous T1 samples offset
by nDmD−1, resulting in:

R(k) =

k+T1−1∑
i=k

z(i)z∗(i− T1 − nDmD−1) (2)

≈
k+T1−1∑
i=k

e2π∆fiDh(iD)x(iD)
[
e2π∆f(iD−TB−nDm)

h(iD − TB − nDm)x(iD − TB − nDm)
]∗ (3)

≈ eTB+nDm |h(kD)|2
k+T1−1∑
i=k

|x(iD)|2 (4)

where (·)∗ denotes the complex conjugate operator.
Eq. (3) is derived based on the fact that the signal level is usu-

ally much higher than the noise. Eq. (4) is based on the fact that (i)
the random sequence x(t) preserves similarity with its predeces-
sor sequence, even though it is downsampled; and (ii) the channel
remains relatively stable over its coherence time, which is much
longer than the preamble duration. To see this, we note that the
coherence time can be gauged as To = λ√

2πv
, where λ and v de-

note the wavelength of the signal and the relative speed between the
transmitter and the receiver [22]. At a walking speed of 1m/s, To
equals 28.8 milliseconds, whereas the M-preamble duration lasts
for tens of microseconds (see Sec. 5.3.1).

Meanwhile, the energy level of T1 samples is calculated as:

E(k) =

k+T1−1∑
i=k

|z(i)|2 ≈ |h(kD)|2
k+T1−1∑
i=k

|x(iD)|2. (5)

From Eqs. (4) and (5), we get |R(t)| ≈ E(t). By contrast, if no
M-preamble presents or an M-preamble with a different address a
is transmitted, then the self-correlation yields:

|R(k)| ≈ |h(kD)|2
∣∣∣ k+T1−1∑

i=k

x(iD)x(iD − TB − aDm)∗
∣∣∣ ≈ 0

This is because the sequence x(iD), i ∈ [k, k + T1 − 1] is a trun-
cated CGS and has strong correlation only with itself.

Fig. 6 shows a snapshot of |R(t)| and E(t) when receiving a
packet prepended with M-preamble. |R(t)| aligns almost perfectly
with E(t) in an M-preamble, even though the receiver is down-
clocked. In contrast, |R(t)| differs from E(t) significantly if noise
or uncorrelated signals are present.

Algorithm 1 Detecting the M-preamble using SRID.
1. Input: new sample z(k+T1−1) at sampling point k+T1−1
2. Output: packet detection decision at sampling point k
3. /*Update energy level of past T1 samples*/
4. E(k)← E(k − 1) + |z(k + T1 − 1)|2 − |z(k − 1)|2
5. /*Update average energy level*/
6. Ea(k)← T−1

1 E(k) + (1− T−1
1 )Ea(k − 1)

7. /*Update self-correlation with predecessor sequence*/
8. R(k)← R(k − 1) + z(k + T1 − 1)z(k − nDmD−1 − 1)∗

9. −z(k − 1)z(k − 1− T1 − nDmD−1)∗

10. /*Apply SNR squelch and self-correlation decision*/
11. if 10 log10

Ea(k)

Ea(k−TD−1)
> Hs && H < |R(k)|

E(k)
< H−1

12. then decisionQ← push 1
13. else decisionQ← push 0
14. fi
15. if sum(decisionQ) > H1· (C−1)(TB+nDm)

D

16. then return 1
17. fi
18. return 0

Based on the above findings, SRID uses the following basic de-
cision rule to determine the presence of an M-preamble:

H < |R(k)| · [E(k)]−1 < H−1 (6)

where H is a threshold such that H / 1. This decision rule has
several key advantages. First, it normalizes the self-correlation with
the energy level, so H need not be changed according to the signal
strength. We will show experimentally (Sec. 7) that a fixed value of
H = 0.9 is robust across a wide range of SNR. Second, it does not
require estimation of the channel parameters or calibration of the
frequency offset, and hence can be used in dynamic WLANs with
user churn and mobility.

For further enhancement of resilience to noise, note that the deci-
sion rule (6) is likely to be satisfied at all the sampling points from
the second to the C-th CGS (Fig. 5). There are (C−1)(TB+nDm)

D
,

T2 such points at a downclocking factor D, which can offer high
diversity in a noisy or fading environment. To exploit this advan-
tage, at each sampling point k, SRID stores the decision for the
past T2 samples in a FIFO queue, and then apply the following en-
hanced rule: for k − T2 < i ≤ k, the number of sampling points
satisfying Eq. (6) ≥ H1T2, where H1 is a tolerance threshold and
H1 ∈ (0, 1].

