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~ Abstract—In cognitive radio networks (CRNSs), regulatory bod-  e.g., multi-path or shadowing, thus making sensors expegie
ies, such as the FCC, enforce an extremely demanding detebt  different received signal strengths (RSSs) of a primamalig

ity requirement to protect primary users’ communications, which 171 117 |n this paper, we refer to these heterogeneoussRSS
can hardly be achieved with one-time sensing using only a gjie t" | RSS di it
sensor. Most of the previous work focused on either cooperae among sensors patia Iversity

sensing or sensing scheduling as a viable means to improveeth ~ The main goal of cooperative sensing is to improve de-
detection performance without studying their interactions. In tection performance by maximally exploiting the spatialRS

this paper, we propose an optimal spectrum sensing framewér  diversity among sensors. However, the cooperation gain has
in CRNs that jointly exploits sensors’ cooperation and serieg  peen reported to degrade as the shadowing correlation among

scheduling to meet the desired detection performance with . L .
minimum sensing overhead. Specifically, we propose an optah SENSOrs increases [7], [9], [10]. To minimize the detrimaént

sensing framework for the IEEE 802.22 wireless regional am effects of shadow correlation on cooperative sensing, sev-
networks (WRANSs) that directs the base station (BS) to manag eral sensor-selection algorithms have been introduced. Fo

spectrum sensing by (i) constructing each primary signal'spatial example, Selért al. [13] proposed heuristic algorithms for
profile of received signal strengths (RSSs) as a detectionitarion, selecting an uncorrelated set of sensors given differeyriegs

(ii) selecting an optimal set of sensors for cooperative ssimg, and . . . e .
(iit) finding an optimal time to stop sensing. This frameworkwill Of information about sensor locations. Similarly, Kim arfurs

ensure the desired sensing performance of 802.22 with minim  [14] SUQQGSted to select sensors based on their geogréphica
sensing overhead. Our evaluation results show that the pragsed separation so as to make the sensors uncorrelated from each

sensing algorithms reduce the sensing overhead significdptand  other. However, these sensor selection methods incurfisigni
lower the feasible operation region of energy detector b3dB  cant overheads in measuring the actual shadowing cooelati
for practical scenarios. . "
among sensors or may require the deployment of additional

sensors to achieve uncorrelated sensing results.

Scheduling sensing also aims to improve the detection

In cognitive radio networks (CRNs), spectrum sensing fgerformance by sensing a channel multiple times, and thus,
a key component that enables opportunistic spectrum accesploiting temporal variations in RSSs at each sensor. For
while preventing any unacceptable interference to primaexample, in 802.22, a base station can schedule the quiet
communications. To protect primary signals from interfe® period for energy detection multiple times within tbleannel
sensing must meet strict requirements set by the FCC. For eetection time(CDT) and take into account those sensing
ample, in IEEE 802.22 WRANS [1], any primary signal aboveesults to enhance the overall incumbent detection pegooa
the incumbent detection thresho(¢DT), e.g.,—116dBm for [15]. However, during the quiet period, all the secondamrss
the DTV signal, must be detected with both false-alarm amdust remain silent, thus wasting precious resources, ssich a
miss-detection probabilities less thanl [2]. Unfortunately, energy and time, and degrading the quality-of-service (@S
this stringent performance requirement cannot be met wiskcondary communications. The quiet period, thereforestmu
one-time sensing with a single sensor regardless of therundege optimally scheduled so as to minimize the sensing-time
lying sensing technique, e.g., energy/feature detec8p%]. while guaranteeing the required sensing performance.
Thus, in order to compensate for the performance deficiencyDespite its importance, this optimal sensing scheduling
of existing sensing techniques, the number of sensed sammely recently started to receive attention. For examples Le
can be increased by (i) having multiple sensors cooperated Akyildiz [16] proposed an optimization framework for
(in spatial domain) and/or (ii) scheduling sensing events (ispectrum selection and scheduling subject to interference
temporaldomain). constraints. Kim and Shin [14] developed a lookup-table-

Cooperative sensing has been studied extensively as & vididsed offline sensing scheduling algorithm for in-bandisgns
means to improve the sensing performance [6]-[12], wheire 802.22. Huanget al. [17] studied an optimal sensing-
multiple sensors monitor the spectrum individually durthg transmission policy to maximize a secondary user’s utility
quiet period and then transmit their sensing results to fralenthe IEEE 802.22 standard draft, a two-stage sensing mecha-
node (e.g., the base station) for the final decision. To derimism has been proposed to provide flexible scheduling ot quie
an optimal decision, different sensitivities of sensorsuti periods [18]. However, none of these scheduling algoritiems
be considered in data (or decision) fusion [6], [9]. Theseptimal in the sense of minimizing the number of sensing pe-
heterogeneous sensitivities often stem from the geographiriods. More importantly, the interactions between coofieza
locations of sensors and the existence of channel fadirsgnsing and sensing scheduling have not been studied.

