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Abstract—Electric vehicles operate inefficiently with a naive be discharged, despite its terminal voltage below a certain
battery management system that charges or discharges batie threshold called thecutoff voltage it may become short-
cells in a pack based solely on application load demands. The qjreyjited, transitioning the cell into an irreversible cition.
battery pack’'s operation-time and lifetime can be extended Wh th’ I ted | llel the other hand. i
significantly by effectively scheduling (thecyber part) battery . 1en the cells are connected In parallel, on the other hand, |
charge, discharge, and rest activities, based on the batigr IS important to balance their voltages, since their inttons
characteristics (the physical part). We propose a set of policies and dependencies make their voltages drift apart. Higher-
for _scheduling batte_ry-cell activities, Ci_i”ed theweightedk ro_und- voltage cells may then inversely charge the lower-voltagjks ¢
robin (kRR scheduling framework. This framework dynamically causing the entire terminal voltage to drop from the desired

adapts battery-cell activities to load demands and the corition of | fth lel ted cells. M Lithii
individual celis, thereby extending the battery pack’s opeation- ~ V&U€ OI'the paraliel-connected cells. Moreover, a Lithiom

time and making them robust to anomalous voltage-imbalance ~ Cell has unique characteristics [18], such discharge effi-
The framework comprises two key components. First, armdaptive ciency(the higher the discharge rate, the lower the deliverable

filter estimates the upcoming load demand. Then, based on thecapacity), andrecovery efficiencythe interface-concentrated
estimated load demand, thekRR scheduler determines the num- gradient inside the cell is diffused during a ‘rest,’ afteioh

ber of parallel-connected cells to be discharged simultaroisly. th I be ch d with | lectri t tsh
The scheduler also effectively partitions the cells in the ack, 1€ CEll can be charged with large electric current over atsho

allowing the cells to be simultaneously charged and dischged time_). )
in coordination with the battery reconfiguration system we Given parallel-connected cells, we can schedule their

developed earlier [17]. Besides theRRscheduling framework, we  charge, discharge, and rest activities. For instance, eatth
characterize the discharge and recovery efficiency of a Litum- -5 pe discharged in a round-robin fashion. Furthermoe, th

ion battery cell. The kRR scheduling framework is shown to . . ; .
outperform three alternative scheduling mechanisms with espect @mountof discharge time can be scheduled in proportioneto th

to the operation-time by 7-56%, and improve the tolerance of fémaining charge current in the Corre_sponding 96”, indida
voltage-imbalance by up to 50%. by the State-of-Charg€SoC) level. This scheduling leads to

weighted (with SoC levels) round-robin scheduling, caliee
. INTRODUCTION weighted1RR schedulingSimilar concepts are found in areas

On April 2, 2007, the US Supreme Court identified £&85 of scheduling tasks in distributed real-time systems, al we
an air pollutant, authorizing the US Environmental Pratett as scheduling packets in the differentiated service achite,
Agency (EPA) to regulate this greenhouse gas [4]. Greesuch as those in [15,16,21, 22, 25]. Alternatively, one ¢r al
house gas emissions could be reduced by half by increasogdls can be discharged sequentially or simultaneously in
use of hybrid, full, and/or fuel-cell electric vehicles (EV parallel. This type of cell discharge has been used widely,
For instance, we can achieve an estimated 35% efficieregpecially for mobile devices such as PDAs and laptops.,Also
for a 5-passenger EV with electricity generated from fessilising an analytical method, these two mechanisms have been
based energy, while achieving a 16% efficiency in convertirmpmpared in [2,5]. In general, however, no single mechanism
gasoline-based energy to vehicle motion. According to amec outperforms the others in all circumstances, thus callovgaf
survey [8], due mainly to a sharp increase in fuel cost in 2008orough study of this issue.
36% of motorists worldwide wish to buy a car with hybrid Two main challenges exist in scheduling charge, discharge,
drive, while 46% of them are interested in buying full-eléct and rest activities for large-scale battery systems. [Fiast
cars. To meet this demand, an estimateck lithprovement scheduling framework should operate reasonably well in all
of the battery capacity and power is required, making thercumstances. That is, using the framework, one should be
performance of rechargeable batteries competitive witid aable to extend a battery cell'speration-timeas much as
attractive alternatives to, conventional gasoline engine any other scheduling mechanism can. By ‘operation-time,’ w

