IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

MODELZ: Monitoring, Detection,
and Analysis of Energy-Greedy
Anomalies in Mobile Handsets

Hahnsang Kim, Member, IEEE, Kang G. Shin, Fellow, IEEE, and Padmanabhan Pillai

Abstract—It is of great importance to protect rapidly-spreading and widely-used small mobile devices like smartphones and
PocketPCs from energy-depletion attacks by monitoring software (processes) and hardware (especially, battery) resources. The ability
to use these devices for on- and/or off-job functions, and even for medical emergencies or disaster recovery is often dictated by their
limited battery capacity. However, traditional malware detection systems and antivirus solutions based on matching signatures are
limited to detection of only known malware, and hence, cannot deal with battery-depletion attacks. To meet this challenge, we propose
to develop, implement, and evaluate a comprehensive framework, called MODELZ, that MOnitors, DEtects, and analLyZes energy-
greedy anomalies on small mobile devices. MODELZ comprises 1) a charge flow meter that allows infrequent sampling of energy
consumption without losing accuracy, 2) a power monitor, in coordination with the charge flow meter, that samples and builds a power-
consumption history, and 3) a data analyzer that generates a power signature from the power-consumption history. To generate a
power signature, we devise and apply light-weighted, effective noise filtering and data compression, reducing the detection overhead
significantly. The similarities between power signatures are measured by the y?-distance and used to lower both false-positive and
false-negative detection rates. Our experimental results on an HP iPAQ running the Windows Mobile OS have shown that MODELZ

achieves significant (up to 95 percent) storage-savings without losing detection accuracy, and a 99 percent true-positive rate in
differentiating legitimate programs from suspicious ones while the monitoring consumes 50 percent less energy than the case of

keeping the Bluetooth radio turned on.

Index Terms—Power-consumption history, charge flow meter, power signature, x>-distance, moving average filtering.

1 INTRODUCTION

N recent years, the worldwide market for small mobile

devices, such as smartphones, PocketPCs, netbooks, and
tablet PCs, has been growing and expanding dramatically.
For example, worldwide sales of smartphones for 2008
alone reached 139 million devices, up 14 percent over those
for 2007 [16]. Because of continued miniaturization,
ubiquitous communication, and increasing computation
power, mobile device users can now perform various online
tasks, including Web browsing, document editing, multi-
media streaming, and Internet banking, to name a few. At
the same time, the growing usage of mobile devices for
daily businesses and personal lives has also been attracting
attention/interest of malware writers.

Early malware on PCs were written as pranks or for
bragging rights, but have since been evolving with criminal
or malicious intent. The motivation behind this type of
attacks can be considered similar to that behind mobile
malware for small devices. For instance, since the use of
small mobile devices has become essential to our everyday
businesses and personal lives, one seemingly legal way to

o H. Kim and K.G. Shin are with the Department of Electrical Engineering
and Computer Science, University of Michigan, 2260 Hayward Street,
Ann Arbor, MI 48109-2121. E-mail: {hahnsang, kgshin)@eecs.umich.edu.

e P. Pillai is with the Intel Research Lab, 4720 Forbes Ave., Suite 410,
Pittsburgh, PA 15213. E-mail: padmanabhan.s.pillai@intel.com.

Manuscript received 11 Apr. 2009; revised 5 Oct. 2009; accepted 1 July 2010;
published online 17 Dec. 2010.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2009-04-0126.
Digital Object Identifier no. 10.1109/TMC.2010.245.

1536-1233/11/$26.00 © 2011 IEEE

sabotage a competitor’s business is to reduce the usability of
their mobile devices by depleting their batteries. Another
way to inflict harm to competitors is to exploit the commonly
used billing system for use of mobile devices. Excessive
charges will be made to victims by sending them an excessive
number of SMS messages [18]. This attack (i.e., a DoS attack)
also drains their batteries very quickly [5]. Moreover,
considering trends in the evolution of mobile malware,
wilder, more diverse, and sophisticated mobile malware will
likely appear, hence calling for effective preemptive ways to
combat this type of threats.

The battery’s limited operation time for mobile devices is
an Achilles” heel for their portability and ubiquitous use. This
limitation will significantly grow in future because not only
has battery technology fallen behind Moore’s Law, but
mobile devices and software running thereon also demand
more power for a longer time than the battery can deliver
[32]. While most malicious code attacks on mobile devices
target software resources such as infecting files and stealing
privacy information [17], intentional abuse of hardware
resources (e.g., CPU, memory, and battery) in many ways has
become a significant, increasing threat [21], [8], [29]. Despite
these problems, only limited research [4], [21], [29] has
focused on the detection and prevention of battery-depletion
attacks and a wider variety of attacks [5], [28] on devices.

1.1 Related Work

The most commonly-used technique for mobile malware
detection is signature-based analysis. Signatures are created
using static information (e.g., file names and code values),

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS 969

thus becoming vulnerable to simple obfuscation, poly-
morphism [6], [24], and packing techniques [26]. The nature
of signature-based detection that requires a new signature
for every malware variant may make it very difficult to be
deployed on small mobile devices with limited resources
(e.g., battery energy) unless its high energy-consumption
issue is resolved. Moreover, even “old” malware can harm
new mobile devices unless their system has been properly
patched in a timely manner.

Unlike signature-based detection, anomaly-based detec-
tion compares the definitions of the activities considered
normal in a profile against the observed events to identify
any significant deviation. The profile describes the normal
behavior (e.g., users, hosts, applications, or network
connections) [13], [36]. One common problem with anom-
aly-based detection, however, is that inadvertent inclusion
of a malicious activity as part of the profile produces many
false negatives (failure to identify malicious activities).

Similarly, behavior-based detection [11] uses behavioral
signatures that describe any particular worm’s behavior
such as sending similar data from one machine to another,
the propagation pattern, and the change of a server to a
client. Such behaviors can be represented by a generic
worm propagation model [11]. These behavioral signatures
that are not sufficiently complex to reflect real-world
computation activities can cause many false positives
(incorrect identification of a benign activity as malicious).
Also, the propagation of mobile malware via nontraditional
exploit vectors such as SMS and Bluetooth [3], [12], [34], in
conjunction with user mobility, renders network behavioral
signatures ineffective.

1.2 Challenges

Since neither of these three methods provides comprehensive
protection of small mobile devices against sophisticated
energy-depletion attacks, we need objective countermea-
sures against them. Adapting multiple detection technolo-
gies, either separately or in combination, may have potential
for broader and more accurate detection of increasing
malware threats, but it would be difficult for resource-limited
mobile devices to accommodate such blended technologies,
without appropriate customization and optimization. Thus,
there is an urgent need for detection and prevention of
malware on mobile devices that can overcome the limitations
of both signature- and behavior-based detection, while
dealing with the unique features of the mobile operating
environment. Listed below are the several requirements that
have not yet been addressed by most current-generation
systems for the protection of resource-limited mobile devices
from energy-depletion attacks.

e Detection accuracy. Energy-depletion attacks are, in
general, very difficult to detect. Signature-based
detection yields many false negatives for such attacks
and previously unknown threats, while behavior-
based detection generates many false positives for
erratic and benign application behavior. It is very
important to keep both false-negative and false-
positive rates below a certain acceptable threshold.

e Resource usage on mobile devices. Unlike resource-rich
PCs, the detection and prevention system on a
battery-powered mobile device should not consume

too much of device resources, such as CPU, memory,
and battery. The use of the resources should be kept
to a minimum.

e Measurement overhead. High accuracy in measuring
applications” power-consumption incurs high mea-
surement overhead with a high resolution, expen-
sive external tool (e.g., an oscilloscope) required. We,
therefore, need an alternative, cost-effective method
that can serve as a plug-in for mobile devices while
still meeting the requirement of high-accuracy
measurements.

1.3 Main Contributions

To address the above requirements, we propose a compre-
hensive framework, called MODELZ, to monitor, detect,
and analyze new/unknown threats and energy-greedy
anomalies on small mobile devices, with high accuracy
and efficiency. MODELZ comprises a charge flow meter that
offers a premise for infrequent sampling of power, a power
monitor, in coordination with the meter, that samples and
builds a power-consumption history, and a data analyzer
that generates a power signature from the power-consump-
tion history. The data analyzer then detects anomalies by
comparing the generated power signature with those in a
database. We evaluate detection performance using a
custom worm emulator that we designed for this purpose.
The key contributions of this paper are three-fold.

e MODELZ abstracts the underlying application be-
havior by monitoring and recording usage of soft-
ware and hardware resources. Resource usage is an
abstraction of the underlying application behavior,
captured by a power-consumption history. Analyz-
ing the power-consumption history is the best way
of detecting energy-greedy anomalies that most
current solutions fail to detect. Also, this abstraction
is effective in detecting previously unknown mal-
ware variants that share a common behavior
exhibited by previously known malware, due to
the fact that a new malware variant is created by
adding new functions to existing malware [6].

e MODELZ is a “light” framework that comprises
lightweight and effective noise-filtering and data-
compression components, allowing computational
processes to be faster and achieving significant
storage and energy savings.

e MODELZ incorporates a portable charge flow meter
that we will build with low-cost integrated circuit
chips. This allows for fine-grained measurement of
each application’s power-consumption behavior
while keeping its overhead to a minimum.