I. INTRODUCTION



In this paper, we propose an efficient spectrum-sensing [l. PRELIMINARIES
framework for the IEEE 802.22 that jointly exploits spatial | this section, we first briefly introduce the IEEE 802.22
and temporal RSS variations to minimize the sensing overhegjreless regional area network (WRAN), including its pefo
subject to the sensing performance requirement of 802r22.thance requirements for spectrum sensing. We then review the
particular, we address the following important issues l8csp spectrum sensing and energy detection in 802.22, and eutlin

trum sensing: (i) which sensors to use for cooperative 8gnSithe proposed RSS-profile-based cooperative sensing.
(i) how to incorporate their heterogeneous sensitivitiedata

fusion, and (iii) how to adaptively schedule in-band segsirA- IEEE 802.22 WRANs

to minimize the sensing overhead. We consider the IEEE 802.22 WRAN [1], an infrastructure-

A. Contributions based wireless. air interface, in which e.ach cell is composed

) . _ " of a base station (BS) and the associated end-users called

This paper makes the following main contributions. consumer premise equipme(€PE). Secondary devices in

« Introduction of a new concept of spatial RSS-signatureEE 802.22 seek spectrum opportunities (white spaces) on
based cooperative sensing that exploits the spatial vana-F/UHF bands. Among different types of incumbent signals
tions in RSSs among cooperating sensoréelyningthe (i.e., NTSC, DTV, and wireless microphones), we focus on
RSS distributions at sensor locations. This is a feaSitﬂQtecting DTV signals, although our approach can be exténde
and useful approach in CRNs where sensor locations a&einclude detection of other types of primary signals, sash
stationary thus making their RSS distributions uniqueanalog TV and wireless microphone signals. To protect pri-
and (pseudo) time-invariant. mary users (i.e., TV receivers), CPEs should be locateddsuts

» Development of a simple and near-optinlialear data- the keep-out radiu®f 150.3 km from the TV transmitter [20].
fusion rule for detection of a primary signal based om general, CPEs (i.e., houses) are statiad form various
a one-time sensing via a linear discriminant analysigusters of different sizes. At the edge of the keep-outusdi
(LDA). This is based on the observation that, whethe DTV signal power is attenuated t96.5dBm, which is
energy detection is employed in a low SNR environmeiklow the average noise power, i..95.2dBm [20].
such as IEEE 802.22 WRANSs, spatial RSS distributions The IEEE 802.22 standard draft has numerical performance
can be approximated as multi-dimensional Gaussian witBquirements on spectrum sensing in terms of: (i) minimum
a common covariance matrix. The theoretical perfosignal power, (ii) detection delay, and (i) sensing aemyr
mance of LDA-based decision rule under shadow fadirj@1]. First, sensing must be able to detect the incumbent
is also presented. signals with signal strength above tlecumbent detection

« Proposal of an optimization framework for minimizingthreshold(IDT), e.g.,—116dBm for the DTV signal. Second,
the sensing overhead of cooperative sensing, which cagnsing must be fast enough to detect the primary signairwith
sists of: (i) an algorithm for selecting an optimal set othe channel detection timéCDT) (for in-band sensing) of 2
sensors for cooperative sensing (Section IV-B), and (#econds after its appearance. Third, sensing must be &ecura
an online sensing-period scheduling algorithm that finde guarantee the probabilities of false alarm and miss tletec
anoptimal stopping timeia a sequential probability ratio below certain thresholds, i.ePr4 < 0.1 and Py;p < 0.1, for
test (SPRT) based on the sensing results (Section IV-Aany primary signal stronger than the IDT.

« In-depth simulation to de_:monstrat_e the beneﬂt_s of t_hg_ Spectrum Sensing in IEEE 802.22

proposed spectrum-sensing algorithms. Our simulation o

results show that the proposed RSS-profile-based deThe IEEE 802.22 standard draft employsdstributed

tection schemes for both one-time (i.e., LDA-basedpectrum sensingDSS) where CPEs are required to report

and sequential (i.e., SPRT-based) sensing significar:%i"r local sensing results to the BS [12]. It also provides a

improve detection performance over the conventionBl0-stage sensingl'SS) mechanism to schedule quiet periods

decision fusion rules, such as the OR-rhlghe results (QPs) for in-band sensing [15]. According to the TSS, the

also show that our algorithms for sensor selection redud@§ can schedule QPs multiple times for fast-sensing (i.e.,

the average sensing overhead significantly. energy detection) within each CDT [2]. Then, based on the
o fast-sensing results, the BS determines the need to sehadul
B. Organization longer QP for fine-sensing (i.e., feature detection) at titeaf

The remainder of this paper is organized as follows. SectianCDT in order to obtain more accurate sensing results. How-
Il briefly reviews the IEEE 802.22 WRAN and the energyever, the current 802.22 draft does not specify any algworith
detection technique, followed by our approach to explgitinfor efficient scheduling of QPs, or how to select sensors for
the spatio-temporal variations in RSSs for spectrum sgnsiigooperation. Therefore, we have opted to develop an online
Section IIl presents our RSS-signature-based detectlmense QP scheduling algorithm for fast-sensing that findopatimal
for one-time sensing and its theoretical performance.i@ect stopping timefor QPs to minimize the sensing overhead while
IV introduces our cooperative sensing algorithms designedguaranteeing the detection requirements of 802.22. We also
(i) select an optimal set of sensors and (ii) find an optim@ropose an algorithm to find an optimal set of sensors for
time to stop sensing. Section V evaluates the performancecobperative sensing by exploiting sensor heterogeneity (i
the proposed algorithms, and Section VI concludes the papéetectability) due to different sensor locations.

