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Abstract—Cognitive radios (CRs) can mitigate the impending
spectrum scarcity problem by utilizing their capability of ac-
cessing licensed spectrum bands opportunistically. While most
existing work focuses on enabling such opportunistic spectrum
access for stationary CRs, mobility is an important concern
to secondary users (SUs) because future mobile devices are
expected to incorporate CR functionality. In this paper, we
identify and address three fundamental challenges encountered
specifically by mobile SUs. First, we model channel availability
experienced by a mobile SU as a two-state continuous-time
Markov chain (CTMC) and verify its accuracy via in-depth
simulation. Then, to protect primary/incumbent communications
from SU interference, we introduce guard distance in the space
domain and derive the optimal guard distance that maximizes the
spatio-temporal spectrum opportunities available to mobile CRs.
To facilitate efficient spectrum sharing, we formulate the problem
of maximizing secondary network throughput within a convex
optimization framework, and derive an optimal, distributed
channel selection strategy. Our simulation results show that
the proposed spectrum sensing and distributed channel access
schemes improve network throughput and fairness significantly,
and r;duce SU energy consumption for spectrum sensing by up
to 74 %.

I. INTRODUCTION

The recent advent of cognitive radio (CR) technology
promises significant improvement in spectrum efficiency by
allowing secondary (unlicensed) devices or users (SUs) to
opportunistically utilize the licensed spectrum bands. Such
opportunistic spectrum access has attracted considerable in-
terest due to its ability to alleviate the spectrum scarcity
problem that we may face soon because of the rapid increase
in wireless spectrum demand and the inefficiency of current
static spectrum allocation policies.

The main goal of opportunistic spectrum access is to allow
CR-equipped SUs to safely coexist with legacy primary de-
vices or users (PUs) without disrupting PU communications.
To achieve this goal, various aspects of opportunistic spectrum
access, such as spectrum sensing [1]-[3], spectrum sharing
[4], [5], and security [6], have been studied extensively. Most
existing efforts, however, focus on stationary cognitive radio
networks (CRNSs), in which both PUs and SUs are stationary,
and thus, they may not be suitable when SUs are mobile.
We envision that future mobile devices will incorporate CR-
functionality and will be capable of dynamic and flexible
spectrum access. Meanwhile, various standardization efforts
for mobile CRs are being developed to utilize spectrum white
spaces, such as 802.11af [7] and Ecma 392 [8]. Enabling
opportunistic spectrum access for mobile SUs, however, entails
new practical challenges, and remains an open problem.

1 Alexander W. Min was a Research Intern at Deutsche Telekom Inc. R&D
Labs USA while this work was conducted.

In this paper, we study the problem of enabling oppor-
tunistic spectrum access for mobile CR devices by identifying
and addressing three fundamental challenges. First, existing
spectrum-availability models are derived based solely on PUs’
temporal traffic statistics and might thus be unsuitable for
CRNs with mobile CRs/SUs. Unlike in stationary CRNs (e.g.,
[9]), in which the spectrum opportunity (or availability) is
mostly affected by PUs’ temporal channel usage patterns,
in mobile CRNs, availability can also change as SUs move
towards or away from PUs that are actively transmitting data.
To overcome this limitation, we model channel availability—
that reflects the fluctuation of spectrum opportunities induced
by the SU mobility—as a two-state continuous-time Markov
chain (CTMC) and verify its accuracy via in-depth simulation.

Second, protecting PUs from the SU mobility-induced in-
terference is a challenging problem that calls for an efficient
spectrum-sensing strategy tailored to mobile CRNs. Mobile
SUs may need to sense spectrum more frequently to avoid
interfering with PU communications. However, frequent spec-
trum sensing may not only incur significant time overhead
[1], but also quickly drain the battery of mobile CR devices
due to the power-intensive nature of spectrum sensing [10],
[11]. To address this challenge, we propose the use of guard
distance to minimize the required spectrum sensing for mobile
SUs, while providing sufficient protection to primary commu-
nications. Guard distance is an additional separation between
PUs and SUs to prevent mobile SUs from causing exces-
sive interference. Further, based on our proposed channel-
availability model, we jointly optimize the guard distance and
spectrum-sensing interval to maximize the reuse of spectrum
opportunities in the space and time domains.

Third, mobile SUs will experience heterogeneous spectrum
opportunities across the space and time domains based on the
geographical distribution of PUs and SUs’ mobility patterns.
To better utilize such heterogeneous spectrum opportunities,
we derive an optimal, distributed channel-access strategy in a
closed form within the convex optimization framework. Our
channel-access strategy incorporates the three key factors that
diversify spectrum access opportunities across different chan-
nels: (i) SU-mobility-aware spectrum sensing adaptation, (ii)
heterogeneity in PUs’ spatial distributions and channel-usage
patterns, and (iii) spectrum sharing among SUs. Our proposed
channel-access strategy is shown to significantly improve the
secondary network throughput, fairness and energy-efficiency
in spectrum sensing.

