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Abstract—In cognitive radio networks (CRNs), regulatory bod-
ies, such as the FCC, enforce an extremely demanding detectabil-
ity requirement to protect primary users’ communications, which
can hardly be achieved with one-time sensing using only a single
sensor. Most of the previous work focused on either cooperative
sensing or sensing scheduling as a viable means to improve the
detection performance without studying their interactions. In
this paper, we propose an optimal spectrum sensing framework
in CRNs that jointly exploits sensors’ cooperation and sensing
scheduling to meet the desired detection performance with
minimum sensing overhead. Specifically, we propose an optimal
sensing framework for the IEEE 802.22 wireless regional area
networks (WRANs) that directs the base station (BS) to manage
spectrum sensing by (i) constructing each primary signal’sspatial
profile of received signal strengths (RSSs) as a detection criterion,
(ii) selecting an optimal set of sensors for cooperative sensing, and
(iii) finding an optimal time to stop sensing. This framework will
ensure the desired sensing performance of 802.22 with minimum
sensing overhead. Our evaluation results show that the proposed
sensing algorithms reduce the sensing overhead significantly and
lower the feasible operation region of energy detector by13 dB
for practical scenarios.

I. I NTRODUCTION

In cognitive radio networks (CRNs), spectrum sensing is
a key component that enables opportunistic spectrum access
while preventing any unacceptable interference to primary
communications. To protect primary signals from interference,
sensing must meet strict requirements set by the FCC. For ex-
ample, in IEEE 802.22 WRANs [1], any primary signal above
the incumbent detection threshold(IDT), e.g.,−116dBm for
the DTV signal, must be detected with both false-alarm and
miss-detection probabilities less than0.1 [2]. Unfortunately,
this stringent performance requirement cannot be met with
one-time sensing with a single sensor regardless of the under-
lying sensing technique, e.g., energy/feature detection [3]–[5].
Thus, in order to compensate for the performance deficiency
of existing sensing techniques, the number of sensed samples
can be increased by (i) having multiple sensors cooperate
(in spatial domain) and/or (ii) scheduling sensing events (in
temporaldomain).

Cooperative sensing has been studied extensively as a viable
means to improve the sensing performance [6]–[12], where
multiple sensors monitor the spectrum individually duringthe
quiet period and then transmit their sensing results to a central
node (e.g., the base station) for the final decision. To derive
an optimal decision, different sensitivities of sensors should
be considered in data (or decision) fusion [6], [9]. These
heterogeneous sensitivities often stem from the geographical
locations of sensors and the existence of channel fading,

e.g., multi-path or shadowing, thus making sensors experience
different received signal strengths (RSSs) of a primary signal
[7]–[11]. In this paper, we refer to these heterogeneous RSSs
among sensors asspatial RSS diversity.

The main goal of cooperative sensing is to improve de-
tection performance by maximally exploiting the spatial RSS
diversity among sensors. However, the cooperation gain has
been reported to degrade as the shadowing correlation among
sensors increases [7], [9], [10]. To minimize the detrimental
effects of shadow correlation on cooperative sensing, sev-
eral sensor-selection algorithms have been introduced. For
example, Selénet al. [13] proposed heuristic algorithms for
selecting an uncorrelated set of sensors given different degrees
of information about sensor locations. Similarly, Kim and Shin
[14] suggested to select sensors based on their geographical
separation so as to make the sensors uncorrelated from each
other. However, these sensor selection methods incur signifi-
cant overheads in measuring the actual shadowing correlation
among sensors or may require the deployment of additional
sensors to achieve uncorrelated sensing results.

Scheduling sensing also aims to improve the detection
performance by sensing a channel multiple times, and thus,
exploiting temporal variations in RSSs at each sensor. For
example, in 802.22, a base station can schedule the quiet
period for energy detection multiple times within thechannel
detection time(CDT) and take into account those sensing
results to enhance the overall incumbent detection performance
[15]. However, during the quiet period, all the secondary users
must remain silent, thus wasting precious resources, such as
energy and time, and degrading the quality-of-service (QoS) of
secondary communications. The quiet period, therefore, must
be optimally scheduled so as to minimize the sensing-time
while guaranteeing the required sensing performance.

Despite its importance, this optimal sensing scheduling
only recently started to receive attention. For example, Lee
and Akyildiz [16] proposed an optimization framework for
spectrum selection and scheduling subject to interference
constraints. Kim and Shin [14] developed a lookup-table-
based offline sensing scheduling algorithm for in-band sensing
in 802.22. Huanget al. [17] studied an optimal sensing-
transmission policy to maximize a secondary user’s utility. In
the IEEE 802.22 standard draft, a two-stage sensing mecha-
nism has been proposed to provide flexible scheduling of quiet
periods [18]. However, none of these scheduling algorithmsis
optimal in the sense of minimizing the number of sensing pe-
riods. More importantly, the interactions between cooperative
sensing and sensing scheduling have not been studied.



In this paper, we propose an efficient spectrum-sensing
framework for the IEEE 802.22 that jointly exploits spatial
and temporal RSS variations to minimize the sensing overhead
subject to the sensing performance requirement of 802.22. In
particular, we address the following important issues in spec-
trum sensing: (i) which sensors to use for cooperative sensing,
(ii) how to incorporate their heterogeneous sensitivitiesin data
fusion, and (iii) how to adaptively schedule in-band sensing
to minimize the sensing overhead.

A. Contributions

This paper makes the following main contributions.
• Introduction of a new concept of spatial RSS-signature-

based cooperative sensing that exploits the spatial varia-
tions in RSSs among cooperating sensors bylearning the
RSS distributions at sensor locations. This is a feasible
and useful approach in CRNs where sensor locations are
stationary, thus making their RSS distributions unique
and (pseudo) time-invariant.