1The OR-rule is the most common decision-fusion rule in theeabe of 2|n 802.22, secondary devices are required to be statiomargrder to
prior knowledge of RSS distributions [3], [7], [12], [14]19]. prevent potential interference to primary communicatidos to mobility.



C. Energy Detection in IEEE 802.22

To detect the presence of a primary signal, the energy de-
tector simply measures the signal power on a target frequenc
band and compares the measured result against a predefined

threshold. Since the energy level of the received signasésiu
as a decision criterion, the energy detector is very fadikein
the feature detector, which takes much longer (&4ms for
the field-sync detector for ATSC) because it looks for a djgeci
signature of the primary signal that appears infrequemtiys,

because of the simple design and low overhead (i.e., minimal
delay), IEEE 802.22 employs energy detection as first-stage

sensing (i.e., fast-sensing) in the TSS mechanism [2].

For energy detection, there are two hypotheses regarding

the existence of a primary signal on a given channel:
wi(n)

MMZ{MM+WW

wherey;(n) is the signal received by a secondary usgfp)
is the primary signal, andv;(n) is an i.i.d. additive white
Gaussian noise (AWGN), at sengdn then!" time slot within

underH,
underHi,

sensing results

sensors compare with RSS profile

e

time

Fig. 1. An illustration of the proposed spectrum-sensiragrfework for an
IEEE 802.22 WRAN. The BS selects an optimal set of sensoeskbhodes)
for distributed (or cooperative) sensing and determinesagtimal stopping
time for sensing in each CDT. At each QP, the BS collects thedmtistics
{tn}, i.e., RSSs, from sensors, compare them with the pre-esdiatl RSS
profile and updates the decision statistic. The BS schedules QPs until the
A, reaches one of the decision thresholds (see Section IV failsle

the sensing duration. Thus, the test statistic of the energy gtline of the Proposed Approach

detector is an estimate of average RSS [3]:

BM
= 3 ) (o) @

where B is the channel bandwidth (e.gs MHz for a DTV

The performance of energy detection is highly susceptible
to signal-to-noise ratio (SNR), thus hampering its apbliléisy
in a low SNR environment such as |IEEE 802.22 WRANSs
and preventing efficient discovery of spectrum opportesiti
To overcome this problem and design an efficient cooperative

channel), andV/ is the number of signal samples. The signalensing algorithm, we exploit both thepatial and temporal

is assumed to be sampled at the Nyquist rate, 6.8lHz, so
it takes1ms to obtainM = 6 x 10% samples [19].

variations of RSSs among collaborating sensors. In 802.22
WRANS, the RSS at each sensor is (pseudo) time-invariant

The test statisticl" in Eq. (1) can be approximated as &jue to the static deployment of the sensors (i.e., CPEs)s, Thu
Gaussian distribution using the central limit theorem (LLTthe key idea is to allow the B®arn the RSS distributions at

because the signal sample siZ¢, is sufficiently large even

with a short sensing duration (e.d.ms). Then, the p.d.f. of

the test statistic§’; at sensor is given as [3]:
(NB)?

T, ~ N(NB,5) ] Ho

N (P + NB, BENBYY gy

where P; is the received primary signal strength and is
the noise spectral density, which is typically given-a$63

)

sensors and build the spatial RSS profile of them. Then, upon
collecting the sensing results at each QP, the BS compages th
observed RSS values with the RSS profile where similarity to
the RSS distribution with primary signal can be interpreted

as an indication of the presence of a primary signal, and vice
versa. Using the RSS profile, the BS schedules QPs until it
accumulates sufficient observations to decide whether br no
a primary signal exists with a certain performance bound.

dBm/Hz in 802.22 [3]. Note that we assume that the effect of Our proposed sensing framework consists of the following
multipath fading is negligible in a DTV channel because sf ithree components, which closely interact with each other:

wide bandwidth (i.e., 6 MHz). Therefore, the received priyna
signal strength at sensorcan be expressed as [7]:

H = PR . eYi, (3)
where Py is the average RSS within a cell, ard: is the

channel gain between the primary transmitter and sensor

due to log-normal shadowinglt is important to note tha¥;

is nota random variable, but a specific realization of a normal
random variablé” ~ N (0,0?). This is because the locations e

of the sensors (i.e., CPEs) afized so the channel gain is

also (pseudo) time-invariant and determined based on their

locations. The log-normal shadow fading is often charater
by its dB-spreadg,p, which has the following relationship
0 =0.11n(10)o4p.

SWe assume that all CPEs within an 802.22 cell experienceatme ath-
loss rate (e.g., following the F(50,90) curve) since thatie distance to the
TV transmitter is much larger than the distances betweem {20].

o Sensor selectorthat selects an optimal set of sensors
for cooperative sensing by analyzing their contributions
to the improvement of detectability and the increase of
sensing overhead (see Section IV-B).