An important requirement is to prevent the overcharge amdean the cumulative time of the charge current drawn from a
deep-discharge of battery cells. For instance, when aurithi battery cell until the cell no longer delivers the requirdduge
ion cell (that has high electrical energy concentrated imals current to applications. That is, the operation-time entignv
volume in the cell) is overcharged, active materials therethe terminal voltage of the cell falls below the cutoff vgjéa
will most likely react with other materials and electrolgte To extend the cell’s operation-time, we need to understand
potentially causing an explosion, let alone damaging thHe céhe battery characteristics, such as the discharge andesco
itself. When the cell isdeep-dischargedor it continues to efficiency. Second, a scheduling framework should be raioust



(inevitable) cell failures in a large-scale battery packuinich A. Reconfigurable Battery System

cells interact with, and depend on, each other. The terminalp yeconfigurable battery system that we developed earlier
voltage of aweakcell with low capacity tends to drop quicker[17] js composed of a controller that manages a set of control
than other cells in use. The voltages of all cells (including njts, and an array of battery cells. Each cell is equippet ai
weak one) must remain balanced. When a weak cell canigt of switches that each control unit is responsible farituy
reach the full charge owing to higtelf-dischargg?2], and/or o or off, so that the cells can be connected online in series,
becomes short-circuited, healthy cells could be over@wrgin parallel, or both. For instance, as shown in Fig. 1, when
All of these phenomena will eventually lead to cell failures e want the cells to be connected in parallel, each control
We propose a weighteld-round-robin kKRR scheduling ynit turns on switches (1) and (4). When switch (3) instead
framework as part of large-scale battery management. TRJS 4) is turned on, the cells become a series chain. We can
framework relies on synergetic integration of an effectivgisg make multiple parallel groups, e.g., the simplest Ifgra
scheduling mechanism (cyber) and battery Characterist'@%up is made by turning on a first cell's switches (1) and (3),
(physical) to adapt cells to their conditions and variowsdio gnq the following cell's switch (4). More cells can be added
demands (oworkload3. The framework comprises two keyin petween. This group can then be separated by terminal

components: an adaptive filter and scheduler. Firstath@p- gyyitches (5) and (6). Terminals are connected to the load, or
tive filter estimates an upcoming load demand using a recursif&connected if needed.

least-squares (RLS) algorithm [14]. Second,kR&R scheduler Terminals

determinesk, the number of parallel-connected cells to be 9. ¢ L 7 L 9 T 1L 9
discharged simultaneously. Whén= 1, the scheduler func- = @ i I R N
tions as a weightedRRor sequential scheduling (denoted by L 5 : — : — — : —
1+1RR). Whenk > 1, it functions as a parallel scheduler. All of - «ﬁj JE JE P = .
the scheduling mechanisms except for the sequential sthedu .'Qg'l’ - [ - [ - I - ] -
ing are based on weights on the cells to be charged/discxlilargé"";'1 (:P) T T T o

The cells can be charged and discharged simultaneously it = o ] ] - —
coordination with the battery-reconfiguration system we de <% . ]
veloped earlier [17]. In particular, the cells are chargea v = 4 °F L T L T L ™ L T |

quick average charginthat is effective for voltage-balancing Terminals
and robust to overstresses occurring to the cells. Fig. 1. The schematic diagram of the battery reconfiguratipstem that
The main contributions of this paper are three-fold. Firsfonass of & 5et of batey cols and a contoler ht s mltple
to our best knowledge, the proposkBR scheduling frame- -
work is the first comprehensive way of coping with various Here we rely on the system’s three types of capability.
workloads and voltage-imbalances; the workload is effe¢gi First, the coordination of terminals’ connectivity and the
handled with 2 ton parallel-connected cells, depending on itserminal switches allows the cells to be charged and digeftar
nature, and a group of healthy cells are discharged. Sepand,Simultaneously. That is, we can virtually partition thelséhto
discovered an intriguing effect of recovery efficiency,abst two groups for charge and discharge activities, respegtive
lishing a key criterion in determining, and hence extending Second, an appropriate combination of on-switches all@ws f
the cell's operation-time. This framework represents aesgy Parallel-connected groups of the cells. These groups cam th
typical of cyber-physical systems. Third, the battery acar Selectively be discharged at a time. Th_|rd, a smgle battery
teristics are modeled, including the discharge and regovétack can be treated as one module, like a single cell, by
efficiency. The model provides a physical insight into bgtte connecting all the cells in the battery_pack_ln series. These
characteristics and can be extended to estimate the aperatPattery packs can then be connected in series, in paratel, o
time, given a discharge profile. both. For simplicity, a cell is regarded as a module on which
The rest of the paper is organized as follows. Section ¢harge and discharge activities are scheduled. Based ea the
describes the battery reconfiguration system, the backgrouthree types of capability, we build a framework of schedylin
of battery characteristics, and the motivation of this workhe charge, discharge, and rest activities for batteryscell
S_ection Il models the batt.ery characteristics, incluo!thg hB Battery Characteristics and Motivation
discharge and recovery efficiency. Section IV describes the . . -
design of thekRR scheduling framework that consists of A réchargeable battery cell (e.g., NiCd, NiMH, and Lithium-