• Development of a simple and near-optimallinear data-
fusion rule for detection of a primary signal based on
a one-time sensing via a linear discriminant analysis
(LDA). This is based on the observation that, when
energy detection is employed in a low SNR environment
such as IEEE 802.22 WRANs, spatial RSS distributions
can be approximated as multi-dimensional Gaussian with
a common covariance matrix. The theoretical perfor-
mance of LDA-based decision rule under shadow fading
is also presented.

• Proposal of an optimization framework for minimizing
the sensing overhead of cooperative sensing, which con-
sists of: (i) an algorithm for selecting an optimal set of
sensors for cooperative sensing (Section IV-B), and (ii)
an online sensing-period scheduling algorithm that finds
anoptimal stopping timevia a sequential probability ratio
test (SPRT) based on the sensing results (Section IV-A).

• In-depth simulation to demonstrate the benefits of the
proposed spectrum-sensing algorithms. Our simulation
results show that the proposed RSS-profile-based de-
tection schemes for both one-time (i.e., LDA-based)
and sequential (i.e., SPRT-based) sensing significantly
improve detection performance over the conventional
decision fusion rules, such as the OR-rule.1 The results
also show that our algorithms for sensor selection reduces
the average sensing overhead significantly.

B. Organization

The remainder of this paper is organized as follows. Section
II briefly reviews the IEEE 802.22 WRAN and the energy-
detection technique, followed by our approach to exploiting
the spatio-temporal variations in RSSs for spectrum sensing.
Section III presents our RSS-signature-based detection scheme
for one-time sensing and its theoretical performance. Section
IV introduces our cooperative sensing algorithms designedto
(i) select an optimal set of sensors and (ii) find an optimal
time to stop sensing. Section V evaluates the performance of
the proposed algorithms, and Section VI concludes the paper.

1The OR-rule is the most common decision-fusion rule in the absence of
prior knowledge of RSS distributions [3], [7], [12], [14], [19].

II. PRELIMINARIES

In this section, we first briefly introduce the IEEE 802.22
wireless regional area network (WRAN), including its perfor-
mance requirements for spectrum sensing. We then review the
spectrum sensing and energy detection in 802.22, and outline
the proposed RSS-profile-based cooperative sensing.

A. IEEE 802.22 WRANs

We consider the IEEE 802.22 WRAN [1], an infrastructure-
based wireless air interface, in which each cell is composed
of a base station (BS) and the associated end-users called
consumer premise equipment(CPE). Secondary devices in
IEEE 802.22 seek spectrum opportunities (white spaces) on
VHF/UHF bands. Among different types of incumbent signals
(i.e., NTSC, DTV, and wireless microphones), we focus on
detecting DTV signals, although our approach can be extended
to include detection of other types of primary signals, suchas
analog TV and wireless microphone signals. To protect pri-
mary users (i.e., TV receivers), CPEs should be located outside
thekeep-out radiusof 150.3 km from the TV transmitter [20].
In general, CPEs (i.e., houses) are static2 and form various
clusters of different sizes. At the edge of the keep-out radius,
the DTV signal power is attenuated to−96.5dBm, which is
below the average noise power, i.e.,−95.2dBm [20].

The IEEE 802.22 standard draft has numerical performance
requirements on spectrum sensing in terms of: (i) minimum
signal power, (ii) detection delay, and (iii) sensing accuracy
[21]. First, sensing must be able to detect the incumbent
signals with signal strength above theincumbent detection
threshold(IDT), e.g.,−116dBm for the DTV signal. Second,
sensing must be fast enough to detect the primary signal within
the channel detection time(CDT) (for in-band sensing) of 2
seconds after its appearance. Third, sensing must be accurate
to guarantee the probabilities of false alarm and miss detection
below certain thresholds, i.e.,PFA ≤ 0.1 andPMD ≤ 0.1, for
any primary signal stronger than the IDT.

B. Spectrum Sensing in IEEE 802.22

The IEEE 802.22 standard draft employs adistributed
spectrum sensing(DSS) where CPEs are required to report
their local sensing results to the BS [12]. It also provides a
two-stage sensing(TSS) mechanism to schedule quiet periods
(QPs) for in-band sensing [15]. According to the TSS, the
BS can schedule QPs multiple times for fast-sensing (i.e.,
energy detection) within each CDT [2]. Then, based on the
fast-sensing results, the BS determines the need to schedule a
longer QP for fine-sensing (i.e., feature detection) at the end of
a CDT in order to obtain more accurate sensing results. How-
ever, the current 802.22 draft does not specify any algorithm
for efficient scheduling of QPs, or how to select sensors for
cooperation. Therefore, we have opted to develop an online
QP scheduling algorithm for fast-sensing that finds anoptimal
stopping timefor QPs to minimize the sensing overhead while
guaranteeing the detection requirements of 802.22. We also
propose an algorithm to find an optimal set of sensors for
cooperative sensing by exploiting sensor heterogeneity (in
detectability) due to different sensor locations.

2In 802.22, secondary devices are required to be stationary in order to
prevent potential interference to primary communicationsdue to mobility.



C. Energy Detection in IEEE 802.22

To detect the presence of a primary signal, the energy de-
tector simply measures the signal power on a target frequency
band and compares the measured result against a predefined
threshold. Since the energy level of the received signal is used
as a decision criterion, the energy detector is very fast, unlike
the feature detector, which takes much longer (e.g.,24 ms for
the field-sync detector for ATSC) because it looks for a specific
signature of the primary signal that appears infrequently.Thus,
because of the simple design and low overhead (i.e., minimal
delay), IEEE 802.22 employs energy detection as first-stage
sensing (i.e., fast-sensing) in the TSS mechanism [2].

