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1. INTRODUCTION

An increasing number of safety- and security-critical applications, such as situ-
ation monitoring and facility surveillance, rely on a network of small, inexpen-
sive, battery-powered sensor devices that have limited energy supplies, stor-
age, computation, and communication capacities. Such a sensor network can
be used for data acquisition for various applications ranging from physical in-
frastructure to habitat monitoring. A sensor network is usually built with a
large number (thousands or even millions) of resource-limited sensor nodes,
each capable of, for example, reading temperature or detecting (part of) an
object moving nearby. Sensors cooperate and coordinate with one another to
accomplish a higher-level sensing mission, such as accurately measuring and
reporting the characteristics of a moving object.

Many applications exist that require each sensor node to be location-aware;
for example, each sensor node must be uniquely identified by its location esti-
mate for geographic routing [Jain et al. 2001] in which a source or an interme-
diate sensor node forwards a packet to one of its neighbors that is closest to the
packet’s destination. To meet this requirement, various localization schemes
[Bulusu et al. 2000; Nicolescu and Nath 2001; He et al. 2003; Hu and Evans
2004; Pathirana et al. 2005; Priyantha et al. 2005; Shang et al. 2003; Ji and
Zha 2004; Costa et al. 2005] have been proposed for sensors to determine, with
reasonable accuracy, their relative locations within the network coverage area.
All these schemes employ location-information-equipped anchors that provide
reference locations, and sensor nodes determine their relative locations with
respect to the anchors’ reference locations. Accordingly, they can successfully
accomplish their application/mission only if all participants are benign and
strictly follow the localization protocol.

However, sensor networks are usually deployed in a hostile, unattended,
and untrusted environment, and hence, they face various critical security at-
tacks from (malicious) compromised nodes. Specifically, an adversary may at-
tempt to fail the localization service by advertising false locations, causing
errors in distance measurements, or introducing bogus anchors. Despite its
importance, the problem of determining sensor nodes’ locations in the pres-
ence of attacks has not yet been addressed effectively. Existing solutions ei-
ther rely on traditional authentication mechanisms [Hu and Evans 2004]
or simply use anchor-supplied information [Lazos and Poovendran 2004; Li
et al. 2005; Liu et al. 2005], but they fail to completely safeguard the loca-
tion service due mainly to the noncryptographic nature of attacks, the require-
ment of unrealistically-powerful anchors, and/or inadequate use of network
characteristics.

In this article, we address the problem of “attack-tolerance” in the design of
a localization protocol. We consider a large-scale sensor network equipped with
only a very small number of less-capable anchors than assumed in the exist-
ing schemes, which makes the problem more realistic but challenging. We take
an approach to building an attack-tolerant localization protocol, called verifi-
cation for iterative localization (VeIL). This approach is motivated by the fact
that a sensor network inherently relies on collective assurance among multiple
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low-cost sensors to execute high-precision missions, where attack-tolerance is
one of such missions.

The heart of VeIL is the use of spatiotemporal correlation among adjacent
nodes in the development of anomaly-based attack detection. In essence, VeIL
is a cooperative intrusion-detection system tailored to localization, and consists
of

—a profile manager that captures, and adaptively tracks, the profile of normal
localization behavior; and

—an attack detector that detects and locates attacks by iteratively verifying
location announcements via their comparison against the profiled normal
profile.

These two building blocks together achieve high-level tolerance to attacks by
rejecting any information that exhibits a noticeable deviation from the normal
profile, thereby forcing the attacker to weaken the attack strength so as not
to be caught, which, in turn, makes it very unlikely for the attacker to fail
the localization service. Moreover, our security analysis and simulation results
demonstrate the effectiveness and robustness of VeIL in defeating many criti-
cal attacks while incurring the processing overhead amenable to resource-poor
sensor nodes, and no additional communication overhead.

The rest of the paper is organized as follows. Section 2 reviews the back-
ground and related work. Section 3 describes the proposed protocol, VeIL.
Section 4 analyzes the security of VeIL while Section 5 evaluates its perfor-
mance via simulation. Finally, the article concludes with Section 6.

2. BACKGROUND AND RELATED WORK

This section summarizes existing localization methods and describes known
attacks on the localization service as well as their countermeasures.

2.1 Localization Algorithms

The localization problem in sensor networks (deployed in a non-malicious en-
vironment) is to assign locations to sensors consistently with measured or es-
timated distances. Techniques for estimating the distance between a pair of
communicating nodes are typically based on: (a) received signal strength (RSS)
that can be translated into a distance estimate; (b) time of arrival (TOA) and
time difference of arrival (TDOA) that use the signal propagation time; and
(c) angle of arrival (AOA) that estimates the relative angle between nodes.
These techniques are then combined with various signaling methods (e.g., based
on RF, ultrasound, or infrared signals) [Youssef and Agrawala 2005; Borriello
et al. 2005]. Direct RSS-to-distance conversion, currently supported by motes
[Crossbow 2005], becomes inaccurate as the distance increases due mainly to
nonuniform signal propagation characteristics and fading/interference effects.
To mitigate this estimation error, one may apply averaging or smoothing as in
Savarese et al. [2002] and Whitehouse and Culler [2002].

Other than these ranging techniques, range-free schemes have also been
proposed to provide cost-effective, coarse-grained localization. In Bulusu et al.
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[2000], the location of a sensor is determined as the center of all the anchors it
hears. In He et al. [2003], each sensor forms virtual triangular regions among
the anchors of interest, determines in which regions it resides based on its
neighbors’ measurements, and finally calculates the overlap of those regions.
These schemes typically require very high anchor density and long anchors’
radio ranges as each sensor has to hear from as many anchors as possible.

It is preferable to provide localization capability even when there are only
a very small number of anchors in the network. In the hop-count-based lo-
calization [Nicolescu and Nath 2001], each sensor determines the minimum
hop-counts to anchors by running a distance vector algorithm, and computes
physical distances by multiplying them to the average per-hop distance. This
scheme, unfortunately, yields poor localization accuracy. Other approaches [Hu
and Evans 2004; Pathirana et al. 2005; Priyantha et al. 2005] employ mobile
anchors to meet the requirements of both low anchor density and high accuracy
of distance estimation, but suffer a large latency.