In addition, during idle periods (i.e., when no signal is present),
both the self-correlation and the energy level may be close to 0
and close to each other, and hence the decision rule (6) may be
falsely triggered. To prevent such false alarms, we added an SNR
squelch, which maintains a moving average of incoming signals’
energy level, with the window size equal to T1:

Ea(k) = T−1
1 E(k) + (1− T−1

1 )Ea(k − 1) (7)

The SNR squelch passes a sampling point to the self-correlator
only if its SNR exceeds a threshold Hs, which corresponds to the
minimum detectable SNR (set to 4dB for SRID). Since an idle pe-
riod (noise floor) usually precedes the M-preamble (with length
TD−1) due to the MAC-layer contention, the SNR level can be



estimated as:

SNR = 10 log10

Ea(t)

Ea(t− T )
(8)

Algorithm 1 summarizes the detection of M-preamble in SRID.
For each timestamp (sampling point), both the self-correlation in
Eq. (2) and the energy level in Eq. (5) can be computed by a single-
step operation, which updates the metrics with an incoming signal
and subtracts the obsolete signal. Hence, the algorithm has lin-
ear complexity with respect to the number of samples, and is well
suited for implementation on an actual baseband signal processor.

5.3 Address Allocation

5.3.1 Minimum-cost address sharing
Since M-preamble uses sequence length to convey address in-

formation, the addressing overhead increases linearly with network
size. For a network with N nodes, the M-preamble has a maxi-
mum length of C(TB + NDm). In our implementation, the base
length TB = 64, and CGS repetition C = 3. For a medium-
sized network, say N = 5, and a maximum downclocking factor
Dm = 4, the entire M-preamble would have a length of 252. When
transmitted at a 20MHz sampling rate, the M-preamble only takes

252
2×107 s = 12.6µs channel time, which is comparable to the 16µs
overhead of the 802.11a/g preamble [5]. However, for a large net-
work, e.g., N = 50, the M-preamble overhead increases to 69.6
µs, which may be overly large, especially for short packets.

To reduce the addressing overhead, E-MiLi allows multiple clients
to share a limited number of addresses. Address sharing, how-
ever, introduces side effects: clients may unnecessarily trigger each
other, thus incurring extra energy consumption. E-MiLi makes a
tradeoff by carefully allocating addresses according to clients’ rel-
ative channel usage, i.e., the ratio of each client’s TX&RX time to
the total TX&RX time of the WLAN. The intuition behind this is
that a client that transmits/receives packets more frequently should
share his address with a fewer number of other clients, so as to
minimize the cost of sharing.

We formalize this intuition with an optimization framework. Given
the number of clients N , and the maximum address Km, we seek
the optimal address allocation that minimizes the overhead of E-MiLi,
as follows:

min

Km∑
k=1

Lk

[(
N∑
i=1

piuik

)
N∑
i=1

uik

]
(9)

s. t.
Km∑
k=1

uik = 1, ∀i ∈ [1, N ]. (10)

uik ∈ {0, 1}, ∀i ∈ [1, N ],∀k ∈ [1,Km] (11)

where Lk is the overhead when the address k is used. pi is client i’s
relative channel usage, and uik a binary variable indicating whether
or not client i uses address k. Intuitively, the objective function (9)
represents the sum of the overhead of each address, weighted by
sum of the channel usages of all clients sharing that address and
further multiplied by the number of such clients. The multiplication
is necessary because a packet with address k triggers all clients with
address k. Eq. (10) enforces the constraint that each client uses only
one address.

This optimization problem is a non-linear integer program, which
is NP-hard in general. In our actual implementation, we approxi-
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Figure 7: Performance of address sharing algorithms.

mate the solution by relaxing the integer constraint (11) to 0 ≤
uik ≤ 1, solving the resulting quadratic optimization program, and
then rounding the resulting uik back to its integer value. To imple-
ment the address sharing algorithm, the AP needs to periodically
(e.g., every 1 minute) compute the relative channel usage pi, and
then broadcast the new allocation to all clients.

