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8 ABSTRACT | Model-based methodologies have been widely

9 used to handle the increasing demand for rapid development

10 of high-quality, real-time embedded control software. A key

11 challenge in such model-based design is integration of various

12 Bcollaborative[ analysis methods to support the automation of

13 the design process. Traditional analysis methods developed

14 for analyzing specific system properties, however, are not

15 designed for such integration, and thus cannot ensure that the

16 information for the analysis will be provided at the design stage

17 where the information is needed. Moreover, many traditional

18 analysis methods depend heavily on complete and accurate

19 design models which can only be applied to post-design veri-

20 fication and are unavailable for automation of the design

21 process involving an early design stage, where implementation

22 details are unknown. This challenge can be met by integrating

23 analysis methods with the design process. We have developed

24 such a framework combined with software modeling, execution

25 platform configuration, and run-time monitoring mechanisms

26 to enable accurate assessment of embedded software quality

27 at early design stages. We have implemented and demon-

28 strated the framework with a toolkit, called AIRES, that

29 integrates software models, a virtual execution platform, and

30 timing and schedulability analysis methods.

31KEYWORDS | Collaborative analysis; embedded control soft-

32ware; real-time system; timing constraint

33I . INTRODUCTION

34From aircraft to automobiles, embedded control systems

35are becoming omnipresent. An important subset of such

36systems is embedded control software (ECSW) that imple-

37ments the controls of physical processes (e.g., from press-
38ing brake pedal, to increasing the brake fluid pressure, to

39applying brake pads in automobiles). The physical pro-

40cesses imply that ECSW must meet critical functional and

41cross-cutting system requirements to guarantee the correct

42system behavior. Analyses must, therefore, be applied

43through the whole ECSW development process to guide the

44design and verify the preservation of system properties.

45The current ECSW development process follows some
46form of the V-diagram, as shown Fig. 1. The stages at the

47left side of the process focus on the system design, with

48each stage refining the intermediate designs generated at

49its immediate previous stage by filling in more details for

50implementation. The stages at the right side focus on the

51integration and verification of the implementation. The

52stages at the same level on both sides of the process con-

53sider the same system scope and design granularity.
54Such a multi-stage ECSW development process usually

55requires multiple engineering groups in different disci-

56plines to collaborate to meet the constraints of all system

57aspects. The complexity of ECSW and its development

58process makes it difficult to apply the traditional devel-

59opment methods based on textual function specifications

60with coding rules, manual source code generation, and

61code-level optimization to generate satisfactory products.
62This complexity is due mainly to the rapidly-increasing size

63and diversity of embedded systems. For example, vehicle
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64 customers demand more functionality such as in-vehicle

65 entertainment and convenience features; regulatory enti-

66 ties introduce new mandated regulations such as emission-
67 control and fuel-efficiency. All of these will dramatically

68 increase the number and types of control functions and

69 devices in a vehicle system, which will, in turn, make the

70 system complex. Constantly-evolving system specifications

71 and components during the development result in design

72 uncertainties, with which the information used to make the

73 design choices and decisions may change until the end of

74 the whole system development. Such uncertainties intro-
75 duce another dimension of complexity, which is very dif-

76 ficult to manage to provide minimum but enough design

77 flexibility to accommodate the uncertainties.

78 One promising technology to address the ECSW design

79 challenges is the model-based method which has been

80 adopted by many industries and organizations as a solution

81 for development of large ECSW. The model-based method

82 operates with models of systems and system components,
83 either commercial-off-the-shelf (COTS) or created in-

84 house, and reasons about their relationships and proper-

85 ties. With a model providing abstractions of behaviors and

86 structures of the components, the functional specifications

87 can be defined as an integration of the required executable

88 models using model-based methods, thus hiding unneces-

89 sary implementation details and simplifying the design and

90 system verification and validation. Source code will be
91 automatically generated based on the models and the rules

92 after an architectural optimization at the system-level. To

93 this end, the development process can be considered as a

94 sequence of transformations from an abstract model to the

95 one with implementation details, during which analyses

96 are performed to ensure that the transformed models will

97 preserve critical properties of the system.

98 Another dimension to manage the system complexity is
99 modularization with consideration of reuse. Numerous

100research efforts have been made to define modularized
101software with standardized infrastructures that allow

102flexible composition of software components from different

103developers/vendors. A key challenge in applying these

104research results is how to meet the non-functional require-

105ments (related to timing, resource, etc.) that the ECSW

106development must account for, in addition to the meeting

107the usual functional requirements. These non-functional

108properties are critical, especially when ECSW is associated
109with physical processes. In particular, most physical pro-

110cesses are time-sensitive, and the correctness of their ECSW

111depends not only on the functional computation but also on

112the timeliness of the computation. This requires that the

113execution of ECSW must meet stringent timing constraints

114to satisfy the performance requirements of control functions

115when responding to stimuli from the external physical

116world. While the control algorithms designed by control
117engineers using existing technology typically assume zero

118computation delays only achievable with an unlimited

119amount of computing resources, the ECSW implementing

120these controls typically runs on a computing platform with

121limited resources for the reasons of size, cost, and power.

122Preserving system properties with the non-functional,

123sometimes conflicting, constraints requires analyses, given

124the fact that no theoretical foundation for composition of
125non-functional properties exists to date. In this paper, the

126word Banalysis[ is referred to as a mathematical process of

127examining and determining the system properties of interest

128with given input information. In other words, analysis

129methods and algorithms are the vehicles to perform the

130analyses. The multi-stage, multi-group ECSW development

131process makes it difficult to apply existing timing analysis

132methods due to the unavailability of accurate executable
133models in the early stages of ECSW development. Currently,

134developers rely on labor-intensive (thus expensive and time-

135consuming) simulations and prototyped systems to validate

136the correctness of an ECSW design. Simulations are usually

137ad-hoc and valid only for a particular configuration. Thus,

138they are not reusable across different products and

139configurations, and require additional resources and efforts

140for new simulations involving the evolving components even
141when minor design changes are made. Prototypes are useful

142for test-based verification and validation, which can be

143performed only after the implementation stage with com-

144plete knowledge of design details. As the cost of finding and

145correcting software errors, including timing errors, in-

146creases dramatically in the later stages of ECSW develop-

147ment, it is important to apply the analyses Bcollaboratively,[
148starting from an early design stage in the process to detect
149and correct design errors resulting from the non-functional

150requirements. To make the analyses work collaboratively,

151we need support for mapping data representation in one

152format to another and feeding the results generated by one

153analysis to another.