1.4 Organization

The rest of the paper is organized as follows: In Section 2,
we discuss power measurement issues and then describe
the design of a portable charge flow meter. Section 3
describes the design of power-aware malware detection,
including the power monitor and the data analyzer. The
data analyzer includes noise-filtering and data-compression
components. Section 4 describes the implementation of
MODELZ and a custom worm emulator. Details of software

970 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

oscilloscope
(54815-A)

current I power line
carrying wire J tapped

time
voltage
sampled

hall-effect
probe

Fig. 1. Hardware power measurement: The supply wire from the positive
terminal is formed into a 10-centimeter circle, and wound 10 times. This
causes the field induced by the current to be magnified 10 times. The
Hall-effect probe is hooked over the wire bundle, and converts the
magnified current into a proportional voltage at a ratio of 0.1 volts/
ampere.

and hardware power measurements and the mechanism for
building a power-signature database are also presented.
Section 5 evaluates the detection accuracy of MODELZ,
including the monitoring overhead. The paper concludes
with Section 6.

2 ENERGY/POWER MEASUREMENT

Measurement methods for power/energy consumption by
applications, in general, are classified into 1) software
measurement of reading directly from a smart battery,
which is coarse grained and cheap, and 2) hardware
measurement of using an external tool/equipment such as
an oscilloscope, which is fine grained, often costly, and/or
cumbersome. In addition to the consideration of these two
types of measurement methods, we also seek an alternative
method that 1) can measure task energy consumption with
the same precision as the fine-grained method, 2) is easy-to-
use, and 3) does not require any fast, expensive hardware.
For this purpose, we propose a portable hardware charge
flow meter that, instead of directly measuring the rapidly
fluctuating current drawn by the target platform, measures
the total charge flow in conjunction with a measurement
software tool that continuously updates applications’
energy consumption profiles. In particular, the software
tool generates per-task energy-consumption profiles and
can thus handle multiple concurrent applications.

We will first present instantaneous power measurement
methods (based on software and hardware), then describe a
detailed design of the charge flow meter.

2.1 Instantaneous Power Consumption

Measurement
The energy usage by each application can be calculated by
integrating the product of instantaneous current and
voltage over a specific period of time. We approximate
the energy usage by sampling current, I;, and voltage, V;, at
a constant interval, At. On many platforms, this can be
accomplished in software by polling the battery status. For
example, on Windows-based devices, one can use the
GetSystemPowerStatusEx2() function in Coredlllib to
retrieve complete battery status information, including AC

Power output to
Mobile Device

¢

Power input

¢ L

= Ground

Amplifier
| —>

0.0005x1 —>

il

Transistor
Capacitor

DTR | SR— A
E ATmegal 63
o

Fig. 2. Charge-flow measurement hardware: This illustrates the main
components of our charge-flow measurement circuit. The actual circuit
has additional discrete components for regulating power and limiting
currents, and uses a second A/D channel on the microcontroller to
measure the voltage of the power supply.

line status, I;, and V;. As V, will typically remain constant
over the relatively short time intervals in which we are
interested, we can use a single measured battery voltage
sample, V., and estimate the total energy consumption over
n samples as V, Z I;At. This approach, however, is limited
by the accuracy and update rate of the reported battery
status (over which we have no control), and the frequency
of sampling.

To obtain very accurate measurements of energy con-
sumption, we can use a digital oscilloscope, such as the
Agilent Infiniium 54851-A [33], pictured in Fig. 1 measuring
the energy consumption of an iPAQ rx4200. The oscillo-
scope is capable of high-speed acquisition of 1 Gigabit
samples per second, peak detection and mean computation
over long intervals, and can measure and integrate the
current and voltage supplied to a device, when equipped
with current probes. The current probe uses the Hall-effect
sensing to measure the field generated around a current-
carrying wire, and generate a voltage, V;, proportional to the
current. Therefore, the total energy usage over n samples is
calculated as V.)>_ V;At. The digital scope can be set to
perform most of this computation, and makes it fairly
simple to synchronize the measurements with the process
execution.

Unless otherwise specified, readings of the integrated
samples are taken every 10 ms from the external hardware
and every 100 ms from the software.

2.2 Portable Charge Flow Meter

We have designed a small charge-flow measurement
device, which is a proof-of-concept prototype, that can
accurately measure energy consumption without requiring
high-sampling rates or costly equipment (Fig. 2). Our
design is based around the Maxim MAX4071 [22], a low-
cost integrated circuit that essentially implements a current
sensor. When connected between the power supply or
battery and the device to be measured, this chip produces a
small current on an output pin that is proportional to the
current drawn by the device. Due to the fast response time
(less than 1 us) of this chip, even high-frequency changes in
power draw are reflected in the output. This output leads to
a resistive load; since V = IR, by measuring the voltage
across the resistor and scaling by the right constant, one

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS 971

could determine the instantaneous current draw, I;, of the
mobile device.

The novelty in our approach lies with the use of MAX4071
to charge a capacitor that acts as an analog integrator, instead
of sending the output current through a resistor. Reading the
current directly requires a high-sampling rate for accurate
measurement of the fluctuating values. This is expensive in
terms of equipment and power requirements given a
processing budget. The capacitor solution automatically
sums up all of the fluctuating current values over time. Since
Veap = Ceap f I,dt, where I, is the output current of the
MAX4071 and C.,, is the value of the capacitor, measuring
the voltage on the capacitor lets us compute the energy drawn
over atimeintervalas K'V.V,,,, where V_is the supply voltage,
and K the calibration constant. The constant K depends on
the size of the capacitor and the exact ratio between the
MAX4071 output current and /; (nominally, this is 1:2000). A
transistor is used to discharge the capacitor before taking a
new measurement. Our measurement device is calibrated by
employing a fixed resistive load and comparing the measure-
ments with those taken by a multimeter to determine the
value of K. The K constant, therefore, converts voltage to the
energy consumed by the mobile device.

Since all of the high-frequency changes in current are
accounted for in the capacitor voltage, we can obtain
accurate measurements of energy consumption with very
infrequent sampling of the capacitor voltage. Thus, we do
not need expensive equipment or high-speed data sam-
pling. Rather, for data acquisition and energy computations,
we use an Atmel AVR series 8-bit system-on-chip type
microcontroller [7] that includes internal clock generators,
flash/RAM/EEPROM memories, multichannel 10-bit ana-
log to digital (A/D) converters with internal reference
voltage, and serial ports in a single IC. We use one A/D
channel to measure the capacitor voltage, and another to
measure the supply voltage. A digital output is used to
control the transistor that discharges the capacitor between
measurements. The serial port serves two purposes: the
data lines are used to output the measured values to our
measurement software, while the additional signaling (e.g.,
DTR) pins are used as a high-speed trigger to synchronize
measurements with task execution on the target platform.
The internal memories are used to store the calibration
constant, and to store or aggregate multiple measurements.

Our device has been designed to accurately measure
energy consumption over intervals ranging from 1 to 50 ms,
corresponding nicely to typical scheduling time slices for
task execution. The software framework on the mobile device
indicates the specific interval of measurement by toggling the
trigger pin. Our device reacts very quickly to this input,
clearing and starting the accumulation of charge on the
capacitor within 20 s of the trigger edge. Likewise, it stops
accumulation and captures the voltage on the capacitor
within 26 ps of the stop trigger. The total error in the
measurement window accounts for less than 1 percent error
in the final energy values. The actual A/D conversion,
adjustment for calibration, and subsequent transfer of data
over the serial portincur the greatest latencies, on the order of
15 ms. However, as we use only about one quarter of the
RAM available on the microcontroller, a slight upgrade to the
software to buffer measurements on-chip allows bursts of up
to a few hundred consecutive measurements that are spaced
only 100 us apart.

Monitor Analyzer

\;

Remote server

Analyzer

)
| E

Type A Type B

Fig. 3. The MODELZ architecture: In Type A, both the monitor and the
analyzer are performed on a mobile device, while in Type B, the
analyzer is performed separately on a remote server/data-sync PC.

This low-cost charge flow meter can be embedded into a
smart battery, allowing MODELZ to measure per-task
energy consumption on a mobile device with help of a
kernel-level module like the one shown in Odyssey [25], [14].
The module has a hook inside the scheduler to set an output
pin (e.g., DTR signal on the serial port) to high or low.
Whenever either a context switch or a specific system call
takes place, the module triggers the charge flow meter to end
the measurement interval or read the energy consumed by a
task during the interval. The sequence of per-task energy
consumptions, therefore, represents the behavior of a
process, i.e., a power-consumption history. Conversely, the
module can be set to make infrequent measurements; it stays
blocked between measurements, while the charge flow meter
stays in a low-power sleep mode. This reduces additional
computational or energy overheads.