To test the effectiveness of the approximation, we run the address
sharing algorithm on the SIGCOMM’08 trace (assuming Km = 5
and Lk = kDm) and plot the total address overhead of E-MiLi in
Fig. 7. We observe that the integer-rounding-based solution closely
approximates the lower-bound enforced by the quadratic optimiza-
tion over 0 ≤ uik ≤ 1. On average, the approximate solution
exceeds the lower bound by only 1.8%. Fig. 7 also shows the mean
overhead of an algorithm that randomly assigns an address for each
client (error bar shows standard deviation over 20 runs). We ob-
serve that the approximation algorithm can save more than 50% of
overhead over the random allocation.

5.3.2 The broadcast address
In addition to the address designed for each node, E-MiLi as-

signs a broadcast address known to the AP and all clients. It cor-
responds to an M-preamble with address n = 0. Therefore, each
node needs to maintain a self-correlator with offset nDm = 0, in
addition to the one with its own address.

For the carrier sensing purpose, a node also needs to identify the
existence of packets from other transmitters. Similar to the original
802.11, SRID can perform both energy sensing and preamble de-
tection. The former is achieved by following Eq. (7). When down-
clocked by a factor of D, a node can only sense D−1 of the energy
compared with a full-clocked receiver. Hence, it reduces the energy
detection threshold to D−1 of the original. When preamble-based
carrier sensing is necessary, it can be realized by prepending an ad-
ditional broadcast preamble. When this first preamble is detected,
the node determines the channel to be busy, and continues to track
the energy level of the entire packet. However, it will restore full
clock-rate only when it detects a second preamble, which is either
addressed to it or is another broadcast preamble.
E-MiLi can coexist with 802.11a/g clients even in the pream-

ble detection mode. The 802.11a/g [5] employs self-correlation to
detect a short preamble, which corresponds to a random sequence
in the frequency domain, and a periodic sequence (period 16, with
10 repetitions) in the time domain. It can be considered as a subset
of SRID, with base length TB = 16, sequence repetition C = 10,
node address 0 and no downclocking, and thus can be easily de-
tected by E-MiLi clients. On the other hand, by replacing the first
preamble with an 802.11 preamble, E-MiLi nodes can be detected
by legacy 802.11 as well.
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6. OPPORTUNISTIC DOWNCLOCKING
We now present the ODoc module, which schedules the down-

clocking to balance its overhead and maintain compatibility with
existing MAC and sleep scheduling protocols. We start by inspect-
ing the overhead in switching clock-rates.

6.1 Delay in Switching Clock-Rates
When switching to a new clock-rate, the radio needs to be sta-

blized before transmitting/receiving signals. Since the frequency
synthesizer and analog circuit’s center frequency remain the same,
the time cost mainly comes from stablizing the digital PLL (driving
the ADC and CPU). This is only several microseconds in state-of-
the-art WiFi radios. For example, in MAXIM 2831 [23], the PLL
takes less than 8µs to stablize itself, and the ADC and CPU needs
only 1.5 µs to reset, so the total switching time is below 9.5 µs.

We have also measured the switching delay of the Atheros 5414
NIC. We modified the ath5k driver that can directly access the hard-
ware register and reset the clock-rate. After changing the clock-rate
register, we repeatedly check a baseband testing function until it re-
turns 1 (a conventional way of verifying if the ADC and baseband
processor have become ready to receive packets in ath5k), and then
record the duration of this procedure.

According to our experimental results, switching between clock-
rate 1 and 1

4
takes 139 µs to 151 µs, whereas switching between 1

and 1
2

takes 120 µs to 128 µs. We note that this is a conservative
estimation of the actual switching delay. To switch to a new rate,
the Atheros NIC needs to reset not just the PLL, but also all regis-
ters for the OFDM decoding and MAC blocks in the CPU, so that
the entire receiver chain can run a valid 802.11 mode. In contrast,
E-MiLi only needs to reset the PLL, while keeping the registers
in the CPU intact. In addition, the latency induced by the baseband
testing function and its interface to the PC host is unknown, but is
included in the switching delay in our measurement.

We will henceforth use the 9.5µs switching delay for the MAXIM
2831 chip as a lower bound, and use the measurement result for
Atheros 5414 as an upper bound, although the ODoc module is not
restricted to these bounds.