The highest localization accuracy (in terms of minimizing the difference
between assigned and real locations) can be achieved by utilizing multi-
dimensional scaling (MDS), widely used in mathematical psychology, eco-
nomics, sociology and machine learning communities for modeling proximity
relations. MDS-MAP [Shang et al. 2003] constructs network-wide connectiv-
ity information in the form of a matrix of all possible distance estimates
(in hop-counts), and then applies MDS to derive sensors’ locations that fit
well those estimated distances. However, it must rely on a central process-
ing node that collects all distance estimates and computes location assign-
ments, significantly degrading scalability due mainly to its high communication
overhead.

The MDS technique is flexible enough to find consistent location assignments
even when a limited set of distance estimates are available. In such a case, one
may apply various iterative MDS techniques, for example, those reported in
[Basalaj 2001]. Ji and Zha [2004] took this approach to develop a distributed
localization scheme by applying MDS iteratively to build a local map of locations
for each group of adjacent sensors and then combining these maps together to
obtain a global location map. This scheme requires the computation of eigende-
composition per iteration that takes O(n3) time for a group of n sensors. Costa
et al. [2005, 2006] also developed a distributed, iterative MDS scheme that
(a) relies solely on distance measurements between neighboring sensors and
(b) is computationally less demanding than that of Ji and Zha [2004].

2.2 Security Attacks

Attacks on a sensor network can be classified as: (a) physical attacks on sen-
sor devices (e.g., destroying, capturing, reverse-engineering, reprogramming
and/or cloning sensors), (b) service-disruption attacks on routing, localization,
and time synchronization, (c) data attacks (e.g., traffic capture, replaying and
spoofing), (d) resource-consumption and denial-of-service (DoS) attacks that
diminish or exhaust the sensors’ capacity/energy to perform their normal func-
tion, and (e) sybil attacks [Douceur 2002] by which a single malicious sensor
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device claims/presents multiple IDs (locations) to control a substantial fraction
of the ID space which, in turn, makes it easier to mount other attacks. These
attacks are generally coupled together; for example, a small number of com-
promised sensors created via a physical attack may serve as zombies for many
serious attacks, such as initiating DoS or sybil attacks, disrupting network ser-
vices, and so on. Tamper-proofing techniques, such as those of Park and Shin
[2005], can be used to detect/reject compromised sensors.

In this article, we focus on localization-specific attacks. Possible attacks [Hu
and Evans 2004; Li et al. 2005; Capkun and Hubaux 2004] on the localization
service include:

—sensor displacement or removal;

—distance enlargement/reduction, such as via jamming, adjustment of trans-
mission power, or placement of obstacles interfering with direct paths;

—announcement of false locations, distances or hop-counts;

—message modification or replaying;

—wormhole attacks that create hidden links between remote (compromised)
sensors to be used for replaying messages or altering distance measurements
or hop-counts; and

—deployment of bogus anchors that propagate false reference location infor-
mation.

All these attacks try to propagate wrong information about locations of, or dis-
tances to, the sensors (or anchors) under the adversary’s control in an attempt
to disrupt the localization service.

2.3 Countermeasures against Attacks on Localization Service

As mentioned earlier, determining sensors’ locations in an untrusted environ-
ment, is a challenging problem that has not yet been fully studied. Like other
security applications, one may want to authenticate all the messages to pro-
tect the network against attacks (targeting at data traffic). For this purpose,
as discussed in Hu and Evans [2004], one may attempt to use digital signa-
tures or μTesla [Perrig et al. 2001] together with key predeployment schemes
[Eschenauer and Gligor 2002; Chan et al. 2003]. However, the former suffers a
high computational overhead while the latter suffers a large authentication
latency, and, more importantly, many of the above-mentioned localization-
targeted attacks are noncryptographic in nature, making these authentication-
based solutions highly unlikely to succeed.

The method proposed by Lazos and Poovendran [2004] is conceptually simi-
lar to He et al. [2003] in that each sensor hears directly from multiple anchors,
identifies a region it resides in, and determines its location as the center of the
region. In this scheme, the security against chosen attacks is preserved if the
anchors are trusted and cannot be compromised by the adversary. However,
its main drawback is the requirement of a large number of specialized an-
chors equipped with directional/sectored antennae and capable of high power
transmission.
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Recently, statistical approaches have been proposed [Li et al. 2005; Liu
et al. 2005]. Li et al. [2005] presented an attack-tolerance mechanism for
triangulation-based localization in which each sensor applies the least median
squares algorithm on the distance estimates to anchors in order to mitigate
the effect of attacks. Liu et al. [2005] also use a collection of anchors’ reference
locations associated with estimated distances, and apply the mean square error
criterion to identify and discard malicious location references. Unfortunately,
these methods invite attacks from relaying sensors and require a significant
amount of redundant location/distance information from anchors, incurring a
high network overhead to achieve a reasonable degree of robustness against
attacks. These drawbacks mainly come from the fact that they do not fully
extract/utilize the available information and ignore the relationship among
sensors’ locations.

Although not directly applicable to localization, Sastry et al. [2003] and
Waters and Felten [2003] developed algorithms to verify the distance or location
claims of a node (e.g., to ensure the node to be within a certain region). They rely
on a challenge-response protocol that measures the round-trip time between a
verifier and the node, and then translate the elapsed time into distance. An-
other way [Capkun and Hubaux 2004] is to check if the node’s location falls
within a triangular region formed by three trusted verifiers. These algorithms
use centralized trusted servers, and hence, can be used as local defense mech-
anisms against distance-reduction attacks, but not as global, general-purpose
solutions.

3. THE PROPOSED PROTOCOL

It is almost impossible to completely prevent all possible attacks in any form
of systems including sensor networks, so we should instead make a system
“attack-tolerant.” To achieve this goal, we propose a localization protocol, called
verification for iterative localization (VeIL), that

(1) tolerates attacks (and faults) by malicious (misbehaving) devices,

(2) incurs a small processing overhead without any communication overhead,

(3) preserves compatibility with other services like the authentication frame-
work, and

(4) achieves high-localization accuracy and efficiency.

Described below are the network and threat models, the proposed countermea-
sures, the underlying localization algorithm, and the details of VeIL.