154To manage the complexity introduced by collaborative

155design and analysis across multi-stages, multi-groups, and

Fig. 1. V-diagram representing the ECSW development process.
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156 multi-disciplines, it is essential that the models and

157 methods used for the ECSW development process must

158 1) represent an ECSW design with only the required infor-

159 mation exposed to a group of people who may focus only on

160 a single discipline and/or a system aspect, and 2) share a

161 design among different groups and stages to allow
162 collaboration. As a result, we need methods for iden-

163 tifying and assessing what information is needed at which

164 stage, on which aspect, and for which group to maintain

165 the leanness of the development process and, to avoid

166 unexpected and undesirable complexity. Table 1 presents

167 design models and modeling languages commonly used in

168 the current ECSW development process.

169 To address the challenge of collaborative analyses
170 throughout the development process, and ultimately

171 enable rapid ECSW development, we need a framework

172 that facilitates the integration of domain-specific modeling

173 and multi-discipline analysis algorithms. To be concrete,

174 we describe such a framework that has been developed and

175 implemented in the Automatic Integration of Reusable Real-
176 time Embedded Software (AIRES) toolkit at the University

177 of Michigan. The framework supports the creation of
178 integrated domain-specific models used at different design

179 stages, provides mechanisms to interface with other tools

180 to collect the required information, and enables the anal-

181 ysis algorithms used at different stages to work collabora-

182 tively for design refinements. The consistency between the

183 original and refined models after applying the analyses is

184 preserved by the constraints defined in the integrated

185 metamodel that covers the shared concepts used for the
186 collaborative analyses and the relations of these concepts.

187 In this paper, we assume that all participating analysis

188 algorithms preserve the system properties if they make

189 changes to the model. Constraints in the metamodel and

190 the property-preserving analysis together ensure the model

191 consistency. As an implementation, the current AIRES

192 toolkit integrates the modeling for application software,

193 for a runtime architecture, for computing platforms, and
194 for non-functional timing constraints. New methods that

195 gather runtime information from a virtual execution plat-

196 form and use the information in the analyses for design

197 verification and refinement at an early development stage

198 have been implemented and integrated in the AIRES

199 toolkit. The framework with all of the developed tech-

200 niques together enables the rapid development of ECSW

201 with the current development process.
202 The rest of this paper is organized as follows. Section II

203 discusses the background and the related work on ECSW

204development. Section III presents the system model and
205assumptions along with the framework architecture.

206Section IV details the integration of timing and schedul-

207ability analysis methods using the developed framework.

208Section V describes an example of Electrical Throttle

209Control (ETC) software development using the AIRES

210toolkit. The paper concludes with Section VI.

211II . BACKGROUND

212At every stage of real-time ECSW development, a design

213analysis is required to derive key parameters for imple-

214mentation and check if the required system properties are

215preserved. The timing analysis, which affects the decisions

216on system scheduling, resource utilization, and application

217performance, is one of critical analyses for the timing

218property of real-time ECSW. For ECSW, different timing-
219analysis algorithms may be used to address the issues at

220different design stages. Multiple analysis algorithms may

221also be used collaboratively at the same design stage to

222obtain better results. Integration of these collaborative

223analyses to meet system-level design objectives as well as

224reduce the design complexity of each stage is, albeit

225difficult, highly desired.

226Traditionally, the analysis at each stage is done inde-
227pendently. Some common examples include the perfor-

228mance analysis based on queueing theory, software task

229response time analysis, and system schedulability analysis.

230Although some of these analyses are based on mathematical

231underpinnings, simulation and prototyping are still the main

232approach used in industry. Such simulation- or prototype-

233based methods, which focus on sampling dynamic runtime

234information, are costly, and often difficult, to detect design
235flaws, due to their need of, and hopefully exhaustive, exam-

236ination of all cases [1]. To be used at an early design stage,

237the efforts on simulation and prototyping have to be dup-

238licated through every development stage when the design

239evolves with implementation details. Since they are not

240designed for collaborative applications, the analysis algo-

241rithms used at different stages usually require additional

242efforts to integrate, if such an integration is necessary.
243As the development methodology for real-time

244embedded systems shifts from Bcapture-and-simulate[ to

245Bdescribe-and-synthesize[ [2] combined with a model-

246drive architecture [3], model-based design and analysis

247methods have been studied extensively in both industry

248and research communities. Such a methodology shift pro-

249vides a great opportunity for collaborative application of

250various analysis algorithms to design models and for
251systematic derivation of implementation details. Using

252model-based collaborative analyses in real-time ESCW

253development requires a framework with two key compo-

254nents: an expressive modeling language and a mechanism

255for interfacing analysis results. The modeling language

256plays the role of both information representation and data

257integration. The former determines the information

Table 1 Models and Languages for ECSW Development
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258 needed for a target analysis and how to capture it, while
259 the latter determines how to interface different analyses in

260 the integration within the same design stage and across

261 different design stages. The mechanisms for interfacing

262 analyses allow the desired analysis to be plugged in a

263 development tool chain and support the information flow

264 between the various analyses.

265 Many existing general-purpose modeling languages,

266 such as UML [4], that can be used to capture and represent
267 needed information for analysis. However, more and more

268 of today’s analysis methods are implemented based on

269 domain-specific modeling languages (DSML). A DSML

270 restricts the information captured and exposed to a domain,

271 reducing the complexity and improving the performance of

272 the analysis algorithms. Many language frameworks have

273 been developed and implemented to support the construc-

274 tion of a DSML, including OMG Meta Object Facility and
275 UML Profiles [5], MetaGME in Generic Modeling Environ-

276 ment (GME) [6], and Eclipse Modeling Framework [7]. For

277 real-time embedded software, standardized DSMLs also

278 exist to support system analysis. Examples include UML

279 Profiles by Object Management Group (OMG), Architecture

280 Analysis and Design Language (AADL) by SAE [8], and

281 EAST Architecture Description Language (EAST-ADL) initi-

282 ated in Europe [9]. The metamodels and templates defined
283 in AUTOSAR [10]Va popular standard for the automotive

284 domainVis also a DSML. For timing and schedulability

285 analyses, which are commonly required for real-time embed-

286 ded software design and implementation, ad hoc DSMLs,

287 such as SCADE/Lustre [11], ROOM [12], HRT-HOOD [13],

288 AIF [14], and MetaH [15], have also been used. Unlike

289 standard DSMLs that can be implemented in many modeling

290 environments, these ad hoc languages are typically tied with
291 their modeling environments and tools. While a standard

292 DSML has better reusability and portability, an ad hoc DSML

293 can be cleaner with fewer modeling elements and clear

294 semantics, and is thus more effective and efficient.