6.2 Scheduling of Downclocking

6.2.1 Control flow
E-MiLi interacts with the WiFi MAC/PHY using a simple in-

terface. On the one hand, WiFi calls E-MiLi (the SRID module) to
assess the channel availability. On the other hand, E-MiLi obtains
the radio’s state machine from the WiFi MAC and the sleep sched-
uler. Whenever the radio transits to IL, E-MiLi calls its ODoc
module to determine whether and when to switch clock-rate.

Fig. 8 illustrates the state machine of E-MiLi. In downclocked
IL (dIL) mode, the radio runs SRID continuously, and switches to

the full-clocked RX mode immediately upon detection of an M-
preamble. When there are packets to be transmitted, carrier sens-
ing is performed by SRID, but the MAC schedule strictly follows
the 802.11 CSMA/CA algorithm. ODoc continuously queries the
802.11 backoff counter, and reverts the radio to full clock-rate when
the countdown value of the backoff counter is less than Tc + SIFS,
where Tc is the maximum switching delay, and SIFS is the short
inter-frame space defined in 802.11 [5]. ODoc mandates the radio
to perform carrier sensing within this SIFS interval after switching
to full-clock rate, in order to ensure the channel remains idle af-
ter switching. Otherwise, it needs to continue carrier sensing and
backoff according to 802.11.

The state-transitions TX↔Sleep and RX↔Sleep are managed by
802.11 or other sleep-scheduling protocols. Whenever a TX or RX
completes and the radio is not put to sleep, ODoc decides whether
to switch to dIL or the normal IL mode. It makes this decision using
an outage prediction scheme, as detailed next.

6.2.2 Outage prediction
ODoc’s outage prediction mechanism decides if the next packet

is likely to arrive before the radio is stablized to a new clock-rate
(referred to as an outage event). It first checks if there will be a
deterministic operation, i.e., an immediate response of the previous
operation. For example, CTS, DATA, and ACK packets are all de-
terministic operations to follow an RTS. Such packets are separated
only by an SIFS, which is usually shorter than or comparable to the
switching time, so the radio must remain at full rate in between.

When a series of deterministic operations end, ODoc checks if an
outage occurred recently. It maintains a binary history for each non-
deterministic packet arrival, with “1” representing that the inter-
packet interval is shorter than Tc, and “0” otherwise. It asserts that
an outage is likely to occur and remains at full clock-rate, if the
recent history contains a “1”. The key intuition lies in the burstiness
of WiFi traffic—a short interval implies an ongoing transmission of
certain data, and is likely to continue multiple short intervals until
the transmission completes.

An important parameter in ODoc is the size of history. A large
history size may predict an outage when it does not occur, thus
missing an opportunity of saving energy by downclocking. On the
other hand, a small history size results in frequent mis-detection
of packets arriving within Tc. Fortunately, a mis-detection causes
only one more retransmission, because a missed packet will be de-
tected in its next retransmission, when the receiver has already been
stablized. Therefore, a small history size is always preferred when
energy-efficiency is of high priority. As will be clarified in our ex-
perimental study, a history size of between 1 and 10 is sufficient to
balance the tradeoff between false-prediction and mis-detection.

7. EVALUATION
In this section, we present a detailed experimental evaluation of

E-MiLi. Our experiments center around two questions: (1) How
accurate can E-MiLi detect packets in a real wireless environment,
and with different downclocking rates? (2) How much of energy
can E-MiLi save for real-world WiFi devices and at what cost?

To answer these questions, we have implemented E-MiLi on
software radios and network-level simulators as follows.

• We have implemented the SRID algorithm, including the M-
preamble construction and detection, on the GNURadio plat-



form and verify it on a USRP testbed. As a performance
benchmark, we have also implemented the 802.11 OFDM
preamble encoding/detection algorithm (Sec. 5.3.2).

• E-MiLi’s energy-efficiency depends on the relative time of
IL, which, in turn, depends on network delay and contention,
and hence, we leverage real WiFi traces again to evaluate the
energy-efficiency of E-MiLi. We implemented the ODoc
framework and address allocation algorithm by extending the
trace-based simulator (Sec. 3), and then integrating results
from the SRID experiments.