3 MODELZ

This section describes the MODELZ architecture and its key
components.

3.1 The Architecture

MODELZ consists of two agents, a power monitor and a data
analyzer, as illustrated in Fig. 3. The two agents reside either
in combination or separately. The power monitor operates
on each mobile handset, taking samples of the power
consumption which are used to build a power-consumption
history. The data analyzer, on the other hand, processes the
power-consumption history on either the host mobile
handset (Type A in the figure), or a remote server/data-
sync PC (Type B in the figure) to reduce the overhead of the
data analyzer. In the latter case, the power-consumption
history is transmitted from the mobile handset to the server
over the air, or to the data-sync PC via a USB cable/cradle.
The data transmission though a USB cable/cradle does not
consume the battery energy because most SmartPhone
batteries can be charged through a USB interface which also
provides enough power for the device. In this case, our
power-monitoring probes are placed before the electronic
components powered by the external supply (or the battery),
so that accurate measurement of the power consumption can
still be achieved. Over-the-air transfer of the power-
consumption history, however, should be less energy costly
than processing it locally. Yet, network energy cost varies
with the amount of data transmitted and the current
network-device-power state. For instance, according to

972 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

reading reading
wait s
By vy UBBy oy -
g g g E—
Itu Itj tk Time
(a)
reading reading
reading UB S
UB LB
vy v
t; t t Time

(b)

Fig. 4. Power-reading methods: regular reading has a fixed interval
based on ¢, while irregular reading-points are not fixed. In both cases,
reading-points are randomly chosen in between the lower bound and the
upper bound. A timer object is set to a time period of s. (a) Regular
reading. (b) Irregular reading.

Anand etal. [2], fetching 32 Kbytes of data via a WiFiradio in
active mode on a handset consumes 1.4 Joules less energy
than reading the data from a local microdrive in standby
mode. In addition, an estimated power-consumption history
of 1 Kbyte data can be transmitted in a single packet via a
WiFi or EDGE/3G network.

3.2 The Power Monitor

The power monitor, which reads the power drawn from the
battery on a handset, that flows through the charge flow
meter, is designed to capture power-/energy-consumption
anomalies exhibited by applications. It is responsible for
detecting a surge in power/energy consumption and taking
samples of the consumption. Next we will describe each of
these components.

3.2.1 Monitoring

Choosing an appropriate rate to measure the power
consumption is the basis for detecting power-consumption
anomalies. The higher the frequency of taking power-
consumption measurement samples, the greater the chance
of capturing power-consumption anomalies, but the higher
frequency may have a detrimental effect on the energy usage.
At the same time, mobile malware writers eventually learn
the implementation of power-monitoring systems and can
then evade detection. To avoid detection, the malware can
remain dormant over a period of time and then occasionally
reactivate itself. By cycling between dormancy and activa-
tion, malware behavior can be obfuscated. One way to
prevent this obfuscation is to randomize the time to take the
next sample. If the sample-reading time is unpredictable,
then it will be difficult for the malware to evade detection.
However, making reading-points too random will make it
difficult to capture energy-consumption anomalies.

To make this trade-off, we devised two reading methods:
regular and irregular. Regular readings, as illustrated in
Fig. 4a, occur at fixed intervals at which the lower bound (LB)
and upper bound (UB) are defined, and a reading-point is
randomly chosen in between. In other words, LB and UB
specify an interval in which a reading-point is randomly
chosen. In each interval, after a reading, the power monitor

waits for the next base and then randomly chooses the next
reading-point. Clearly, the smaller (UB-LB) is, the narrower
the random-choice space, and thus, the more regular the
reading frequency. That is, reading-points are likely uni-
formly-distributed. An irregular reading, on the other hand,
does not wait in order to calculate the next reading-point, as
illustrated in Fig. 4b. Instead, LB and UB are determined
according to the previous reading-point, and the next
reading-point is randomly chosen in between. So, only LB
and UB are used to adjust the random-choice space.

In practice, the power monitor creates a timer object
(corresponding to s Fig. 4) which is used as an alarm clock.
When an alarm is triggered, the power monitor calls
GetSystemPowerStatusEx2() in the Windows CE .Net
library in order to retrieve the battery state. This function
takes a certain amount of time to complete, starting with the
invocation of its call to retrieve the data. This time period
serves as a base for specifying LB and UB for the two reading
methods. In our implementation, the time period amounts to
more than 30 milliseconds, limiting the sampling rate.

3.2.2 Detection

While performing either of the above two reading methods,
the power monitor also captures a surge in the power
consumption, calculating the fraction of power surplus as

(% - 1> > 6, (1)

where ¢ is a given threshold, X is an observed power level,
and Y is the power level specified in the system-power state
profile which defines the average power-consumption level
in each system-power state (e.g.,, ON, BacklightOff, and
ScreenOff). If the fraction exceeds the threshold, the power
monitor then raises a flag, immediately starting to produce a
power-consumption history. In practice, we observed erratic
spikes from the HP iPAQ rx4200 during the power reading
process due to the switching properties of the digital system,
generating false alarms. To reduce these false alarms, the
threshold is set high enough to withstand those spikes, but
not insensitive to the surge in the power consumption. In
addition to the threshold adjustment, a false-alarm counter is
used; each time a false alarm occurs over an alarm-time
period starting from the first alarm occurrence, the false-
alarm counter is incremented by one. When the counter is
greater than a given alarm threshold, a true alarm is raised,
switching to a sampling step. The false-alarm counter is set to
0 when the alarm-time period expires or a true alarm occurs.
In our experiment, when 6 = 0.2, no false alarms occur in ON
state in which no explicit applications run. When ¢ < 0.2,
peaks of the spikes are detected, generating false alarms.
Given a peak interval, either the alarm-time period (e.g., an
estimated 4 reading intervals) or the alarm threshold is
adjusted to avoid these false alarms.

3.2.3 Sampling

The power monitor that reads directly from the battery
relies on a soft real-time constraint. Once a true alarm is
raised, the power monitor starts taking samples of power
consumption at a constant rate, yielding a power-
consumption history; the higher the sampling rate, the
more accurately the power-consumption history can be

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS 973

interpreted, but the energy-costlier. In addition, the timer
object that the power monitor sets off at every given time
interval can be preempted by another higher priority
process, resulting in a measurement delay (completion
time minus set-off time). Nevertheless, this delay can be
offset by lengthening the sampling time period. In
practice, the size of the history that results from software
measurements of the power consumption can also be used
to differentiate applications, eventually being added to the
corresponding power signature. Note that one application
is executed at a time in these experiments.

Alternatively, with the charge flow meter applied, the
power monitor in coordination with the kernel-level module
measures per-task energy consumption while multiple
applications are being executed. The power monitor, then,
sorts out these energy consumptions with respect to
processes. Mapping tasks to a corresponding process is
resolved in the kernel-level module by tracking process
identities (PIDs) while the context switch occurs. This way, a
power-consumption history per process can be built.

3.3 The Data Analyzer

The data analyzer receives the power-consumption history
from the power monitor and extracts a unique pattern from
the history, generating a power signature. This power
signature is then compared against the database of
signatures generated a priori. To generate power signa-
tures, the data analyzer uses two data-processing software
components: noise filtering and data compression. Next, we
describe these two components along with a signature-
matching method.

3.3.1 Noise Filtering

To reduce the effect of outliers on the power-consumption
history of an application, a moving average filter is applied
to the data set history. The moving average filter removes
high-frequency noises from the data set, resulting in a more
generic power-consumption pattern. While calculating the
average of its neighboring samples within a window of size
2k + 1, each sample, S(), in the power-consumption history
is converted into another, S,(), as

. 1
Sp(’) = —2]<:—|— 1

This calculation starts from ¢ = k+ 1 and continues until
i = n — k; the first and last k£ samples can be dropped since
we are interested in an overall power-consumption pattern.
The window size determines the smoothness of the curve,
i.e., the larger the k, the smoother the curve, but the less
characteristic of recent fluctuations in the data set. The
impact of k£ on the pattern associated with detection
accuracy will be evaluated in Section 5.

Among various filters we chose a simple moving
average filter (e.g., a weighted moving average filter in
which different weights are imposed on different samples
or an exponential moving average filter in which weights
decrease exponentially from the center), because a simple
filter works just as well as, or even better than, complicated
ones (i.e., the implementation incurs less processing over-
head) [10].

(S(i— k) +S(i—k+1)+ -+ S(i+ k). (2)

3.3.2 Data Compression

A large power-consumption history, which will result in a
large power signature, needs to be reduced for two reasons.
First, a large power signature consumes more energy than a
small one in the matching process. Second, it is important to
make economical use of memory in a mobile device. To
reduce the size of a power-consumption history, a simple
and powerful one-way compression is proposed. By
applying Algorithm 1, local jitters are effectively sup-
pressed and compressed. As a result, a compact power
signature can be derived, thereby achieving substantial
savings in both memory space and processing time. The
effectiveness of this algorithm will be confirmed experi-
mentally in Section 5.