RSS profile managerthat establishes and maintains the
spatial RSS distributions among collaborating sensors in
the presence and the absence of a primary signal (see
Section 1lI-A).

Primary signal detector that adaptively schedules sens-
ing and determines the presence of a primary signal. It
provides detection schemes based on one-time sensing
(see Section IlI-B) and a sequence of measurements (see
Section IV-A).

Fig. 1 illustrates our proposed spectrum-sensing framiewor
where the BS directs an optimally-chosen set of sensors to
perform sensing until a decision is made on the existence of
a primary signal, using a sequence of reported RSS values.



IIl. RSS-PROFILE-BASED COOPERATIVE SENSING

In this section, we first present the construction of a spatia x107"
RSS profile and formulate the primary detection based on
one-timesensing as a binary classification problem. Then, we
present the theoretical performance of detection perfooma
under log-normal shadowing.

test statistics (T)

A. Construction of a Spatial RSS Profile

We propose to build a spatial profile (or signature) of
RSS distributions at multiple sensor locations, which will
be used as a main reference for primary signal (i.e., DTV
signal) detection. Fig. 2 plots an example of spatio-terapor . .
variations of the test statistics (i.€,in Eq. (1)) atl5 sensors tme 20 o sensor index
under log-normal shadow fading witky;g = 5.5. It clearly
ShO_W.S spatial diversity in RSSs along with their tempor%‘g. 2. Example time sequences of test statisfifs} for 1 < ¢ < 15 where
variations due to measurement ertéfhe BS can, therefore, P = —110dBm, NB = —95.2dBm, M = 6 x 103, andogp = 5.5dB.
learn the distribution of RSSs at each sensor location aricrlearly shows spatial and temporal variations in the #tatistics.
combine them to construct a spatial RSS profile. For RSS
profiling, we assume a large enough training period (incigdi . .
both ON/OFF periods of the primary transmitter) for accerrat In_general, un.der the assumption of unequall covariance
estimation of RSS distributions. Note that when no primafjairices, the optimal decision rule for our detection peal
signal exists, i.e., OFF periods, each sensor estimatemise ¢an be found viguadratic discriminant analysi(QDA) [22].
power distribution for RSS profiling. Then, the measured R though QDA provides an optimal decision rule for a general

values during both ON and OFF periods are reported to t%%ltivariate Gaussian with unequal covariance matrices, i

BS where the RSS profile is generated and stored for prim ©S not yield a qlosed-form_ expression for thg error prob-
detection in future by comparing it with the observed RS8Pility because of its quadratic decision boundaries [23].
values. Recall that the distribution of test statisfic(equiva- Intere§tlngl_y, howgver, _the quz_:\dre_ltu_: decision ru!e can-ac
lent to the RSS), of the energy detector can be approxima@ﬁ' be linearized using hngar d|scr|m|nant. anaIys@LDA)
as Gaussian (see Eq. (2)) using the CLT in both ON/OFE Our problem on the bas!s of the following two important
periods. Thus, the RSS profile of cooperating sensors is anobservatlons, Ley carl be.. ) o
ns-dimensional Gaussian distribution, the parameters ofwhi 1) assumed as an identity matrix with fixed sensor loca-
can be easily estimated using well-known techniques, such  tions and then, by
as maximum-likelihood estimation (MLE). Lgi; and X, 2) approximated a; ~ ¥y = o, I'in a very low SNR
k € {0,1}, denote the mean vector and the covariance matrix ~ €nvironment.
during ON(1)/OFF(0) periods. Since the RSS distributions a Regarding the first observation, the covariance maffix
each sensor location are (pseudo) time-invariant (exdept fNay not appear to be an identity matrix because of the
measurement error due to limited sensing time) due to sta@istence of shadow correlation in primary signal stresgth
deployment of secondary users (i.e., CPEs), the RSS profdé]. However, as mentioned earlier, when sensor locations
can be used reliably without frequently updating it. are fixed, their RSS is also (pseudo) time-invariant and the
. ) ) _ . randomness in the test statistics comes only from the noise
B. Detection with One-Time Sensing Based on Linear Disocesses (j.e., measurement errors), which are independe
criminant Analysis (LDA) of each other. Thus, the correlation of RSSs between any pair
We now propose a detection rule using an RSS profité sensors is virtually), so we can assume that is also an
given a single sensing measurement. ket [T1,...,T,.]7 identity matrix asX,.
denote the vector of test statistics (see Eq. (2)) of thegsner Regarding the second observation, the received primary
detector measured by, cooperating sensors. Our incumbengignal strengthP may be significantly lower than that of
detection problem is then a binary Gaussian classificatitiie noise power in a very low SNR environment of 802.22.
problem where the observed test statistic R”:*! belongs For example, at the DTV signal detection threshold, i.e.,
to one of two classesi, or H;, where —116dBm, the SNR is less than20 dB, assuming the typical
Ho : x ~ N(ji0, %) (no primary signal) noise levelNB = —95.2dBm [4]. Therefore, it is reasonable
0:X Ho, =0 ) primary sighal, to assume thaP;+ NB ~ N B Vi, and thus¥; ~ S = 02 1.
Hitx ~N(u1,31)  (primary signal exists) Fig. 3 justifies these assumptions by showing that the error
wherey; € R™*! and¥, € R™*"= are the estimated me(,inpen‘ormances_, of QDA and LDA are almost the same in very
vector and the covariance matrix of RSS distributions undig¥ SNR environments. _ _
., respectively. Note thaty = o2 I wherel is ann, x n, Consquently, ugder the assumption of a common covari-
identity matrix ando2 = (N B)2/M. ance _matank :_crnI Vk, we have_ a simple distance-based
" decision rule for incumbent detection:
4The intensity of temporal RSS variations depends on theirggrisne,