• We have also implemented ODoc in ns-2.34, which can be
used to verify the performance of E-MiLi with synthetic
traffic patterns (e.g., HTTP and FTP) independently.

7.1 Packet-Detection Performance
We test the detection performance of SRID under different SNR

levels and downclocking factors. The SNR is estimated as SNR =
Es−EN
EN

, whereEs is the average energy level of incoming samples
when a packet is present, and EN is the noise floor, both smoothed
using a moving average with the window size equal to the length of
the M-preamble. Note that this SNR value over-estimates the actual
SNR experienced by the decoder, since the decoding modules will
raise the noise level by around 3.5 dB [12]. Given that 802.11 needs
at least 9.7dB SNR to decode packets [17], SRID must be able to
detect packets accurately above 9.7dB SNR.

We set the base length of SRID’s CGS to TB = 64, and maxi-
mum downclocking factor Dm = 16. We fix the self-correlation
threshold H = 0.9, and the tolerance threshold H1 = 0.6 (Sec. 5).
We will show that these thresholds are robust across different ex-
periment settings.

7.1.1 Single link
We first test SRID on a single link consisting of two USRP nodes

within Line-of-Sight (LOS). We downclock the receiver by differ-
ent factors, and vary the link’s SNR by adjusting the transmit power
and link length/distance. Since the USRP fails to work when the ex-
ternal clock is downclocked to 1

16
, we scale its FPGA decimation

rate by 16, which is equivalent to downsampling the signals by a
factor of 16. Under each SNR/clock-rate setting, the transmitter
sends 106 packets at full clock-rate with constant inter-arrival time.
The mis-detection probability (Pm) is calculated by the fraction of
timestamps where a packet is expected to arrive but fails to be de-
tected, and vice versa, for the false-alarm probability (Pf ).

Fig. 9 plots Pm and Pf as a function of a link’s time-averaged
SNR (rounded to integer values). Pm drops sharply as SNR in-
creases, and approaches 0 as SNR grows above 8dB. It tends to
be higher under a high downclocking factor, mainly because fewer
sampling points are available that satisfy the decision rule (6) and
thus, SRID is more susceptible to noise. When SNR= 4dB and
D = 16, Pm grows up to 6%. Under practical SNR ranges (above
9.7dB), however, Pm is consistently below 1% for all the clock-
rates. In addition, SRID shows a comparable detection performance
with 802.11. In fact, it may have lowerPm when the down-clocking
factor D is below 16. This is because SRID uses a longer self-
correlation sequence than 802.11 (64 vs. 16), which increases its
robustness to noise. The false-alarm probability Pf in Fig. 9(b)
shows a trend similar to Pm.
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Figure 9: SRID performance for a single link.
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Recall SRID uses nDm, the spacing between repetitive CGS to
convey address n. A natural question is: how large can n be to en-
sure a high detection accuracy? Fig. 10 plots the detection perfor-
mance as n increases. For a stationary link, both Pm and Pf remain
relatively stable. This is because even for the address n = 100, two
self-correlation sequences are separated by 1600 samples, corre-
sponding to 400 µs at the 4MHz signal bandwidth of USRP, which
is well below the channel’s coherence time. For a mobile client
(created by moving the USRP receiver around the transmitter at
walking speed), the detection performance is only slightly affected
by the address length, since the low mobility causes SNR varia-
tions, but does not change the coherence time significantly.

7.1.2 Testbed
We proceed to evaluate SRID on a testbed consisting of 9 USRP2

nodes (1 AP and 8 clients) deployed in a laboratory environment
with metal/wood shelves and glass walls. Fig. 11 shows a map of
the node locations. Node D is moving between point D and E
at walking speed, and all others are stationary. This testbed en-
ables the evaluation of SRID in a real wireless environment sub-
ject to effects of multipath fading, mobility, and NLOS obstruction.
More importantly, it allows testing the false-alarm rate due to cross-
correlation between different node addresses.

Due to the limited number of external clocks, we create the ef-
fect of downclocking by changing the USRP2’s decimation rate,
so that the receiver’s sampling rate becomes 1 to 1

16
of the trans-

mitter’s. We allow the AP to send 106 packets to each client in
sequence. Fig. 12(a) shows that, depending on node locations, Pm
varies greatly. In general, nodes farther away (e.g.,H) or obstructed
by walls (e.g., F ) from the AP has higher Pm. The mobile node D
may have higher Pm than a node farther from the AP but is station-
ary (e.g., node E). Consistent with the single link experiment, the
downclocking factor 4 results in comparable Pm with 802.11.