295 The mechanisms for analysis interfaces include both

296 the interfaces to invoke and execute an analysis algorithm

297 and the transformation of input and output data to the

298 required formats. Although it is desirable to have all
299 analysis algorithms implemented in a common DSML with

300 the same data format, such implementations are not always

301 possible since i) the analysis algorithms are usually inde-

302 pendent of their uses and the development process, and

303 ii) different data with the corresponding semantics for

304 these analysis algorithms are likely to make the common

305 DSML too complex to be manageable and maintainable.

306 Data-format transformations are, therefore, inevitable for
307 integration of collaborative analyses. Depending on the

308 interfacing mechanisms, the implementation of an analysis

309 can be loosely-coupled or tightly-integrated. A loosely-

310 coupled analysis can be integrated with a chosen modeling

311 environment and other analyses using a framework, such

312 as a client-server model, which allows easy and flexible

313 integration of multiple analyses. An example framework

314supporting a loosely-coupled analysis is the Open Tool
315Integration Framework (OTIF) [16]. With OTIF, each

316analysis can be implemented and invoked as a standalone

317program using its own interfaces. The framework provides

318the translators for each analysis to transform the input data

319and analysis results to the required formats. The invoca-

320tions and executions of an analysis are achieved through

321OTIF tool adapters implemented using CORBA middle-

322ware. Another example framework is the integration
323framework for open tool environment [17], whose imple-

324mentation also uses CORBA with a configuration language

325to describe the interaction of analyses. A tightly-integrated

326analysis, on the other hand, has dedicated implementation

327to interact with other analysis and modeling environments.

328As a result, the analysis must be implemented with con-

329sideration of the interfaces and data formats used by the

330collaborative analyses and the host modeling environment
331to ensure the integrability. Although such an integration is

332fixed, it is usually easy to implement and deliver better

333performance for both individual analyses and their inte-

334gration using such a framework than the one using a

335loosely-coupled one. Most timing and schedulability anal-

336yses used in current practice adopt a tightly-integrated

337approach for their integration with the modeling environ-

338ment and other analysis algorithms. Examples include both
339commercial tools such as RaphidRMA [18] and Symta/S [19]

340and research tools such as TimeWeaver [20], Metropolis

341[21], VEST [22], and DESERT [23].

342Many tool suites have been developed in recent years

343under various government-sponsored programs such as

344DARPA PCES, DARPA MoBIES, and NSF ITR, to inte-

345grate analysis in an end-to-end process for rapid real-time

346ECSW development. Honeywell created a toolset includ-
347ing ControlH and MetaH, where MetaH integrates system

348analysis and code generation [24]. MetaH uses its own

349domain-specific architecture description language and

350provides its own modeling environment with built-in anal-

351ysis algorithms. VEST (Virginia Embedded System Toolkit)

352is a toolset developed for component-based software com-

353position and analysis [22]. A domain-specific modeling

354language, VEST Perspective Aspect Language, is used to
355capture cross-cutting system properties, such as timing and

356security. VEST uses the Generic Modeling Environment

357(GME) [6] as its modeling environment and to define its

358modeling language, and the analysis algorithms, imple-

359mented as aspect checks, are integrated in the GME.

360Metropolis [21] provides an environment with a modeling

361language based on its own metamodel and a set of analysis

362algorithms for exploration of architectures. Time Weaver
363[20] and TimeWiz form another tool suite. Using this tool

364suite, the system models are captured in Time Weaver using

365the tool native modeling language. Built-in algorithms are

366created to construct dependency and response chains. Some

367properties such as timing and schedulability can be analyzed

368by TimeWiz that communicates with Time Weaver. The

369Automatic Control in Distributed Applications (AIDA)
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370 toolset integrates the design and analysis of embedded real-
371 time control systems [25]. AIDA uses a domain-specific

372 modeling environment to capture the system models. Its

373 analyses are integrated in the modeling environment.

374 Besides the tool suites integrating modeling environment

375 and analysis algorithms, there exist a large number of tool

376 suites supporting analysis and verification based on simula-

377 tion. Matlab [26] is a commercial product including tools for

378 control design, simulation (e.g., Simulink/Stateflow), and
379 code generation (e.g., Real-Time Workshop). All tools in

380 Matlab share the Matlab modeling language with its graphic

381 modeling environment. There also exist tools for simulation

382 including distributed control software, such as TrueTime

383 [27], implemented in Matlab with its graphic modeling

384 environment and extending the modeling language via

385 defining a library for computing platform components

386 (hardware, operating systems, and well-known networks).
387 Other simulation tools developed in the research community

388 for system analysis and verification include Charon from

389 University of Pennsylvania [28], Ptolemy from University of

390 California at Berkeley [29], and BIP with THINK from

391 VERIMAG [30]. All these tool suites have their own model-

392 ing languages and modeling environments, with the sim-

393 ulation performed by built-in backend algorithms.

394 The approach proposed and implemented in the AIRES
395 toolkit is very different from these existing tools. Aiming at

396 the integration of collaborative analyses, the AIRES toolkit

397 implements a framework with mechanisms to integrate

398 and interface various analysis algorithms used in the same

399 development stage or across different stages. The key

400 feature of this framework is that it allows the analysis

401 algorithms, developed and implemented using their own

402 language syntax, to collaborate semantically by sharing
403 some common concepts, and thus facilitates engineering

404 activities, such as design refinements and system verifica-

405 tion. This enables the decoupling of collaborative analyses

406 so that they may be implemented independently with their

407 own strategies while relating to each other for later

408 integration. Such a decoupled approach in AIRES provides

409 a different, and unique, solution to the embedded real-

410 time control software development requiring collaborative
411 analyses. By contrast, other existing solutions use either

412 i) a tightly-coupled approach that requires the analyses

413 implemented based on a uniform model and tool, or ii) a

414 loosely-coupled approach that allows the analyses imple-

415 mented with different languages and different tools with-

416 out explicit definitions of shared concepts and relies on the

417 semantics-preserving model translation and availability of

418 compatible tool interfaces, if any. As a result, the analysis
419 algorithms using the AIRES framework, each with an

420 independently-chosen implementation, can be integrated

421 and used collaboratively without changing their imple-

422 mentations. A selected set of independently-implemented,

423 collaborative analyses are integrated in the AIRES tool

424 through meta modeling concepts to demonstrate this.