Ha
i.e., M, in Eq. (1); the shorter the sensing time, the larger the tealRSS Ix — ol 2 Ix = p1])-
variations due to the increase of measurement error. Ho



noise unceranty (&)= 0 8. 0y =551 = 10 D. Effect of Log-normal Shadowing

We now study the effect of shadow fading on detection
performance by investigating its impact on the distajfed|.
Recall thatw is defined as the difference in RSSs under both
hypotheses, i.ew = pu1 — po = [Py, .., Py.]T. Therefore,
based on Eq. (3)|w]|| under shadow fading is given as:

1/2
@y @

where Py, is the average RSS in the cell due to path loss. As
mentioned earliery; is a location-dependent realization of a
random variableY” ~ N(0,02) wheres = 0.11n(10)045.

Fig. 3. Error performances of QDA vs. LDAhe performance difference NOte that the AWGN channel can be regarded as a special

is insignificant in a very low SNR environment; note that thise power is case with no log-normal fading component, i®;z = 0, and
assumed to be-95.2dBm. This is the results of a Monte Carlo smulatlonthuS HWH under AWGN channel is given as:

with 107 runs.
IWllawan = Pr-/ns Vns € N. (8)

Clearly, the decision is made based solely on the distancelo understand the impact of shadow fading on detection
between the observed RSS vecter,and the mean vectorsperformance (in terms oPL2* given a fixed PED4), it is

of the RSS profiley, under both hypotheses. Therefore, oudlesirable to study the distribution ¢ ||sned0w in EQ. (7).
RSS-profile based detection rule allowsiampledata fusion Unfortunately, there is no closed-form expression avéelédr

at the BS, thus reducing the computational overhead, whilee power sum of log-normal random variables in Eq. (7) [25].
outperforming the traditional threshold-based detectides, However, the power sum can be approximated accurately by
e.g., the OR-rule (see Section V for detailed results). rendering the sum itself as another log-normal random bkria
[26]. Lete?’ ~ €21 4?2 ... 4 ¢2Yns. Then, by following

N the result in [26], the sum can be approximated by matching

Let 7(x) = w'x denote the test statistic for incumbens mean and variance with?. The first two moments of
detection, which is calculated based on the observed Re8 gre[[e?'] = ¢rz'+9%1/2 and E[e??'] = e2#2'+292/. Our

S ax1 i . . .
vectorx, wherew = (u1 — po) € R+, Note that|wl|| i final goal is to approximate the square root of the power
the Euclidean distance between the centroids of two Gaussidym je. e? — (eZ/)l/Q which is still a log-normal random

distributions under both hypotheses, where th? Centmidfz;e_ variable. Thus, by equating the first two moments-6f and
the vectors of average RSSs at sensor locations. Then, it N [ Y;\2 oz Z'\1)2
, ; . power sumy ., (e**)*, and then taking” = (e )"/,
be easily shown that the test statisTi¢x) follows a Gaussian we have | =1 z .
AR - e S o |W||shadow = Pr - e“ with the random variable
distribution, i.e., 7 (x) ~ N (w” g, o2 ||w|?) underH, Vk. 7 Log-N(j1. 02 ) where:
Then, the probability of false alarm under our LDA-based hz, 0z '
decision rule with the decision threshajd R is given as: s 1 ) { (et — 1)
oz =-log | ——
ng

+ 1], ©)
Pﬁflm £ Prob(T (x) > n|Ho) 4

T and
n—W" o 2
= _— |, Z1 1 g
Q( oWl > @ pz =35 log(ns) +o® — £

0.8f
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C. Theoretical Performance