The three challenges mentioned above are inter-related.
Hence, to fully realize the benefits of opportunistic spectrum
access for mobile SUs, they must be considered jointly. To
the best of our knowledge, our work is the first to extensively



investigate SU mobility in regard to the channel-availability
model, spectrum sensing and access strategies.

The remainder of this paper is organized as follows. Section
II overviews related work, and Section III introduces the
system models that will be used throughout the paper. Section
IV presents our new channel-availability model for mobile
SUs. Sections V and VI detail the design of spectrum sensing
and access schemes that maximize the secondary network
throughput. Section VII evaluates the performance of the
proposed schemes, and Section VIII concludes the paper.

II. RELATED WORK

Spectrum sensing has been studied extensively as a key
technology for primary detection and protection [1], [2], [12]—
[16]. Most existing work, however, focuses on optimizing
the sensing interval based on PUS’ temporal channel-usage
statistics. To validate such channel models, Wellens et al. [16]
studied the impact of channel-occupancy statistics obtained
from extensive measurements on the performance of MAC-
layer sensing schemes. They showed that the channels with
longer busy/idle periods follow exponential distributions
and that spectrum sensing and access strategies designed
under the assumption of exponentially-distributed PU traffic
are highly efficient. However, such models hinge on the as-
sumption of stationary CRNs, in which both PUs and SUs are
stationary. Thus, they may not be suitable for mobile CRNs, in
which channel availability depends on dynamically changing
SUs’ locations. By contrast, we model channel availability
from a mobile SU’s perspective by incorporating the impact
of SU mobility (e.g., speed).

Despite its practical importance, the problem of allowing
mobile SUs in CRNs has received little attention. The IEEE
802.22 standard draft provides a two-stage sensing (TSS)
mechanism [17], but it is designed exclusively for the detection
of a stationary TV transmitter, and does not specify any
efficient mechanisms for spectrum sensing for portable/mobile
CRs. Recently, the FCC [18] imposed a minimum sensing
interval of 60 seconds for TV band devices (TVBD). However,
this may not be sufficient to protect PUs from the interference
induced by SU mobility. Moreover, while most previous work
focused on either scheduling spectrum sensing [2] or spatial
CR deployment [19], [20] for primary protection, we jointly
exploit the guard distance and the sensing interval to maximize
spatio-temporal spectrum opportunities for mobile SUs.

III. SYSTEM MODEL

In this section, we present a mobile CRN model, along with
distributed spectrum sensing and channel-access models.

A. Mobile CRN Model

We consider a CRN with infrastructure-based fixed primary
networks and mobile ad-hoc secondary networks in the same
geographical area, as shown in Fig. 1. We assume that each cell
of the primary system consists of a single central node (e.g.,
access point) and receivers. From now on, we refer to each
primary cell as a PU. We assume that there is a non-empty set
K of licensed channels, and that PUs operating on the same
channel belong to the same type of system and have the same
temporal channel-usage statistics, e.g., channel busy/idle

Fig. 1. Illustration of a mobile CRN: Mobile CR devices (solid dots
with arrow) can opportunistically use the licensed channels only when the
distance from any active PUs (triangles and rectangles) is greater than a certain
threshold (i.e., protection region) so as to avoid excessive interference to PUs.
The circles with solid (dotted) lines indicate the protection region of active
(inactive) PUs with (without) data transmission.

durations.! Primary transmitters are assumed to be distributed,
following a point Poisson process with a different average
density for each channel, i.e., n,; ~ Poisson(k; pp;), where
Np,; 1s the number of primary transmitters and p,; is the
average PU density on channel ¢ € C. We assume that primary
transmitters on the licensed channel i € K are separated
by at least twice their transmission range in order to avoid
interference [21]. Such a PU distribution can be obtained by
eliminating overlapping PUs in the original Poisson process,
resulting in a Marten Hardcore Process [22]. We assume
that SUs know the average density of PUs on each channel,
and PUs’ temporal channel-usage characteristics. We further
assume that SUs do not know the availability of a channel
at specific time and location unless they perform spectrum
sensing.

B. Distributed Spectrum Sensing & Access Models

We assume that SUs are mobile devices with CR-
functionality that allows them to access any licensed channels
in the set K. However, they do not have the capability of
accessing a geo-location spectrum database to obtain local
spectrum-availability information.? Therefore, we assume that
SUs rely on local spectrum sensing (e.g., feature detection) to
detect channel availability—i.e., the presence/absence of pri-
mary signals—at a given time and location. SUs are assumed
to use feature detection (e.g., [23]) for PHY-layer sensing.
Feature detection is known to provide high accuracy without
collaboration amongst SUs even at a low SNR [24]. Thus,
it is better suited for ad-hoc secondary networks, in which
SU collaboration may not be feasible due to the needs for
information exchange and global time synchronization [25].

Once an SU identifies available channels via spectrum sens-
ing, it contends with neighboring SUs to access the channel
via a random access scheme such as CSMA. SU channel
access behavior is depicted in Fig. 2. We assume that SUs

'We use the terms busy/idle to indicate PUs’ temporal traffic patterns,
and use ON/OFF to indicate the availability of a channel seen from a mobile
SU’s perspective.