3.1 The Network Model

The sensor network under consideration consists of sparsely-deployed, less-
capable, static anchor nodes and a large number of sensor devices.1 This is

1Note this relaxation significantly lowers the deployment cost because anchor nodes do not nec-

essarily cover the entire network area (e.g., via the high-power transmission). Note also that the

more anchors a network is equipped with, the better performance VeIL achieves. See Section 4.3

for the effects of mobile anchors on VeIL.
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a realistic deployment scenario in that the sensor network is inherently an
infrastructure-less network in which sensors autonomously organize them-
selves into a connected structure, and hence, it is desirable to minimize the
dependency of localization on infrastructure nodes, such as anchors. In this en-
vironment, it is not uncommon that a sensor cannot directly hear from any of the
anchors, necessitating collective assurances among sensors to reach network-
wide consistent location assignments.

We choose the MDS-based iterative localization algorithm [Ji and Zha 2004;
Costa et al. 2005] as our underlying localization scheme in which each and
every sensor keeps refining its location estimates based on location announce-
ments from, and distance measurements with, its direct neighbors. To this end,
two nodes within each other’s transmission range establish a mutual neigh-
borhood relationship. Any of the ranging techniques (RSS, TOA, TDOA, and
AOA) described earlier can be used to estimate distances between direct neigh-
bors. Sensors may optionally use location verification protocols [Sastry et al.
2003; Waters and Felten 2003] to ensure their neighbors are really within their
communication range.

3.2 The Threat Model

Anchors are assumed to be trusted entities, that is, the reference locations
provided by them are trustworthy and cannot be spoofed by the adversary.
Accordingly, each sensor can authenticate the reference locations to confirm
that they are indeed from genuine anchors. Note, however, that VeIL is resilient
against attacks from compromised anchors. The effects of malicious anchors will
be discussed in Section 4.3.

By contrast, sensors (regardless of their physical proximity to the an-
chors) can be physically compromised or tampered with by the adversary
at any time. Therefore, the localization takes place in the presence of mali-
cious/compromised devices (the number of which is less than a majority2 of
that of network nodes in a given area, either the entire network or the local
region) disguised as normal participants who will do their best to disrupt the
localization service by mounting the attacks described in Section 2.2. Note that
no algorithm can succeed if a majority of nodes lie about their locations, and
hence, this assumption does not limit the effectiveness of VeIL.

3.3 The Proposed Approach

To maximize both attack-tolerance and localization-accuracy, we exploit the
spatiotemporal correlation among neighboring nodes’ locations to determine
if a malicious node claims/announces false locations. Basically, the adversary
must be aggressive enough to disrupt the localization service. However, if a
malicious device advertises arbitrary locations that deviate significantly from
what the protocol expects, its neighbors, if a majority of them are well-behaving,
would easily detect the discrepancy via cooperative location validation to black-
list/block the misbehaving sensor from participating in the localization service.

2A simple, or two-thirds majority in case of Byzantine faults.
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So, the malicious sensor must risk getting caught if its falsification deviates
too much from its normal location because its unusual distances to its neigh-
bors make it conspicuous during the localization process. On the other hand,
the false locations with small perturbations wouldn’t do any harm, since the
effects of small perturbations would easily be canceled out.

We take an anomaly detection approach [Zhang and Lee 2000; Mishra et al.
2004] to realize this idea. That is, each sensor maintains, and adaptively up-
dates, a baseline profile of the normal localization behavior based on past an-
nouncements of all its neighbors. Then, upon reception of new announcements,
it compares them with this normal profile, and if a noticeable deviation is
found, decides on the presence of a possibly adversarial behavior and takes
an action to locate the malicious or misbehaving sensor. Consequently, VeIL
consists of the following two building blocks that closely interact with each
other:

—a profile manager (described in Section 3.5) that constructs and maintains
the compact profile of normal localization behavior; and

—an attack detector (described in Section 3.6) that detects, locates, and re-
jects false location announcements, as well as updates the normal profile.

VeIL is essentially a cooperative intrusion detection mechanism tailored to
localization, in which each and every sensor checks if the location/distance an-
nouncement from each of its neighbors is “abnormal,” and, if so, removes the
sensor from the rest of the localization process. Unlike the other schemes that
rely solely on anchors, VeIL uses peer sensors as active information sources
that provide distances information and incremental location updates, thereby
maximizing the attack-detection capability.

3.4 The Underlying Localization Algorithm

Let the index s refer to the sensor performing localization, and ns denote the
number of s’s direct (one-hop) neighbors. The (local) indices, i = 1, . . . , ns, are
assigned to s’s neighbors, each of which may or may not be an anchor node.
There exists one-to-one correspondence between the index and ID of a sensor.
The distance estimate between s and i is denoted by δs,i. Also, let ws,i denote a
weight assigned between s and i, the value of which is either binary (1 if δs,i is
known; 0 otherwise) [Ji and Zha 2004] or adaptively chosen [Costa et al. 2006].
We define the individual cost between s and i in the kth iteration as

cs,i(k) = ws,i [ δs,i − ‖xs(k) − xi(k)‖ ]2 (1)

where xs(k) and xi(k) are p × 1 coordinate vectors (p = 2 or 3 for two- or
three-dimensional coordinates, respectively) representing estimated locations
of s and i at iteration k (≥0), respectively, and ‖x‖ denotes the Euclidean norm
of the vector x. Then, the local cost of sensor s, cs,0(k), at iteration k is computed
by summing up all individual costs:

cs,0(k) =
ns∑

i=1

cs,i(k). (2)
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The localization algorithm searches s’s true location by iteratively minimiz-
ing cs,0(k). The entire localization process works as follows.

—Initially, all sensors in the network randomly choose their initial location
estimates while the anchors use their own fixed reference locations, that is,
xs(0) and xi(0) are the initial locations of s and i.

—At iteration k (≥0), s refines its location estimate, xs(k + 1), by processing
{δs,i, xi(k)}ns

i=1 with the updated formula in Bulusu et al. [2000], Ji and Zha
[2004] and Costa et al. [2006], then exchanges the new locations with all its
neighbors.

—s terminates the algorithm if the location estimate gets stabilized (i.e.,
cs,0(k) − cs,0(k + 1) < ε); otherwise, repeat the process at the next iteration.