(10)

e
where Q(-) is the Q-function. Using .EQ-L@‘, the decision Assuming that the sensors experience independent log-
thresholdy can be derived for the desired:; as: normal shadow fading, we can derive the average miss de-
n=o,-|wl- Q—l(pFLEA) + w7 . (5) tection probability as:
Then, based on Egs. (4) and (5), the probability of misﬁiﬁ;“ _ /OO {1 _ Q(Q1(P££A) _Pr- €Z>] f, - dz,
detection,PL24, is given as: —oo n
LDA L Prob(T (x) < 1| H) where f, = az\l/% exp [ — %], —00 < z < 00.
1/ pipay Wl The simulation results (in Section V) show that LDA-
=1-Q(Q (PFA ) A (6) based detection rule for one-time sensing significantly out

o DA performs the traditional OR-rule in incumbent detectioae(s

Eq. (6) indicates that, when the desirBgty! is given, the section V-B). However, the results indicate that the déect
achievableP2* depends on the noise varianeg = ~E  requirement of 802.22 is guaranteed to be met only under

and the distancdlw||. That is, theP£2" decreases as thecertain conditions, e.g., shadow fading with a high dB-agre
sensing duration (thus the numbgf of samples) increaseseven with cooperative sensing. Therefore, in what follows,
since a large number of samples would make the decisime present an optimal cooperative sensing framework that is

more accurate due to the reduced noise variance (measurerdesigned to: (i) select an optimal set of sensors and (ii)dimd
error). On the other hand, the distarjpe|| would be affected optimal stop time for sensing in each CDT, to further improve

by the intensity of the shadow fading, as we discuss next. the detection performance with minimal sensing overhead.




IV. OPTIMAL COOPERATIVE SENSING FRAMEWORK FOR  Algorithm 1 ONLINE SENSING SCHEDULING
SENSING OVERHEAD MINIMIZATION At the beginning of a CDT period, the BS does the following

In this section, we first propose an adaptive online algorith 1: While each roundu € [1, Niaq] of quiet period (QPYo
. . . . . . : Receive results of energy detector (i.e., RES)¥rom sensors
for sensing scheduling that finds an optimal stopping time;, "™ =1 [wl|=! - 7 (x») // Calculate test statistic
for quiet periods (QPs) in a CDT, subject to the detectiory, Ay « Ay + (6, — 00) ¢, + 103 —6%)

requirements of 802.22, assuming a set of collaborativessn 5. if Ay > B then

is given. We then present an algorithm for selecting an cgdtim 6: A primary exists and we schedule fine-sensing (or initiate
set of sensors that minimizes the average sensing-time. the channel vacation procedure)

7. else ifAx < A then
A. Optimal Stopping Rule for Sensing Scheduling 8: A primary does not exist and we defer QP until the

beginning of next CDT period

In the TSS mechanism in 802.22, fast-sensing (i.e., energy.  gise ifn = N..... then
detection) is scheduled at discrete-time inter\i?aimd thus 10 Schedule fine-sensing for in-depth measurement
the BS receives a sequence of observations (i.e., RSS sgctan: else _ _
from the sensors. This makes sequential detection suifable 12: Schedule another QP and wait for the observation

our problem. In particular, among various sequential dietec 13 end 'T
techniques, we adopt Wald®equential Probability Ratio Test 14 end while
(SPRT) [27] since it is optimal in the sense of minimizing the

average number of observations, given bounded probabhiliti

of false alarm and miss detection. and the actual achievable error probabilities, denoted asd
Lett, £ o1 |w| =t 7(x,) denote thenormalizedtest [, have the following relationships:
statistic based on the observed RSS vegtpiin the n!" QP. a* *

g x| g
Then, in SPRT, the decision is made based on the observed < 7 5 B 1o and a + 3 <a" +3*. (16)
sequence of test statistic§, } \_,, using the following rule:

n= . ] . Eqg. (16) indicates that the actual achievable error prditiabi
AN > B = acceptH; (primary signal exists) i.e.,a andg, can only be slightly larger than the desired values
Ay < A = acceptHy (no primary signal) «o* andg*. For example, with the desired valuesof = 5* =

0.1, the actual values: and 3 will be no larger tharD.111.
Recall that our goal is to minimize the number of times
whereA and B (0 < A < B < o) are the detection thresholdsthe spectrum needs to be sensed, with the decision threshold
that depend on the desired values Bf4 and Py/p. The derived from the target detection probabilities as shown in
decision statisticA y is the log-likelihood ratio based oV Eq. (15). We therefore consider the number of QPs until a

A < Ay < B = take another observation

sequential observations (i.e., test statistigs) .., ¢y as: decision is made (i.e., either the boundary A or B is reached)
X filty, tn) as our main performance metric. The average number of QPS,

AN = Aty ,tn) =In Tl i) (11) E[N], required for decision-making can be computed as:

where fi(t1,...,tn) is the joint p.d.f. of the sequence of E[An] = E[N] x E[A [ Hy]. 17)

observations under hypothes§ Vk. Recall that{t,};" First, using Eq. (13), the average value)ofinderH;, can
are Gaussian, and w.o.l.g., we assume that they are i.ieh,Thhe derived as:

Eq. (11) becomes:

1
N X ED M) = (61— 60) 6+ 503 = 61).  (18)
Ay = Z An = Z In Foltn)’ (12) The average of\y can then be found as follows. Suppose
n=1 n=1 " Hy holds, thenAy will reach B (i.e., false alarm) with the
where fy (t,,) is N (0, 1) with 0, = E[t,, | Hy] = :vﬁgvk“ v, desired false alarm probability”; otherwise, it will reachA.
Then, we have: " Thus, using Eqg. (15), we have:
C ;‘;Eini By — B0t + %(93 —02). (13) E[AN [Ho] =" In——+(1—-a") In——.  (19)