2The FCC specifies two types (Mode I and II) of portable devices that
can access TV white space [18]. Mode I devices are required to access the
geo-location database, whereas Mode II devices are not required such access
capability.
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Fig. 2. Opportunistic channel access model: An SU periodically senses its
current operating (in-band) channel (the gray block) until it detects a primary
signal, followed by channel switching (the black block). The sensing interval
is dynamically adapted based on the SU’s speed and PUs’ spatio-temporal
channel usage statistics.

always have packets to transmit and always use the maximum
transmission power allowed by a regulatory body.

IV. MODELING CHANNEL AVAILABILITY FOR MOBILE
SECONDARY USERS

In this section, we characterize the spectrum opportunity
that corresponds to PUs’ spatio-temporal channel usage pat-
terns, propose a new SU mobility-aware channel availability
model, and demonstrate its accuracy via simulation.

A. Characterizing Spatio-Temporal Spectrum Opportunity

We first introduce the keep-out-radius and guard distance
for protecting PUs from increased interference caused by
SU mobility. We then quantify the spatio-temporal spectrum
opportunities available to mobile SUs.

Definition 1 (Keep-out radius) The keep-out radius is defined
as the minimum distance between a primary transmitter and
SUs under the interference temperature limit (ITL) set by the
regulatory body (e.g., the FCC), i.e.,

Rei = inf{d eR ‘ Lot(ps.i,d) < ITL}, (1

where Iioi(ps,i,d) is the average interference generated by
SUs (separated by least distance d from the primary transmit-
ter) at a primary receiver located at the edge of the primary
coverage area and p, ; is the density of SUs on channel 1.

The aggregate SU interference at a primary receiver located
at the edge of the primary transmission range (i.e., at distance
R, from the primary transmitter) can be bounded as [19]:

_ 2ﬂ'Podg Ps,i

I (psis Reyi) = (Rei — Ro)™™", @)

a—2
where P, is the transmission power of SUs, d, the short
reference distance (e.g., 5m), o the path-loss exponent, p; ;
the average SU density on channel ¢, R, the PUs’ transmission
range, and R, ; the primary keep-out radius.

From Eq. (2), the keep-out radius necessary for channel @
to meet the interference constraint, IiU <ITL, is given as:

1 +
Ri(psi) = {(% . T1L) “] +Roy ()
where [o]* £ max{e,0}.

One important observation from Eq. (3) is that the keep-
out radius of channel ¢ increases with the density of channel-7
SUs, ps,i, as shown in Fig. 3(a). This is because as SU density
increases (i.e., more SUs access channel 7), the keep-out radius
must be expanded to meet the interference constraint.

The keep-out radius in Eq. (3), however, assumes stationary
SUs, and thus, it may not be sufficient to protect PUs from
interference caused by mobile SUs. To protect PUs further
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Fig. 3. Impact of SU density on spatial spectrum opportunity: The keep-
out radius for primary protection (a) increases with increasing SU density, and
thus (b) spatial spectrum opportunity decreases. The simulation parameters are
set to Ro=250m, ITL=0.1mW, p, = 1/km2, and a=4.

from such SU mobility-induced interference, we introduce an
additional protection layer (guard distance), denoted by e;.

Definition 2 (Primary protection region) Let P; denote a set
of primary transmitters on channel i. A primary protection
region (PPR) of primary transmitter j € P;, denoted as 2, j,
is defined as a unit disk centered at the primary transmitter j
located at (z; ;,v: ), i.e.,

2y = {@9) e®?| @i pi) = @9 € Res+ )y @
where R, ; is the keep-out radius, and ¢; is the guard distance.

Thus, if an SU is located within a PPR of active PUs on
channel i, it refrains from using the same channel to avoid
causing interference.

Then, the average fraction of the union of PPRs on channel
¢ in the entire network is [26]:

Xi(psi) =1—e
where p; is the average SU density on channel i.

The average fraction of areas where the channel is available
at any given time can be approximated as:

(B (e e
—pp,im(Re, i(ps,i)+ei) , )

i & (1 = Xi) + Xi @idle,i = 1 — Xi Wbusy,is (©)

where @;gie,; =1 — @husy,i 15 the steady-state probability that
a PU on channel ¢ is in id1le state, i.e., not transmitting data.

B. Assumptions for Modeling Channel Availability

To model channel availability from a mobile SU perspective,
we make the following three main assumptions:

Al) PUs’ traffic statistics, i.e., busy/idle periods follow
exponential distributions.

A2) The time interval that an SU moves inside a PPR follows
exponential distributions.

A3) The time during which an SU is located within a PPR
follows exponential distributions.

Regarding A1), the exponential distribution is the most
widely used for modeling PU traffic patterns in CRNs. A
recent measurement study [16] indicates that the PU channel-
usage pattern can indeed be accurately approximated as an
exponential distribution unless the average busy/idle peri-
ods are very long.?

3For such channels with long busy/idle periods, a long-tail distribution,
such as log-normal distribution, is more suitable.
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Fig. 4. Mobility-aware channel availability model as a continuous-time
Markov chain (CTMC): A channel is available for a (mobile) SU either
when (i) the SU located outside the PPRs (denoted as PPR) or (ii) the primary
transmitter of the PPR that the SU belongs to is in idle state.