For energy detection, there are two hypotheses regarding
the existence of a primary signal on a given channel:

yi(n) =

{

wi(n) underH0

si(n) + wi(n) underH1,

whereyi(n) is the signal received by a secondary user,si(n)
is the primary signal, andwi(n) is an i.i.d. additive white
Gaussian noise (AWGN), at sensori in thenth time slot within
the sensing duration. Thus, the test statistic of the energy
detector is an estimate of average RSS [3]:

Ti =
B

M

M
∑

n=1

yi(n) ∗ yi(n), (1)

whereB is the channel bandwidth (e.g.,6 MHz for a DTV
channel), andM is the number of signal samples. The signal
is assumed to be sampled at the Nyquist rate, i.e.,6 MHz, so
it takes1 ms to obtainM = 6 × 103 samples [19].

The test statisticT in Eq. (1) can be approximated as a
Gaussian distribution using the central limit theorem (CLT)
because the signal sample size,M , is sufficiently large even
with a short sensing duration (e.g.,1 ms). Then, the p.d.f. of
the test statisticsTi at sensori is given as [3]:

Ti ∼
{

N
(

NB, (NB)2

M

)

H0

N
(

Pi + NB, (Pi+NB)2

M

)

H1,
(2)

where Pi is the received primary signal strength andN is
the noise spectral density, which is typically given as−163
dBm/Hz in 802.22 [3]. Note that we assume that the effect of
multipath fading is negligible in a DTV channel because of its
wide bandwidth (i.e., 6 MHz). Therefore, the received primary
signal strength at sensori can be expressed as [7]:

Pi = PR · eYi , (3)

where PR is the average RSS within a cell, andeYi is the
channel gain between the primary transmitter and sensori
due to log-normal shadowing.3 It is important to note thatYi

is not a random variable, but a specific realization of a normal
random variableY ∼ N (0, σ2). This is because the locations
of the sensors (i.e., CPEs) arefixed, so the channel gain is
also (pseudo) time-invariant and determined based on their
locations. The log-normal shadow fading is often characterized
by its dB-spread,σdB, which has the following relationship
σ = 0.1 ln(10)σdB.

3We assume that all CPEs within an 802.22 cell experience the same path-
loss rate (e.g., following the F(50,90) curve) since the relative distance to the
TV transmitter is much larger than the distances between them [20].
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Fig. 1. An illustration of the proposed spectrum-sensing framework for an
IEEE 802.22 WRAN. The BS selects an optimal set of sensors (black nodes)
for distributed (or cooperative) sensing and determines the optimal stopping
time for sensing in each CDT. At each QP, the BS collects the test statistics
{tn}, i.e., RSSs, from sensors, compare them with the pre-established RSS
profile and updates the decision statisticΛn. The BS schedules QPs until the
Λn reaches one of the decision thresholds (see Section IV for details).

D. Outline of the Proposed Approach

The performance of energy detection is highly susceptible
to signal-to-noise ratio (SNR), thus hampering its applicability
in a low SNR environment such as IEEE 802.22 WRANs
and preventing efficient discovery of spectrum opportunities.
To overcome this problem and design an efficient cooperative
sensing algorithm, we exploit both thespatial and temporal
variations of RSSs among collaborating sensors. In 802.22
WRANs, the RSS at each sensor is (pseudo) time-invariant
due to the static deployment of the sensors (i.e., CPEs). Thus,
the key idea is to allow the BSlearn the RSS distributions at
sensors and build the spatial RSS profile of them. Then, upon
collecting the sensing results at each QP, the BS compares the
observed RSS values with the RSS profile where similarity to
the RSS distribution with primary signal can be interpreted
as an indication of the presence of a primary signal, and vice
versa. Using the RSS profile, the BS schedules QPs until it
accumulates sufficient observations to decide whether or not
a primary signal exists with a certain performance bound.

Our proposed sensing framework consists of the following
three components, which closely interact with each other:

• Sensor selectorthat selects an optimal set of sensors
for cooperative sensing by analyzing their contributions
to the improvement of detectability and the increase of
sensing overhead (see Section IV-B).

• RSS profile managerthat establishes and maintains the
spatial RSS distributions among collaborating sensors in
the presence and the absence of a primary signal (see
Section III-A).

• Primary signal detector that adaptively schedules sens-
ing and determines the presence of a primary signal. It
provides detection schemes based on one-time sensing
(see Section III-B) and a sequence of measurements (see
Section IV-A).

Fig. 1 illustrates our proposed spectrum-sensing framework,
where the BS directs an optimally-chosen set of sensors to
perform sensing until a decision is made on the existence of
a primary signal, using a sequence of reported RSS values.



III. RSS-PROFILE-BASED COOPERATIVE SENSING

In this section, we first present the construction of a spatial
RSS profile and formulate the primary detection based on
one-timesensing as a binary classification problem. Then, we
present the theoretical performance of detection performance
under log-normal shadowing.

