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Abstract—A large-scale battery pack that consists of hun-
dreds or thousands of battery cells must be carefully monitored.
Due to the divergence of cell characteristics, every cell should
be monitored periodically and accurately. There are two
important issues in monitoring large-scale packs. First, sensing
the health condition of battery cells must be timely to capture
the turning point at which the battery condition abruptly
changes. Failure to capture such an important event can cause
irreversible damage to the battery, especially when its State-
of-Charge (SoC) is very low. Second, the more the hardware
components are used, the higher the failure rate the system will
suffer. The frequency of monitoring battery cells, thus, should
be adjustable to the underlying load demand, considering the
fact that a low load demand has a minute impact on the battery
condition. We propose to address these issues via an adaptive
monitoring architecture, called ADMON. ADMON lowers the
sensing latency effectively, making it effective to enhance the
tolerance of physical cell failures. ADMON consists of sensing,
path-switching, and computing systems. The sensing system
collects data from a battery-cell array. The path-switching
system effectively connects a specific sensor and a micro-
controller that is part of the computing system. The path-
switching system is characterized by three exclusive types of
topology: n-tree-based, cascaded, and parallel. The computing
system is synergistically combined with the other two systems
while three policies specified in the computing system are
applied. The ADMON architecture is shown to outperform a
non-adaptive monitoring system with respect to the battery life
by 67%.

Keywords-Battery management, battery monitoring, topology
of multiplexers, moving average filter

I. INTRODUCTION

Replacement of gasoline combustion vehicles with elec-

tric vehicles (EVs) makes dramatic impacts both envi-

ronmentally and economically. It can significantly reduce

greenhouse gas emissions that cause the global temperature

to rise. For instance, the replacement of 77% of all transport

miles with EVs can reduce carbon intensity by 94% over

the 1990 numbers [39]. Meanwhile, we are faced with

unprecedented challenges due to rising energy cost and its

impact on the national competitiveness and security. To

reduce the greenhouse gas emissions and the dependency

on fossil fuels, it is imperative to harvest renewable energy

that requires an efficient large-scale energy storage system.

Efficient battery management is key to large-scale energy

storage systems. An effective and efficient battery manage-

ment system (BMS) must extend the battery life as far as its

constituent cells can last. However, the electrochemical in-

teraction and reaction cause serially-connected battery cells

to alter their characteristics, resulting in voltage-imbalance

across the cells. Unbalanced voltages of the cells can place

stress on the battery dynamics, accelerating cells’ aging. As

a result, the failure rate of the entire battery pack increases

faster than that of individual cells. To prevent or slow

down this process, cell-balancing—making the voltages of

serially-connected cells equal or balanced—is an essential

part of BMS capability. Also, accurate estimation of the

battery SoC—that gauges the battery’s energy level—is of

great importance, leading to numerous efforts to reduce the

SoC estimation error. For instance, Plett [26–28] proposed

a method based on an extended Kalman filter for estimating

SoC while adapting to dynamically-changing battery char-

acteristics as cells age. Also proposed are various analytical

methods based on fuzzy logic [32, 33] and neural networks

[1, 3, 34]. All of these methods, including cell-balancing,

require individual cells to be monitored accurately and cost-

effectively.

The voltage of a lithium-ion battery for EVs linearly drops

during the discharge period until it reaches a certain turning

point in its SoC, and then falls steeply below a cutoff voltage.

The cutoff voltage is battery chemistry-specific and used to

prevent the battery from being deeply-discharged, which will

otherwise cause an irreversible damage to the cell. Over-

charging the battery can also incur such a damage. Over-

charging and deep-discharging, therefore, must be avoided.

One way to prevent this is to put additional thresholds on

the charge–discharge range, as is done in the first-generation

GM Volt that limits its available battery capacity to 50%

by setting lower and upper bounds to 30% and 80% SoC,

respectively [7].