Algorithm 1. A compression algorithm.
1: Input: S,(n): an n-length power-consumption history
2: Input: m: look-ahead samples
3: Input: é.: a threshold
4: Output: S,(k): a k-length power signature
5: while i < (n —m) do
6: Fetch m samples from S,(3);
7: Compute N ~ (u,0?) of m;
8: if 0 > §, then
9: S.(j) — w; /*compressing history*/
10: je—j+1

11: else

12: Sp(i:i+m) «— Se(j:j+m); /*copying history™/
13: Jje—j+m

14: end if

15 i«+—i+m
16: end while

3.3.3 Signature Matching

To measure the similarity between two power signatures,
the y>-distance [9] between them is calculated as

25, g = S~ = SL)”
S =2 s

i=1

3)

where S, and S! are signatures of the observed and the
expected events, respectively. Clearly, x> = 0 if and only if
all of the samples of S, match those of S.. The higher the
value of x?, the less likely the observed event belongs to the
expected group.

The x2-distance is effective and efficient for our need.
For instance, the x2-distance-based techniques have been
used in diverse areas, such as scene-change detection in
image sequences [27], [15] and anomaly detection [36]. In
addition, experimental results [20] show that the use of the
x2-distance reduces the amount of computation over one of
the most widely used techniques, i.e., the Bhattacharyya
distance [30].

Two power signatures that have the most similar power-
consumption patterns are found as

2 _ : 2 4
X (S, DB) = min {x(Se,)} (4)

In some cases, two power signatures that comply with the
same pattern can be skewed due mainly to delays in
capturing the power surge. Since the x’-distance is based on

974 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

the measurement of sample-to-sample distance, in order to
effectively match two skewed power signatures, the data
analyzer relies on either of two matching techniques: brute-
force (BF) comparison and Fast Fourier Transform (FFT).
The BF approach uses two parameters: an incremental state
and a threshold. First, the distance is calculated and then
one of the two power signatures is shifted left by one (and is
subsequently shifted right). At the same time, if the newly-
calculated distance is greater than, or equal to, the previous
distance, the incremental state parameter increases by one.
Otherwise, it is set to 0. This procedure repeats until the
incremental parameter exceeds the threshold. When this
procedure stops, it returns the minimum distance. Besides
the incremental parameter, the proportion of samples for
comparison are correlated with the confidence in the results
(e.g., more than 90 percent). The BF comparison is efficient,
especially in the case of small reading delays in the power
monitor. Alternatively, the FFT method converts the time-
domain representations of samples into their frequency-
domain representation. In practice, this method facilitates
distance calculation in that a large portion of converted
samples in two similar signatures are likely to have the
same constant frequency components, offsetting the com-
plexity of the FFT computation. The performance compar-
ison of the two methods will be presented in Section 5.

3.3.4 The Handset User's Response to the Analysis
The analysis results from the data analyzer pinpoints the
signature that is most similar to that of the observed event,
but this pinpoint accuracy (PA) is limited to the diversity of
signatures in the database, e.g., a new application whose
signature is not in the database is falsely identified. To
address this limitation, each signature is labeled as either
legitimate or malicious by prompting the user to enter an
appropriate response—if no input from the user has been
given for several seconds, then a default action will be
taken. When the observed event is confirmed by the user as
malicious, it is immediately stopped and quarantined. How
to stop/quarantine, however, is beyond the scope of this
paper. At the same time, the corresponding signature is
added to the database and labeled as “malicious.” If the
observed event is legitimate, it resumes execution and the
corresponding signature is also added and labeled as
“legitimate.” As a result, depending on the response type,
signatures in the database are classified into two groups:
legitimate and malicious. Then, the distance between the
observed event and each of the two groups is calculated.
The comparison of these distances allows the determination
of the group to which the observed event is closest, despite
any possible incorrect classification (e.g., due to outliers),
thereby reducing both false-positive and false-negative
detection rates.

4 |MPLEMENTATION

Since only a few mobile handset malware are available
publicly, evaluation on MODELZ'’s detection and preven-
tion of malware is limited by this (un)availability. To
overcome this difficulty, we specify and implement proof-
of-concept malicious programs on battery depletion. Since
the most energy-consuming activity on our handset device

WiFiOn
BluetoothOn
ScreenOff
BacklightOff
SystemOn

0 2 4 6 8 10 12 14 16 18
Energy usage (Joules)

Fig. 5. Energy usage of system states for 10 seconds on the HP iPAQ
rx4200. In the SystemOn state, everything is ready for execution, while
everything but the backlight is ready in the BacklightOff state. In the
ScreenOff state, the LCD screen is off. For the BluetoothOn and
WIFiOn states, the Bluetooth and WiFi radios are turned on exclusively
for each state.

is the use of WiFi radio—as shown in Fig. 5, the handset
device with WiFi turned on consumes 2.5 times more
energy than with it turned off (corresponding to the ON
state in the figure) and 1.8 times more energy than with
Bluetooth turned on, a program we create also relies on the
WiFi radio to drain the battery. In addition to the program,
we extended the Symbian-based Cabir source code for three
extra variants to run on Windows Mobile by adding or
deleting functionalities.

We have carefully specified the behavior of the pro-
grams. The specification of the behavior is sufficient enough
to highlight MODELZ'’s efficacy, efficiency, and feasibility.

Here we describe two types of programs: the one aims to
deplete the battery and the other emulates the behavior of
four mobile worms on an HP iPAQ rx4200 running the
Windows Mobile 5 OS. We then provide details on how the
signature database is built and how software and hardware
measurements are made in the system.

4.1 Battery-Depletion Attacks

We present a sneaky malware program, called a WiFi faker,
that launches a battery-depletion attack using the WiFi
radio. When the WiFi faker is executed on our handset with
the WiFi-enabled device, it tricks the system to believe that
the WiFi device has been disabled, by rendering the WiFi
adapter invisible to the system—the user just sees the WiFi-
associated system tray icon indicating the WiFi device is
inactive, but actually, it is still active and even deprived of
doze mode, resulting in the highest power-consumption
level. This deception is realized using two power-manage-
ment functions, DevicePowerNotify() and SetDevice-
Power(). In addition, the WiFi faker can collaborate with a
dummy program which launches CPU-intensive activity
(e.g., evaluating an exponential function), causing the
battery to drain rapidly while the user believes that the
WiFi radio is disabled. We will show that this attack can be
effectively captured by MODELZ in Section 5.

4.2 Proof-of-Concept Mobile Worms

We consider four well-known mobile worms: Commwar-
rior, Cabir, Mabir, and Lasco. Behaviors of these worms are
similar to each other since they are in the same family. As a
whole, when any of these worms is installed, it scans
specific system directories/address book, creates a file,
and/or sends certain files to a specified destination. The
great similarity in the behavior of these worms should be
effectively discerned in MODELZ.

We implement an emulator that emulates the behavior of
the four worms, as illustrated in Fig. 6. Scanning for

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS 975

Worm emulating program

‘Commwarrior‘ ‘ Cabir ‘ ‘ Mabir ‘ ‘ Lasco ‘

P

Cexecute(), display(), create(D (scan(), send(), sendMMS(), search()>

BtStack

i
) (BtDevice)
| S N |

I I
BtDevFound SendFile()

N C

|
StartDeviceSearch()/
StopDeviceSearch()

Connect()/ l

BtSearchComplete

Widcomm Stack

BtSendFileComplete

Disconnect()

Fig. 6. Software architecture of a worm emulator.

Bluetooth-enabled devices and transmitting a file (regarded
as worm payload) via Bluetooth are part of the basic
capability of many of known mobile worms. The emulator
program uses the BTAccess.NET v3.0 library [1] which
supports the Widcomm Bluetooth stack mainly including
BtStack and BtDevice classes. Before using the Bluetooth
radio, the program connects to the Widcomm stack, using
Connect() in the BtStack class (while Disconnect() is used
for disconnection from the stack). Once a connection is
made, Bluetooth-enabled devices nearby are searched for
using StartDeviceSearch(), which functions asynchronously.
To stop an in-progress scan, StopDeviceSearch() is called.

An event handler monitors two events: BtDeviceFound
and BtSearchComplete. The event handler captures the
BtDeviceFound event, thus returning the corresponding
BtDevice object. This object is then added to a list for later
retrieval. When the event handler captures the BtSearch-
Complete event indicating the completion of the search, the
program stops searching for devices. In order to send a
worm file when the searching is finished a BtDevice object
is dequeued from the list and SendFile() in the BtDevice
object is called. Success in sending a file triggers the
BtSendFileComplete event. This procedure continues until
all the objects on the list are dequeued.

