
Exploiting SSD parallelism to accelerate
application launch on SSDs

J. Ryu, Y. Joo, S. Park, H. Shin and K.G. Shin

Using an optimised application prefetcher to accelerate the application
launch on solid-state drives (SSDs) by exploiting the SSD parallelism
is proposed. The proposed prefetcher was implemented on the Linux
OS and achieved a 37% reduction of prefetcher execution time,
which corresponds to an 18% reduction of application launch time.

Introduction: Flash-based solid-state drives (SSDs) typically consist of
multiple NAND flash chips. The I/O performance of a SSD strongly
depends on how well the SSD controller exploits its internal parallelism
for different I/O patterns. For example, a SSD controller can easily acti-
vate multiple flash chips at the same time for sequential I/O requests, a
large size I/O request, and multiple concurrent read requests. For
another example, recent work [1] reported that the SSD parallelism is
not utilised well if write requests are mixed with read requests, and pro-
posed a new SSD scheduler to avoid such inefficiency.

There has not been enough analysis on how the SSD parallelism is
utilised for the application launch on PCs. An application typically gen-
erates thousands of random read requests during its launch, resulting in
excessive disk head movements of a hard disk drive (HDD). As SSDs do
not incur delays owing to the disk head positioning time, the application
launch performance can be significantly improved by replacing a
HDD with a SSD. However, traditional HDD-aware optimisation
schemes that optimise disk head movements are not recommended for
use for a SSD as it has no disk head. For example, Windows 7 disables
its application prefetcher and disk defragmenter upon detection of a SSD
[2]. Unfortunately, such a strategy prevents exploiting the SSD paralle-
lism for an application launch. We observed that only one outstanding
request is sent to the SSD during the most time periods of an application
launch.

In this Letter, we demonstrate that using an application prefetcher can
help exploit the SSD parallelism during application launch time. We
then propose the two-phase application prefetcher to improve appli-
cation launch performance further by maximising the effective
number of outstanding I/O requests. We implemented the proposed
application prefetcher on the Linux OS, and demonstrated a 37%
reduction of prefetcher execution time, which corresponds to an 18%
reduction of application launch time.

SSD structure: Most modern flash-based SSDs consist of multiple
NAND flash chips. A well-designed SSD controller can utilise the
internal parallelism of the SSD to increase the SSD performance
beyond that of a single flash chip. SSDs are usually connected to a
host PC through a serial advanced technology attachment (SATA) II
interface, which supports native command queueing (NCQ). Using the
NCQ feature, the host PC can send up to 32 outstanding I/O requests
to the SSD controller, allowing SSDs to process them in parallel.

Application prefetcher: An application prefetcher (e.g. Windows pre-
fetcher [3]) improves application launch performance by optimising
disk head movements during application launch time. The set of block
requests generated during application launch time changes little over
repeated launches, and thus the application prefetcher can extract such
a set by monitoring block requests to the HDD. Upon detection of the
launch of a target application, the application prefetcher works as
follows: 1. it immediately pauses the execution of the target application;
2. it fetches the predetermined set of block requests from the HDD
according to the sorted order of their logical block addresses (LBAs);
and 3. then it resumes the target application.

Using application prefetcher on SSDs: Fig. 1a shows a typical appli-
cation launch process on a SSD, where di is a data block request
issued during the launch process. After di is fetched, the CPU continues
its computation, which is denoted by ci, until the next page fault occurs.
Queue depth means the number of block requests being processed in the
SSD at a given time. In this example, we assumed that each data block
request has the following dependency with its associated metadata block
request mj: 1. m1 should be fetched prior to d1, d2, and d3; and 2. m4

should be fetched prior to d4 and d5. We also assumed that the LBA
order of the data blocks is given as: d4 , d5 , d2 , d1 , d3.
ELECTRONICS LETTERS 3rd March 2011 Vol. 47
first
phase

second
phase

CPU
1SSD
2Q

D m1 d1 d2 d3

a

b

c

d4 d5 timem4
C1

CPU
prefetcher
execution

1SSD
2
3

Q
D m4 d4

d5
m1 d3

d2
d1

time

launch completion

C1 C2 C3 C4 C5

CPU
prefetcher
execution

1SSD
2
3

Q
D m4

d2
d2
d3

d4
d5

time
C1 C2 C3 C4 C5

C2 C3 C4 C5

Fig. 1 Application launch procedure (x-axis not in scale)