A. Construction of a Spatial RSS Profile

We propose to build a spatial profile (or signature) of
RSS distributions at multiple sensor locations, which will
be used as a main reference for primary signal (i.e., DTV
signal) detection. Fig. 2 plots an example of spatio-temporal
variations of the test statistics (i.e.,T in Eq. (1)) at15 sensors
under log-normal shadow fading withσdB = 5.5. It clearly
shows spatial diversity in RSSs along with their temporal
variations due to measurement error.4 The BS can, therefore,
learn the distribution of RSSs at each sensor location and
combine them to construct a spatial RSS profile. For RSS
profiling, we assume a large enough training period (including
both ON/OFF periods of the primary transmitter) for accurate
estimation of RSS distributions. Note that when no primary
signal exists, i.e., OFF periods, each sensor estimates thenoise
power distribution for RSS profiling. Then, the measured RSS
values during both ON and OFF periods are reported to the
BS where the RSS profile is generated and stored for primary
detection in future by comparing it with the observed RSS
values. Recall that the distribution of test statistic,T (equiva-
lent to the RSS), of the energy detector can be approximated
as Gaussian (see Eq. (2)) using the CLT in both ON/OFF
periods. Thus, the RSS profile ofns cooperating sensors is an
ns-dimensional Gaussian distribution, the parameters of which
can be easily estimated using well-known techniques, such
as maximum-likelihood estimation (MLE). Letµk and Σk,
k ∈ {0, 1}, denote the mean vector and the covariance matrix
during ON(1)/OFF(0) periods. Since the RSS distributions at
each sensor location are (pseudo) time-invariant (except the
measurement error due to limited sensing time) due to static
deployment of secondary users (i.e., CPEs), the RSS profile
can be used reliably without frequently updating it.

B. Detection with One-Time Sensing Based on Linear Dis-
criminant Analysis (LDA)

We now propose a detection rule using an RSS profile
given a single sensing measurement. Letx = [T1, . . . , Tns

]T

denote the vector of test statistics (see Eq. (2)) of the energy
detector measured byns cooperating sensors. Our incumbent
detection problem is then a binary Gaussian classification
problem where the observed test statisticx ∈ R

ns×1 belongs
to one of two classes,H0 or H1, where

H0 : x ∼ N (µ0, Σ0) (no primary signal)

H1 : x ∼ N (µ1, Σ1) (primary signal exists),

whereµk ∈ R
ns×1 andΣk ∈ R

ns×ns are the estimated mean
vector and the covariance matrix of RSS distributions under
Hk, respectively. Note thatΣ0 = σ2

n I whereI is anns × ns

identity matrix andσ2
n = (NB)2/M .

4The intensity of temporal RSS variations depends on the sensing time,
i.e., M , in Eq. (1); the shorter the sensing time, the larger the temporal RSS
variations due to the increase of measurement error.
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Fig. 2. Example time sequences of test statistics{Ti} for 1 ≤ i ≤ 15 where
PR = −110 dBm, NB = −95.2 dBm, M = 6 × 103, andσdB = 5.5 dB.
It clearly shows spatial and temporal variations in the teststatistics.

In general, under the assumption of unequal covariance
matrices, the optimal decision rule for our detection problem
can be found viaquadratic discriminant analysis(QDA) [22].
Although QDA provides an optimal decision rule for a general
multivariate Gaussian with unequal covariance matrices, it
does not yield a closed-form expression for the error prob-
ability because of its quadratic decision boundaries [23].

Interestingly, however, the quadratic decision rule can actu-
ally be linearized using alinear discriminant analysis(LDA)
in our problem on the basis of the following two important
observations, i.e.,Σ1 can be:

1) assumed as an identity matrix with fixed sensor loca-
tions, and then,

2) approximated asΣ1 ≈ Σ0 = σ2
n I in a very low SNR

environment.
Regarding the first observation, the covariance matrixΣ1

may not appear to be an identity matrix because of the
existence of shadow correlation in primary signal strengths
[24]. However, as mentioned earlier, when sensor locations
are fixed, their RSS is also (pseudo) time-invariant and the
randomness in the test statistics comes only from the noise
processes (i.e., measurement errors), which are independent
of each other. Thus, the correlation of RSSs between any pair
of sensors is virtually0, so we can assume thatΣ1 is also an
identity matrix asΣ0.

Regarding the second observation, the received primary
signal strengthP may be significantly lower than that of
the noise power in a very low SNR environment of 802.22.
For example, at the DTV signal detection threshold, i.e.,
−116dBm, the SNR is less than−20dB, assuming the typical
noise levelNB = −95.2dBm [4]. Therefore, it is reasonable
to assume thatPi+NB ≈ NB ∀i, and thus,Σ1 ≈ Σ0 = σ2

n I.
Fig. 3 justifies these assumptions by showing that the error
performances of QDA and LDA are almost the same in very
low SNR environments.

Consequently, under the assumption of a common covari-
ance matrixΣk = σ2

n I ∀k, we have a simple distance-based
decision rule for incumbent detection:

‖x− µ0‖
H1
≷
H0

‖x− µ1‖.
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Clearly, the decision is made based solely on the distance
between the observed RSS vector,x, and the mean vectors
of the RSS profile,µk, under both hypotheses. Therefore, our
RSS-profile based detection rule allows asimpledata fusion
at the BS, thus reducing the computational overhead, while
outperforming the traditional threshold-based detectionrules,
e.g., the OR-rule (see Section V for detailed results).