Fig. 12(b) shows the false-alarm probability due to cross-correlation,
i.e., the probability that a client detects packets addressed to others.
The relative Pf for different clients shows a similar trend as Pm,
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Figure 12: SRID performance in a USRP testbed.

depending on the location and mobility. Unlike the single link case,
the Pf tends to be larger than Pm, because the cross-correlation
between sequences has stronger effects on Pf than pure noise. Re-
markably, even for the worst link and with D = 16, Pf is below
0.04, implying negligible energy cost due to false triggering. We
note that for 802.11, the address field must be decoded from the
packet, so Pf here is not meaningful for it.

From the above experiments, we observe that SRID has close
to 100% detection accuracy (and is comparable to 802.11) under
practical SNR ranges and with downclocking rate up to 16. Hence,
it can be used to realize E-MiLi in practical wireless networks.

7.2 Improving WiFi Energy-Efficiency

7.2.1 Real WiFi traffic
We now evaluate E-MiLi’s energy-efficiency through trace-based

simulation. We obtain WiFi and USRP power-consumption statis-
tics from actual measurements (Sec. 3). We use the 151µs switch-
ing time of the Atheros AR5414 NIC as the worst-case estimate
of switching delay, assuming the power consumption during clock
switching is the same as in full-clocked mode. As we will clarify,
an outage due to the switching delay occurs with a less than 4.2%
probability, so we assume an outage event does not affect the WiFi
traces except causing one retransmission. In addition, we adopt the
Pm and Pf values at 8dB as a conservative estimation of the packet
loss or false alarm caused by SRID. Unless mentioned otherwise,
15 addresses are allocated and shared among all clients, and a his-
tory size of 5 is used in ODoc.

Energy savings. Fig. 13(a) illustrates the energy-saving of E-MiLi,
assuming clients are using WiFi devices with a maximum down-
clocking factor of 4. For a large network (SIGCOMM’08 traces
[10]), the energy saving ranges from 41% to 47.3%. Its CDF is
densely concentrated—for around 92% of clients, the energy sav-
ing ranges between 44% and 47.2%, which is close to the 47.5%
energy-saving when a client remains in downclocked IL mode (Sec. 3).
In a small network (PDX-Powell traces [11]) with less contention,
IL induces less energy cost, so the energy-saving ratio of E-MiLi
is relatively low. However, since IL time still dominates, the me-
dian saving remains around 44%, and minimum 37.2%. Fig. 13(b)
plots the results assuming clients’ power consumption is the same
as the USRP device with a maximum downclocking factor of 8.
Again, the energy-saving is concentrated near 36.3%, the saving in
pure IL mode (Sec. 3).

These experiments reveal that E-MiLi can explore the majority
of IL intervals to perform downclocking. Its energy-saving ratio
can be roughly estimated as η = ηcPIL, where ηc is the energy-
savings ratio in pure IL mode using the maximum downclocking
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Figure 13: Energy saving ratio for (a) WiFi, maximum down-
clocking factor of 4; (b) USRP, maximum downclocking factor
of 8.
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Figure 14: Effects of history size (SIGCOMM’08 trace).

factor, and PIL the percentage of idle listening energy during a ra-
dio’s lifetime. Since PIL is close to 1 for most clients, η is close to
ηc.

Overhead of E-MiLi and effect of ODoc. The overhead of E-MiLi
comes from mis-detection (and retransmission) due to a packet ar-
riving in between the switching time. Such events can be alleviated
by ODoc’s history-based outage prediction mechanism. In this ex-
periment, we evaluate the cost of such outage and the effective-
ness of ODoc in alleviating it. Fig. 14(a) shows that when his-
tory size equals 1, 4.2% packets may need to be retransmitted for
some clients. With a history size of 10, retransmission is reduced
to below 0.8% for 90% of clients. A further increase of the his-
tory size to 100 shows only a marginal improvement. On the other
hand, Fig. 14(b) shows a small history size results in higher energy-
efficiency, implying that the energy savings from aggressive down-
clocking dwarfs the small waste due to retransmissions. Hence, a
small history size is preferable for ODoc if energy-efficiency is of
high priority.