Regarding A2), let Ty, denote the first (hitting) time that
a mobile SU n moves into an active PU’s PPR (i.e., in busy
state). Then, the analysis of T} is analogous to the hitting
time of a stationary object in wireless sensor networks, which
can be considered as a PU in a mobile CRN. By borrowing
the analysis in [26], Th;; can be approximated as [26]:

Thit,n ~ Emp(2(Re,i + Ei)'l_)npp,iwbusy,i)7 (7)

where v, is the average speed of SU n.

Regarding A3), the time duration in which an SU stays
within a PPR can be derived from the link-lifetime distribution
analysis in mobile ad-hoc networks [27]. According to [27],
the link lifetime, i.e., the time duration during which the
transmitter-receiver pair are located closer than a transmission
range, can be accurately approximated as an exponential
distribution with intensity, %, where v is the average relative
speed of the transceiver and R is the transmission range.

C. Mobility-Aware Channel Availability Model

We now opt to design a mobility-aware channel availability
model for mobile CRNs. For this, we first define three states—
i.e., busy, idle, and PPR-based on the SU’s location relative
to the PPRs and PUs’ traffic patterns, as shown in Fig. 4. We
assume that channel 7 is available (i.e., OFF state) when a
mobile SU is located outside the PPR of any active primary
transmitters on channel i (i.e., idle or PPR); otherwise, the
channel is not available (i.e., ON state). We can thus reduce
the Markov chain into a two-state model by merging the states
idle and PPR into an OFF state, as shown in Fig. 4.

The ON/OFF state transitions occur in the following cases.

e ON—OFF: An SU moves out of the protection region

of an active PU or a PU stops transmitting data.

e OFF—ON: An SU moves into the protection region of

an active PU or a PU starts transmitting data.

We now derive the distributions of ON and OFF durations
based on the Markov model in Fig. 4.

1) Distribution of “ON” Period: The sojourn time of the
ON state of channel 7 follows an exponential distribution [27]:

Un
e ®
where Apysy,i 1s the rate at which a PU resumes data trans-
mission, v, the average speed of an SU,* and R.; and ¢;

Ton,i ~ E$P ()\busy,i +

4 Although the speed of an SU can vary depends on its movement pattern,
we consider average speed in the analysis for mathematical tractability.
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Fig. 5. Comparison of channel ON/OFF duration distributions: Our
analyses on channel ON/OFF durations closely match the simulation results,
thus corroborating the validity of the proposed channel model. In the sim-
ulation, we use the Random Waypoint model with no pause time where an
SU uniformly chooses its speed in [1,10]m/s and destination with a fixed
interval of 60 seconds. The average PU and SU densities are set to 2 and 10
(per km?), respectively. We set Widle,i =0.4 and Ajq¢ ; =0.01Vi € K.

are the keep-out radius and the guard distance on channel i,
respectively.

2) Distribution of “OFF” Period: The OFF period duration
can be thought of as the hitting time of the busy state,
having either idle or PPR as an initial state. The OFF—ON
state transition rate, A,fs, can be derived using the detailed
balance equation, i.e., @Won,iAon,i = Woff,iNoff,i» Dased on
the stationary distributions of ON/OFF states, which can be
approximated from Eq. (6), i.e., @wopn,; =1—"y; and wors,; =i,
and the ON—OFF transition rate )., ; in Eq. (8), i.e.,

AT (i ), ©)

ANoffi = o
off 1-— XiWhbusy,i Re,i + €

and thus, the sojourn time of the OFF state is given as:

Torgi~ Exp(Xosr,i)- (10

The above analysis for channel modeling will be used
for designing efficient spectrum sensing scheduling and dis-
tributed access strategy in Sections V and VL

3) Model Verification: To show the accuracy of the pro-
posed channel-availability model, we measure the channel
ON/OFF periods observed from a mobile SU via simulation
for 2 x 10* seconds. Fig. 5 shows that the empirical results
closely match the analytical results, indicating the accuracy
of the proposed model. To further quantify the accuracy, we
measure the similarity between the empirical c.d.f. and the an-
alytical c.d.f. using Kullback-Leibler Divergence (KLD) [28].
The KLD for two exponential distributions with intensities p,
and ;1 can be calculated as:

an

Table I summarizes the average and standard deviation of
KLD for the ON/OFF durations while varying the maximum
speed of SUs in the range of [2,10]m/s. It shows that the
KLD remains low for all simulated scenarios. In fact, the case
where V4, =10m/s corresponds to the case in Fig. 5.