The communication overhead incurred by exchanging location estimates is
small because each sensor may simply broadcast this information as part of
the beaconing process (that periodically exchanges BEACON packets to refresh
sensors’ neighbor-lists). Also, note that beaconing is one of the basic operations
a sensor must execute throughout its lifetime. Therefore, s may keep on fine-
tuning its location estimate after terminating the above algorithm based on
the BEACON packets exchanged. Our proposed protocol can be used to verify
BEACON packets, thus serving as an online guard mechanism against attacks
targeting at sensors’ locations, such as sybil attacks.

3.5 Construction of Normal Profiles

We want to construct a profile of s for the normal localization behavior, based
solely on the information collected by s during the localization. That is, in the kth

iteration, s has been processing {xi(t)}k
t=1 using Eq. (1) to compute k ×1 vectors,

cs,i(k) = [ cs,i(k), . . . , cs,i(1) ]T , 1 ≤ i ≤ ns. (3)

Then, a k × 1 local cost vector of s, cs,0(k), is given by

cs,0(k) = [ cs,0(k), . . . , cs,0(1) ]T =
ns∑

i=1

cs,i(k). (4)

Figure 1 plots typical cs,i(k) values when i = 1, . . . ,12 and k = 30. From this
figure, we observe the following two facts:

—each cs,i(k) exhibits strong temporal correlation; and

—cs,0(k) is strictly decreasing as the iteration progresses, due to the spatial
correlation among neighbors.

We can, therefore, derive as compact a description of the normal profile as
possible by removing this redundancy. We describe below how to exploit this
property optimally (in the sense of achieving the highest attack-resolution, i.e.,
if any other scheme can resolve an attack, so can VeIL).

3.5.1 Problem Formulation. Our problem is cast into the design of an adap-
tive transversal filter bank (of s) that consists of ns filters, each with M taps,
thus bookkeeping the localization history of all s’s neighbors for the past M
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Fig. 1. Example plot of cs,i(k) for 1 ≤ i ≤ 12 and k = 30.

iterations. We first formulate a least squares prediction problem as follows:

ĉs,1(t) = hT
s,1(k) cs,1(t − 1; M )

· · ·
ĉs,ns (t) = hT

s,ns
(k) cs,ns (t − 1; M )

, M < t ≤ k, (5)

where k ≥ M + 1 and hs,i(k) is the M × 1 filter-weight vector for neighbor i at
iteration k defined by

hs,i(k) = [ hs,i1(k), . . . , hs,iM (k) ]T (6)

and cs,i(t − 1; M ) is the M × 1 past individual cost vector for i given by

cs,i(t − 1; M ) = [ cs,i(t − 1), . . . , cs,i(t − M ) ]T . (7)

Our objective is to find, at iteration k, estimators {ĥs,i(k)}ns
i=1, each of which

minimizes the sum of squared errors (SSE):

SSEs,i(k) =
k∑

t=M+1

λk−t | cs,i(t) − hT
s,i(k)cs,i(t − 1; M ) |2 (8)

where λ (≤1) is an exponential forgetting factor. The smaller the value of λ, the
higher the weight on the more recent information.

3.5.2 Recursive Least Squares Algorithm. We apply the method of recur-
sive least squares (RLS) [Haykin 1991] to develop a recursive algorithm that
updates the filter-weight vectors {ĥs,i(k)}ns

i=1 upon reception of {xi(k)}ns
i=1 (trans-

lated into {cs,i(k)}ns
i=1), given {ĥs,i(k−1)}ns

i=1, where k ≥ M +1. The RLS algorithm
first calculates, for each i, a priori prediction error based on old filter-weight
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Fig. 2. The VeIL architecture.

estimates at iteration k, as follows:

αs,i(k) = cs,i(k) − ĥT
s,i(k − 1)cs,i(k − 1; M ). (9)

The filter-weight vector is then updated as

ĥs,i(k) = ĥs,i(k − 1) + αs,i(k) gs,i(k) (10)

where ĥs,i(M ) = 0 and an M × 1 gain vector gs,i(k) is computed by

gs,i(k) = Ps,i(k − 1)cs,i(k − 1; M )

λ + cT
s,i(k − 1; M )Ps,i(k − 1)cs,i(k − 1; M )

(11)

Ps,i(k) is an M × M inverse correlation matrix, initialized to

Ps,i(M ) = ρ−1I (12)

with a small positive ρ, and recursively updated by

Ps,i(k) = λ−1Ps,i(k − 1) − λ−1gs,i(k)cT
s,i(k − 1; M ) Ps,i(k − 1). (13)

For details of how the RLS algorithm works, see [Haykin 1991].3

3.5.3 Profile Manager. Figure 2 shows the architecture of profile manager
constructed based on the above RLS algorithm. The profile manager of s in-
cludes ns RLS filters, each storing M past individual costs, cs,i(k − 1; M ), and

M filter-weights, ĥs,i(k), that are adaptively and recursively updated using
Eqs. (9)–(13) starting at k = M + 1. With this architecture, the entire localiza-
tion history of s, up to the kth iteration, is fully captured in ns×M filter-weights,
{ ĥs,i(k)}ns

i=1, that constitute a normal profile at iteration k. { ĥs,i(k)}ns
i=1 is updated

only if { xi(k)}ns
i=1 is verified to be genuine according to the procedure described in

Section 3.6, thereby ensuring the normal profile to be updated from attack-free
data.

3RLS achieves the optimum fit between estimation and real measurements by recursively updating

the filter-weight vectors to minimize the sum of squares of prediction errors. The benefits of using

the RLS algorithm is that it does not require inversion of large matrices, hence being very efficient

and reducing the computational requirement.
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The computational requirement at each iteration is O(ns · M 2), implying that
the CPU and energy overheads at each sensor depend on the choice of M . It is,
therefore, important to configure the network with a proper M value. Clearly,
there exists a tradeoff between the accuracy of normal profile and the overhead
of profile management (i.e., the larger value of M yields a more accurate profile
at the expense of higher overhead). Moreover, a smaller value of M should be
preferred as far as they maintain a reasonable level of accuracy, due mainly to
their resource constraints.