425 Moreover, the analyses implemented in other tools are

426usually for post-design checks, whereas the AIRES toolkit
427supports the automatic design refinements using the anal-

428ysis results. Such an analysis-based automatic design

429refinement is key to rapid ECSW development. Although

430the analyses presented in this paper are for system timing

431properties, the framework and principles are general and

432applicable to the integration of collaborative analyses for

433other system properties.

434III . MODELING LANGUAGE AND
435SYSTEM MODELS

436Most control functions in today’s large real-time embedded

437systems run on a distributed computing platform, consist-

438ing of multiple computing devices and communication

439networks. In the ECSW development process, one of the

440key components is to derive a deployment model, also
441known as a runtime architecture model, with properly-

442chosen computing devices and scheduling parameters. In

443the derived deployment model, the software is typically

444organized as Btasks[ and implemented as operating system

445threads or processes. The deployment decisions are critical

446for meeting the non-functional requirements, particularly

447timing constraints. For simplicity without losing generality,

448we use this step to demonstrate how AIRES supports the
449integration of collaborative analyses. The steps in the other

450stages of development may use the same framework with

451proper extension or replacement of the modeling languages

452and analyses to include other disciplines and system

453aspects. Given the fact that the development process

454must be defined with consideration of available analyses,

455our solution enables the integration of selected analyses

456that have already been implemented, instead of determin-
457ing the needed analyses in a process followed by an

458implementation. Such a solution is thus more adaptive to

459large, evolving domains with multi-tier, multi-party devel-

460opment, where development methods and tools are

461commonly determined by the participating organizations.

462To generate a deployment with model-based methods,

463we assume that the input of this design step is a software

464model that implements the designed control functions,
465and a computing platform model with processors, net-

466works, and supporting software such as OS, middleware,

467protocol stack, etc. The output of this step is a deployment

468model. Selected analysis algorithms are required to col-

469laborate in this step. To support the collaborative analyses,

470integrated and consistent data must be transferred among

471the analyses. AIRES uses a domain-specific modeling

472language that defines the essential information to perform
473the analyses to achieve this.

474To illustrate the domain-specific modeling concept, we

475partition the ECSW designed at the deployment step into

476different domains, including software components, software

477structure, platform configuration, and runtime architecture.

478A modeling language, implemented as a metamodel, is

479defined for each domain.
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480 A. Software Component Metamodel
481 Software components are basic building blocks in

482 software domain, which are used to implement control

483 functions. The software components may be reusable

484 commercial-off-the-shelf (COTS) products or specially-

485 developed in-house entities. The metamodel for software

486 components in the AIRES is shown in Fig. 2.

487 According to the software component metamodel,

488 every software component used in AIRES for analysis con-
489 sists of an action, a set of ports, a process to execute the

490 components. The action defines the behaviors that the

491 component implements, which can be specified in other

492 tools, such as Simulink/Stateflow in the form of mathe-

493 matical equations and/or state machines. Such behavior

494 specifications allow math-based or state-based analysis

495 methods used for the software component verification.

496 The software ports are used to specify the interactions
497 between software components, and are classified into event

498 and data ports for representing interactions with and with-

499 out execution trigger, respectively. These ports are further

500 divided into input and output ports. The CPU is used to

501 specify the deployed process for the software component’s

502 execution. This allows the software component to be used

503 in a design model where the deployment has not yet been

504 determined, and to be assigned to only one CPU in a
505 deployment model.

506 The AIRES software component metamodel also defines

507 the attributes needed for the analyses under consideration,

508 including resource demand, importance, and the required

509 memory. The resource demand defines the computation

510resource consumed to execute the component, and can be
511represented in an abstract format before the deployment is

512determined. The abstract resource demand will then be

513represented in concrete values of execution time. The impor-

514tance attribute is used to sequence independent components

515that co-reside in the same task. The required memory is used

516to check the memory constraint on a processor.

517B. Software Structure Metamodel
518A software structure model captures the dependencies

519and communications among the software components in

520realizing a control process. The ECSW for a control system
521may contain multiple control loops or control processes. In

522AIRES, each control process is represented as a transac-

523tion, which consists of interacting software components

524and forms an acyclic, direct graph. The whole ECSW can

525then be modeled as a set of concurrent transactions.

526The performance metrics in the software structure

527model include both end-to-end response delays of the

528transactions and system-resource demands. The transac-
529tions with dependencies are transformed into a form that

530can be analyzed with existing timing analysis techniques

531The structural model is first transformed to a set of directed

532acyclic weighted graphs of transactions with single-input

533and single-output. The cycle elimination is achieved by

534separating the inner cycles for a transaction, relinking the

535feedback link to a dummy component, and assigning a new

536invocation rate for it. A transaction with multi-input and
537multi-output can be converted by creating a dummy com-

538ponent for start and a dummy component for end.

Fig. 2. AIRES software component metamodel.
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539 The end-to-end response delay bound of a transaction

540 and its system-resource demands are then decomposed

541 into those on each node and link that the transaction runs.

542 The annotations of performance parameters in the acyclic,
543 direct graph at a higher-layer software structure model

544 allow the performance analysis to evolve along with this

545 hierarchical decomposition, using the refinement model-

546 ing method. As the model is refined, the constraints are

547 partitioned and distributed over the lower-layer models,

548 thus reducing the overhead of regenerating the perfor-

549 mance modeling information. During the analysis, the

550 derived constraints are used to compare with the perfor-
551 mance characteristics of the model at a refined layer.

552 To support the analyses integrated in AIRES, we define

553 a metamodel, shown in Fig. 3, to capture the software

554 structure and the required attributes for analyses.

555 According to the metamodel, a transaction contains one

556 or more software components that are connected through

557 their ports. Depending on the types of ports used in the

558 specification, the connection between two components can
559 be either data- or event-based. While an event-based con-

560 nection is synchronous, a data connection can be either

561 synchronous or asynchronous. The ports in a connection

562 must be of the same type. A transaction may be specified

563with ports, and interact with other transactions through
564their port connections. This allows to form a hierarchical

565system organization, which is simplified with only one level

566in this paper to reduce the complexity of traversing multiple

567levels in the analysis implementations. The information

568required in an analysis is also captured as a transaction’s

569attributes, including its period and deadline. The modeling

570constructs of software component SWComponent and port

571SWPort link the software component metamodel and the
572software structure metamodel, allowing for the analyses

573across these domains, such as validating the behavior of a

574transaction.