Drcr (pto| ) = log (o) — log (1) + 5— ~ 1

V. PRIMARY PROTECTION VIA JOINT OPTIMIZATION OF
SPECTRUM SENSING INTERVAL AND GUARD DISTANCE

In this section, we jointly design the sensing interval and
guard distance to protect PU communications from mobile
SUs. We first derive the minimum spectrum sensing interval



TABLE I
KULLBACK-LEIBLER DIVERGENCE FOR CHANNEL MODEL

DkL,oFF DkrL,oNn
VUmaz (M/S) mean std mean std
2 0.0441 | 0.0513 | 0.0069 | 0.0028
4 0.0413 | 0.0456 | 0.0202 | 0.0269
6 0.0301 | 0.0410 | 0.0848 | 0.0511
8 0.0875 | 0.0485 | 0.0982 | 0.0415
10 0.2335 | 0.0942 | 0.3134 | 0.1605

for mobile SUs, and then the optimal guard distance that
maximizes spatio-temporal spectrum opportunities.

A. Mobility-Aware Spectrum Sensing

In order to avoid causing excessive interference to pri-
mary communications, SUs must perform spectrum sensing
frequently enough to detect a primary signal before they move
into the PPR of active PUs. We assume that SUs can perfectly
detect the presence of a primary signal via spectrum sensing
when they are located within the PPR of any active PU. In
practice, SUs may need to adjust the sensing parameters to
identify their locations relative to the PPRs, but this is not
within the scope of this paper.

There are two conditions under which an SU performs
spectrum sensing: (i) when the c.d.f. of the channel OFF state
at a given time exceeds a predefined threshold, ¢ (0 <& < 1), to
detect the returning PUs, or (ii) when an SU travels a certain
distance since the previous sensing time, to prevent an SU
from moving into the keep-out radius, whichever comes first.

Then, the minimum sensing interval required on channel %
is given as:

t; = maX{Ts,i7min{ — M, 6—f}}7
)\off v

where A,fy is the intensity of the channel OFF period dis-
tribution in Eq. (9), €; the guard distance, and v the average
speed of an SU. Note that a lower probability ¢ will lead SUs
to sense the channel more frequently.

Eq. (12) indicates that the minimum sensing interval de-
pends not only on femporal features such as primary traffic
statistics, but also on spatial features such as the SUs’ average
speed ¥, and the PU density p);.

Fig. 6(a) shows that when an SU moves slowly (Region I
for the case e=40m), the sensing interval will be determined
by PU traffic patterns, i.e., Apusy and X;qe, Whereas, when
it moves quickly (Region II), the interval will be determined
by the speed of SUs. We have made a similar observation
regarding PU density in Fig. 6(b).

12)

B. Design of Optimal Guard Distance

The selection of guard distance, €, entails an interesting
tradeoff in exploring the spectrum opportunities in the time
and space domains. That is, a larger guard distance (thus
enlarging the areas of PPRs) will reduce the spatial spectrum
opportunities. However, this allows SUs to perform sensing
less frequently and spend more time for data transmission, thus
increasing the spectrum opportunities in the temporal domain.
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Fig. 6. Minimum sensing interval: Sensing interval depends on (a) the SUs’
average speed, ¥, and (b) the average PU density, pp. In our simulation, we set
the parameters £ =0.3, e=40m, ps = 10/km2, Pp = 1/km2, R, =250m,
=5 II]/S, )‘idle,i =0.1, and Widle,i — 0.4Vi € K.

Definition 3 (Average channel utilization) Average channel
utilization is defined as the average fraction of time a mobile
SU can access the channel i€ K, i.e.,

Z;V:s’li’n Ts,i - Tsw,i
Uin = E<1-— T )

where N ; ., is the number of times SU n performs spectrum
sensing within the channel access epoch T;. Ts; and Ty ;
are the times spent for a one-time sensing and switching for
channel i, respectively. Without loss of generality, we assume

To=T,; Vi and Tay=Taw.; Vi.

13)

Definition 4 (Spatio-temporal spectrum opportunity) The
availability of channel i € K in the spatio-temporal domain,
denoted as \;, is defined as the long-term average fraction of
the time a mobile SU can access the channel, i.e., A; =~;u;
where v; and w; are defined in Egs. (6) and (13), respectively.

Fig. 7(a) plots the spatio-temporal channel availability A;
for various guard distances ¢;. As shown in the figure, when ¢;
is too small (i.e., €; <3 m), A; is 0 because of the need to sense
the channel continuously, i.e., t7 =T, ;. When ¢; is relatively
small, A; suffers from a large (temporal) sensing overhead,
whereas when ¢; is too large, A; suffers from decreased spatial
spectrum opportunities.

Proposition 1 (Optimal guard distance) The optimal guard
distance €* that maximizes spatio-temporal spectrum oppor-
tunity, \;, is given as:

Re,ﬂ_f Ts,i + \/(Re,i'l_)Ts,i)z + 20Ts,i(Re,i =0 Ts i)

TPp,i Tbusy,i
2(Re,i — 0T5,1) '
where R, ; is the keep-out radius, U the average speed of SUs,
T, ; the sensing time, py ; the primary density, and wyysy,; the
steady-state probability of a busy state for channel i.