To determine an optimal value of M in terms of balancing the accuracy
and overhead, one may use either the information-theoretic criterion (AIC) or
the minimum description length (MDL) criterion [Haykin 1991]. But, in this
paper, we took an approach to find the best M value through simulation instead
of deriving the optimality condition. As shown in Section 5.3, the prediction
accuracy of the profile manager remains almost the same for the M values of 3
or higher, thanks to the high temporal correlation. Hence, we conclude the best
choice of M value is 3 in that it minimizes the computational overhead without
sacrificing the prediction accuracy.

Finally, it is possible to use the Kalman filter instead of RLS, in the sense that
the above RLS algorithm (which is a tailored solution to our prediction prob-
lem) is indeed a special case (i.e., sharing the same mathematical structure) of
the Kalman filter. The application of Kalman filtering to our prediction prob-
lem given by Equation (5) will yield Equations (9) through (13) to be replaced
with the Kalman filter recursions. The computational complexity in using this
general-purpose filter is acceptable for small M values.

3.6 Detection of Attacks

We aim to design an attack detector that detects, or mitigates the effects of,
attacks presented in Section 2.2. With these attacks, a malicious sensor i at-
tempts to have a falsified xi(k) accepted by s so that cs,i(k) can be boosted to a
large value. This will cause xs(k + 1) to have a large deviation from its desired
value, making it impossible, or at least take a very long time, for s to determine
its true location. We describe below how VeIL defends a network against this
threat, and then qualitatively analyze its attack-detection capability.

3.6.1 Proposed Detection Scheme. First of all, possible attacks during the
first M iterations can be found easily because the localization starts with
high individual costs even in an attack-free environment due to the randomly-
assigned initial locations while the cost values gets smaller as the iteration
goes on. That is, the profile manager of s initially keeps populating its buffer
with cost values and then activates the prediction mechanism at the (M +1)-th
iteration when the buffer is filled. This means the malicious neighbor i can-
not arbitrarily falsify its announcements (from iteration M + 1 on) because
the announced cost must be consistent with ĉs,i(M + 1) (= ĥT

s,i(M )cs,i(M ; M )).
Consequently, if i made false announcements during the first M iterations, it
has to keep misbehaving after this initial period, but doing so will get caught
because its cost value will soon become conspicuous among s’s neighbors. Thus,

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 1, Article 2, Publication date: December 2008.



Attack-Tolerant Localization • 2:13

the malicious neighbors won’t be able to confuse/disrupt the synchronization
process by attacking the initial M iterations.4

We, therefore, propose an incremental detection scheme activated at itera-
tion M + 1, in which every sensor verifies the trustworthiness of incremental
location updates, { xi(k)}ns

i=1, from its neighbors by comparing them with the

normal profile built during the (k − 1)th iteration. VeIL achieves this compar-
ison easily by evaluating Eq. (9) for i = 1, . . . , ns. Clearly, αs,i(k), 1 ≤ i ≤ ns,
quantifies the difference of i’s new announcement from its value predicted from
the most-recent profile, and hence, s should suspect i to be malicious if αs,i(k)
exceeds a certain threshold. Accordingly, for each i, s decides xi(k) to be disrup-
tive/harmful to the location service if

|αs,i(k)| ≥ ηt · max{cs,i(k), cmin} (14)

where ηt (≤1) is a preconfigured network-wide threshold for detecting anoma-
lies, the optimal value of which can be determined via statistical methods like
an F-test, and cmin is the minimum individual cost, below which the prediction
error becomes negligible because ‖xs(k) − xi(k)‖ falls well within δs,i.

We develop another detection rule by utilizing the fact that cs,0(k) must de-
crease with the iteration count if there is no attacker. Hence, every sensor
should monitor if this condition is violated; in the kth iteration, s checks if

cs,0(k) ≥ η0(k) · cs,0(k − 1), (15)

where η0(k) (≤1) is a threshold to verify the acceptability of local cost whose
value is determined by the choice of the underlying localization algorithm.
Equation (15) will be triggered if cs,0(k) does not decay as expected because
of the domination by a few anomalous individual costs from malicious nodes.

Our proposed detection scheme can defeat (or at lease stress) the intelligent
attacker i that persistently (e.g., from the beginning) gives incorrect informa-
tion based on the knowledge of normal profiles, because i is forced to weaken
the attack strength, that is, in terms of the degree of incorrectness, to make it
consistent with Equation (14) as long as there are less than a majority of mali-
cious nodes within the local region of concern, but doing so cannot disrupt the
localization service at all. Otherwise, i may try to fool the construction of nor-
mal profiles during the initial learning period in such a way that the neighbors
predict wrong (thus high) cost values for i’s announcements, thereby allowing
the injection of fake locations/distances (i.e., consistent locally, but inconsistent
globally) without getting caught by Equation (14). However, this attack will soon
trigger Equation (15) because the cost from i, if obeying Equation (14), will be-
come conspicuous among the costs of other neighbors. This shows that evading
both Equations (14) and (15) is very difficult even for the determined attackers.

3.6.2 Attack Detector. Figure 2 shows how the VeIL’s attack detector in-
teracts with its profile manager. First, both the profile manager and the attack
detector are triggered by αs,i(k)’s computed at iteration k. The attack detec-
tor then processes αs,i(k)’s using Equations (14) and (15) to determine if there

4Section 4.1 also discusses how VeIL defeats this attack.
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exist anomalies in the location announcements, and if so, identifies which of the
neighbors caused the anomalies. Finally, this information is fed to the profile
manager to reject (announcements from) those neighbors.

The attack detection hinges on a blacklisting scheme: s detects, for each
iteration, if there exist anomalies in its neighbors’ location announcements, and
if so, identifies which of the neighbors caused the anomalies. That is, s decides
on the presence of anomalies if either of Equations (14) and (15) are satisfied.
s then blacklists a neighbor if it has been caught more than NB times out of
B iterations. The ratio NB/B (≤1) is a design parameter; the choice of NB/B
close to 0 implies an overly-conservative mode of operation, while the opposite
(NB/B → 1) means lenience against attacks. Note it is not so effective for the
adversary to exploit this design choice because he still has to weaken the attack
strength as iteration goes on. For the purpose of blacklisting, s keeps track of
the number of anomalous location announcements from i in blacklist counter(i).
The development of soft blacklisting based on weighted MDS is our future work.
(See Section 6 for details.)