7.2.2 Synthetic traffic patterns
To further understand E-MiLi’s benefits and cost under con-

trollable network conditions, we implement and test it in ns-2.34.
We compare performance of the legacy WiFi (including both CAM
and PSM), and E-MiLi-enhanced WiFi (referred to as CAM+E-
MiLi and PSM+E-MiLi). We modified the PHY/MAC parameters
of ns-2 to be consistent with that in 802.11g, and fix the data rate
to 6Mbps. We implement the ODoc based on 802.11, and config-
ure it in a similar manner to the trace-driven simulator. The PSM
module builds on the 802.11 PSM extension to ns-2 [24], and the
power consumption statistics follow our measurement of AR5414
(Sec. 3). We evaluate two applications: Web browsing and FTP,
which have different performance constraints.

Web browsing. We simulate a web browsing application using
the PackMIME http traffic generator in ns-2, which provides real-
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Figure 15: Performance of a 5-minute web browsing session.

istic stochastic models of HTTP flows. The network consists of
one HTTP server connecting to a WLAN AP via an ADSL2 link,
with 1.5Mbps (0.5Mbps) downlink (uplink) bandwidth and expo-
nentially distributed delay with mean 15 ms. The AP serves one
HTTP client (with mean page request interval of 30s) and mul-
tiple background clients. Similar to [6], we study the effect of
background traffic by running fixed-rate (200Kbps, 512-byte packet
size) UDP file transfer between the AP and the background clients.

Fig. 15(a) shows the energy usage of a 5-minute web-browsing
session. PSM shows around 18% energy saving over CAM. CAM+E-
MiLi saves 39.8% of energy over CAM without background traffic,
and 47.1% when the number of background clients grows to 10.
Since PSM optimizes the sleep schedule of clients, the ratio of IL
time is less, compared to CAM, and thus PSM+E-MiLi achieves
less energy saving (33% to 37.1%) than CAM+E-MiLi. Also, note
that E-MiLi is relatively insensitive to background traffic, as it can
enforce address filtering even at low clock-rate.

Fig. 15(b) plots the average per-page delay during the web-browsing
session. Clearly, E-MiLi incurs a negligible delay when integrated
into legacy WiFi. Although the M-preamble and clock switching
costs channel time, it is much shorter than the network and con-
tention delay. Notably, PSM incurs a longer delay than CAM due
to its sleep scheduling mechanism, and CAM+E-MiLi has a shorter
delay, yet higher energy-efficiency than PSM. We expect an even
better energy-delay tradeoff to be achieved by jointly designing the
PSM sleep scheduling algorithm and E-MiLi. We leave such an
optimization as our future work.

FTP. We proceed to evaluate E-MiLi using the FTP traffic gener-
ator in ns-2, assuming a client downloads a 20MB file (with packet
size 1KB) directly from the AP. Compared to the fixed-duration
web-browsing, the FTP’s energy usage is more sensitive to the back-
ground traffic (Fig. 16(a)), because the downloading duration is
prolonged by MAC-layer contention. PSM is found to consume
36.8% to 39.4% more energy than CAM, due to the fact that it may
result in higher energy-per-bit than CAM [1]. In addition, although
E-MiLi achieves a similar level of energy saving as in the Web
browsing, it may degrade the FTP throughput by up to 4.4% in the
absence of background traffic (Fig. 16(b)). This is due mainly to
its overhead, i.e., the switching delay, the extra channel time of the
M-preamble, and the imperfect detector and outage predictor that
incur MAC-layer retransmissions. Moreover, note that we assume
no end-to-end delay and the throughput depends only on MAC con-
tention, which zooms in the overhead from E-MiLi.

8. RELATED WORK
Energy-efficient protocols for WiFi. Energy-efficiency has

long been a paramount concern for portable WiFi devices. Many

(a) (b)

0

100

200

300

400

500

0 2 4 6 8 10

E
ne

rg
y 

us
ag

e 
(J

)

Number of background clients

CAM
PSM

CAM+E-MiLi
PSM+E-MiLi

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Number of background clients

CAM
PSM

CAM+E-MiLi
PSM+E-MiLi

Figure 16: Performance when downloading a 10MB file using
FTP.