(14

€, =

Proof: The average fraction of area which is not covered
by the PPRs can be approximated as ;(e;) ~ e /(<) from
Eq. (6) where f(€;) = pp,iTusy,im™(Rei + €)%, Assuming
the switching overhead is negligible compared to the average
OFF period, i.e., Ts, < /\;flf, u; can be approximated as
u;~1— & Then, the channel availability in the spatio-
temporal domain can be expressed as:

Ailer) = yi(e)ui(es) m eI () (1 - i) (15)
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It can be easily shown that %() < 0. By taking the
first-order derivative of A(e;) and settmg it to zero, we have:
O (e:)
862‘
eif(si) < - 2pp,iwbusy,iﬂ—(Re,i + Ei) (1 -

&) + vj;s’l) =0.
€; €
(16)
For mathematical simplicity, we assume that the term
2pp,iThusy,;T€; can be approximates as 0 in Eq. (16), which
provides the following quadratic equation:

’l_)TS,i

Qpr,iwb’usy,i

(Rei —0Ts Z) — Re,iTs i€ — =0. 17)
Then, by solving Eq. (17), the proposition follows. ]

Interestingly, Fig. 7(b) shows that, the optimal guard dis-
tance increases as SUs’ average speed increases, which result
from balancing the tradeoff between temporal and spatial
spectrum opportunities—i.e., it is better to increase the guard
distance at the cost of reduced spatial spectrum opportunity,
rather than reducing the sensing interval. The figure shows
that our analytical results closely match the exhaustive-search-

based simulation results.

VI. DISTRIBUTED SPECTRUM ACCESS STRATEGY
IN MOBILE CRNSs

We now derive an optimal channel selection (access) strat-
egy that maximizes each secondary link’s throughput. In
multi-user CRNs, it is important to consider the channel
contention overhead, as it can affect the achievable throughput
significantly. However, it may be infeasible for mobile SUs
to estimate the interference on each channel in real time.
Thus, we assume that all the SUs in the network follow the
same channel access strategy, and derive the optimal strategy
by taking into account SUs’ mobility-dependent spectrum
opportunity as well as channel access contention among SUs
as follows.

Let us denote the mixed channel selection vector by p =
[p1,p2, - pic))” where Y, p; =1. Then, the total number
of SUs selecting channel ¢ in the network can be approximated
as Np;, where N is the total number of SUs in the network,
which can be estimated as N~ pg A. A is the entire network
coverage area and p; is the average SU density. The probability
that an arbitrarily-chosen SU on channel ¢ has m € N inter-
fering neighbors, that have chosen the same channel, follows

a Binomial distribution, i.e., M; ~ B(m; Np; — 1, f;). Here,

2
fi= "1 s the ratio of the SU’s interference region to the
total network area, where Ry ; is the interference range of an
SU on channel 7.
The expected throughput of secondary link n can then be
expressed as:

K Np;—1 A Np
_ . i i Np;—m—1
Bl =3 pi 2, —m—|—1< . )fz (1= 1)
1 —f; Np;
SR A (U, a8
where K = |K]| is the total number of licensed channels.

Then, the problem of finding an optimal channel selection
strategy p* can be cast into the following optimization prob-
lem (P1):

L 1= fh
minimize F(p) ;AZ( 7 )
K
subject to sz- =1 and p =0,
i=1
where f;=1 — f; for brevity.
To find the optimal sensing strategy p*, we first show the
convexity of F(p) by examining the second-order derivative
of F(p) w.rt. p;, ie.,

O*F(pi)

G = R n(F)? >

19)
The inequality in Eq. (19) is straightforward. Hence, F(p)
is convex in p€|0, 1]%
Since the objective function is convex and constraints are
affine, we now have a convex optimization problem. The
Lagrangian with multipliers A€ R® and v €R is given as:

L(p,M/):ZA (FP () Zkzpﬁ-u sz—l
K — —
== (N —v)pi = A F7P In(FY)) — v,
=1

where A>0 and v=0.
Then, the Lagrange dual function, i.e., the minimum value
of the Lagrangian over p, is given as:

g(A,v) =inf L(p, A\, v)
P

K
= ; hgf(_

It can be easily shown that there exists p such that the
constraints hold with strict inequality, i.e., p; >0Vi € K and
Zfil p; = 1. Therefore, according to Slater’s condition, strong
duality holds with zero optimal duality gap.

The Karush-Kuhn-Tucker (KKT) conditions are given as:

(Ai = v)pi + Aa(F7 () — .

K
Zp: = (20)
pi (N + AL () = 0 @
M4 NP (AN > 0. (22)



Algorithm 1 OPTIMAL CHANNEL-SELECTION ALGORITHM A Simulation Setup

: // Initialization
p— [%, ey ?]T /I p is channel-selection probability
Pprev < P
A — o0

: € «+ 0.01 // condition for the convergence

: while (A > ¢) do

Update the SU density on each channel ps,; < pspi
Update the keep-out radius R.,; using Eq. (3)
Update the optimal guard distance ¢; using Eq. (14)
10:  Update the spatio-temporal channel availability A;(e})
11:  Update the channel-selection vector p using Eq. (23)
12: A — P —DPprev

13: Pprev < P

14: end while

15: return p

RN H LN

By solving the above system of equations, we can derive
the optimal channel-selection strategy, p*, as described in the
following proposition.