The overall behavior of the four worms is represented by
combinations of seven component actions, as listed below.

sl. execute(): starts a worm-behavior emulation.

s2. display(): opens a window and displays a message on
the window. Cabir and Lasco exhibit this behavior to
identify themselves.

s3. create(): generates a 15Kbyte-array of data (i.e.,
another worm payload). The data are then stored in
a system directory. An instance of the FileStream class
is created in order to write to a flash memory.

s4. scan(): searches for Bluetooth-enabled devices near-
by, using the service discovery application profile
[31] defined in the Widcomm Bluetooth stack. This
profile relies on Service Discovery Protocol [31] to
discover devices.

s5. send(): sends a file (i.e., worm payload) to the devices
found during the scan. This function uses the
generic object exchange profile defined for the
Widcomm Bluetooth stack. The OBEX protocol [31]

TABLE 1
The Behavior of Worms

[Worm Type [Sequential behavior |
Cabir 51852535485
Mabir 5183865485

Commwarrior S$1838455S6
Lasco 8152835848587

in the profile is used to push the file data to nearby
mobile devices.

6. sendMMS(): searches an address book and executes
send(). This behavior imitates an MMS message
transmission except that the Bluetooth radio rather
than an EDGE network is used.

s7. search(): searches the system directory for specific
system files having a specific extension (e.g.,
Windows CE installation cabinet (.cab)) so that they
are virtually appended for infection. The search is
recursively performed from the root through its
subdirectories. DirectoryInfo.GetFiles() is applied to
retrieve all the files in a given directory, and
DirectoryInfo.GetDirectories() is applied to retrieve
subdirectories for the recursive call.

Note that the time taken to complete scan() and send() varies,
depending on the variety of Bluetooth-enabled devices
found nearby, and the number of corresponding objects on
the list. The more objects found in the scan process, the longer
the completion of the send() takes. The effect of this
unforeseen situation results in a variety of signatures yielded
even from the same application. Nevertheless, MODELZ
effectively identifies such power signatures.

The action sequence for each worm is presented in Table 1,
showing common subsequences. For instance, all the worms
have a common subsequence, s;s355. However, their power
signatures can be different significantly from each other
because of the s; behavior. Similarly, Cabir and Mabir have
behavior in common. Cabir is likely misidentified as Lasco. In
Section 5, we will evaluate the accuracy in detecting
previously unknown malware with respect to its power-
signature similarity.

4.3 Building a Power-Signature DB

We define application-behavior scenarios which are di-
vided into legitimate and malicious application groups. We
chose pairs of applications that have similar behavior and
different intent, i.e., one for the legitimate application group
and the other for the malicious application group. For
instance, a program designed to execute CPU-intensive
functions and a Windows Media Player (WMP) are both
energy greedy, but have different intents. Also, the mobile
worms described above and legitimate Bluetooth file
transfers have a common behavior, but have different
intents. First, we characterize malicious applications and
create 11 power signatures from them.

1. The dummy program executes a function that is not
productive and just consumes CPU time (e.g., CPU-
intensive computation), wasting energy. Power-
consumption histories are captured at the beginning
and in the middle of this program run, resulting in

976 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

two different power signatures. The beginning of the
program run is the most important in the sense that
it should be identified prior to its execution of the
main damaging functions. In case the program has
escaped detection, the middle of the program will be
used to capture even in the aftermath of a possible
system infection.

2. The WiFi fake. This program, as described earlier,
disguises the WiFi system tray icon to appear as
inactive and in fact turns on the WiFi radio operating
in the highest power mode all the time. This
behavior is captured and then one power signature
is extracted.

3. The combination of the dummy program and the
WiFi faker. The WiFi faker is executed and the
dummy program is then launched (the order of
execution does not matter). One power signature is
extracted while the two programs are running.

4. The four mobile worms. The execution of these
worms results in four power signatures.

5. A DoS-attack-like Bomber. This program bombards
the handset with 1Kbyte- and 2Kbyte-size data via
WiFi (e.g., ping -s 1,024/2,048). In practice, a stream
of 2 Kbyte-data froze the handset after 30 seconds.
Two different power signatures are extracted for the
different size packets.

Second, we characterize legitimate applications and
create eight power signatures from them, as follows:

6. Windows Media Player. This program incurs high-
energy consumption, but the amount of energy
consumption varies depending on the video codecs
used, e.g., Windows Media Video (WMV) 9 at 315 bps
and WMV?7 at 704 bps. Power-consumption histories
are recorded at the beginning and end of 5 seconds of
execution for each codec, resulting in four different
power signatures.

7. Bluetooth and WiFi file transfers. A 10 Mbyte-size
file is transferred via Bluetooth and WiFi. Note that
the Bluetooth file transfer and the four mobile
worms, as well as the WiFi file transfer and the
Bomber, have behavior in common, respectively.
Two power signatures are extracted.

8. A users’ handset-usage pattern. Two users sepa-
rately explore files, i.e., tapping on the start menu
and executing the file explorer. They then drag the
scroll bar up and down, tapping on a subfolder and
opening an image file. This pattern leads to two
different power signatures.

Note that when a file is transferred to a Bluetooth-enabled
device for the first time, it will be asked if the file is
acceptable. If yes, the file is received; otherwise, it is rejected.
The authorization request can be disabled in Bluetooth
service settings provided on the file transfer menu. When the
required authorization is disabled, the file is received
without asking for permission. In such a case, worms are
allowed to spread via Bluetooth without user’s awareness.

As briefly mentioned earlier, we consider the difficulty of
taking samples on time at a constant interval at the software
level on the Windows Mobile 5 OS; each measurement is
delayed, which in turn yields less samples. The number of

samples is inversely proportional to the degree of the
resource utilization by processes (including the software
measurement process), such as CPU load and driver
workloads. However, the difference between the observed
and the expected numbers of samples can be small if the
measurement time window is small, and interference caused
by the processes to be characterized is also a positive effect
because we can consider it as a part of the process signature;
if the difference arises beyond a threshold, then the two
involved signatures are regarded as mismatched.

5 EVALUATION

The metrics used to indicate the detection accuracy include
pinpoint accuracy and true-positives. PA represents the
ability to classify an event correctly. For instance, Cabir
should be identified as Cabir rather than any other type of
malware, such as Mabir. As there will be no signatures in the
database for previously unknown malware, the data analy-
zer is unable to identify it by name. However, since
signatures are classified as malicious or legitimate, the data
analyzer is able to classify previously unknown applications
as either malicious or legitimate, and the success rate in this
classification is represented by the true-positive rate. Thus,
PA is a measure of true-positives. In addition, false-positive
(classification of benign activity as malicious) and false-
negative (failure to identify malware) rates are calculated.

The energy-consumption history is recorded over
10 seconds via hardware measurement, and 20 seconds
via software measurement. The first round of the execution
of these application scenarios yields 18 different power
signatures. A total of 20 rounds are made; the first five
rounds resulted in 90 power signatures which are used as a
training set, and the remainder yields 270 power signatures
which are used as a test set.

In this section, we first assess the system parameters
defined in MODELZ and then evaluate the detection
accuracy with the optimal values of the system parameters
found. Next, we analyze the MODELZ'’s performance issues,
followed by the analysis of the power monitor’s overhead.

5.1 Assessment of System Parameters

Signature generation. A power-consumption history is
produced while running an application on a handset. The
power-consumption history is transformed into a power
signature via the moving average filter and the data
compression. The moving average filter removes noise
from the power-consumption history, effectively extracting
a pattern. The compression technique, on the other hand, is
applied to reduce the size of a signature, without losing the
detection accuracy. In the compression technique, local jitter
is suppressed and compressed. Fig. 7 shows the procedure
of generating a power signature from the power-consump-
tion history of a video clip playback with a bit rate of
315 bps, using the WMV 9 codec. Fig. 7a shows the power-
consumption history captured in which a pattern can
hardly be recognized, mainly because of signal noise. After
the filter is applied, a pattern becomes visible as shown in
Fig. 7b. The application of the compression technique
results in a power signature as shown in Fig. 7c.

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS 977

1200 : : : : 960 950

= 1100 < < 940

S = =

E E 9401 E

= 1000 T < 930

[l [[}

3 ’ z g

& 900 | 8 920 8 920

2 -)

g 800f 8 g 910

g | 2 900/ 3

< 700 < < 900
600 880 890

0 200 400 600 800 1000 0 200 400 600 800 1000 0 10 20 30 40 50

Time (x 10ms)

()

Time (x 10ms)

Compressed sample

(b) ()

Fig. 7. Power-signature generation. (a) Raw samples. (b) 50pt-moving average filter applied. (c) Local jitter removed.

