How to Construct a Mobile Botnet?

Yuanyuan Zeng, Xin Hu, Kang G. Shin
{gracez, huxin, kgshin} @eecs.umich.edu
The University of Michigan, Ann Arbor, MI 48109-2121, USA

I. INTRODUCTION

Botnets are one of the most serious security threats to
the Internet and the personal computer (PC) world, but they
have not yet caused major outbreaks in the mobile world.
Nevertheless, attacks on mobile networks and devices have
recently grown in number and sophistication. With the ar-
rival of smartphones such as the iPhone and Android-based
phones, there has been a drastic increase in downloading and
sharing of third-party applications and user-generated content,
making smartphones vulnerable to various types of malware.
Smartphone-based banking and payment services have also be-
come popular without protection features comparable to those
on PCs, enticing cyber crimes. As smartphones handle more
personal data and gain more computing power and capabilities
but have little security protection, early naive attacks targeting
mobile devices have become more sophisticated. Since the
appearance of the first mobile worm, Cabir, in 2004, we have
witnessed a significant evolution of mobile malware. The early
malware performed tasks, such as infecting files, replacing
system applications and sending out SMS or MMS messages.
One malicious program is usually capable of only one or
two functionalities. Recent mobile malware demonstrates more
sophisticated behavior. SymbOS.Exy.A trojan was discovered
in February 2009 and its variant SymbOS.Exy.C resurfaced in
July 2009. This mobile worm, which is said to have “botnet-
esque” behavior patterns, differs from other mobile malware
because after infection, it connects back to a malicious HTTP
server and reports information of the device and its user. The
recent lkee.B worm appearing late November 2009 targets
jailbroken iPhones, and has behavior similar to SymbOS.Exy.
Ikee.B also connects to a control server via HTTP, downloads
additional components and sends back the user’s information.
With this remote connection, it is possible for attackers to
issue commands to and coordinate the infected devices to
launch large-scale attacks. Considering this potential, botnets
will likely soon become a serious threat to smartphones.

In this paper, we propose the design of a mobile botnet
that makes the most of mobile services and is resilient to
disruption. The goal of our work is to shed light on potential
botnet threats targeting smartphones. Since current techniques
against PC botnets may not be applied directly to mobile
botnets, our proposed design makes it possible for people to
investigate and develop new countermeasures before mobile
botnets become a major threat. Within our mobile botnet,
all C&C communications are done via SMS messages since
SMS is available to almost every mobile phone and can delay
message delivery for offline phones. To hide the identity of the
botmaster, there are no central servers dedicated to command

dissemination that is easy to be identified and removed.
Instead, we adopt a P2P topology that allows botmasters and
bots to publish and search for commands in a P2P fashion,
making their detection and disruption much harder.

II. MOBILE BOTNET DESIGN

We now briefly describe the design of a proof-of-concept
mobile-botnet, which requires three main components: (1)
vectors to spread the bot code to smartphones; (2) a channel
to issue commands; (3) a topology to organize the botnet.

A. Propagation

The main approaches for propagating malicious code to
smartphones are user-involved propagation and vulnerability
exploits, both of which can get our mobile bots installed
onto smartphones. In the first category, the most popular
vector is social engineering. Spam emails and MMS/SMS
messages with malicious content attachments or embedded
links pointing to malicious websites, can easily find their
way into a mobile phone’s inbox. The advantage of such
schemes is that they can reach a large number of phones.
Another user-involved propagation vector can be Bluetooth
utilizing mobility. Mobile phone users move around so that
the compromised phones can use Bluetooth to search for
devices nearby and after pairing with them successfully, try
to send them malicious files. Exploiting vulnerabilities to
spread malicious code is common in the PC world. However,
since there are various mobile platforms and most of them
are closed-source, it is difficult to find vulnerabilities. Once
launched to their targets, vulnerability exploits always have a
higher success rate than that of user-involved approaches. As
mobile platforms open up and mobile applications and services
become abound, vulnerability exploits will play a major role
in mobile malware propagation.

B. Command and Control

In our mobile botnet, we utilize SMS as our Command
& Control channel so that compromised mobile bots com-
municate with botmasters and among themselves via SMS
messages. Our goal is to let a phone that has installed our
bot’s code conduct activities according to commands received
in SMS messages without being noticed by the user if possible.
In our design, every compromised phone has a key. Only
by including this key into the SMS messages, can other
phones transmit C&C information to this particular phone.
Upon receipt of a SMS message, this phone searches for its
key and pre-defined commands embedded in the message to
tell if it is a C&C message. If found, the commands are
immediately executed by the phone. One challenge here is

0.9
0.8
07
0.6
0.5
04
0.3 0.3

0.2 0.2
ea 0.1

0.9
0.8
0.7
0.6
0.5
0.4

-e-Structured
-a-Unstructured

=o-Structured

3~ percentage
03

m Structured
M Unstructured

1A

(=]