Proposition 2 (Optimal channel-selection strategy) The opti-
mal channel-selection vector p* that maximizes the expected
secondary network throughput is:

—1n . n(f; n(— n(f:))—In(\* + .
. { [ In(A;)+In(f)+1n(= N In(f;)) ~In(A )] if Didies > 0

N1n(f;)
0 if Widte,i = 0,
(23)
where N;=~;u; Vi € KC and \* is a constant s.t. Zfil pi=1.
Eq. (23) indicates that the channel-selection probability
p; increases as the channel availability A; increases, thus
confirming our intuition. Interestingly, the optimal channel-
selection vector p* in Eq. (23) depends on SU density on
each channel as the number of SUs affects the selection
of guard distance (in Eq. (6)), influencing the amount of
spatial spectrum opportunity. This coupling between channel-
selection strategy and spatial channel availability requires an
iterative algorithm to find the optimal strategy, as described in
Algorithm 1.
Proposition 2, however, provides the following counter-
intuitive observation:

Corollary 1 The optimal channel-selection probability be-
comes more uniform as the number of SUs in the network
increases, i.e., Vi € IC,

N — oo, (24)

% 1
p; — — as

K
where K is the number of licensed channels, and N is the
total number of SUs in the network.

Corollary 1 indicates that the optimal channel-selection
probability becomes almost independent of spatio-temporal
spectrum opportunities as SU density approaches infinity. The
is because, when there exists a large number of SUs, the bene-
fit from heterogeneous spatio-temporal spectrum opportunities
becomes negligible due to high level of interference among
SUs.

VII. PERFORMANCE EVALUATION

We evaluate the performance of the proposed spectrum
sensing and distributed channel-selection schemes. We first
describe the simulation setup, channel-selection schemes for
performance comparisons and performance metrics. Then, we
present key evaluation results.

We consider a CRN in which mobile SUs coexist with
PUs in a 5km x 5km area. Throughout the simulation, we
assume that there are 5 licensed channels,’ and that the average
channel idle probability is in the range of [0.3,0.7], unless
specified otherwise. We also assume that \;q;. is 0.1 for all
the channels and that average density of SUs ps ranges in
[1,10]/km?. We assume that the path-loss exponent « is 4,
the SUs’ transmit power P, is 100 mW, the reference distance
do, is 1m, the PUs’ transmission range R, is 250m, the
interference temperature limit (ITL) is 0.1 mW, and the sensing
triggering threshold ¢ is 0.3. We further assume that channel
sensing and switching times are 75 = 0.5s and Ty, = 1s,
respectively.

To comparatively evaluate the efficacy of the proposed
channel-selection scheme, we compare the following: (i) ran-
dom channel selection (RAND), (ii) optimal channel selection
strategy based only on PUs’ temporal channel usage statistics
(OPT-T), and (iii) optimal channel selection strategy based
on PUs’ spatio-temporal channel usage statistics (OPT-ST).
In RAND, SUs randomly select a channel with an equal prob-
ability. In OPT-T, SUs use the channel-selection probability
in Eq. (23) while setting v; =w;qic,; Vi € (thus eliminating
the impact of heterogeneous PU density on channels). On the
other hand, In OPT-ST, SUs fully exploits the spatio-temporal
channel-usage characteristics of PUs.

To quantify the efficacy of the proposed algorithms, we use
the following three main performance metrics:

e normalized secondary network throughput, i.e., %,
2
e throughput fairness (Jain’s index [29]), i.e., %, and

e normalized energy consumption in spectrum sensing, i.e.,
the fraction of time a CR device spent on sensing during
channel access,

where R, is the throughput of secondary link 7, and /V is the
total number of secondary links in the network.

B. Optimal Channel Selection

1) Impact of Temporal Channel Availability: We first study
the impact of PUs’ temporal channel-usage statistics on the
optimal channel-selection strategy. For this, we fix the PU
density at p,; = 1 /km?Vi € K and set different channel
idle probabilities, i.e., T;ge =[0.3,0.4,0.5,0.6,0.7] (widie
increases with increasing channel index).

Fig. 8(a) shows SUs’ preference to access channels with
a higher average channel idle probability, i.e., p; > p;
when @;qie; > @idie,;. Interestingly, when SUs are densely
populated, ie., ps = 1O/km2, the impact of PUs’ tempo-
ral channel-usage statistics on the channel-selection strategy
decreases. This is clearly shown in Fig. 8(b) where the
largest difference in the channel-selection probability (i.e.,
|max(p*) — min(p*)|) decreases with the increasing SU
density. Intuitively, as the number of SUs in the network
increases, their channel access time decreases due to the
need for sharing the channel. Thus, as the density tends to
infinity, the achievable throughput of SUs becomes close to 0,
regardless of the PUs’ channel usage statistics.

5Although the number of available channels depends on the wireless
environments, we observed similar results for different numbers of channels.
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Fig. 10. Impact of SUs’ speed on A and p*: The spatio-temporal
channel availability depends on the SUs’ speed, thus affecting the op-
timal channel-selection strategy p*. The parameters are set to p, =
[0.1, 0.2, 0.5, 1, 2]/km?, ps=10/km?, and w;q. ; =0.4Vi € K.