a No prefetcher
b Baseline prefetcher
c Two-phase prefetcher
QD ¼ queue depth

In Fig. 1a, the queue depth is not increased more than 1, which is
because there is no way for the application to know what to fetch next
until a page fault occurs. This is the inherent limitation of the demand
paging, i.e. all the blocks required for the application launch are
fetched on demand. To overcome this inefficiency, we suggest using
an application prefetcher. As the application prefetcher knows all the
blocks required for the launch, it can continuously send block requests
to the SSD without waiting for the next page fault. Hence, the effective
queue depth can be increased beyond 1, as shown in Fig. 1b.

Two-phase application prefetcher: Even if we use an application pre-
fetcher, there still exists dependency between metadata and normal
data, preventing the queue depth to reach the maximum value of 32.
Fig. 1b shows that issuing d4 and d2 are blocked waiting for the com-
pletion of m4 and m1, respectively. To resolve this problem, we
propose the two-phase application prefetcher. In the first phase, we
gather all the block requests for metadata and issue them first. In the
second phase, we issue the remained block requests, which are for
normal data. As the block requests in each phase have no dependency
among them, they can be continuously issued without being blocked,
as shown in Fig. 1c.

We implemented the two-phase application prefetcher on the EXT3
file system, which is widely used with the Linux OS. As there is no
system call provided by the Linux OS for explicitly fetching metadata
(e.g. inode blocks, indirect pointer blocks) at user level, we implemented
the proposed prefetcher as a kernel module to use the kernel function
ll_rw_block() with the READA argument. For the normal data block
of regular files, we used force_page_cache_readahead() to fetch them
asynchronously.

0

Q
D

0
8

16
24
32

Q
D

0
8

16
24
32

Q
D

0
8

16
24
32

Q
D

0
8

16
24
32

1 2
d

3
time, s

0 0.1 0.2 0.3
e time, s

4 5

0 1 2
b

3
time, s

0 0.1 0.2 0.3 0.4 0.5 0.6
c time, s

4 5

Q
D

0
8

16
24
32

0

average QD: 0.3

average QD: 3.4

average QD: 30.6

2
a

3
time, s

4 5

Fig. 2 Visualisation of SSD queue depth (application: Eclipse)

a No prefetcher
b Baseline prefetcher
c Baseline prefetcher (zoomed in)
d Two-phase prefetcher
e Two-phase prefetcher (zoomed in)
QD ¼ queue depth

Results: We performed an experiment on a PC equipped with an Intel
i7-860 2.8 GHz CPU and an Intel 80 GB SSD (X25-M G2, 10 chan-
nels), where we installed a Fedora 12 with Linux kernel 2.6.35. As we
are interested in the application launch performance in a cold start
No. 5

scenario, i.e. all the data needed for the launch are not in the main
memory page cache, we flushed the page cache using the following
command: sync; echo 3./proc/sys/vm/drop_caches. For comparison
purpose, we also measured application launch time in a warm start scen-
ario, i.e. all the requested data are found in the page cache, by executing
the prefetcher first, and then launching the application.

Fig. 2 depicts the queue depth for each application launch scenario,
where the dashed boxes are the time periods the application prefetchers
are executed. Fig. 2a shows that the average queue depth is less than 1,
which is as expected. There are few points where the queue depth is
larger than 1, which is because the application created multiple
threads. Figs. 2b and c show that the application prefetcher increased
the queue depth beyond 1. However, the achieved queue depth of 3.4
is still far smaller than 10, the number of channels of the SSD we
used. Figs. 2d and e show that the two-phase application prefetcher suc-
cessfully increased the queue depth to the maximum value of 32.