575C. Platform Configuration Metamodel
576A computing platform specifies the computing and

577communication devices, as well as the supporting soft-

578ware, such as OSes, middleware and their services, device

579drivers, and network protocols, in a real-time embedded

580control system, which provides the resources for the

581execution and dynamic management of ECSW. It is a key
582subsystem as the thus-provided resources directly affect

583the performance and execution of ECSW. Depending on

584the resource availability and its usage strategies in a plat-

585form configuration, different system-level control perfor-

586mances may be achieved for the same set of control

587functions through different organizations of ECSW (e.g.,

588running software components on different processors and/

589or executing them in different orders). Therefore, the
590platform configuration model is essential for analyses

591during the generation of the ECSW deployment model in

592order to meet the system requirements without exceeding

593the capacities of resources available in the platform. For

594this, AIRES defines a platform configuration metamodel,

595as shown in Fig. 4, which is designed to capture the

596platform configuration required by the analyses during the

597deployment model generation.
598The metamodel defines modeling constructs for pro-

599cessors, network links, and OSes. For simplicity, we omit the

600constructs for middleware, sensors, and actuators. The car-

601dinalities in the metamodel indicate that the platform must

Fig. 3. AIRES software structure metamodel.

Fig. 4. AIRES platform configuration metamodel.
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602 contain at least one processor with at most one OS running
603 on it. The metamodel is rather simplified compared to the

604 platforms in practice, however, it contains the minimum

605 requirements for executable run-time models as a system.

606 The models of software architecture and of the platform are

607 designed separately and integrated to generate the model of

608 the system at the deployment design phase. The generation

609 of deployment can be viewed as a refinement process and it

610 requires only the software architecture with resource
611 demands. This allows us to analyze the system such as

612 obtaining the estimated performance that is useful for com-

613 paring software architecture designs and designing a platform

614 even when the platform design is incomplete. A network

615 may, or may not, be present in a platform. If a network exists,

616 multiple processors can connect to the same network, and a

617 processor is also allowed to connect to multiple networks (as

618 a gateway, for example). All constructs for OSes, processors,
619 and networks are defined with the attributes relevant to

620 computing resources and timing, which are necessary for

621 our analyses. Although the metamodel is simple, one can

622 easily extend it to support modeling advanced platforms,

623 such as the one with multi-core processors and/or with

624 multiple OSes on each processor, or the analyses of other

625 properties, such as power consumption. The processor

626 construct CPU creates the linkage between the software
627 component metamodel and the platform configuration

628 metamodel, which allows the analysis, such as the one

629 used to determine the processor for a software component

630 execution.

631D. Runtime Architecture Metamodel
632A runtime architecture model captures all implemen-

633tation details of ECSW on a given computing platform,

634including the deployment and execution parameters of all

635software components. Such an architecture model is essen-

636tial for the analysis of system properties, such as timing and

637schedulability, which is a critical step in meeting the

638important timing and resource constraints in the final

639implemented system. Further, the model is usually used for
640model-based, automatic code generation. To capture the

641information needed for creating a runtime architecture

642model, AIRES defines a runtime architecture metamodel,

643as shown in Fig. 5.

644The key modeling concept in the AIRES runtime archi-

645tecture metamodel is the task. A task is the basic

646schedulable unit on a platform. In AIRES, a task can be

647implemented as a thread or process of an operating system.
648It consists of a sequence of software components. The value

649of the sequence number attribute of a software component

650indicates the order in which the software component

651should be executed in the task. When a task is activated, it

652executes its software components in their required order. It

653is possible to define a task as a placeholder before the

654runtime architecture is fully determined, which may

655contain no software component, as defined by the cardi-
656nality. A task must be assigned to one and only one pro-

657cessor for execution, and may contain input and output

658ports used to specify a chain of tasks. The AIRES runtime

659architecture metamodel defines a set of attributes to specify

Fig. 5. AIRES runtime architecture model.
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660 the information needed to generate a deployment model,
661 execute the analysis algorithms under consideration, and

662 generate implementation code with the thus-determined

663 invocation and execution parameters. Note that the meta-

664 model requires the information that cannot be derived from

665 other sources. However, the information essential for anal-

666 yses can be derived from other models. Task execution times,

667 for example, can be computed by adding the execution times

668 of all contained software components. This enables us to
669 avoid the possibility of duplicated and inconsistent spe-

670 cifications, and makes it easier to maintain the models.

671 The task chain is another important modeling concept

672 defined in the AIRES runtime architecture metamodel. A

673 task chain is specified as a set of tasks, perhaps distributed

674 on different processors in the platform and communicating

675 through their input and output ports. It represents an end-

676 to-end information processing flow corresponding to a
677 control process. A trigger, either a regular timing signal or

678 an irregular event, arriving at the input port of a task chain

679 activates the chain, and sequentially activates the execu-

680 tion from the first task to the last one. End-to-end timing

681 constraints may also be specified for a task chain using the

682 constraint modeling construct, along with the start and the

683 end tasks indicated by FromConstraint and ToConstraint,
684 respectively. The system-level end-to-end timing con-
685 straints are distributed over the software components to be

686 used for constructing a feasible schedule. Then, the soft-

687 ware components are merged into tasks while taking into

688 consideration of both schedule flexibility and minimiza-

689 tion of resource consumption, such as memory size,

690 number of processors, network bandwidth, and so on.

691 In ARIES, the runtime architecture metamodel is

692 related to the software component metamodel through the
693 software component construct SWComponent, and related

694 to the platform metamodel through the processor con-

695 struct CPU. Such relations allow the analyses to form tasks

696 and determine the scheduling and execution parameters.

697 Since metamodels are used as integration support for

698 independently-developed analyses in AIRES, it is essential

699 that the modeling environment chosen to implement

700 AIRES is capable of defining a user-specified DSML. AIRES
701 chooses the Generic Modeling Environment (GME) [6]

702 developed at Vanderbilt University as its graphic modeling

703 environment. GME is a configurable modeling tool sup-

704 porting domain-specific modeling and synthesis. It can be

705 configured with multiple metamodels, each of which de-

706 fines a modeling paradigm (modeling language) of an ap-

707 plication domain. The analysis and model-transformation

708 algorithms can be implemented as loadable modules.
709 GME is chosen based on the following requirements of the

710 AIRES tool implementation: 1) modification of the

711 modeling framework to contain the information needed

712 for analyses; 2) integration of third-party algorithms

713 provides hooks to allow the algorithms to access the

714 models; and 3) visualization of analysis results to visually

715 verify the results generated by the analysis algorithm.