C. Theoretical Performance

Let T (x) , w
T
x denote the test statistic for incumbent

detection, which is calculated based on the observed RSS
vectorx, wherew , (µ1 − µ0) ∈ R

ns×1. Note that‖w‖ is
the Euclidean distance between the centroids of two Gaussian
distributions under both hypotheses, where the centroidsµi are
the vectors of average RSSs at sensor locations. Then, it can
be easily shown that the test statisticT (x) follows a Gaussian
distribution, i.e.,T (x) ∼ N

(

w
T µk, σ2

n‖w‖2) underHk ∀k.
Then, the probability of false alarm under our LDA-based
decision rule with the decision thresholdη ∈ R is given as:

PLDA
FA , Prob(T (x) > η |H0)

= Q

(

η − w
T µ0

σn‖w‖

)

, (4)

where Q(·) is the Q-function. Using Eq. (4), the decision
thresholdη can be derived for the desiredPLDA

FA as:

η = σn · ‖w‖ · Q−1
(

PLDA
FA

)

+ w
T µ0. (5)

Then, based on Eqs. (4) and (5), the probability of miss
detection,PLDA

MD , is given as:

PLDA
MD , Prob(T (x) < η |H1)

= 1 − Q

(

Q−1
(

PLDA
FA

)

− ‖w‖
σn

)

. (6)

Eq. (6) indicates that, when the desiredPLDA
FA is given, the

achievablePLDA
MD depends on the noise varianceσ2

n = (NB)2

M
and the distance‖w‖. That is, thePLDA

MD decreases as the
sensing duration (thus the numberM of samples) increases
since a large number of samples would make the decision
more accurate due to the reduced noise variance (measurement
error). On the other hand, the distance‖w‖ would be affected
by the intensity of the shadow fading, as we discuss next.

D. Effect of Log-normal Shadowing

We now study the effect of shadow fading on detection
performance by investigating its impact on the distance‖w‖.
Recall thatw is defined as the difference in RSSs under both
hypotheses, i.e.,w = µ1 − µ0 = [P1, . . . , Pns

]T . Therefore,
based on Eq. (3),‖w‖ under shadow fading is given as:

‖w‖shadow =

[ ns
∑

i=1

P 2
i

]1/2

= PR ·
[ ns
∑

i=1

(

eYi

)2
]1/2

, (7)

wherePR is the average RSS in the cell due to path loss. As
mentioned earlier,Yi is a location-dependent realization of a
random variableY ∼ N (0, σ2) where σ = 0.1 ln(10)σdB.
Note that the AWGN channel can be regarded as a special
case with no log-normal fading component, i.e.,σdB = 0, and
thus,‖w‖ under AWGN channel is given as:

‖w‖AWGN = PR · √ns ∀ns ∈ N. (8)

To understand the impact of shadow fading on detection
performance (in terms ofPLDA

MD given a fixedPLDA
FA ), it is

desirable to study the distribution of‖w‖shadow in Eq. (7).
Unfortunately, there is no closed-form expression available for
the power sum of log-normal random variables in Eq. (7) [25].
However, the power sum can be approximated accurately by
rendering the sum itself as another log-normal random variable
[26]. Let eZ′ ∼ e2Y1 + e2Y2 + · · ·+ e2Yns . Then, by following
the result in [26], the sum can be approximated by matching
its mean and variance witheZ′

. The first two moments of
eZ′

areE[eZ′

] = eµZ′+σ2

Z′/2 andE[e2Z′

] = e2µZ′+2σ2

Z′ . Our
final goal is to approximate the square root of the power
sum, i.e.,eZ = (eZ′

)1/2, which is still a log-normal random
variable. Thus, by equating the first two moments ofeZ′

and
the power sum,

∑ns

i=1(e
Yi)2, and then takingeZ = (eZ′

)1/2,
we have‖w‖shadow ≈ PR · eZ with the random variable
eZ ∼ Log-N (µZ , σ2

Z) where:

σ2
Z =

1

4
log

[

(e4σ2 − 1)

ns
+ 1

]

, (9)

and

µZ =
1

2
log(ns) + σ2 − σ2

Z

4
. (10)

Assuming that the sensors experience independent log-
normal shadow fading, we can derive the average miss de-
tection probability as:

P
LDA

MD =

∫ ∞

−∞

[

1 − Q

(

Q−1
(

PLDA
FA

)

− PR · ez

σn

)]

· fz · dz,

wherefz = 1
σZ

√
2π

exp
[

− (z−µZ)2

2σ2

Z

]

, −∞ < z < ∞.
The simulation results (in Section V) show that LDA-

based detection rule for one-time sensing significantly out-
performs the traditional OR-rule in incumbent detection (see
Section V-B). However, the results indicate that the detection
requirement of 802.22 is guaranteed to be met only under
certain conditions, e.g., shadow fading with a high dB-spread,
even with cooperative sensing. Therefore, in what follows,
we present an optimal cooperative sensing framework that is
designed to: (i) select an optimal set of sensors and (ii) findan
optimal stop time for sensing in each CDT, to further improve
the detection performance with minimal sensing overhead.



IV. OPTIMAL COOPERATIVE SENSING FRAMEWORK FOR

SENSING OVERHEAD M INIMIZATION

In this section, we first propose an adaptive online algorithm
for sensing scheduling that finds an optimal stopping time
for quiet periods (QPs) in a CDT, subject to the detection
requirements of 802.22, assuming a set of collaborative sensors
is given. We then present an algorithm for selecting an optimal
set of sensors that minimizes the average sensing-time.

A. Optimal Stopping Rule for Sensing Scheduling

In the TSS mechanism in 802.22, fast-sensing (i.e., energy
detection) is scheduled at discrete-time intervals,5 and thus
the BS receives a sequence of observations (i.e., RSS vectors)
from the sensors. This makes sequential detection suitablefor
our problem. In particular, among various sequential detection
techniques, we adopt Wald’sSequential Probability Ratio Test
(SPRT) [27] since it is optimal in the sense of minimizing the
average number of observations, given bounded probabilities
of false alarm and miss detection.