We measured the prefetcher execution time and application launch
time for various Linux applications. Fig. 3a shows that the two-phase
application prefetcher reduced the prefetcher execution time by 37%
compared with the baseline prefetcher. As a result, the two-phase appli-
cation prefetcher reduced application launch time by 18% compared
with the cold start launch time, as shown in Fig. 3b.

a

b

0%

A
cc

es
s

A
cr

ob
at

D
es

ig
ne

r-
Q

t4

E
cl

ip
se

E
xc

el

F
-s

po
t

F
ire

fo
x

G
im

p

G
no

m
e

H
ou

di
ni

K
de

vd
es

ig
ne

r

K
de

ve
lo

p

K
on

qu
er

or

La
bv

ie
w

M
at

la
b2

00
9b

O
pe

no
ffi

ce

P
ow

er
po

in
t

S
ky

pe

T
hu

nd
er

bi
rd

V
is

o

W
or

d

X
ili

nx
lS

E

A
ve

ra
ge

A
cc

es
s

A
cr

ob
at

D
es

ig
ne

r-
Q

t4

E
cl

ip
se

E
xc

el

F
-s

po
t

F
ire

fo
x

G
im

p

G
no

m
e

H
ou

di
ni

K
de

vd
es

ig
ne

r

K
de

ve
lo

p

K
on

qu
er

or

La
bv

ie
w

M
at

la
b2

00
9b

O
pe

no
ffi

ce

P
ow

er
po

in
t

S
ky

pe

T
hu

nd
er

bi
rd

V
is

o

W
or

d

X
ili

nx
lS

E

A
ve

ra
ge

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

1.
6s

0.
7s

0.
8s

4.
6s

2.
0s

1.
1s

0.
8s

2.
1s

2.
1s

5.
4s

1.
8s

1.
5s

1.
2s

2.
4s

5.
0s

0.
9s

1.
8s

0.
9s

0.
9s

3.
4s

2.
5s

5.
0s

0.
64

s

0.
24

s

0.
56

s

0.
66

s

0.
90

s

0.
25

s

0.
31

s

0.
29

s

0.
28

s

1.
02

s

0.
37

s

0.
4s

0.
3s

0.
4s

0.
7s

0.
3s

0.
71

s

0.
24

s

0.
31

s

0.
95

s

0.
9s

1.
02

s

100%
91%

82%

63%

cold start
baseline
two-phase
warm start

100%

63%

baseline
two-phase

Fig. 3 Measured prefetcher execution time and application launch time

a Prefetcher execution time
b Application launch time
ELECTRO
Conclusion and future work: We have demonstrated how the SSD par-
allelism can be utilised to improve application launch performance.
Experimental results show that the proposed two-phase application pre-
fetcher reduces application launch time by 18%, which is an immediate
benefit because existing tools such as the Windows prefetcher [3] can be
used with a slight modification. Also, we recently suggested another
application launch performance optimisation method for SSDs [4], of
which the idea is to overlap the CPU computation time with the SSD
access time. We plan to integrate both approaches to enhance application
launch performance further on SSDs.

Acknowledgments: This research was supported by the WCU (World
Class University) program through the National Research Foundation
of Korea funded by the Ministry of Education, Science and
Technology (R33-10085); RP-Grant 2010 of Ewha Womans
University; the Korea Research Foundation Grant funded by the
Korean Government (KRF-2008-357-D00208); and the National
Research Foundation of Korea (NRF) grant funded by the Korea govern-
ment (MEST) (20100000479).

The Institution of Engineering and Technology 2011
6 January 2011
doi: 10.1049/el.2011.0042

J. Ryu and H. Shin (School of Computer Science and Engineering,
Seoul National University, Seoul, Republic of Korea)

E-mail: shinhs@snu.ac.kr

Y. Joo, S. Park and K.G. Shin (Department of Computer Science and
Engineering, Ewha Womans University, Seoul, Republic of Korea)

K.G. Shin (Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI, USA)

K.G. Shin: is affiliated to both the University of Michigan and the Ewha
Womans University

References

1 Park, S.Y., Seo, E., Shin, J.Y., Maeng, S., and Lee, J.: ‘Exploiting
internal parallelism of flash-based SSDs’, Comput. Archit. Lett., 2010,
9, (1), pp. 9–12

2 Microsoft: ‘Support and Q&A for solid-state drives’, May 2009, http://
blogs.msdn.com/e7/archive/2009/05/05/support-and-q-a-for-solid-state-
drives-and.aspx

3 Russinovich, M.E., and Solomon, D.: ‘Microsoft Windows internals’
(Microsoft Press, 2004, 4th edn), pp. 458–462

4 Joo, Y., Ryu, J., Park, S., and Shin, K.G.: ‘FAST: Quick application
launch on solid-state drives’. Proc. USENIX Conf. on File and Storage
Technologies, San Jose, CA, USA, February 2011, pp. 259–272
NICS LETTERS 3rd March 2011 Vol. 47 No. 5