716IV. INTEGRATION OF
717ANALYSES IN AIRES

718The AIRES framework takes a decoupledVinstead of
719tightly- or loosely-coupledVapproach as its strategy to sup-
720port integration of collaborative analyses. The decoupled
721approach allows the analysis algorithms to use their own
722modeling concepts but requires accessible interfaces in
723their implementations. The collaboration and integration of
724these analysis algorithms are then achieved through the
725metamodel associations, which can be defined after imple-
726mentation of the analysis algorithms, thus allowing for
727independent development and implementation of analysis
728algorithms, while still achieving collaborative analyses. Using
729the decoupled approach for integration requires a powerful
730modeling environment that provides the capability of im-
731plementing user-defined DSMLs.
732A difficulty associated with AIRES in integrating collab-
733orative analyses is the circular dependencies of information
734among the analyses. For example, the resource demand of a
735software component, represented in the form of worst-case
736execution time (WCET) and required by the analysis in the
737runtime model generation can only be determined after
738knowing the processor to execute the component. This cir-
739cular dependency is addressed by using analysis-based,
740iterative model refinements in AIRES. With different types
741and configurations of the underlying system services, the
742performance of the runtime model can be dramatically dif-
743ferent. The model refinement is important when some
744performance constraints are violated. This requires the per-
745formance analysis of runtime model. Our runtime model per-
746formance analysis is based on the timing and schedulability
747analysis for real-time systems, which are specific to the
748scheduling algorithms. In particular, the assignments of
749scheduler configuration parameters, such as scheduling policy,
750task invocation mechanism, and the priority for each task, are
751iteratively refined to yield a feasible schedule of the system.
752Task timing constraints and device resource constraints are
753verified based on the analysis of the task set on each device.
754The analysis reveals the resource consumption on a single
755device and link, and the responsiveness of individual tasks.
756The analysis results are used for further model refinements.
757The implementations of AIRES analyses are tied to the
758modeling environment, which is similar to the tools using
759the tightly-coupled approach. However, an analysis in AIRES
760is implemented based only on its own defined metamodel
761and with interfaces interacting with its host modeling envi-
762ronment. The interfaces allow the analyses to directly access
763the model data in the modeling environment, thus improving
764performance over the loosely-coupled approach. Such
765interfaces can be implemented by adding wrappers to the
766existing analyses. GME provides three interfaces to integrate
767customizable algorithms: add-ons, plug-ins, and interpreters.
768The add-ons and plug-ins are based on the OCL (Object
769Constraint Language), and are suitable for simple constraint
770checks. Our interface implementations use the interpreter
771mechanism that can perform complex operations. The
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772 interpreters are built as dynamic link libraries. Specifically,
773 our interpreters are built with the GME Builder Object
774 Network (BON) interfaces. Upon its invocation, the inter-
775 preter creates a data structure that contains a mirror object
776 for every modeling element in the model. Other operations
777 in the interpreter can then access the full model through the
778 data structure and its methods.

779 AIRES implements a set of algorithms with the defined

780 metamodels and the decoupled analyses to support

781 automatic, rapid ECSW development. These analyses focus

782 on timing and resource guarantees, and include the algo-

783 rithms for runtime architecture model generation, the

784 algorithms for timing and schedulability analyses, and the
785 algorithm for code generation and profiling on a virtual

786 platform. Fig. 6 shows the overall process with modeling

787 data and analysis algorithm implemented in AIRES.

788 A. Analysis Integration for the Runtime Architecture
789 Model Generation
790 The runtime architecture model generation creates a

791 runtime architecture model using a software structure

792model and a platform configuration model. All the models

793are defined using the AIRES domain metamodels. The

794generation must identify which processor or network link

795in the platform model to execute which software compo-
796nent or transfer which data in the software structure model,

797group the software components to form tasks for execution,

798and assign tasks’ properties for an operating system to

799schedule them at runtime. Analyses are required during

800such a generation to ensure the workload on each processor

801or communication link within its capacity, and the system-

802level timing constraints can be met with the generated

803runtime architecture. Given all design artifacts are cap-
804tured in models, the generation implemented in AIRES can

805be considered as an analysis-guided model transformation,

806which is overviewed in [14], [31].

807The generation is implemented as a sequence of model

808transformation steps, as illustrated by the example in

809Fig. 7. The analysis algorithms used in the generation

810include the branch-and-bound (B&B) with forward check-

811ing [32] for component allocation, rate similarity with
812component sequencing for task formation [31], [33], and

Fig. 6. The integration framework for system-level verification of ECSW.

Fig. 7. The runtime architecture model generation.
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813 timing & priority assignments for dependent tasks using
814 simulated annealing with the latest task completion time

815 [34]. The B&B with forward-checking algorithm assigns the

816 software components to a process one at a time, followed by

817 the analysis of the resource utilizations and estimation of an

818 optimal assignment for the remaining the components. The

819 algorithm is implemented based on its metamodel mapped

820 to the AIRES software structure metamodel, with the

821 processor information from the platform configuration
822 model. The results are reflected as the values assigned for

823 the CPU reference of each SWComponent in the software

824 structure model. In addition, some classic analysis-based

825 allocation methods, including first-fit, load-balance, com-

826 munication minimizing with k-way min-cut, have been

827 implemented in the same way in AIRES to meet different

828 needs in various designs. Similarly, the task formation uses

829 the analysis of the invocation rates captured in the software
830 structure model, and group them with an analysis that

831 minimizes the potential overheads introduced by indirectly

832 dependent components. The analyses are implemented

833 based on their metamodels mapped to the software

834 structure metamodel and the runtime architecture meta-

835 model. The results are reflected as the values assigned for

836 the SWComponent and their SequenceNum of the Task. The

837 final timing and priority assignments are determined by the
838 timing-assignment step, which uses analyses with iterative

839 priority assignment in [34]. The analyses are implemented

840 based on their metamodels mapped to the runtime

841 architecture metamodel, and the results are reflected as

842 the values assigned to the attributes of Task. All these

843 analyses are implemented to interface with the GME

844 modeling environment directly to access and modify the

845 model data, and are invoked one after another automati-
846 cally during the runtime architecture model generation

847 using the invocation methods provided by the GME.