As mentioned earlier, efficient battery monitoring is a

fundamental issue that needs to be addressed theoretically

and systematically. A large number of battery cells that form

the battery (e.g., a 6,800-cell pack for Tesla S model [16]

and a 300-cell pack for GM Volt [21]), to power embedded
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components such as an electric motor, need to be monitored

periodically and/or on-demand. In other words, we must

address the tradeoff between fault-tolerance in monitoring

sensors and accuracy in assessing the battery condition, since

a higher monitoring frequency imposes higher computation

and communication workloads, and accelerates the process

of physical wear-out on components.

We present an adaptive monitoring architecture, called

ADMON. The ADMON architecture consists of sensing,

path-switching, and computing systems. The sensing system

collects data from sensors associated with battery cells. It

can comprise as many as thousands of sensors matching

battery cells. To cope with such a large number of sensors

effectively, the path-switching system operates based upon

an n-tree-based, cascaded, or parallel topology. One of these

topologies is selected on the basis of requirements, e.g.,

the limited number of state vectors and multiplexers. The

computing system is the smart software control of our

adaptive monitoring. For adaptive monitoring, it executes

three policies as needed. These policies improve the fault-

tolerance of physical parts, e.g., sensors by singling them out

as ghost sensors that are not temporarily used. The physical

parts of ADMON are flexible enough to accommodate the

capability of the smart control cyber systems while the

software control effectively reflects circumstances exposed

to ADMON. The ADMON architecture capitalizes on a

synergistic combination of cyber and physical systems.

The main contributions of this paper are three-fold. First,

we meet the need of a cyber-physical system approach for a

large-scale battery system that manages thousands of battery

cells. ADMON is applicable not only to such a battery

system, but also to other large-scale sensing systems such as

a renewable energy hybrid storage system. Second, ADMON

gives a physical insight into a large-scale routing system by

presenting the three types of routing topology, with ease

of software control. These types can easily be combined as

required. Third, the execution of the three policies in the

software computing system is computationally inexpensive,

making it effective to replace physical sensing. This software

also improves the life of physical components.

The rest of the paper is organized as follows. Section II

describes the design of ADMON that consists of the sensing,

path-switching, and computing systems. Three topologies

for the path-switching system and three policies for the

computing system are presented. Section III presents the

analysis of the overall latency in sensing and fault-tolerance.

Section IV evaluates the performance of ADMON. We

discuss the related work in Section V and conclude the paper

in Section VI.

II. ADMON

This section first describes the architecture of the adaptive

monitoring architecture, and then details its components.

A. The Architecture

An appropriate combination of hardware and software

components is key to designing an architecture. A hardware

system should be flexible enough to realize the capability

bestowed by software, and a software system should be sim-

ple and effective enough for the hardware system to realize.

With this taken into consideration, we build ADMON.

The ADMON architecture, as shown in Fig. 1, comprises

three systems for: sensing, path-switching, and computing.

The sensing system is responsible for collecting information

on the battery-cell array in which battery cells are connected

in series and/or in parallel. The array’s information is

collected via various sensors for voltage, temperature, and

current. In particular, voltage (and current) can be measured

at a cell- or module-level, depending on the specific de-

sign requirement. In the cell-level measurement, each cell-

level unit (e.g., a cell) requires a dedicated voltage sensor,

while in the module-level measurement, a voltage sensor

per module (consisting of a group of cells) is required.

In contrast, temperature sensors can be sparsely deployed

across cells/modules. The distribution of sensors is important

to the imbalance of temperatures that may cause battery

behavior to sharply deteriorate. This distribution should be

considered jointly with a cooling system that is beyond the

scope of this paper. Similarly, current sensors are closely

related to the arrangement of the inside and outside of

the battery-cell array. A single current sensor would be

sufficient for a chain of serially-connected cells, whereas

parallel groups of cells/arrays may require multiple current

sensors. In addition to three types of sensors, other sensors

such as current-surge detection sensors can be deployed in

the system.

Sensors can be implemented on a single chip such as the

one in a chip manufacturer [18]. Although highly design-

specific, it is worth looking at the design more closely. When

all the sensors are used frequently and simultaneously, all-

in-one chip can be an option. In this case, however, a fault-

tolerance issue arises depending on a partial or total failure

on such a sensor. When sensors are randomly chosen for use,

they need to be implemented separately, which may increase

the wiring and hence the cost.