Let tn , σ−1
n · ‖w‖−1 · T (xn) denote thenormalizedtest

statistic based on the observed RSS vectorxn in the nth QP.
Then, in SPRT, the decision is made based on the observed
sequence of test statistics,{tn}N

n=1, using the following rule:

ΛN ≥ B ⇒ acceptH1 (primary signal exists)

ΛN < A ⇒ acceptH0 (no primary signal)

A ≤ ΛN < B ⇒ take another observation,

whereA andB (0<A< B <∞) are the detection thresholds
that depend on the desired values ofPFA and PMD. The
decision statisticΛN is the log-likelihood ratio based onN
sequential observations (i.e., test statistics)t1, . . . , tN as:

ΛN , λ(t1, . . . , tN) = ln
f1(t1, . . . , tN )

f0(t1, . . . , tN )
, (11)

where fk(t1, . . . , tN ) is the joint p.d.f. of the sequence of
observations under hypothesesHk ∀k. Recall that{tn}N

n=1

are Gaussian, and w.o.l.g., we assume that they are i.i.d. Then,
Eq. (11) becomes:

ΛN =
N
∑

n=1

λn =
N
∑

n=1

ln
f1(tn)

f0(tn)
, (12)

wherefk(tn) is N (θk, 1) with θk , E[tn |Hk] = w
T µk

σn‖w‖ ∀k.
Then, we have:

λn = ln
f1(tn)

f0(tn)
= (θ1 − θ0) tn +

1

2
(θ2

0 − θ2
1). (13)

Based on Eqs. (12) and (13), the decision statisticΛN can
be expressed as:

ΛN = (θ1 − θ0)

N
∑

n=1

tn +
N

2
(θ2

0 − θ2
1). (14)

Let α∗ andβ∗ denote the desired values ofPFA andPMD,
respectively. Then, the decision boundaries are given by [27]:

A = ln
β∗

1 − α∗ and B = ln
1 − β∗

α∗ , (15)

5In IEEE 802.22, the interval between consecutive QPs must beseparated
by at least 10 ms, i.e., one MAC frame size [15].

Algorithm 1 ONLINE SENSING SCHEDULING

At the beginning of a CDT period, the BS does the following
1: while each roundn ∈ [1, Nmax] of quiet period (QP)do
2: Receive results of energy detector (i.e., RSS)xn from sensors
3: tn ← σ−1

n · ‖w‖−1 · T (xn) // Calculate test statistic
4: ΛN ← ΛN + (θ1 − θ0) tn + 1

2
(θ2

0 − θ2

1)
5: if ΛN ≥ B then
6: A primary exists and we schedule fine-sensing (or initiate

the channel vacation procedure)
7: else if ΛN < A then
8: A primary does not exist and we defer QP until the

beginning of next CDT period
9: else if n = Nmax then

10: Schedule fine-sensing for in-depth measurement
11: else
12: Schedule another QP and wait for the observation
13: end if
14: end while

and the actual achievable error probabilities, denoted asα and
β, have the following relationships:

α ≤ α∗

1 − β∗ , β ≤ β∗

1 − α∗ , and α + β ≤ α∗ + β∗. (16)

Eq. (16) indicates that the actual achievable error probabilities,
i.e.,α andβ, can only be slightly larger than the desired values
α∗ andβ∗. For example, with the desired values ofα∗ = β∗ =
0.1, the actual valuesα andβ will be no larger than0.111.

Recall that our goal is to minimize the number of times
the spectrum needs to be sensed, with the decision thresholds
derived from the target detection probabilities as shown in
Eq. (15). We therefore consider the number of QPs until a
decision is made (i.e., either the boundary A or B is reached)
as our main performance metric. The average number of QPs,
E[N ], required for decision-making can be computed as:

E[ΛN ] = E[N ] × E[λ |Hk]. (17)

First, using Eq. (13), the average value ofλ underHk can
be derived as:

E[λ |Hk] = (θ1 − θ0) θk +
1

2
(θ2

0 − θ2
1). (18)

The average ofΛN can then be found as follows. Suppose
H0 holds, thenΛN will reach B (i.e., false alarm) with the
desired false alarm probabilityα∗; otherwise, it will reachA.
Thus, using Eq. (15), we have:

E[ΛN |H0] = α∗ ln
1 − β∗

α∗ + (1 − α∗) ln
β∗

1 − α∗ . (19)

Based on Eqs. (17), (18) and (19), we can derive the average
required QPs for decision-making as:

E[N |H0] =
α∗ ln 1−β∗

α∗
+ (1 − α∗) ln β∗

1−α∗

(θ1 − θ0) θ0 + 1
2 (θ2

0 − θ2
1)

. (20)

Similarly, we can derive:

E[N |H1] =
(1 − β∗) ln 1−β∗

α∗
+ β∗ ln β∗

1−α∗

(θ1 − θ0) θ1 + 1
2 (θ2

0 − θ2
1)

. (21)

Based on Eqs. (11)–(21),Algorithm 1 describes our online
algorithm for scheduling QPs that finds an optimal stopping
time for sensing.



In addition to the detection-accuracy requirements in terms
of PFA and PMD, 802.22 also has a timing requirement on
primary detection, i.e., CDT. Thus, our scheduling algorithm
should allow the BS to make a fast decision (i.e, reach one
of the boundaries) within a CDT, thus eliminating the need
for expensive feature detection; otherwise, the BS needs to
schedule a fine-sensing period at the end of the CDT.

However, in practice, the maximum number of QPs,Nmax,
that can be scheduled within a CDT is constrained by several
factors, such as inter-sensing interval, initial sensing delay,
sensing time, and length of a CDT [21]. Therefore, we set a
thresholdPth, a design parameter, such that the BS must reach
a conclusion withinNmax QPs with probability greater than or
equal to thePth. Let Nopt denote the optimal stopping time of
QPs with Algorithm1. Then, we are interested in deriving the
probability thatNopt ≤ Nmax, which should be no less than
Pth. Although an approximate formula for the distribution of
Nopt can be derived, we instead derive a lower limit on the
probability for computational efficiency [27].