MAC-level scheduling protocols have been proposed to reduce the
energy wasted by IL. For example, NAPman [6] carefully isolates
PSM clients’ traffic using an energy-aware fair scheduler, so as
to reduce unnecessary IL caused by background traffic. Sleep-
Well [25] further isolates the traffic from different WLAN cells,
by scheduling their wakeup time in a distributed TDMA manner.
µPM [4] adopts a more fine-grained scheduler that aggressively
puts clients to sleep even in between short packet intervals. E-MiLi
can be integrated with these and other MAC-level energy-saving
solutions, by adding the downclocked IL mode into their state ma-
chine (Sec. 6.2). E-MiLi can also work in CAM, thus overcoming
the excessive delay typically seen in PSM-style protocols.

An alternative way of reducing the cost of IL is to wake up the
receiver on demand. The wake-on-wireless scheme [26] augments
a secondary low-power radio for packet detection, and triggers the
primary receiver only when a new packet arrives. E-MiLi also
adopts the philosophy of on-demand packet processing. Its energy
saving may be less than wake-on-wireless, because it needs to keep
the analog circuit active in IL. Its advantage is that no extra radio is
required. In fact, it only requires a change of firmware to support
the construction and detection of M-preamble, and adjustment of
clock-rate. E-MiLi can also be used with wake-on-wireless to
optimize the power consumption of the secondary radio.

Packet detection. The general idea of correlation-based packet
detection is not new. As mentioned in Sec. 5.3.2, the 802.11 OFDM
PHY incorporates a preamble that allows self-correlation-based de-
tection. Its variants have also been used in other software-radio im-
plementations [27]. In E-MiLi, we have designed a new preamble
mechanism that preserves the self-correlation property even when
it is downsampled. Cross-correlation-based packet detection (i.e.,
correlating the incoming signal with a known sequence) is an alter-
native way of detecting packets [28], but cannot detect downsam-
pled signals and is more susceptible to the frequency offset.

Dynamic voltage-frequency scaling (DVFS). DVFS is a ma-
ture technology used in microprocessor design [7]. It exploits the
variance in processor load, lowering the voltage and clock-rate when
few tasks are pending, and raising it when the processor is heavily
loaded. It has also been proposed for Gigabit wireline links [29],
and for audio signal processing [8]. The key idea is to observe the
peak frequency of the incoming workload, and then limit the pro-
cessor’s clock-rate to that level.

DVFS has not been used for improving the energy-efficiency for
wireless radios, due mainly to a well-known paradox: the radio
should be activated only after detecting a packet, but to detect the
packet, the radio must always be active at its full sampling rate.
We overcome this paradox by separating packet detection and de-



coding, and performing both at different rates. Our approach is
partly inspired by the experiments by Chandra et al. [3], who found
WiFi NIC’s power consumption to scale linearly with the sampling
bandwidth, and proposed the SampleWidth algorithm to adjust the
bandwidth according to the traffic load. SampleWidth uses the
same clock-rate for detection and decoding, and can only adjust
clock-rate at a coarse-grained level, because the transmitter and the
receiver must agree on the same clock-rate before packet transmis-
sions.

9. CONCLUSION
We have presented E-MiLi, a novel mechanism for reducing

the energy cost of idle listening (IL) that dominates the energy
consumption in WiFi networks. Our goal was to exercise fine-
grained IL power control by adjusting clock-rate without compro-
mising packet-detection capability. We met this goal by devising
a sampling-rate invariant packet detector, which enables a down-
clocked radio to detect packets with accuracy comparable to that
of a full-clocked radio. We have also introduced an opportunistic
downclocking scheme to balance the overhead in changing clock-
rate and minimize its negative influence on network performance.
Our experimental evaluation and trace-based simulation confirm
the feasibility and effectiveness of E-MiLi in real WiFi networks
with different traffic patterns.
E-MiLi has wider implications for wireless design than what

we have explored in this paper. Its simple MAC/PHY interface
facilitates its integration with other carrier sensing based wireless
networks, such as ZigBee sensor networks. In addition, we only
explored the benefits of downclocking in E-MiLi due to hardware
limitation. By changing the voltage along with clock-rate, addi-
tional energy savings can be achieved. This is a matter of our future
inquiry.
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