The path-switching system is responsible for connecting

a specific sensor and the corresponding micro-controller. As

shown in Fig. 1, it is located in between the computing and

sensing systems. Since the total number of sensors is likely

greater than that of micro-controllers, the path-switching

system resolves the disparity using 2n-to-1 multiplexers

(Muxes). With a state buffer given, the computing system

determines the output of Muxes. Muxes are arranged in a

tree structure by connecting the output of a Mux to an input

of another. Three topologies for this will be detailed in the

next section.

The computing system is the smart control of our adaptive
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Figure 1. Layered-diagram of ADMON: The computing, path-switching,
and sensing systems form the architecture. In particular, the sensing system
comprises various types of sensor including “ghost” sensors. A battery-cell
array is the physical arrangement of battery cells that are connected in
series and/or in parallel. In principle, each cell needs a dedicated sensor.

monitoring. It consists of (distributed) micro-controller(s)

(e.g., dsPIC24 [19]) and an adaptive scheduler thereon. A

micro-controller is connected to a certain number of sensors

via Muxes in the path-switching system, and determines the

number of Muxes based on a specific topology, configuring

their state vector. On the other hand, the adaptive scheduler

determines which sensor to be read at what frequency

because the sensing frequency depends on the type of sensor

used. It also varies with the underlying load demand. For

instance, when voltage is to be measured from voltage

sensors with a low load demand, we may skip reading some

of these sensors, which we call ghost sensors. As long as

the load demand is below a certain threshold, the ghost

sensors serve as backups in case certain sensors fail. Ghost

sensors can be considered redundant from a manufacturer’s

perspective. Thus, the number of necessary ghost sensors

gives a practical insight into the design of the monitoring

architecture, which is the main object of this paper.

The ADMON architecture is based on a top-down view.

It has three advantages over a bottom-up approach. First,

the top-down approach makes adaptive monitoring most

effective. Unlike other variables like temperature, the voltage

of a certain cell is to be monitored together with other cells’.

Otherwise, adaptive monitoring becomes as ineffective as

bruce-force monitoring. Second, this architecture is cost-

effective. A bottom-up approach requires a computation-

intensive module for each battery cell. By contrast, the top-

down adaptive monitoring reduces the number of hardware

components necessary for sensing, referred to as ghost

sensors. Third, the architecture is easier to make each battery

cell self-checking/aware. A bottom-up approach may also

make each cell less reliable by adding more circuits to the

cell.

In what follows, we briefly investigate key hardware

components for each constituent system from a practical

perspective, and then compare the topology along with an

operating algorithm.

B. The Sensing and Computing Systems

We consider three of sensors: voltage sensors Svs ={vs1,
vs2, · · · , vsm}; current sensors Scs ={cs1, cs2, · · · , csn}; and

temperature sensors Sts ={ts1, ts2, · · · , tso}. Assuming that

the characteristics of same-type sensors are identical, the

latency of each type in configuring Muxes and retrieving

values is denoted by tvs, tcs, and tts.

The authors of a survey [29] have made a useful compar-

ison of various micro-controllers. In particular, the number

of digital I/O lines is a dominant concern in a large-scale

monitoring system. Although micro-controllers vary with

manufacturers, their I/O lines are reported to range from

4 to 100. For instance, 8-bit PIC micro-controllers have

4 or 25 lines available, and 32-bit micro-controllers of

the same family come with 85 I/O lines [20]. The latter

model, however, is 12 times more expensive than the former.

Yet, not only the cost but also the frequency/MIPS of

micro-controllers needs to be considered while the required

computational power of micro-controllers relates to the path-

switching system that will be described later.

Ghost sensors are managed with three policies applied,

based on which a set of ghost sensors is created, updated,

or removed. First, sensors of the same type are colored

according to the battery arrangement. Sensors for a group

of serially-connected cells are assigned same color, while

the cells of a different group are labeled with a different

color. The reason for this coloring is that cells within a

group interact with, and affect, each other somewhat in a

similar fashion, as they age. Although this coloring policy is

requirement-specific, it is effective for classifying sensors. A

simple implementation of this policy is described in pseudo-

code as follows.