3.6.3 Attack-Detection Capability. VeIL must be able to amplify the pre-
diction errors caused by false location announcements for M consecutive iter-
ations, thus detecting anomalies with high accuracy (each of which presents
multiple chances to be caught). In other words, sensor i’s multiple false an-
nouncements within M consecutive iterations will cause VeIL to continuously
produce high αs,i(·) values, making it highly likely to detect the misbehaving
sensor i. On the other hand, sporadic attacks will be detected by the NB/B
scheme mentioned earlier. Weakening the attack frequency lower than this
imposes no threat to the localization service.

Let us consider the case where a malicious sensor i mounted an attack to
force s to compute cs,i(k) that differs from the expected cost c∗

s,i(k) by �, that is,
cs,i(k) = c∗

s,i(k) + �.5 This will increase αs,i(k) by �, because αs,i(k) = α∗
s,i(k) + �

from Equation (9). Hence, the deviation of the prediction error at iteration k
is proportional to �. By contrast, the prediction error gets amplified rapidly at
iteration k + 1 for the following reason. From Equation (10), the filter-weights
are updated as ĥs,i(k) = ĥ∗

s,i(k) +� · gs,i(k). Then, αs,i(k + 1) can be rewritten as
a function of �:

αs,i(k + 1) = α∗
s,i(k + 1) − �2 · gs,i1(k) − � · [

ĥs,i1(k) + gT
s,i(k)cs,i(k; M )

]
(16)

where gs,i1(k) is the first element of gs,i(k). Therefore, the perturbation � in-
troduced at iteration k results in a very large amount of prediction error in
the next iteration. Moreover, this magnification of prediction errors will persist
for the period of M consecutive iterations, during which the false cost cs,i(k)
remains cached inside the profile manager, thus making it very difficult for the
attacker to evade VeIL. This qualitatively illustrates the highest level of VeIL’s
attack-detection capability. Note that its quantitative evaluation via simula-
tion is given in Section 5.4. Note also that the choice of ηt is not a critical factor

5� can be viewed as the attack strength in that a larger � yields a larger deviation of locations

from their true values.
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Fig. 3. Pseudocode for VeIL at sensor s.

thanks to VeIL’s attack-amplification property, with which the value of |αs,i(k)|
is boosted to a very large value as demonstrated in Section 5.4.

3.7 Protocol Description

Figure 3 provides the pseudocode of our proposed localization protocol exe-
cuted at sensor s. (For simplicity, B is set to be unbounded in the pseudocode.)
It integrates the operations for the attack detector, the profile manager, and
the underlying localization algorithm. The localization at sensor s starts by
initializing the profile manager and randomly choosing xs(0) followed by an-
nouncement of the initial location to its neighbors. Then, s executes up to M
iterations with VeIL disabled, activates VeIL at iteration M + 1, and finally,
performs the rest of localization until its convergence.

There are two response mechanisms to false location announcements. First,
the false locations (at iteration k) must be excluded from (a) the computation of
s’s next location estimate xs(k+1), and (b) the recursion for the profile manager
by letting cs,i(k) = ĥT

s,i(k − 1)cs,i(k − 1; M ). Second, malicious neighbor i must

be removed from the future localization process (e.g., by deactivating ĥs,i(k)) if
it had been caught more than NB times. To do this, the blacklist counter(i) is
incremented whenever i’s announcement is found to be “false.”

4. SECURITY ANALYSIS

We classified the attacks in Section 2.2 into three types: (a) location-targeted
attacks, (b) distance-targeted attacks, and (c) anchor-targeted attacks. We de-
scribe how VeIL counters each of these attacks.
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4.1 Defense against Location-Targeted Attacks

The attacker may influence, and cause a significant bias in, the localization
process by providing false location information. This threat can be caused
by (a) physical attacks that compromise sensors and then deploy them, and
(b) wormhole attacks that create hidden links between malicious devices, both
of which will then be used to tunnel/replay/modify/create messages carry-
ing location information in an attempt to confuse chosen sensors. Traditional
authentication-based countermeasures will likely fail since it is difficult to keep
cryptographic keys secret under these attacks. Likewise, any protocol (including
the one based on hop-counts) that uses sensors as relays, is vulnerable to these
attacks.

By contrast, VeIL is very robust to these location-targeted attacks as it hinges
on highly correlated localization behaviors of sensors that update location esti-
mates toward their true locations. Since every sensor keeps refining its location
estimate such that the aggregate differences in location information received
from its neighbors fit better with measured distances, the next location esti-
mate of a sensor can be predicted, for the most part, from its past localization
history. Actually, VeIL makes “optimal” prediction using the least squares for-
mulation and the RLS method. Under this prediction framework, any location
announcements that deviate significantly from the corresponding prediction
are highly likely from attackers.

An attacker may attempt to break VeIL in several ways. First, he may ju-
diciously adjust the strength of perturbation to make the cost just below the
detection threshold ηt . Since the location differences converge to the distance
measurements during the localization, such an attempt will place great stress
on the attacker into steadily lowering the attack strength not to be caught
by VeIL. However, by doing so, the attacker cannot succeed in his mission to
fail the localization process. Second, the attacker may try to inject false lo-
cation information from the beginning, and then keep telling a lie that does
not deviate from the original lie. However, such an act will soon be caught if
less than a majority of neighbors are lying because the individual cost from
the malicious node will become conspicuous among the costs of all the neigh-
bors. Moreover, it is extremely difficult for the attacker to fool all the neigh-
bors without physically compromising them. Third, the attacker may mount
sybil attacks. But sybil attacks are ineffective under VeIL, because fictitious
locations can only take values agreeing with the corresponding distance mea-
surements to evade VeIL, forcing all the falsified locations to be close to one
another. As a result, the only effective way to evade VeIL “locally” is to com-
promise at least a majority of the sensors within the local region.6 However,
this attack would not be effective as it only disrupts nodes inside or near the
affected region, and hence, the rest of the network nodes still compute correct
locations. This proves the highest attack-tolerance of VeIL on location-targeted
attacks.