Based on Egs. (17), (18) and (19), we can derive the average

Based on Egs. (12) and (13), the decision statistic can required QPs for decision-making as:

be expressed as:

N N EIN |2 a*lnlg—f*—i—(l—a*)ln% -
Ay = (91—90)2tn+5(93—9%)- (14) [N 1 Ho] = (01— 00) 0o+ 2(63 —03) (20)
Let o* and3* denote the desired values Bf- 4 and Py p, Similarly, we can derive: i i
respectively. Then, the decision boundaries are given B} [2 EN | 7] (1-p8*)1n 1;? + /* In 1fo¢* (21)
* _ * 1] = _ l 2 _ 2 :
A= L - and B=lnl f : (15) (61— 00) 61+ 5(65 — 61)
l-a @ Based on Egs. (11)—(21plgorithm 1 describes our online

5In IEEE 802.22, the interval between consecutive QPs museparated a_llgonthm for_schedulmg QPs that finds an optimal stopping
by at least 10ms, i.e., one MAC frame size [15]. time for sensing.



In addition to the detection-accuracy requirements in serndlgorithm 2 SELECTION OF ANOPTIMAL SET OF SENSORS
of Pra and Py p, 802.22 also has a timing requirement on1: Initialize the desired detection parametétsa,Prp, P
primary detection, i.e., CDT. Thus, our scheduling algorit 2 Initialize the set of available sensois= {x1,.. ., xn.}

should allow the BS to make a fast decision (i.e, reach onéf :E:E:g“sg :ﬂg gggg}% %?e?ﬁgggfc?oo‘_ 0

of the boundaries) within a CDT, thus eliminating the needs; \hile ¢ - ¢ do
for expensive feature detection; otherwise, the BS needs © y* — argmax,,co{P:} /l Pi = Pg €%
schedule a fine-sensing period at the end of the CDT. 7\ {x}

However, in practice, the maximum number of QRS, .., Q—=QU{x"}

N* «— min{E[N(Q, Pra, Pup)], Nmaaz }

that can be scheduled within a CDT is constrained by severl%r: 0 — N* x Tp (%)

factors, such as inter-sensing interval, initial sensireday

! > 11:  if O > O andProb(Nopt < Nmaz) > Py then
sensing time, and length of a CDT [21]. Therefore, we set g: return Q*
thresholdP,;,, a design parameter, such that the BS must rea¢h:  else
a conclusion withinV,,,... QPs with probability greater than or 14: =0
equal to theP,,. Let IV,,,, denote the optimal stopping time of igf en((jgif<— o

QPs with Algorithm1. Then, we are interested in deriving the

probability thatN,,: < Ny, Which should be no less than 17: end while

Py;,. Although an approximate formula for the distribution of
N+ can be derived, we instead derive a lower limit on the

probability for computational efficiency [27].
SupposeA y > B. Then we haveV,,; < Npqz, and

max

thus, the following inequality holds:

Prob(Nopt < Npaz) > Prob(An,,,. > B). (22)

Since N, is sufficiently large in practice, we can use the

central limit theorem (CLT), and then the inequality, . >
B can be written as:

AN,,oo — Ninaz B[N H4] < B — Npaz E[X | Hi]
V Nmam 01 ()\) a V Nmam 01 ()\) ’
whereo; () is the standard deviation of under?;, which
can be derived asy(\) = (61 — 6y) Vk from Eq. (13). Then,
the left-hand side of Eq. (23) is normally distributed wittra
mean and unit variance whét,; is true.

(23)

where Tr is the duration of a time-slot for reporting the
sensing result to the BS.

Then, based on Eqgs. (24), (25), and (26), our problem of
finding an optimal set of sensors can be formally stated as:

Find Q" =arg Inin o)

subject to Prob(Nopt < Nimaz) > Pin.

For this, we propose a simple algorithm as describedlin
gorithm 2. The idea is that we sort the sensors in descending
order of averge RSS (i.eE;) and then add sensors fbfrom

the top of the list until the total sensing overhead incredse
adding another sensor, and the detection constraintif},.js
satisfied (linel1). The algorithm provides an optimal solution
with a low computational overhead, i.€)(|®|), while the

Therefore, based on Egs. (22) and (23), we have tbghaustive search requir€$2/®l —1). The algorithm is shown
following lower bound on the probability that the BS makeso reduce the sensing overhead significantly (see Sectich V-

a decision withinN,,,, observations (i.e, QPS):
B_NmamE[/\|Hl]> (24)

Prob(Nopt < Niaz) > Q( VN 1)

This lower bound will be considered in our algorithm fo

selecting an optimal set of sensors as described next.
B. Algorithm for Selecting an Optimal Set of Sensors

We now turn to the problem of finding the best set of sens

that minimizes the total sensing overhead. etlenote the

while guaranteeing the detectability requirements of 802.