848 B. Schedulability Analysis for Design Refinement
849 Schedulability analysis is essential to the verification of

850 end-to-end timing constraints and resource usages after

851 the generation of a runtime architecture model. Although

852 these constraints are considered during the generation, the
853 decisions, such as priority assignments and task formation,

854 are made for each individual processor. The design can also

855 be improved with refinements, such as dependency

856 elimination to achieve better scalability and performance.

857 The schedulablity analysis integrated in AIRES is based

858 on a classical worst-case response time analysis [35]. It uses

859 the worst-case task execution times, identifies the worst-

860 case instant when a task starts, and creates a busy period to
861 compute the response time for each task. With the AIRES

862 runtime architecture model capturing distributed ECSW,

863 the algorithm has been extended to a holistic end-to-end

864 analysis, including the messages passed through the net-

865 work. The computed end-to-end response time for each

866 task chain is compared with its timing constraints, and the

867 design passes the analysis if the response time of every task

868chain is less than the chain’s constraint. The implementation
869of schedulability analysis is based on a metamodel mapping

870to the AIRES runtime architecture metamodel, and is

871integrated in the GME modeling environment using the

872GME interface for invoking external functions. Although the

873schedulability analysis implemented in AIRES is based on

874static worst-case execution times of software components,

875the AIRES framework allows a more powerful analysis algo-

876rithm that computes the execution times resulting from the
877dynamic behaviors to be integrated, as such an algorithm can

878trace the software behavior from the task to the software

879components to its own behavior.

880Scheduling the task chains with dependencies in a dis-

881tributed environment is difficult because of the complexity

882introduced by the dependencies. Such task dependencies

883in a runtime architecture model come from the transac-

884tions in a software structure model, which in turn come
885from control loops. Eliminating task dependencies, while

886keeping the data consistency, can improve the flexibility of

887system configuration to include new software when the

888system evolves, and simplify the design and scheduling by

889applying a classical analysis for independent tasks. AIRES

890introduces a shared buffer approach, along with the

891method for splitting dependent tasks into buffer polling

892and data computation segment with their new invocation
893frequencies, to eliminate the dependencies while preserv-

894ing data consistency and timing constraints. Analyses are

895used to determine parameters, such as buffer size and

896polling task frequency. Figs. 8 and 9 show how a set of

897dependent tasks are transformed to an independent set of

898tasks polling the shared buffers at predefined intervals.

899The task graph of the original system contains 4 tasks,

900where T3 depends on the outputs of both T1 and T2, and T4

901depends on the output from T3 as in Fig. 8. The system can

902be transformed into a system with independent tasks with

903the shared buffer approach. The transformed system

904contains the original 4 tasks and additional 3 shared buf-

905fers. The polling tasks with invocation rates, r3 and r4 are

906assigned to T3 and T4, respectively, such that the rates are

907faster enough for successor tasks preserve the correct data

908while the timing constraints, D1 is satisfied. (see [36] for
909more details). The methods and analyses thereof are

910implemented independently and then integrated using the

Fig. 8. An example set of dependent tasks.
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911 AIRES framework. The integration is done by mapping the

912 methods’ internal data structures to the AIRES runtime

913 architecture model and the interfaces of GME for external
914 functions.

915 C. Integration of Profiling Using a Virtual Platform
916 The analyses used in AIRES are traditional worst-case

917 analyses. While worst-case analyses can provide absolute

918 guarantees, they usually yield pessimistic results and low
919 utilization of resources. However, the analysis does not

920 provide the information at run-time, such as resource uti-

921 lization or response time for a specific period that may be

922 useful for the fine-tuning of a system. An efficient devel-

923 opment of a system, however, still requires performance

924 profiling of a system at run-time. To avoid the pessimistic

925 results, it is critical to capture the non-functional character-

926 istics, such as timing and resource usage. Since it is extremely
927 difficult to do this mathematically, the simulation-based

928 profiling is required for such capturing dynamic behaviors of

929 a system and AIRES integrates a simulation-based profiling

930 on a virtual platform to obtain realistic values for the ECSW

931 execution. To our knowledge, there is no previous or ongoing

932 research on systematic platform performance modeling for

933 system analysis and platform assessment.

934 AIRES uses functionality-correct and timing-accurate
935 software to realize the hardware components of proces-

936 sors, memory subsystems, buses, etc. The software that

937 performs the functionality of a complete hardware con-

938 figuration is considered as a virtual platform and can be

939 used for accurate simulations. With the AIRES framework,

940 a virtual platform is constructed with existing components

941 in the hardware component repository according to the

942 platform configuration model.
943 Similarly, the supporting software, such as operating

944 systems and network protocols, can also be configured

945 using the software components in the repository and the

946 board support packages (BSPs) for different processors.

947 The virtual platform corresponding to the platform

948 configuration model can then be simulated using the VaST

949 systemVa cycle-accurate, highly-configurable simulation

950tool [37]. The VaST system runs as a separate tool, com-
951municating with AIRES through the platform configuration

952model. To perform simulation on a virtual platform so that

953the runtime architecture model can be profiled, AIRES

954integrates a code generator to automatically create exe-

955cutable code of the designed runtime architecture model on

956the specified platform configuration. The method used in

957the generator ensures that only necessary code is generated.

958Fig. 10 shows an example of code generation from a given
959runtime architecture model.

960The generated code with its virtual platform can then be

961simulated on the VaST system. To measure the runtime

962information of interest, such as execution times and sched-

963uling overheads, AIRES uses a separate tool for system

964monitoring. The system monitoring tool stores traces and

965processes the data. It communicates only with the virtual

966platform, but not directly with AIRES. Details on this virtual
967platform and its integration with AIRES can be found in [38].

968V. CASE STUDY: ELECTRICAL THROTTLE
969CONTROL SOFTWARE DEVELOPMENT

970To illustrate how the techniques implemented in the AIRES
971toolkit support rapid ECSW development, we present a case

972study of using AIRES for electrical throttle control (ETC)

973software development. To simplify the discussion, the real

974ETC has been sanitized with only the components, proper-

975ties, and their interactions sufficient to show the modeling

976framework and the integrated collaborative analyses.

977The development of the ETC starts from the control

978design, which focuses on capturing the functional beha-
979viors. The ECSW development starts after the completion

980of the control design, and transforms the designed controls

981into a set of transactions, each of which realizes some

982control functions and consists of software components.

Fig. 9. Tasks with shared buffers after dependencies are eliminated.