5 10 15 20 25 30 35 40 45 50 55 60 65 0 1 2
Total Number of Messages Sent fora
Command Lookup

Fig. 1.
for a command-lookup

for a command-lookup
how to make C&C SMS messages appear to be harmless so
that users cannot figure out the malicious content. Our solution
is to make a command-embedded SMS message look like a
common message such as a spam. To disguise commands, a
simple word mapping technique can be utilized. For example,
one disguised SMS message a bot receives may read: “Free
message Tone: Free ringtones download at www.xyz.com”.
“ringtones” corresponds to the command “GetContactList”.
Our crafted messages look like advertisements or even spam,
familiar to today’s phone users, so they are likely to be ignored
by users. Without monitoring phone behaviors or reverse
engineering, defenders may have a hard time figuring out the
mapping between regular words and commands.

C. Mobile Botnet Topology

Similar to botnets in the PC world, a mobile botnet can
be either structured in a traditional centralized way or in
a newly-emerged decentralized P2P fashion. A centralized
topology is relatively easy to be implemented but not resilient
to disruption. To make our botnet robust to defenses, we
adopt a P2P structure instead. Currently, there are several
structures for P2P networks; they can be divided into three
categories: centralized, decentralized but structured, and un-
structured. Centralized P2P networks are similar to the tra-
ditional centralized botnet architecture and hence vulnerable
to the central-point-of failure. In decentralized but structured
P2P networks, contents are not placed at random nodes but at
specific locations. The most common systems in this category
are Distributed-Hash-Table (DHT)-based P2P networks which
ensure that any peer can efficiently route a search to some peer
that has the desired content. One notable implementation is
Kademlia. Decentralized and unstructured P2P networks have
neither central directories nor control over content placement.
If a peer wants to find certain content in the network in
old protocols such as Gnutella, it has to flood its query to
the entire network to find peers sharing the data. To address
the scalability issues, current unstructured networks adopt
different query strategies to avoid flooding. One design for
this purpose is Gia. Both structured and unstructured P2P
architectures can be modified to suit the need for our mobile
botnet because their decentralized nature hides the botmaster’s
identity. However, since the mobile botnet design should
consider not only robustness but also feasibility and efficiency
on smartphones, we need to compare these two architectures to
see which is more suitable. Specifically, we base our structured

0.1
-=-Unstructured o.an. ll I : ||L I

3 4 5
Number of Hops for a Command Lookup

CDFs of the total number of messages sent Fig. 2. CDFs of the number of hops needed Fig. 3.

ewan
sheS4

0o
2d% : 4
o =} S - -

1.65
1.9
2
2!

Percentage of Number of Messages Sent
from Each Node (%)

Histogram of the percentage of total
messages sent from each node

and unstructured botnet topologies on Kademlia and Gia,
respectively, for comparison.

III. PRELIMINARY RESULTS

To compare the two modified P2P structures, we used Over-
Sim, an open-source overlay network simulation framework.
Our metrics to measure performances are: the total number of
SMS messages sent from all nodes involved for a command
lookup, the percentage of total number of SMS messages sent
by each node during the entire a-command-lookup period,
and the number of hops needed for a command lookup.
These metrics can reflect how well each architecture meets
the requirement of our mobile botnet, namely, minimizing
the number of SMS messages sent and load-balancing. In
the structured network simulation, we simulated 200 nodes
running the modified Kademlia protocol generating about 100
lookup queries. We did the same in the unstructured network
simulation. Figure 1 shows the CDFs of total number of
SMS messages sent for a lookup. As we can see, under the
structured architecture about 80% lookups generate fewer than
20 messages sent, while under the unstructured architecture
65% lookups can do so. The average number of messages
sent is 15 for the structured and 20 for the unstructured,
respectively, showing that unstructured architecture requires
more SMS messages sent for a lookup. Figure 2 are the
CDFs of the number of hops needed to reach a targeted
command. For the structured architecture, 97% lookups can
be done within 3 hops. The number for the unstructured one
is 5 hops. The above two observations are understandable
because in a structured network, data items are placed at
deterministic locations requiring fewer number of messages
and hops to reach a target. Figure 3 presents the histogram
of load distribution on each node, which is the percentage of
total message sent each node accounts for during the entire
simulation. It turns out that 76% nodes in the structured
network each account for 0.75% — 1.25% of total messages
sent whereas in the unstructured one the percentages values are
spread out among different nodes ranging from 0.10% to 6%,
showing that the latter varies more in load distribution. Gia
uses a few schemes to direct queries to high-capacity nodes,
which may be the reason for its poor load-balancing. To sum
up, the structured architecture outperforms the unstructured
one in terms of total number of message sent, hops needed
and load-balancing. Thus, the structured architecture is more
suitable for our mobile botnet.