Impact of filter parameters. The window size (k) in the
moving average filter determines the degree to which noise is
reduced, which, in turn, correlates with the detection
accuracy. That is, the larger the k, the smoother the curve,
which may lower the accuracy. On the other hand, if & is too
small, the filter may be less effective for reducing noise. Thus,
the optimal k needs to be found to achieve the highest
accuracy. We conducted an experiment to find the optimal
values, with the lookahead size and its threshold fixed (m = 5
and ¢, = 0.05 whose assessment will be presented shortly).
We evaluated the detection accuracy with a test set of
270 power signatures and a database of 90 power signatures
labeled as either legitimate or malicious. The corresponding
result shows the correlation between the window size and
PA, the 23- or 24-point moving average filter for the 1,000-
sample power-consumption history allows the highest PA.
When £ is smaller than 23, the filter seems ineffective and as k
becomes larger after 24, the effectiveness of reducing noise is
gradually degraded. The reason for this is that the large k
reflects less of recent fluctuation of samples of the power
consumption within the window.

Effectiveness of compression. The lookahead size, m, and its
threshold, 6., used in the data compression determine the
compression ratio which we intend to maximize without
losing the detection accuracy. We conducted an experiment
under the same condition (i.e., the same database and test set)
as when the optimal & was obtained. From the result of the
previous experiment, k is set to 23. We then attempt to find
the optimal values of m and é.. When 6, > 0.05, more than
95 percent storage-savings is achieved. When ¢, = 0.06, the
lookahead parameter correlates more prominently with the
compression ratio than PA. As m increases, the compression
ratio also increases, while PA is hardly affected. The FFT
technique allows a higher compression ratio than the brute-
force comparison because a large portion of samples are
converted into constant frequency components.

Accordingly, when ¢. = 0.06, the 23/24-point moving
average filter and compression with the 20-sample looka-
head (15 samples for FFT) allow the highest PA for
hardware (power) measurement, while when 6, = 2, the 5-
point moving average and compression with the 5-sample
lookahead are optimal in software (system execution)
measurement.

5.2 Detection Accuracy

Detecting battery-depletion attack. The WiFi faker renders the
WiFi-associated system tray icon disabled, thus misleading
the user to think that the device is turned off although it is

actually on. The WiFi faker makes a request to the power
manager for letting the WiFi device adopt the maximum
power state, thus draining the battery at the fastest possible
rate. The WiFi faker can collaborate with the dummy
program that executes an exponential function in a loop.
Both aspects of this behavior shown by the WiFi faker and the
dummy program are effectively captured by MODELZ. Fig. 8
shows power-consumption patterns with the WiFi faker and
the dummy program executed separately, and in combina-
tion. Each of these three patterns (excluding the WiFi-
connected pattern) is then represented by a power signature
as a malicious application.

To evaluate the accuracy for detecting the battery-
depletion attacks described above, we set up the following
test scenario. Starting with the signature database generated
as the basis of the legitimate application group signatures
defined in Section 4.3, we separately compared the WiFi
faker, the dummy program, and the combination of these
two programs, using 20-sample sets. First, the WiFi faker
was identified as abnormal rather than malicious because
the database did not contain a corresponding malware
signature. The signature of the WiFi faker was then added
to the database, and finally, the three programs were tested.
By repeating this test with different combinations of the
programs, we diversified and populated the database. As
can be seen from Table 2, the WiFi faker is identified with
100 percent accuracy against DBy that includes the WiFi
faker’s signature plus 8 signatures created from the
legitimate application group, and detected 100 percent
accuracy with DBg, py (including the dummy program’s

25

Dummy: exp + WiFi Faker
ol J WiFi connected

,\.‘ A \ . fher

WiFi Faker

LS, ’,. N ’~p‘ 7 8 l..\, »111\, Wik

Power consumption (W)
o

1 A '«“r‘ "\"A\h\ ': .» Tof A Mo \‘11//'» .»,»\(4 ~'(1

Dummy: exp
05
0 1000 2000 3000 4000 5000
Time (ms)

Fig. 8. Comparison of the power consumption with WiFi connection, the
WiFi faker, a dummy program, and a combination of the last two; the
WiFi device is in power-saving mode in which the WiFi device dozes
after every beacon interval.

978 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

TABLE 2
Detection of Battery-Depletion Attacks: WF, DM, and
CB Denote Signatures of the WiFi Faker, the Dummy
Program, and the Combination of These Two, Respectively

TABLE 4
Comparison of the Overall Detection
Accuracy, Based on Hardware Measurement

| Methods [PA [TP" [FN | FP [TP |
[DB Type\E-Greedy [| WiFi faker | Dummy [Combo | (C1) w/o filter & compr. | 64% | 29% | 5% | 2% | 93%
D som T, [0% T Too% (o e & 8% [20 [<T| O%
DB 1 (yo 1 0/0 1 0/0 w 1iter compr. (] () () (] (9
T 188% 830 188% (C4) w/ 95% matching | 76% | 23% | 0% | <2% | 9%
== 8+C5 = = = (C5) w/ FFT 73% | 23% | 2% | 3% | 96%
D B8+WF +DM 1000/" 0 ° 1000/0 TP (true-positives) equals PA (pinpoint-accuracy where worms are
S+WF+CB ids 3 = correctly identified) plus TP* (exclusive true-positives where worms are
DBsiputos 100% 100% 100% correctly classified). It is also compared with respect to FN (false
| DBsywripmics || 100% | 100% | 100% | negatives) and FP (false positives).

DBy is a baseline that is preloaded with 8 signatures created from the
legitimate application group.

signature plus 8) and DBg,¢p (including the combination of
the two plus 8) because the WiFi faker and the combination
of the two applications have common power-consumption
patterns. The dummy program, on the other hand, does not
seems to influence the detection performance. The reason
for this is that the dummy program’s signature is mis-
identified as that of Windows Media Player belonging to
the legitimate group, due to the shorter similarity distance
between them. However, since whenever new unknown
signatures are detected, the mobile handset user is
prompted to confirm that the corresponding program
running is illegitimate, thereby detecting such dummy
programs afterward. Also, the combination is always
detected with any of DBg wr, DBsipu, and DBs.cp.
Four mobile worms—Cabir, Mabir, Commwarrior, and
Lasco—which come from the same malware family have
common behavior. Likewise, the power signature of one
worm can be the basis for detecting the other worms. To
evaluate the MODELZ’s ability to detect previously un-
known worms whose signatures are similar to those of
previously known worms, the four customized worms were
divided into two groups: known-worm and unknown-
worm groups. Worms in the known-worm group were
executed five times to extract their signatures for the
database (training set), while worms in the unknown-worm
group were executed 15 times to generate a test signature
set. Table 3 summarizes the detection accuracy for
unknown worms with different combinations of known

TABLE 3
Detection of Previously Unknown Worms:
C, M, W, and L Denote Signatures of Cabir,
Mabir, Commwarrior, and Lasco, Respectively

[DB Type\Malware || Cabir [Mabir [CommW. | Lasco |

DBs+c 87% | 93% 73% 87%

2] : 799 93% | 100% 80% 93%
DBsw 7% | 93% 80% 87%
DBz 87% | 93% 80% 93%
5327 WWTET, 93% | 100% 80% 3%
DBey i 93% | 100% 80% 93%
DBsowii 87% | 93% 80% 93%
DBstcraiiw 93% | 100% 80% 93%
DBerarwers 93% | 100% 80% 93%

DBg is preloaded with 8 signatures created from the legitimate
application group.

and unknown worms. The first four rows that correspond
to the databases with a single worm signature exhibit the
worm closest in behavior to the other. For instance, Cabir
and Mabir have a similar power-consumption pattern, as do
Mabir and Lasco. Interestingly, however, existence of
asymmetric similarity has been observed. That is, Comm-
warrior is detected with 73 percent accuracy against DBg. ¢,
while Cabir is detected with 47 percent against DBs . This
result implies that Commwarrior is close to the Bluetooth
file-transfer program in terms of the behavior and Cabir is
in the middle of the two. For this reason, although
Commwarrior is misidentified as Cabir, it belongs to the
malicious group; it would otherwise belong to the legit-
imate application group. The relatively low detection
accuracy is observed, as shown in Table 3, due to the
asymmetric similarity as well. This asymmetry, however,
diminishes as the database is populated and diversified.
That is, the more diverse worms collected and added to the
database, the higher detection accuracy for unknown
worms. For instance, the detection accuracy for Commwar-
rior and Lasco is improved even with a partially filled
database, thus making this technique attractive for re-
source-limited handsets.

In addition to the detection of previously unknown
worms, the Bomber whose behavior is similar to that of the
WiFi file transfers was also identified with 95 percent
accuracy. Activities that result from the Windows Media
Player such as playing two distinct frames with different
video codecs—signatures were extracted at the beginning
and end of a 5-second execution trace for each codec—were
identified with 100 percent accuracy.