Fig. 10. An example of automatic code generation.
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983 Fig. 11 shows the transactions and their interactions in

984 the ETC software, with the components listed in Table 2.

985 Fig. 12 shows the monitor transaction model trans_monitor
986 in AIRES, which contains the event port connections

987 between input_proc and actuator_proc and between
988 actuator_proc and merg. All other connections are made

989 through data ports, and a transaction communicates with

990 other transactions through the input data port InMagsig
991 and the output data port OutStatusData. The behavior in

992 each software component is linked to a control block in a

993 different tool. As one can be see, the software model is

994 specified using the AIRES software structure metamodel.

995 The platform executing the ETC is assumed to have
996 two Electronic Control Units (ECUs) connected by a

997 communication bus, as shown in Fig. 13. The platform

998 model is captured using the AIRES platform configuration

999 metamodel.

1000So far, only the platform-independent software model of

1001the ETC and the platform configuration model are captured.

1002The runtime architecture generation needs to be performed
1003to assign the software components in the transaction onto

1004the ECUs in the platform and to form the tasks or OS

1005threads. This is achieved by a plug-in program that integrates

1006the required, individually-implemented analysis algorithms.

1007Table 3 shows the generated result from the application of

1008the analysis of a communication-minimization allocation

1009policy. The seq # column indicates the execution sequence of

1010components in a task.
1011The resultant runtime architecture model is shown in

1012Fig. 14, with one of the tasks Task_servo_ECU1 shown in

Fig. 11. Transactions in the ETC.

Table 2 The Definitions of Transactions

Fig. 12. The trans_monitor model.

Fig. 13. The platform configuration model for the ETC.

Table 3 The Generated Runtime Architecture Results
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1013 Fig. 15. The components in a task are sequenced, and the

1014 ECU running the task is indicated. The thus-generated tasks

1015 are also triggered with the timing signals each of which is
1016 automatically assigned a trigger port that connects to a

1017 timing source. The resultant runtime architecture model is

1018 specified using the AIRES runtime architecture metamodel.

1019 With the runtime architecture mdoel generated, one can

1020 perform analyses, such as timing and schedulability analyses,

1021 task refinement with shared buffers, and task profiling on a

1022 virtual platform. The AIRES toolkit implements common

1023 analyses, including rate-monotonic scheduling, deadline-
1024 monotonic scheduling, and manually-assigned priority

1025 scheduling. For dependent tasks in a task chain, we have

1026 also implemented algorithms, such as deadline distribution

1027 and end-to-end timing analysis. Table 4 shows the timing

1028 and schedulability analyses results under the rate-monotonic

1029 scheduling policy. In this table, prio represents task priority,

1030 P task period, D deadline, wcet the worst-case execution

1031 time, wcrt the worst-case response time, and U the workload
1032 introduced to the ECU utilization. The time is represented in

1033 milli-seconds, and a higher priority is represented by a larger

1034 number.

1035 Although task_servo_ECU2 depends on task_servo_
1036 ECU1, the analysis shows that the worst-case response

1037time of task_servo_ECU2 is 0.8, implying that the task is

1038invoked independently of task_servo_ECU1. To account for

1039the dependency, we ran the deadline distribution, followed

1040by the end-to-end timing analysis, which yields the

1041deadline for task_servo_ECU1 to be 1.28, and the offset

1042of task_servo_ECU2 to be 1.4. As a result, the new worst-

1043case response time for task_servo_ECU2 becomes 2.2. In
1044case the system is not schedulable, the AIRES toolkit pro-

1045vides options to automatically refine the design by adjust-

1046ing either task priorities, or task periods, or separation of

1047dependent tasks [33], [34], [36].

1048As this case study shows, the AIRES toolkit allows

1049integration of collaborative analyses at different design

1050stages and supports design automation. The model-based

1051approach and analyses verify the generated results at every
1052step before proceeding to the next step, ensuring the cor-

1053rect design generated at every stage, thus supporting rapid

1054development of the ETC and avoiding unnecessary inter-

1055actions between later and earlier design stages.

1056VI. CONCLUSION

1057Rapid development of correct ECSW for large embedded

1058systems, such as avionics or automotive controls, is

1059becoming very challenging as the software for such systems
1060becomes increasingly complex and requires multi-discipline

1061and multi-group collaboration. Model-based methodologies,

1062which provide high-level abstractions and allow system-level

1063analyses, have been widely used to address this challenge.

1064For a model-based methodology, automation and collabora-

1065tive analyses are key to rapid and correct ECSW develop-

1066ment. As traditional analysis methods are designed and

1067implemented independently of the ECSW development pro-
1068cess with their own modeling concepts, the main challenge

1069in applying these techniques is the integration of various

1070analyses in a model-based development process such that

1071these analyses collaborate to make design choices in the

1072automation. Moreover, many analysis methods require

1073accurate knowledge of a complete design, making it difficult

1074to apply them at an early design stage where the design

1075automation starts. We meet this challenge by developing a
1076well-defined framework with domain-specific modeling and

1077analysis interfacing mechanisms. Specifically, we present

1078such a framework that uses the domain-specific modeling

1079language for an integrated data model to support the

1080collaboration between different analysis methods. With such

1081a modeling language, analysis methods are implemented

1082using a decoupled approach with the interfaces to manage

Fig. 14. The generated ETC runtime architecture model.

Table 4 Schedulability Analysis Results

Fig. 15. The generated Task_servo_ECU1 task.
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1083 their invocations and executions. We have implemented
1084 such a framework in the AIRES toolkit to demonstrate its
1085 ability to support rapid and correct ECSW development via
1086 analysis-based design automation. To implement the AIRES

1087 framework, we chose the Generic Modeling Environment
1088 (GME) tool as the modeling environment because it
1089 supports specification of user-defined DSMLs and plug-in
1090 of individually-implemented analysis algorithms, which are
1091 essential for the implementation of the AIRES framework.
1092 The analysis methods integrated in the AIRES toolkit

1093 include those for software component allocation, task

1094formation, and timing and priority assignments used in the
1095runtime architecture model generation, those for schedul-
1096ability and timing analyses used in design refinement, and
1097the profiling methods based on a virtual platform for mea-

1098suring dynamic runtime software. All of these analysis
1099methods, implemented and integrated, work collaboratively
1100via the data captured by the corresponding metamodels to
1101support design automation in the AIRES toolkit. With the
1102rigorous analyses applied to each step of the process and the
1103automation, the AIRES toolkit is shown to facilitate rapid

1104and correct ECSW development. h
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