Input: ns: # of cells in series;

np: # of groups in parallel;

Output: V : ns×np sensor matrix;

for m = 1 : np

for l = 1 : ns

V (m, l)← m;

Second, the frequency at which to read sensors is propor-

tional to the corresponding cells’ discharge (and charge) rate.
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This policy reflects the fact that a higher discharge/charge

rate implies a faster chemical reaction inside the cell. This

policy, however, is applied in a steady zone in which the SoC

of a battery cell ranges from a lower bound (e.g., 10∼20%)

to an upper bound (e.g., 80∼90%). The change in battery

characteristics outside of the zone is nonlinear, requiring

cells to be monitored at a high rate. The concept of using

the zone is effective in voltage sensing.

The discharge rate is subject to the time-varying load de-

mand, which is somewhat predictable. So, when the change

in the discharge rate follows a predicted pattern associated

with a sensor, the sensor is considered as a ghost sensor. To

predict the pattern of a time-varying load demand, we apply

a weighted moving average filter [22]:

y(k) =
k−1

∑
i=0

aiy(i), where
k−1

∑
i=0

ai = 1. (1)

The weighted moving average filter is simple and inexpen-

sive to implement, and good for the prediction purpose.

Unless an estimate deviates from a measured value by more

than a certain threshold (i.e., |y(k)− b| > δ, where b and

δ are a measured value and the threshold), the estimated

value is used without reading the sensor. In such a case, it

is imperative that computing Eq. (1) be less expensive than

reading a sensor.

There are various complex moving average filers [5]

and applications using them [11, 12]. Moreover, using the

Kalman filter [38] is an option. The Kalman filter has also

been applied for not only tracking mobile agents [10, 41] but

also estimating the SoC of a battery [15, 26–28, 36, 37].

Third, the similarity between different groups of cells is

used to predict the change in battery conditions. For instance,

when two groups are connected in parallel, both groups are

likely to behave the same within a tolerance range. So are

cells within each group. Hence, monitoring one group/cell

would suffice to capture the behavior. The similarity between

two groups is measured by applying χ2-distance [4]:

χ2(V, V ′) = ∑
(V − V ′)2

(V + V ′)
, (2)

where V and V ′ are buffers for sensed data from the first

and second groups of cells, respectively. When all the data

in V match those in V ′, the value of χ2 becomes zero. That

is, the higher value of χ2, the greater dissimilarity between

the two groups.

The χ2-distance has been used in diverse areas, such

as scene-change detection in image sequences [6, 23] and

anomaly detection [12, 40]. In addition, experimental re-

sults [13] show that the use of the χ2-distance reduces the

amount of computation over a widely-used technique, i.e.,

the Bhattacharyya distance [31].

C. The Path-switching System

A Mux in the path-switching system consists of a 2k-to-1

encoder with a k-bit state vector. That is, a k-state vector and

1-bit output allow a micro-controller to be connected to 2k

sensors. When the number m of sensors is greater than 2k,

either combining multiple Muxes or deploying additional

micro-controllers will be an option. In this combination,

⌈ m

2k ⌉ Muxes are required, and the number of state vectors

also increases accordingly. This increase requires more input

lines from a micro-controller. This eventually requires more

micro-controllers. In this paper, however, we do not consider

the issue of designing a new Mux that may accommodate

more sensors with less logic gates therein.

We now present three path-switching topologies: n-tree-

based, cascaded, and parallel.

1) The n-tree-based topology: Each input of a Mux is

connected to the output of another where n = 2k. This

topology requires an n · k-bit state vector to manipulate

Muxes unless optimized. We propose to share a k-bit state

vector with n Muxes, resulting in a 2k-bit state vector in

which n Muxes behave identically. For instance, suppose a

4-bit Mux that includes a 2-bit state vector is used, as shown

in Fig. 2. Then, a path is routed by calculating:

O = I0s̄2s̄3 + I1s̄2s3 + I2s2s̄3 + I3s2s3, (3)

where Ii is the output of each Mux on the bottom, which is

recursively calculated, and si is the (i+1)-th bit on the state

vector.