6Note that this attack has the same effect as that of the anchor-targeted attacks in Section 4.3.
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4.2 Defense against Distance-Targeted Attacks

The distance measurements/estimates can be altered by distance enlarge-
ment/reduction attacks (e.g., via jamming, physical obstacles and the trans-
mission power control), wormhole attacks on distance or hop-count informa-
tion, etc. In general, any attempt by a malicious sensor i to modify the distance
to its neighbor s makes only a one ns-th contribution to s’s location estimate,
since s determines its location with respect to the locations/distances of all ns

neighbors. s’s decision is then fed back to the others, canceling the errors from
i. So, the impact of the distance-targeted attacks of a single malicious node on
sensors in its proximity is small, and smaller on farther-away sensors. Thus,
despite its possible undesirable local effects, VeIL will not distort the network-
wide connectivity, making it robust to distance-targeted attacks.

Specifically, jamming a local area (or placing obstacles or wormholes) blocks
sensors inside (or nearby) the area from participating in the localization.
But, the unaffected sensors can still maintain consistent network connectiv-
ity among themselves, although their location estimates may differ from real
locations (i.e., the closer to the jammed area, the larger the deviation). Moreover,
as soon as the jamming is over, the sensors will start adjusting their locations in
the course of neighborhood management via BEACON packets. Note that VeIL
also plays a role of verifying BEACON packets. Besides, a malicious sensor i
may amplify its transmission power in order to proliferate bogus information
as well as to cause smaller-distance measurements, but i is more likely to be
caught by VeIL because in such a case there will be more neighbors watching
on it.

4.3 Defense against Anchor-Targeted Attacks

This type of attacks can be considered as a special case of location-targeted
attacks in that malicious/bogus anchors will provide false information on lo-
cation references. Typically, the effects of location-targeted attacks on anchors
become much more serious than those on nonanchor nodes because they will
eventually corrupt the entire network. For this reason, anchors are assumed to
be trusted entities. However, in reality, anchors can be compromised (by deter-
mined attackers) no matter how well protected they are, and, if that happens, it
is impossible for sensors to determine their true locations. Also, compromising
all (or two thirds of) the neighbors of an anchor would have the same effect as
compromising the anchor. VeIL is capable of gracefully resisting this type of
attacks as explained below.

There exist two attack scenarios from a malicious anchor: (a) persisting the
same falsified reference location, or (b) spoofing as many false locations as pos-
sible (sybil attacks). The former applies to the network with static anchors only,
while the latter applies to the network of mobile anchors. Under the first attack
scenario, VeIL can still derive sensors’ locations such that they best describe the
distance measurements in the presence of fake reference location(s), thanks to
its cooperative mechanism. Therefore, VeIL resists attacks from compromised
anchors by maintaining the network-wide connectivity as well as the local dis-
tance relationships. Moreover, VeIL inherently does not require any mobile
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Fig. 4. The simulation environment consisting of 4 anchors and 45 sensors.

anchor, and hence, disallows the use of mobile devices for security reasons, vi-
olation of which can be easily checked as follows. Each VeIL-enabled sensor
builds a static neighbor list before starting localization (as in Section 3.1), and
then binds the reference location with an anchor ID, if it is a neighbor, via the
anchor authentication (described in Section 3.2). Hence, any reference location
that differs from the initial, authenticated value will be rejected. As a result,
the second attack scenario cannot happen in VeIL. By contrast, those protocols
relying on mobile anchors become defenseless once the anchor has been com-
promised or successfully spoofed. Note that VeIL can also be configured to allow
mobile anchors although the benefit of using them is marginal in VeIL. In this
case, mobile anchors must have higher-level protection than immobile sensors;
this may be acceptable since mobile devices (e.g., iPaqs or laptops) are usually
equipped with more and better resources (e.g., faster CPUs and more powerful
antennae) than static sensors (e.g., motes).

5. PERFORMANCE EVALUATION

We evaluate the performance of VeIL using simulation. We will first describe
our simulation environment and the metrics used. Then, we present our simu-
lation results that consist of two parts: (a) quantification of the prediction error
of profile management, and (b) evaluation of the attack/anomaly detection capa-
bility to mask the effects of malicious neighbors. Please note a comparison with
other statistical methods (e.g., Li et al. [2005]; Liu et al. [2005]) is not needed
due mainly to the difference in the way the location information is exploited.
While VeIL utilizes any available location information (i.e., from both anchors
and peer sensors), others solely rely on reference locations from the anchors.

5.1 The Simulation Environment

As shown in Figure 4, our simulation environment consists of a network of 49
sensor nodes deployed on a uniform, 7×7 grid covering an area of 100×100 [m2].
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This simulation setup suffices to demonstrate the effectiveness of VeIL, since
it is not the network size but the ratio of the number of compromised to that
of normal sensors that determines the localization performance. Accordingly,
our simulation focuses on quantification of VeIL’s attack detection capability
under this simulation scenario. We expect similar results (in terms of attack
resolvability) even when different scenarios and/or different network sizes are
used.

In Figure 4, the four corner nodes are location-information-equipped anchors,
transmitting their (fixed) geographic coordinates. The rest of the network nodes
are normal sensors whose locations are unknown, and hence, must be deter-
mined. Sensors guess their initial locations completely randomly. Let s be the
sensor at the grid center for convenience.

We use the RSS-based ranging technique because it has been widely used
by real sensor platforms like motes [Crossbow 2005]. The radio model imple-
mented for our simulation is the one in Patwari et al. [2003] based on real
measurements that models the RSS as a log-normal-distributed random vari-
able with its mean power decaying according to the pass loss model. This model
captures the characteristics of RSS-based ranging that incurs high estimation
errors if two communicating parties are farther away from each other. To deal
with these errors, we average 20 RSS measurements before deriving a distance
estimate.

The maximum communication range is set to 40 [m] for both anchors and
sensors, that is, s accepts i as a neighbor if the distance estimate derived from
RSS is smaller than 40 [m]. This effectively limits the number of neighbors for
each anchor to be around 7 sensors, and hence, about a half of sensors cannot
directly hear from any of the anchors, while the rest can directly hear from at
least one anchor. Sensors determine their own list of neighbors based on RSS
measurements before starting the localization process.

During the localization process, each sensor executes VeIL (Figure 3) that
verifies, computes, and exchanges incremental location updates with its direct
neighbors. Throughout the simulation, VeIL is configured with λ = 0.95 and
ρ = 0.1 (typical parameter values). The iterative method of Costa et al. [2006]
is used to update the location estimates at each iteration, but other iterative
schemes can be used as well. The choice of location-update method determines
how fast it converges and how computationally efficient it is, without affecting
the detection capability of VeIL.