5.3 Performance Analysis

The moving average filter we used turned out to be very
effective for removing noise, thus extracting a clear power-
consumption signature from the power-consumption his-
tory. Table 4 shows the detection accuracy with and without
the filter and the compression techniques applied. In the
table, the moving average filter and the compression
techniques were not applied in the case of C1, while only
the filter was applied in the case of C2. Comparing C1 and C2,
PA was improved by 22 percent, achieving a 98 percent true-
positive rate. This enhancement strongly supports the
effectiveness of the filter. In addition to the moving average
filter, in comparison of C2 and C3 where the filter and
compression technique are applied, our compression tech-
nique is also effective for optimizing memory usage, without
degrading the accuracy (the effect of the compression

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS

979

-

W)

0.8

0.6

Average power (

0.4

1 1
=S =S
gos8 gos8
o o
Q Q
() ()
g 0.6 g0.6
[[
2 2
0.4 0.4
0 200 400 600 800 1000 0 200 400

Time (ms)

(@

Time (ms)

600 800 1000 0 200 400 600

Time (ms)

800 1000

(b) (©

Fig. 9. Comparison of overhead for executing the power monitor. (a) Baseline: ON state. (b) The power monitor sampling every 200 ms. (c) The

Bluetooth radio is turned on.

technique will be analyzed shortly). In case of C4 where the
number of samples to be matched is 95 percent of the total
samples, our detection scheme achieves a 99 percent true-
positive rate, while decreasing the false-negative rate down
to 0 percent. In the case of C5 where the FFT is applied, the
overall accuracy is improved, with the false-negative rate
reduced to 2 percent in comparison with C1 which only
achieved 5 percent.

We applied a simple and powerful compression techni-
que. This technique allows the power signature to be
compressed by a factor of 21 without losing the detection
accuracy. This compact signature representation also allows
the signature matching to require less CPU time. For
instance, the data processing needed for the compression
and the BF comparison (100 percent samples matching)
requires less CPU time than the case without the compression
by 71 percent. When the FFT method is applied, the data
processing including the FFT computation is estimated to be
1.6 times faster than the case without this optimization,
resulting in only 63 percent of CPU time required. Compar-
ing the FFT method with the BF approach, therefore, as we
expected, the data processing with the FFT method applied is
estimated to be 1.3 times faster than that with the BF
approach applied, because most of the transformed data as a
result of the FFT are zero or the same constant frequency
components, simplifying the distance metric computation.

5.4 Overhead of the Power Monitor

The power monitor must have minimum overhead for
executing itself. In order to assess its overhead, we measure
the power consumption of the iPAQ device via the
oscilloscope with the device powered by the AC adapter;
the battery that is fully charged is still in the device. Note
that the GetSystemPowerStatusEx2 function applied in the
implementation of the power monitor reads and retrieves
the battery information that the battery pack offers;
otherwise, the power monitor requires a customized
hardware module including a capacitor to keep current
drawn from the power source. We configure the power
monitor with a sampling rate set to five samples per second.
No explicit applications run on the iPAQ device and the
brightness of the backlight of it is tuned to maximum on its
scale. For the comparison purpose, the energy consumed
with the Bluetooth radio turned on is also measured in the
same configuration. This measurement procedure is re-
peated 300 times and then the average energy consumption
for each measurement is calculated.

Fig. 9 shows comparison between the power monitor
and the Bluetooth radio with respect to their power
consumption. Samples are taken at 1 KS/s. Fig. 9a shows a
system’s power-consumption pattern with the system in
the idle state (note that no explicit applications run in that
state), in which an average of 608.9 m] per second is
consumed, while the system with the Bluetooth radio
turned on consumes an average of 806.5 mJ as shown in
Fig. 9c. As a result of one measurement, the power
monitor consumes average 9.6 mJ, which is estimated to
take 31 milliseconds. This accounts for 1.6 percent energy
budget for 1 second for the ON state as a baseline (i.e.,
656.7 m]), which is trivial. In the case of taking 20 samples,
the overhead for executing the power monitor corresponds
to that of the system with the Bluetooth radio turned on;
taking 10 samples per second, which is sufficient to
capture anomalies, is equivalent to the estimated loss of
15 minutes of the battery lifetime, but the baseline is
otherwise estimated to last 6 hours 14 minutes with the
battery capacity of 1,200 mAh, while the Bluetooth-enabled
system shortens the battery lifetime by 30 minutes.

6 CONCLUSION

We now discuss a few issues we encountered, and make
concluding remarks.

6.1 Discussion

MODELZ abstracts the underlying application behavior by
monitoring and recording usage of software and hardware
resources. This resource usage represents the abstraction of
the underlying application behavior that is captured by a
power-consumption history. Analyzing the power-con-
sumption history is the best way of detecting various mobile
worms as well as energy-greedy anomalies. Thus, we believe
MODELZ should work for any mobile worms (see [3] for a
comprehensive survey of mobile worms). For instance,
trojans, such as Skulls (2005), Drever (2005), Locknut (2005),
and Redbrowser (2006), exploit SMS and MMS messages to
propagate a copy of themselves, and/or overwrite ROM
binaries to crash the OS. This anomalous behavior, i.e.,
sending of excessive messages and unauthorized access to
ROM, is easily captured in a power-consumption history.
Also, MODELZ can detect an emerging class of malware,
such as Cardtrap (2005), Win32.Rays, Win32.Padobot.Z, and
Crossover (2006). The “crossover” infector can spread from
mobile devices to desktop PCs, or vice versa, deleting all files
in the “My Documents” directory, copying itself to the

980 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO.7, JULY 2011

system directory, and placing a link to itself in the startup
directory. This series of behaviors, however, differs from that
of normal behaviors, and will also be captured by extending
the monitoring period.

Conversely, only a few worm samples are publicly
available for research. Testing detection systems with real-
world malware is necessary to evaluate the efficacy of any
detection system, but due to the nature of in-the-wild
malware activities, effective and comprehensive evaluation
and testing with real-world worm samples are difficult to
do. For this reason, most research relies on benign activity
or worm modeling [35], [23], [24] to study the efficacy of
methods. Alternatively, a malware emulator that imitates
real malware behavior could be used and most impor-
tantly, the malware emulator should be able to build
diverse types of test suits so that the malicious activity
may accurately reflect the composition of recent threats
against detection systems.

6.2 Concluding Remarks

Mobile handsets must be protected against malware,
especially those with the goal of dramatically reducing
their battery lifetime. In this paper, we first have addressed
how one can determine a task’s energy consumption, by
developing and implementing a low-cost, easy-to-use
portable device that overcomes many of the shortcomings
of existing measurement techniques. We have then
presented MODELZ, with the aim of furthering users’
mobility and the ubiquitous use of their mobile device. We
began by characterizing power-consumption patterns of
events and designed two important system components.
We then performed a comprehensive analysis of the
detection accuracy for pinpointing the identity of events,
as well as classifying them as malicious or normal. We
addressed four challenges:

1. extracting characteristics of the power-consumption
history from noisy samples, and using data com-
pression to generate a compact power signature,
resulting in a 95 percent storage savings,

2. deriving the efficacy of detecting energy-greedy
anomalies as well as unknown malware over our
representative test set up to a 99 percent true-
positive rate,

3. providing precise measurements over a range of 1-
50 ms via the discharge flow meter, corresponding
to the typical scheduling time slice for task
execution, and

4. reducing the error of accuracy in estimating task
energy consumption within 5 percent of measured
energy values in most cases.

Furthermore, the overhead of executing the power monitor
at a reasonable sample rate requires 50 percent less
additional energy than keeping the Bluetooth radio turned
on. In summary, MODELZ offers a effective solution to the
tricky issue of securing battery-powered mobile devices, and
is further enhanced with the support of a wireless server/
PC-side that provides a comprehensive data analysis.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part
by the US National Science Foundation under Grant No.

CNS 0523932, Samsung Electronics, and Intel Corporation.
A subset of this article was presented at ACM/USENIX
MobiSys 2008 [19].

REFERENCES

[1] Btaccess.net, http:/ /www high-point.com, 2011.

[2] M. Anand, E.B. Nightingale, and J. Flinn, “Ghosts in the Machine:
Interfaces for Better Power Management,” Proc. Second Int’l Conf.
Mobile Systems, Applications, and Services (MobiSys '04), pp. 23-35,
2004.

[3] A.Bose and K.G. Shin, “On Mobile Viruses Exploiting Messaging
and Bluetooth Services,” Proc. SecureComm and Workshop, pp. 1-10,
Aug. 2006.

[4] T.XK. Buennemeyer, M. Gora, R.C. Marchany, and].G. Tront,
“Battery Exhaustion Attack Detection with Small Handheld
Mobile Computers,” Proc. IEEE Int’l Conf. Portable Information
Devices (PORTABLE "07), pp. 1-5, May 2007.

[5] J. Cheng, S. Wong, H. Yang, and S. Lu, “SmartSiren: Virus
Detection and Alert for Smartphones,” Proc. Int’l Conf. Mobile
Systems, Applications, and Services (MobiSys '07), pp. 258-271, 2007.

[6] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and R.E. Bryant,
“Semantics-Aware Malware Detection,” Proc. IEEE Symp. Security
and Privacy (SP '05), pp. 32-46, May 2005.

[7]1 Atmel Corporation, http://www.atmel.com/products/avr, 2011.