The state vector is set from top to bottom. First, given the

j-th sensor to be read, the input of the Mux on the top is

determined as:

p = ⌈
j

n
⌉. (4)

When n = 4, S23 (which represents a value for the 3rd and

4-th bits on the state vector) is set to p. Then, the other bits

for the p-th Mux is configured by

S = j−n(S23−1). (5)

That is, S01 = S. Fig. 3 shows an algorithm for the above cal-

Figure 2. The n-tree-based topology of the path-switching system, where
n = 4.

culations. This algorithm can cope with large-scale sensors,

and scale to any n-bit Muxes of this type.

2) The cascaded topology: The last input bit of a Mux

is connected to the output of another, resulting in a chain of

Muxes as shown in Fig. 4. Individual Muxes are configured

with their own state vectors, which is straightforward. Given

the j-th sensor to be read, a computation algorithm for the
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Input: n: # of output bits;

h: # of layers;

j: a designated sensor’s location;

Output: S: layers of 2k-bit state vectors;

for m = 1 : h−1

p ← Eq. (4);

if p≥ n

S ← [S, Eq. (5)];

else

S ← [S, p];

j = p;

S ← [S, j];

Figure 3. Computation algorithm for the n-tree-based topology

cascaded topology pinpoints the Mux that is connected to

the sensor by calculating

p = ⌈
j

n−1
⌉. (6)

The p-th Mux is then configured with the state vector set

by

S = j− (n−1)(p−1), (7)

while the state vector of each Mux from the first to the

(p−1)-th is set to n. Then, state vectors from the (p+1)-th

Figure 4. Cascaded topology of the path-switching system

to the last Mux are considered as don’t care. Fig. 5 shows

the computation algorithm described above.

Input: n: # of output bits;

j: a designated sensor’s location;

Output: S: an n · k-bit state vector;

p ← Eq. (6);

for m = 1 : p−1

S ← [S, n];

S ← [S, Eq. (7)];

Figure 5. Computing algorithm for the cascaded topology

3) The parallel topology: Similar to the n-tree-based

topology, the parallel topology, shown in Fig. 6, shares a

state vector with n Muxes. However, it allows one to simul-

taneously read multiple sensors. This topology is effectively

used in conjunction with specific battery arrangement. For

instance, each Mux is associated with a group of serially-

connected cells, and then these groups are connected in

parallel. In such a case, cells at the same position in each

group can be monitored in a timely manner. Also, the

parallel topology allows the overhead for frequent switchings

to diminish with a factor of n, especially making a great

impact on the monitoring at a high discharge rate.

Figure 6. Parallel topology of the path-switching system

In contrast, an input of each Mux can be associated with a

cell within a group of serially-connected cells. Then, cells in

the group can be monitored simultaneously. This association

is very effective for cell-balancing in which voltages across

the cells are kept identical within a tolerance range during

their charging (and discharging).

Fig. 7 shows a computation algorithm for the parallel

topology. This algorithm allows one to read up-to n numbers

of sensors, ultimately pinpointing the specific Mux associ-

ated with a certain sensor.

Input: n: # of output bits;

j: a designated sensor’s location;

Output: S: a k-bit state vector;

p: a designated Mux’s location;

p ← Eq. (4);

S ← Eq. (5);

Figure 7. Computation algorithm for the parallel topology

III. PERFORMANCE ANALYSIS

Let us consider an m× n battery pack that consists of

m arrays connected in parallel, each of which is n serially-

connected cells. At the time of the deployment of the pack,

all battery cells therein are assumed identical, but their char-

acteristics drift apart from one another due to interactions

between neighboring cells. Since we want to balance the

cell characteristics both within and outside each array, every

cell within an array needs to satisfy the following condition:

|y(k)− b| ≤ δ (i.e., Eq. (1)) with 1-ps, where ps is the

probability that a cell’s voltage equals a specified value (e.g.,

a mean/median value) within a certain range. Assuming that

the characteristics of cells develop independently, the event

of cell-balancing is a Bernoulli trial, resulting in the expected

number of cells that converge to the balanced state:

E[Ic] = n · ps. (8)
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Likewise, the event of array-balancing is also a Bernoulli

trial, resulting in the expected number of arrays that con-

verge to the balanced state:

E[Ia] = m · pn
s . (9)

The similarity policy presented in Section II-B is assumed to

be applied only when all cells within a group are balanced.