2) Impact of Spatial Channel Availability: Fig. 9 shows the
impact of PU density on the optimal channel-selection strategy.
In the simulation, we assume a different PU density on each
channel, while assuming the temporal channel usage statistics,
i.e., wiqie, are the same for all channels. The figure indicates
that, the lower the PU density (channel index), the higher
the channel-selection probability. However, the PU density
becomes less influential as the average SU density increases,
similar to the case in Fig. 8(b).

3) Impact of SUs’ Speed: Fig. 10 shows the impact of
SUs’ average speed on spatio-temporal channel availability
A; (in Figs. 10(a)-(b)), and on the optimal channel-selection
strategy p* (Figs. 10 (c)-(d)). As shown in the figures, the
SUs’ speed has different consequences on channel availability
(A), depending on the density of PUs on each channel; A
decreases faster when PU density is high. As a result, the
SUs’ preference to access channels with a low PU density
increases as their speed increases. The simulation settings are
described in Fig. 10.

C. Performance Comparison

Next, we compare the performance of the three channel-
selection schemes (i.e., RAND, OPT-T, and OPT—ST) in terms

average SU density (p,) (per km?)

Optimal channel-selection probability: (a) The optimal channel-selection strategy
depends on the average channel availability (co;q;¢), but (b) the effects of PU traffic statistics
decreases as SU density increases. The parameters are set to ©o;q;. =[0.3, 0.4, 0.5, 0.6, 0.7], ©

4
SU density (p,) 25

channel index

(b) Impact of SU density

Fig. 9. Impact of PU density on p*: Spatial distribu-
tion of PUs affects the optimal channel-selection prob-
ability. pp, = [0.1, 0.2, 0.5, 1, 2]/km? (p; increases
with increasing channel index), w@;qie,; = 0.4 and
Aidle,i =0.1 VZ € ’C

of throughput, fairness, and energy-efficiency. In the simula-
tions, we set the average PU density on each channel to p, =
[0.1,0.2,0.5,1,2]/km®. The channel idle probabilities ;.
are randomly selected in [0, 1] such that ), - @iqie,i =1 for
each network topology. The results are obtained from simu-
lation runs over 10® randomly-generated topologies. Figs. 11
and 12 plot the average and + 0.25 o intervals of throughput
and fairness, under various SUs’ speed and density.

1) Throughput and Fairness: Fig. 11(a) shows that the
proposed OPT-ST outperforms the other channel-selection
schemes (i.e., OPT—T and RAND) under all simulated scenar-
i0s, thanks to its ability to optimally select channels by exploit-
ing the heterogeneous spatial/temporal spectrum opportunities
of each channel. On the other hand, the performance of OPT—-T
decreases as SU speed increases, because the spatial spectrum
opportunity becomes more diverse with higher SU mobility
(see Fig. 10), which is not considered in OPT-T. Fig. 11(b)
indicates that OPT-ST achieves the highest fairness among
the three channel-selection schemes, as it correctly incorpo-
rates the impacts of heterogeneous spectrum opportunities and
channel access contention among SUs in the optimal channel
selection strategy.

Fig. 12 shows the impact of SU density on throughput
performance. As shown in the figure, the throughput degrades
as SU density increases, mainly because of the increased
level of SUs’ contention for channel access. In addition, the
performance of OPT-ST becomes close to RAND’s as the
density increases, since the optimal channel-selection strategy
tends to become similar to a uniform distribution, which can
be seen in RAND, in a dense network, as observed in Fig. 9.

2) Energy Saving in Spectrum Sensing: Finally, we study
the energy-saving perspective in spectrum sensing. Frequent
spectrum sensing can consume a considerable amount of en-
ergy, especially in battery-powered mobile CR devices. Fig. 13
plots the CR’s normalized energy consumption in different
settings: use of a fixed guard distance (i.e., € =20,40m) and
use of the optimal guard distance (e¢*). The figure indicates
that energy consumption due to spectrum sensing in mobile
CR devices can be reduced by up to 74 % while ensuring
primary protection.

VIII. CONCLUSION

Taking mobility into consideration is vitally important for
full realization of the benefits of opportunistic spectrum access
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Fig. 13. Energy savings via the use of optimal guard distance: SUs
can save energy significantly due to spectrum sensing via the optimal guard
distance, while meeting the primary interference constraints.

in CRNs. In this paper, we considered the case of a CRN with
mobile SUs. We identified and addressed the three fundamen-
tal challenges in maximizing spectrum efficiency in mobile
CRN:s. In particular, we presented a novel channel-availability
model, a mobility-aware spectrum-sensing strategy, and an op-
timal distributed channel-selection (or access) strategy tailored
to mobile CRNs. Our evaluation results verified the correctness
of our channel-availability model under various SU mobility
patterns. Our performance comparison study has also shown
that the channel-access strategy improves the throughput and
fairness of mobile SUs significantly over the conventional
strategy that relies solely on PUs’ temporal channel-usage
statistics.
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