SupposeΛNmax
≥ B. Then we haveNopt ≤ Nmax, and

thus, the following inequality holds:

Prob
(

Nopt ≤ Nmax) ≥ Prob(ΛNmax
≥ B

)

. (22)

SinceNmax is sufficiently large in practice, we can use the
central limit theorem (CLT), and then the inequalityΛNmax

≥
B can be written as:

ΛNmax
− Nmax E[λ |H1]√
Nmax σ1(λ)

≥ B − Nmax E[λ |H1]√
Nmax σ1(λ)

, (23)

whereσ1(λ) is the standard deviation ofλ underH1, which
can be derived asσk(λ) = (θ1 − θ0) ∀k from Eq. (13). Then,
the left-hand side of Eq. (23) is normally distributed with zero
mean and unit variance whenH1 is true.

Therefore, based on Eqs. (22) and (23), we have the
following lower bound on the probability that the BS makes
a decision withinNmax observations (i.e, QPs):

Prob
(

Nopt ≤ Nmax

)

≥ Q

(

B − Nmax E[λ |H1]√
Nmax σ1(λ)

)

. (24)

This lower bound will be considered in our algorithm for
selecting an optimal set of sensors as described next.

B. Algorithm for Selecting an Optimal Set of Sensors

We now turn to the problem of finding the best set of sensors
that minimizes the total sensing overhead. LetΦ denote the
total set of sensors available for cooperative sensing with
estimated RSS distributions via training. The idea is to utilize
a subsetΩ ⊆ Φ of sensors with relatively high average RSS
values (e.g., those located close to the primary transmitter or
outside a deep fading area), thus minimizing both the number
of cooperating sensors and the number of QPs in incumbent
detection, while guaranteeing the detectability requirements.

Given a subset of sensors,Ω, the total expected sensing
overhead within a CDT can be expressed as:

O(Ω) = min
{

E[N(Ω)], Nmax

}

× TD(Ω), (25)

whereTD(Ω) is the total time duration for a single sensing,
which consists of a QP and a measurement reporting period:

TD(Ω) = QP + |Ω| × TR, (26)

Algorithm 2 SELECTION OF AN OPTIMAL SET OF SENSORS

1: Initialize the desired detection parametersPF A,PMD,Pth

2: Initialize the set of available sensorsΦ = {χ1, . . . , χns
}

3: Initialize the optimal set of sensorsΩ∗ ← ∅
4: Initialize the sensing overheadO∗ ←∞
5: while Φ 6= ∅ do
6: χ∗ ← arg maxχi∈Φ{Pi} // Pi = PR · e

Yi

7: Φ← Φ \ {χ∗}
8: Ω← Ω∗ ∪ {χ∗}
9: N∗ ← min{E[N(Ω, PF A, PMD)], Nmax}

10: O ← N∗ × TD(Ω)
11: if O > O∗ andProb(Nopt ≤ Nmax) ≥ Pth then
12: return Ω∗

13: else
14: Ω∗ ← Ω
15: O∗ ← O
16: end if
17: end while

where TR is the duration of a time-slot for reporting the
sensing result to the BS.

Then, based on Eqs. (24), (25), and (26), our problem of
finding an optimal set of sensors can be formally stated as:

Find Ω∗ = arg min
Ω⊆Φ

O(Ω)

subject to Prob(Nopt ≤ Nmax) ≥ Pth.

For this, we propose a simple algorithm as described inAl-
gorithm 2. The idea is that we sort the sensors in descending
order of averge RSS (i.e.,Pi) and then add sensors toΩ from
the top of the list until the total sensing overhead increases by
adding another sensor, and the detection constraint (i.e.,Pth) is
satisfied (line11). The algorithm provides an optimal solution
with a low computational overhead, i.e.,O(|Φ|), while the
exhaustive search requiresO(2|Φ|−1). The algorithm is shown
to reduce the sensing overhead significantly (see Section V-C),
while guaranteeing the detectability requirements of 802.22.

V. PERFORMANCEEVALUATION

This section evaluates the proposed algorithms using
MATLAB-based simulation. These algorithms are compar-
atively evaluated against the OR-rule under various fading
conditions.

A. Simulation Setup

We consider the IEEE 802.22 WRAN environment with a
single primary transmitter (i.e., TV transmitter) and multiple
secondary users (i.e., CPEs) located at the edge of thekeep-out
radius (i.e., 150.3 km) where the average received strength of
a TV signal is below−96.5dBm [20]. We use the commonly-
used noise power(NB)i = −95.2±∆i dBm [4], where∆i is
the noise uncertainty (in dB) at sensori andB is the channel
bandwidth, i.e.,6 MHz. We consider shadow fading with
various dB-spreadsσdB = 0, 2, 5.5 (dB); while σdB = 5.5 dB
is typical in 802.22 [20], it can vary depending on local
environments, e.g., distance/angle to the BS [28]. Throughout
the simulation, we assume10 cooperating sensors unless
specified otherwise, and the time-slot duration for reporting a
RSS measurement (TR) is fixed at0.2 ms. For RSS profiling,
104 samples were used for estimating the RSS distributions,
which consumes only10 seconds of total sensing time. The
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performance of the proposed algorithms are evaluated under
various shadow fading conditions and compared with OR-rule-
based cooperative sensing algorithms.