V. PERFORMANCE EVALUATION
This section evaluates the proposed algorithms using

MATLAB-based simulation. These algorithms are compar-

atively evaluated against the OR-rule under various fading
conditions.

o’?‘s Simulation Setup

We consider the IEEE 802.22 WRAN environment with a

total set of sensors available for cooperative sensing witingle primary transmitter (i.e., TV transmitter) and nplé

estimated RSS distributions via training. The idea is tbzati

secondary users (i.e., CPESs) located at the edge ddtbye-out

a subset) C & of sensors with relatively high average RS%adius (i.e., 150.3 km) where the average received strength of
values (e.g., those located close to the primary transmutte & TV signal is below—-96.5dBm [20]. We use the commonly-
outside a deep fading area), thus minimizing both the numiged noise powefN B); = —95.2+ A, dBm [4], whereA,; is

of cooperating sensors and the number of QPs in incumbé&hg noise uncertainty (in dB) at sensoand B is the channel

detection, while guaranteeing the detectability requaets.

bandwidth, i.e.,6 MHz. We consider shadow fading with

Given a subset of sensorg, the total expected sensingvarious dB-spreads,z = 0,2,5.5(dB); while o045 = 5.5dB

overhead within a CDT can be expressed as:

0() = min {E[N(Q)], Naz } x Tn(2),  (25)

whereTr(Q2) is the total time duration for a single sensing
which consists of a QP and a measurement reporting perio1 ¥l

To(Q) = QP + |9] x T, (26)

is typical in 802.22 [20], it can vary depending on local
environments, e.g., distance/angle to the BS [28]. Through
the simulation, we assumé(0 cooperating sensors unless
specified otherwise, and the time-slot duration for repgra

S measurement’() is fixed at0.2ms. For RSS profiling,
samples were used for estimating the RSS distributions,
which consumes only0 seconds of total sensing time. The
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Fig. 5. Effect of sensing duratiorf’§) on average Fig. 6. Average number of QPs scheduled to mday. 7. Performance of the optimal sensor selection
number of QPs. The larger the sensing duration, tthe detectability requirement of 802.22. Our onlinglgorithm. Our proposed sensor selection algorithm
more accurate the sensing result, thus reducing gensing scheduling algorithm lowers the sensorisduces sensing overhead significantly over the al-
number of QPs needed. operating range (feasible RSS region) 13/ dB. gorithm without sensor selection.

performance of the proposed algorithms are evaluated unttee performance gap increases as the number of cooperating
various shadow fading conditions and compared with OR-rulsensors increases. This is because, in the LDA-based idetect
based cooperative sensing algorithms. all the sensors contribute to the enhancement of the detecti

, erformance via RSS-profile, thus fully exploiting spai8S
'?i'mzersfggi?wgce of LDA-based Detection Scheme for Ongyersity, whereas, in the OR-rule, only a few sensors with

high RSSs (e.g., above the detection threshold) contritnute
We first evaluate the performance of proposed LDA-basetke detection of a primary signal.

detection scheme foone-timesensing under various fading 3) Effects of Noise Uncertainty\): The noise uncertainty

conditions. We assume that the sensors are randomly slecig one of the main obstacles in using the energy detection in a
1) Effects of Shadow Fading’{z): Fig. 4(a) shows that yery low SNR environment such as 802.22 [30]. We assume
our LDA-based detection significantly outperforms the ORhat the noise uncertainty at sensas i.i.d. Gaussian random
rule in all simulated scenarios, thanks to its ability to #& yariable with1dB variance, i.e.A; ~ N(0,1) Vi. Fig. 4(c)
near-optimal detection threshold (i.e., @n — 1)-dimensional shows the averagg,,p obtained byl0* runs of Monte Carlo
hyperplane) based on the spatial RSS profile; the OR-rule,tlists. In the tests, the decision thresholds are adjusted so
contrast, uses the same threshold at all sensors for sityiplighat the average’r4 remains below0.1. Note that, when
[3], [7]. Interestingly, both detection schemes perfornttére the OR-rule is employed, the detector completely fails Wwelo
as shadow fading becomes more intense (i.e., highg) at SN R, .,; (under AWGN channel), which is-98.5dBm when
a given average primary signal strength. This is because Qf — 1dB Vvi.5 The figure, however, shows that under the
the heavy-tailed distribution of the primary signal strng practical assumption that the noise uncertainty is indegen
due to log-normally-distributed shadow fading [29]. THere, at the sensors, the LDA-based detection works well below
a large dB-spreadp,p, improves detection performance,sN R, .., even with a one-time sensing and performs better as

especially in a low SNR environment. shadow fading becomes more intense, i.e., higher, thanks
2) Effects of Number of SensorsJ: We now study the to jts ability to exploit spatial RSS diversity.

impact of number of sensors on detection performance. We set
the average signal strengtl’) to the DTV signal detection

B . . . .
threshold (i.e.,—116dBm). Fig. 4(b) shows that the LDA- ) This is a reasonable assumption since noise uncertaintypearounded

g - y +1 (dB) considering several contributing factors such asbcaiion error,
based detection outperforms the OR-rule-based detectidn &ermal noise variation, changes in LNA amplifier gain, ¢8d.].
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