5.2 Metrics for Evaluation

We define and use the normalized prediction error (NPE) of s at iteration k as

NPEs(k) =
∑ns

i=1 |αs,i (k)|
cs,0(k)

, k ≥ M +1. That is, NPEs(k) is the sum of absolute values

of αs,i(k)’s, normalized to cs,0(k). It follows from Equation (9) that αs,i(M + 1) =
cs,i(M + 1), ∀i, because ĥs,i(M ) = 0, and hence, NPEs(M + 1) always equals
1. We also introduce an individual prediction error (IPE) between s and i at
iteration k to quantify the attack-detection capability. Based on Equation (14),

we define ipes,i(k) = |αs,i (k)|
max{cs,i (k),cmin} , k ≥ M + 1.
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Fig. 5. Attack-free normalized prediction error.

5.3 Performance of the Profile Manager

We evaluate the performance of the profile manager in terms of its prediction
accuracy by executing VeIL in an attack-free environment. To quantify this, we
collected NPE values of s from 200 independent simulation runs of the local-
ization process. Figure 5 plots the average NPEs(k), as well as the (−σk , +σk)
interval, as a function of k, where M = 3 and σk is the standard deviation of
NPE measurements at iteration k. The results for M = 4 and 5 were similar to
this. From this figure, we make the following observations. First, NPEs were
mostly less than 0.1, demonstrating high accuracy of the profile manager. Sec-
ond, NPE was around 0.2 at the (M +2)nd iteration, meaning that it constructed
a ready-to-use profile pretty quickly, that is, right after the filter gets activated.
Third, the profile manager incurred small processing and storage overheads
thanks to the small order (=3) of the filters. As mentioned in Section 3.5.3, the
processing overhead of s for updating the profile is O(M 2) per neighbor, which
is acceptable even for resource-limited sensors when M = 3. In summary, our
proposed profile manager based on adaptive filtering captures the localization
behavior in as compact a form as possible, thus achieving both accuracy and
computational efficiency. Finally, NPE slowly increased with higher standard
deviation during iterations 12 to around 25 due mainly to the fact that some of
the sensors were not stabilized yet during this earlier stage of localization.

5.4 Performance of the Attack Detector

To evaluate the attack detector’s performance, we simulate VeIL under the
attack scenarios of (a) a single attack source and (b) multiple simultaneous
attack sources. Described below are the simulation results and their analyses
for each of the two scenarios.
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Fig. 6. Attack-detection capability: a single false location announcement at iteration 14.

5.4.1 Defense against a Single Attack Source. In this simulation, a mali-
cious neighbor (say, sensor 5) of s injects at iteration 14 false location infor-
mation that deviates from the expected location by 40 [m], where the direction
of deviation is determined randomly. This attack scenario is suitable for eval-
uating the VeIL’s ability to handle false location announcements. We carried
out 200 simulation runs under this attack scenario, and measured/computed
NPEs(k), ipes,i(k), and cs,0(k).

Figure 6(a) plots both NPEs(k) and ipes,i(k). The former quantifies the attack
strength, while the latter identifies the source of the false information. We
observe that the attack occurred at iteration 14 increased αs,5(14) in proportion
to the attack strength, and boosted αs,5(15) by orders of magnitude. Moreover,
the next two iterations also exhibited unusually large prediction errors. This
implies that the adversarial cost disrupted the prediction mechanism while it
resided in the profile manager. Clearly, these results agree with our analysis
in Section 3.6. In Figure 6(b), we also plot cs,0(k) as a function of k. The figure
shows the local cost created a spike at iteration 14, thus causing the test of
Equation (15) to fail. This is an evidence that the increase in αs,5(14) is due to
an attack.

Based on these results, we constructed multiple layers of defense mecha-
nisms against attacks as follows. First, the tests based on Equations (14) and
(15) serve as the first line of defense that diagnoses and combats attacks as
early as possible. Second, VeIL checks and monitors the strength of αs,5(·) for
the next M iterations to uncover the attacks that somehow evaded the first line
of defense.

5.4.2 Defense against Multiple Attack Sources. We now evaluate the VeIL’s
capability to detect multiple malicious nodes that have simultaneously an-
nounced false locations. Figure 7 presents the IPE of s at iteration 15 when
four malicious neighbors (whose indices are 5, 10, 13, and 18) simultaneously
mounted attacks of varying strengths that deviate from the desired values by
20, 50, and 80 [m]. We make the following observations from the figure. First,
ipes,i(15) increased very rapidly with the attack strength, demonstrating VeIL’s
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Fig. 7. Individual prediction errors.

effectiveness in countering location-targeted attacks. Second, VeIL accurately
detected attacks incurring small perturbations (e.g., a half of the communi-
cation range). This demonstrates the VeIL’s very high resolution in detecting
attacks. Finally, VeIL preserved its attack-detection capability regardless of the
number of attack sources as far as they are less than one third of the total num-
ber of neighbors, which is obvious from the fact that VeIL separately maintains
an adaptive filter for each neighbor.

6. CONCLUSION

In this article, we proposed a novel attack-tolerant localization scheme, called
VeIL, for a large-scale sensor network deployed with only a small number of
less-capable anchors. The use of spatio-temporal correlation among adjacent
nodes played a key role in developing VeIL as a cooperative intrusion/anomaly
detection system tailored to localization that consists of (a) adaptive manage-
ment of the profile for normal localization behavior, and (b) distributed detec-
tion of false locations via comparison with the thus-managed profile. We then
performed in-depth analysis and evaluation of VeIL’s security properties and
capabilities, and demonstrated the high-level attack-tolerance and the feasibil-
ity of VeIL on resource-limited sensors, in that VeIL successfully defeats many
critical attacks while incurring only small overheads.

As a future work, we will investigate a weighted version of MDS algorithm as
the underlying localization algorithm to develop a systematic way of detecting
and blacklisting malicious sensors. That is, instead of the blacklisting scheme
that counts how many times a sensor has been suspected of cheating, we will
devise a soft threshold scheme in which the sensors’ weights are adaptively
adjusted in proportion to their levels of trustworthiness.
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