When ps > 0 adaptive monitoring is in operation, while

brute-force monitoring when ps = 0. As mentioned before,

Eq. (1) is computationally less expensive than reading a sen-

sor, i.e., configuring a Mux and buffering the corresponding

value.

Suppose p{|X − b| ≤ δc} during a monitoring interval

where X is exponentially distributed with parameter λc.

Then, the probability of successful prediction at the cell-level

over time T is also exponentially distributed with parameter

λc. From this, we can derive the duty cycle of a sensor, i.e.,

ps ·λc/T . If events of applying the similarity policy at the

sensor-level are exponentially distributed with parameter λa,

the duty cycle can be reduced further with the policy applied

and becomes pn
s ·λa/T . This way, we can deduce the duty

cycle of each sensor, and this can be generalized for an

arbitrary number of sensors of various types.

IV. EVALUATION

Our goal is to enhance the monitoring of a large-scale

battery pack by effectively reducing the sensing frequency,

ultimately improving the fault-tolerance of sensors associ-

ated with individual battery cells. To evaluate the efficacy

and efficiency of the ADMON architecture, the metrics we

use include the duty cycle and the reduction in discrepancies

between measured and estimated values.

We first describe the evaluation setup and then, based

on the metrics, demonstrate the ADMON’s superior perfor-

mance over a bruce-force monitoring scheme.

A. Evaluation Setup

For simplicity, we configure a battery pack as 64S4P

(64 serially-connected cells and 4 parallel-connected

groups/modules). Also, one sensor of a kind is required for

each cell, resulting in a total of 625 sensors per kind. We

use 4-to-1 Muxes to build the path-switching system. So, the

n-tree, cascaded, and parallel topologies require per module

21, 21, and 16 Muxes, respectively. Pairs of the size of a

bitwise state vector and the number of an output port for

each topology are (6, 1), (42, 1), and (2, 16).

Load-demand profile: We measured locations in every 2

seconds from a GPS receiver while driving a vehicle. Its

route, as shown in Fig. 8-(a), constitutes 164 miles (264

kilometers). From these data, we extract a pattern of load

demands as well as the speed. The pattern is represented

as change in the vehicle’s power demand according to the

route, as shown in Fig. 8-(b). The vehicle’s power demand is

calculated in proportion to its speed with maximum 111 kW

(equivalent to 150 horse power). The corresponding pattern

is estimated by applying a moving average filter (with k set

to 10).
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Figure 8. Power load demands based on real on-the-road traces

B. Evaluation Results

1) The path-switching system operates effectively: The

path-switching system in ADMON is based exclusively on

the n-tree, cascaded, or parallel topologies. The n-tree-based

topology shares a state vector with Muxes in the same

layer. So, the size of the state vector used for all Muxes

is proportional to the height of the tree. For instance, as

shown in Fig. 9-(a), the three-layered tree topology requires

a 6-bit state vector. The cascaded topology, on the other

hand, requires as many state vectors as the number of Muxes

used. Also, an input of each Mux is used to connect itself

to another Mux. Thus, when a certain Mux is used, the rest

of Muxes in the chain are not considered being in use. For

instance, in Fig. 9-(b), in reading the 4-th sensor, only the 1st

and 2nd Muxes are actively used. Similar to the n-tree-based

topology, the parallel topology shares a state vector with

Muxes and yet is one-layer-based. This requires as many

outputs as Muxes used but allows one to simultaneously

read sensors.
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Figure 9. Configuration of state vectors for the three types of topology

2) The moving average filter operates effectively: The

moving average filter smooths out local jitters, yielding a

pattern of changes. This pattern reflects future load demands.