B. Performance of LDA-based Detection Scheme for One-
Time Sensing

We first evaluate the performance of proposed LDA-based
detection scheme forone-timesensing under various fading
conditions. We assume that the sensors are randomly selected.

1) Effects of Shadow Fading (σdB): Fig. 4(a) shows that
our LDA-based detection significantly outperforms the OR-
rule in all simulated scenarios, thanks to its ability to setthe
near-optimal detection threshold (i.e., an(ns−1)-dimensional
hyperplane) based on the spatial RSS profile; the OR-rule, in
contrast, uses the same threshold at all sensors for simplicity
[3], [7]. Interestingly, both detection schemes perform better
as shadow fading becomes more intense (i.e., higherσdB) at
a given average primary signal strength. This is because of
the heavy-tailed distribution of the primary signal strength,
due to log-normally-distributed shadow fading [29]. Therefore,
a large dB-spread,σdB, improves detection performance,
especially in a low SNR environment.

2) Effects of Number of Sensors (ns): We now study the
impact of number of sensors on detection performance. We set
the average signal strength (PR) to the DTV signal detection
threshold (i.e.,−116dBm). Fig. 4(b) shows that the LDA-
based detection outperforms the OR-rule-based detection and

the performance gap increases as the number of cooperating
sensors increases. This is because, in the LDA-based detection,
all the sensors contribute to the enhancement of the detection
performance via RSS-profile, thus fully exploiting spatialRSS
diversity, whereas, in the OR-rule, only a few sensors with
high RSSs (e.g., above the detection threshold) contributeto
the detection of a primary signal.

3) Effects of Noise Uncertainty (∆): The noise uncertainty
is one of the main obstacles in using the energy detection in a
very low SNR environment such as 802.22 [30]. We assume
that the noise uncertainty at sensori is i.i.d. Gaussian random
variable with1 dB variance, i.e.,∆i ∼ N (0, 1) ∀i. Fig. 4(c)
shows the averagePMD obtained by104 runs of Monte Carlo
tests. In the tests, the decision thresholds are adjusted so
that the averagePFA remains below0.1. Note that, when
the OR-rule is employed, the detector completely fails below
SNRwall (under AWGN channel), which is−98.5dBm when
∆i = 1 dB ∀i.6 The figure, however, shows that under the
practical assumption that the noise uncertainty is independent
at the sensors, the LDA-based detection works well below
SNRwall even with a one-time sensing and performs better as
shadow fading becomes more intense, i.e., higherσdB, thanks
to its ability to exploit spatial RSS diversity.

6This is a reasonable assumption since noise uncertainty canbe bounded
by ±1 (dB) considering several contributing factors such as calibration error,
thermal noise variation, changes in LNA amplifier gain, etc.[31].



C. Performance of Online Sensing Scheduling with Optimal
Selection of Sensors

We now evaluate the performance of the proposed online
sensing scheduling and optimal sensor-selection algorithms.

1) Effects of Sensing Time (TS): Fig. 5 plots the average
number of QPs required to make a final decision as well as the
interval (−0.5 σTS

, +0.5 σTS
). As expected, as we increase

the sensing time, the average number of QPs decreases in
all simulated scenarios. This is because the more samples
the detector have, the more accurate the sensing results, thus
eliminating ambiguity on the existence of a primary signal.
Clearly, there is a tradeoff between the sensing time (TS) and
the number of QPs (N ) in our sensing scheduling, which is
part of our future work.

2) Impact on QP Minimization (N ): Here we study the
performance of our online sensing scheduling algorithm that
finds an optimal stopping time for scheduling QPs. We as-
sume that the maximum numberNmax of QPs that can be
scheduled in a CDT is100. Fig. 6 shows that our online
sensing scheduling algorithm significantly reduces the average
number of QPs compared to the OR-rule-based scheduling
scheme, due to its ability to find the optimal stopping time
for scheduling QPs, instead of scheduling a fixed number of
QPs as the OR-rule-based approach. As a result, our algorithm
expands the feasible region of the energy detector’s operation
significantly. For example, the scheduling threshold underthe
shadow fading withσdB = 5.5 is as low as−129.5dBm with
our proposed algorithm, whereas it is−116dBm with the OR-
rule. Interestingly, in the OR-rule, there is almost no benefit
from scheduling QPs because RSSs do not change over time
(except the measurement errors) at fixed sensor locations.

3) Impact on Sensing Overhead (O): We now demonstrate
the performance of our optimal sensor-selection algorithmin
terms of the reduction of sensing overhead. The sensing over-
head here is defined as the average fraction of time spent on
sensing within a CDT period (see Eq. (25)). Fig. 7 compares
the average sensing overhead of a cooperative sensing with
sensor selection (denoted as SS) against the one without sensor
selection. The figure shows that our algorithm minimizes the
average sensing overhead significantly because it selects only
a subset of sensors with high average RSSs, thus minimizing
both the number of QPs and the sensing result reporting time.

VI. CONCLUSION

In this paper, we proposed an optimal spectrum sensing
framework for IEEE 802.22 WRANs that minimizes the
average sensing-time, while guaranteeing the performance
requirement of IEEE 802.22 to be met. We exploit the spatio-
temporal variations in received primary signal strengths for our
cooperative sensing that consists of (i) RSS-profile manager
that learns the spatial RSS distribution among sensors, (ii)
sensor selector that selects an optimal set of sensors by making
a tradeoff between sensor capability and sensing overhead,
and (iii) primary signal detector that uses the RSS-profile to
provide a simple linear decision rule for one-time sensing,and
optimal stopping time for scheduling of sensing periods. Our
evaluation results show that the proposed sensing algorithms
ensure the detection requirements of 802.22, while minimizing
the sensing overhead significantly.
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