[8] D. Dagon, T. Martin, and T. Starner, “Mobile Phones as
Computing Devices: The Viruses Are Coming,” Pervasive Comput-
ing, vol. 3, no. 4, pp. 11-15, Oct. 2004.

[9] R.O.Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second
ed. Wiley-Interscience, 2001.

[10] R.D. Edwards and J. Magee, Technical Analysis of Stock Trends,
eighth ed. AMACOM, 2001.

[11] D.R. Ellis, J.G. Aiken, K.S. Attwood, and S.D. Tenaglia, “A
Behavioral Approach to Worm Detection,” Proc. WORM: ACM
Workshop Rapid Malcode, pp. 43-53, 2004.

[12] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, “Exploiting
Open Functionality in SMS-Capable Cellular Networks,” Proc.
12th ACM Conf. Computer and Comm. Security (CCS '05), pp. 393-
404, 2005.

[13] H.H. Feng, O.M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly Detection Using Call Stack Information,” Proc. IEEE
Symp. Security and Privacy (SP '03), May 2003.

[14] J. Flinn and M. Satyanarayanan, “Energy-Aware Adaptation for
Mobile Applications,” Proc. 17th ACM Symp. Operating Systems
Principles (SOSP ’99), pp. 48-63, 1999.

[15] RM. Ford, C. Robson, D. Temple, and M. Gerlach, “Metrics for
Scene Change Detection in Digital Video Sequences,” Proc. IEEE
Int’l Conf. Multimedia Computing and Systems (ICMCS '97), pp. 610-
611, 1997.

[16] Gartner, http://www.gartner.com/it/page jsp?id=910112, 2011.

[17] Symantec: Making Handheld Security a Priority, http://www.
symantec.com/norton/products/library/article.jsp?aid=hand
held_security, 2011.

[18] M. Hypponen, “Malware Goes Mobile,” Scientific Am., Nov. 2006.

[19] H. Kim, J. Smith, and K.G. Shin, “Detecting Energy-Greedy
Anomalies and Mobile Malware Variants,” Proc. Sixth Int’l Conf.
Mobile Systems, Applications, and Services (MobiSys "08), pp. 239-252,
June 2008.

[20] Real-Time Vision for Human-Computer Interaction, B. Kisacanin,
V. Pavlovic, and T.S. Huang, eds., first ed. Springer, 2005.

[21] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-of-
Service Attacks on Battery-Powered Mobile Computers,” Proc.
Second IEEE Ann. Int’l Conf. Pervasive Computing and Comm.
(PerCom "04), p.p. 309-318, 2004.

[22] MAXIM, Max4071, http://www.maxim-ic.com/quick_view2.
cfm/qv_pk/3387, 2011.

[23] J.W. Mickens and B.D. Noble, “Modeling Epidemic Spreading in
Mobile Environments,” Proc. Fourth ACM Workshop Wireless
Security (WiSe '05), pp. 77-86, 2005.

[24] J.A. Morales, P.J. Clarke, Y. Deng, and B.M. Golam Kibria,
“Testing and Evaluating Virus Detectors for Handheld Devices,”
J. Computer Virology, vol. 2, no. 2, pp. 135-147, Nov. 2006.

[25] B.D. Noble, M. Satyanarayanan, D. Narayanan,].E. Tilton,]. Flinn,
and K.R. Walker, “Agile Application-Aware Adaptation for
Mobility,” Proc. ACM Special Interest Group on Operating Systems
(SIGOPS) Rev., vol. 31, no. 5, pp. 276-287, 1997.

KIM ET AL.: MODELZ: MONITORING, DETECTION, AND ANALYSIS OF ENERGY-GREEDY ANOMALIES IN MOBILE HANDSETS 981

[26] M.E.XJ. Oberhumer, L. Molnar, and J.F. Reiser, “UPX: The
Ultimate Packer for Executables,” http://upx.sourceforge.net,
2011.

[27] N.V. Patel and LK. Sethi, “Compressed Video Processing for Cut
Detection,” Vision, Image and Signal Processing, vol. 143, no. 5,
pp. 315-323, Oct. 1996.

[28] M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M. Kandemir,
and R. Brooks, “The Sleep Deprivation Attack in Sensor Networks:
Analysis and Methods of Defense,” Int'l]. Distributed Sensor
Networks, vol. 2, no. 3, pp. 267-287, Sept. 2006.

[29] R.Racic, D. Ma, and H. Chen, “Exploiting MMS Vulnerabilities to
Stealthily Exhaust Mobile Phone’s Battery,” Proc. SecureComm and
Workshops, pp. 1-10, Sept. 2006.

[30] C.Reyes-Aldasoro and A. Bhalerao, “The Bhattacharyya Space for
Feature Selection and Its Application to Texture Segmentation,”
Pattern Recognition, vol. 39, no. 5, pp. 812-826, May 2006.

[31] Bluetooth SIG, Specification of the Bluetooth System, Core
Version 1.1, http://www.bluetooth.com, Feb. 2001.

[32] T. Starner, “Thick Clients for Personal Wireless Devices,”
Computer, vol. 35, no. 1, pp. 133-135, 2002.

[33] Agilent Technologies, 54815a Infiniium Oscilloscope Spec, http://
www.home.agilent.com/agilent/product.jspx?pn=54815A, 2011.

[34] S. Toyssy and M. Helenius, “About Malicious Software in
Smartphones,” J. Computer Virology, vol. 2, no. 2, pp. 109-119,
Nov. 2006.

[35] G. Yan and S. Eidenbenz, “Bluetooth Worms: Models, Dynamics,
and Defense Implications,” Proc. 22nd Ann. CS Applications Conf.
(ACSAC '06), pp. 245-256, Dec. 2006.

[36] N.Yeand Q. Chen, “An Anomaly Detection Technique Based on a
Chi-Square Statistic for Detecting Intrusions into Information
Systems,” Quality and Reliability Eng. Int’l, vol. 17, no. 2, pp. 105-
112, Oct. 2001.

Hahnsang Kim received both the BS and MS
degrees in computer science and engineering
from Korea University, Seoul, in 1998 and 2000,
respectively, and the PhD degree in computer
science from the Institut National des Télécom-
munications (INT), France, in 2006. He is the
senior research fellow of the Real-Time Com-
puting Laboratory in the Department of Elec-
trical Engineering and Computer Science, The
University of Michigan, Ann Arbor, since 2007.
From 2000 to 2005, he was a member of the Planéte team at the Institut
National de Recherche en Informatique et en Automatique (INRIA),
Sophia Antipolis, France, the expert engineer thereof from 2000 to
2003, and then the research assistant until 2005. He was also affiliated
with the Department of Computer Science at Imperial College London,
United Kingdom, in 2006. He was a corecipient of the Plug-in Hybrid
Electric Vehicle Translational Grant from The University of Michigan in
2009. His current research focuses on embedded real-time and cyber-
physical systems with emphasis on security and dependability. He is a
member of the IEEE.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Korea, in 1970, and both the MS
and PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976 and
1978, respectively. He is the Kevin and Nancy
O’Connor professor of computer science and the
founding director of the Real-Time Computing
Laboratory in the Department of Electrical En-
gineering and Computer Science, The University
of Michigan, Ann Arbor. From 1978 to 1982, he was on the faculty of
Rensselaer Polytechnic Institute, Troy, New York. He also chaired the
Computer Science and Engineering Division, Electrical Engineering
and Computer Science Department, The University of Michigan, for
three years beginning January 1991. His current research focuses on
computing systems and networks as well as on embedded real-time and
cyber-physical systems, all with emphasis on timeliness, security, and
dependability. He has supervised the completion of 65 PhDs, authored/
coauthored more than 720 technical articles, and has more than
20 patents. He coauthored (with C.M. Krishna) the textbook Real-Time
Systems (McGraw Hill, 1997). He is an overseas member of the Korean
Academy of Engineering. He served as the general cochair for ACM
MobiCom 2009, the general chair for [IEEE SECON 2008, ACM/USENIX
MobiSys 2005, IEEE RTAS 2000, and IEEE RTSS 1987, the program
chair of IEEE RTSS 1986, and has served on numerous technical
program committees. He was a guest editor of the August 1987 special
issue on real-time systems of the IEEE Transactions on Computers, an
editor of the IEEE Transactions on Parallel and Distributed Computing,
and an area editor of the International Journal of Time-Critical Computing
Systems, Computer Networks, and ACM Transactions on Embedded
Systems. He is a fellow of the IEEE and ACM.

Padmanabhan Pillai received the BS degree in
electrical and computer engineering from Car-
negie Mellon University in 1996, the MS degree
from The University of Michigan in 1999, and the
PhD degree in computer science and engineer-
ing at the University of Michigan, Ann Arbor,
where he was a member of the Real-Time
Computing Laboratory. He joined Intel Labs in
i Pittsburgh in September 2003. He has a wide
I \ range of interests, primarily in computer science
systems research. His current research focuses on real-time data
streaming and dynamic physical rendering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