An estimate is made at every interval, i.e., 2 seconds, and

discrepancies between estimation and observation are to be

reduced. Fig. 10-(a) plots the ratio of estimates to the real

traces shown in Fig. 8-(b). Overall, the estimation error is

below 1%, while zero values from the observation incur

relatively more noise. More precisely, the ratio of success

in estimation is contingent upon the error-tolerance ratio,

δ. For instance, when δ = 0.05, the moving average filter

achieves a 67% success ratio, while achieving a 80% success

ratio for δ = 0.5. The success ratio follows the shape of an

exponential distribution, as shown in Fig. 10-(b), indicating

a very narrow spectrum of error-tolerance ratio.

3) The battery arrangement affects the performance gain:

The higher probability of success in estimation, the better

fault-tolerance performance of sensors. We calculate the

performance gain per cell using Eqs. (8) and (9). Intuitively,

the success ratio dominates the performance gain, and yet,

applying the similarity policy using Eq. (2) also improves it.
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Figure 10. Moving average filter-based estimation

For instance, as shown in Fig. 11, given a 67% success ratio,

for a small number of serially-connected cells (e.g., n = 8

to 10), the performance is enhanced by 6%. This, however,

becomes quickly ineffective as the value of n increases. On

the other hand, increasing the number of modules (i.e., m)

also improves the performance gain. That is, as the value of

m is increased by 2, the performance gets better by a factor

of 1.015.
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Figure 11. Performance gain per cell with respect to the battery
arrangement

V. RELATED WORK

Large-scale monitoring systems are often found in data

centers for the purpose of debugging, performance mea-

surement, and operational monitoring. For instance, Chukwa
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[2] is a system that monitors 2,000 nodes, collecting 5

to 6MB of data per second from each node, and making

collected data available for processing within 10 minutes.

This monitoring, however, generates high traffic volume.

To reduce such heavy traffic, hierarchical caching of data

on proxy servers could be an option. ADMON is similar

to Chukwa with respect to its architecture and operational

management. There are also other monitoring systems, such

as Splunk [9], Astrolabe [30], Pier [8], Ganglia [17], and

Google’s System Health Infrastructure [25].

Although the path-switching system of ADMON is

application-specific, it can be generalized to build recon-

figurable arrays. Concepts for reconfigurable arrays are

based on various applications. For instance, multiplexer-

based multipliers [24] are relevant to ADMON. An array

of smaller multipliers rather than a monolithic block with a

large bit width is advantageous. A flexible approach with re-

configurability at runtime can help save hardware resources

and improve the efficiency of arithmetic operations. Such

multiplexer-based circuits can be implemented in the form

of a gate-array architecture [35], which contains a base

row having 4 alternating P- and N-channel transistor rows.

This architecture is efficient, particularly when it is used

to create serial multiplexer-based circuits. There is also a

variant of multiplexer-based architecture that provides high-

density and low-power dissipation [14].

VI. CONCLUSION

An efficient monitoring mechanism (i.e., a cyber system)

can allow hardware (battery cells and vehicle) components

(i.e., a physical system) to work effectively, thereby improv-

ing their fault-tolerance. We presented the ADMON architec-

ture to adaptively monitor thousands of battery cells within

a large-scale battery system. Its physical parts are flexible

enough to exploit the capability of smart software controls,

and the software controls effectively communicate with, and

adapt to, physical circumstances. Battery arrangement is

found important to enhance the monitoring, resulting in three

monitoring policies that are part of the computing system.

With these policies, we have applied a moving average filter

to estimate load demands, which is computationally inex-

pensive. Besides, the path-switching system operates on the

basis of n-tree-based, cascaded, or parallel topology along

with software controls. This system effectively copes with

a large number of sensors, facilitating their combination.

The cyber-physical systems approach presented by ADMON

allows ADMON to lend itself to various applications that

manage a large number of sensors.
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