the adaptive filter andRR scheduler, based on the battery®™) IS capable of converting chemical energy to electrical

reconfiguration system. Section V presents the analysiglbf cc"€"9Y; and vice versa, via electrochemical oxidation aad r

arrangements and discharge profiling. Section VI evaluates duction reactions [3, 18]. These reactions involve thg ange .
performance of th&RRscheduling framework. We discuss the?" electrlons tgrou_gh_(tjhe rlload ltl)etween (_electril-actlv;a ?sem
related work in Section VII and conclude the paper in Sectidi WO €lectrodes inside the cell, generating a flow of electr

VI current. Ideally, the total charge, counted in coulombjyrfro
the cell will always be the same throughout its entire life

Il. RECONFIGURABLEBATTERY SYSTEM, BATTERY cycle. In reality, however, the characteristics of a cek ar
CHARACTERISTICS AND MOTIVATION nowhere close to being ideal due to the uncertainty of reacti

This section introduces a reconfigurable battery systekinetics, diffusion process, aging, and side effects (ecfive
provides a physical insight into rechargeable batteryscalhd material dissolution, electrolyte decomposition, and spees
then describes the motivation behind our work. film formation [18]) inside the cell over time. The battery



type considered in this paper is assumed to be Lithium-ion 45 .
or Lithium-polymer, for it has been widely used for power Recovery effect
devices ranging from mobile handsets to electric vehicles. /

We have observed two important aspects of the real-life
battery cell characteristics. First, a high discharge rate
fects greatly the cell's operation-time. That is, the higtie
discharge rate, the less efficient the conversion of théscell
chemically-stored energy to electrical energy, thus ddiog@ @ °© | L ______ |
more in the deliverable capacity. According to our preliariyn Cutoff voltage
study (see Fig. 2), the cell of 3600 mAh capacity takes 1 hour 15
to be fully discharged at rat€—1 coulomb is drawn every 0 O ot 100 150

. . . . peration—time (minutes)
second. If the dISCharge rate doubles, its dehverablem@pa Fig. 3. The battery cell's recovery efficiency: the discleaigehavior that a

decreases by 4.7%. 15-minute rest follows 2-minute consecutive discharged®fis repeated 7
times, and then the discharge rate decreases down to Cttladteell rests
45 T - - . . - for 15 minutes.
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an exhausted cell have to rest for its recovery?” To answer

this question, we must understand the recovery efficiency in
detail. The remainder of this paper will focus on answering
these questions.
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IIl. M ODELING OF BATTERY CHARACTERISTICS

N

acsc 2 ¢ An accurate estimation of battery-cell characteristiceds

%0 =20 30 40 50 60 70 sential fqr scheduling charge, discharge, an_d rest aesvitn
Operation~time (minutes) this section we model the battery characteristics inclgdire
Fig. 2. Voltage degradation at various discharge rates discharge and recovery efficiency, with the goal of genegati

Second, the cell has a limited charge recovery effect ateference model for the cell characteristics.
a high discharge rate; a high load for a short period of
time causes a high interface-concentrated gradient amdahg
electro-active species inside the cell, making the usdidege As shown in Fig. 2, the voltage-drop curves for different
temporarily unavailable due to the lag between reaction adécharge rates are very similar. That is, increasing tise di
diffusion rates [18]. Thus, when the cell is allowed to ‘tést  charge rate by @ decreases the operation-time by 50%. Given
some time at a low (or zero) discharge rate, the voltage ththe curve-shape similarity, we want to derive the relatiops
dropped temporarily goes back up, referred to asrduevery between the voltage-drop curves with respect to the omerati
efficiency time. First, a nonlinear voltage curve at a constant digghar

This recovery efficiency is instrumental in extending theateiC is defined as an invertible functiof; :t — V. We
operation-time of a large-scale battery pack for powerirgpecify the curveFes with the constant discharge ra@ as
heavy workloads, such as electric vehicles. For instanse, areference Then, the operation-times associated Wy
shown in Fig. 3, a high load causes a temporary voltage dramrrespond to those with;, based on their shape similarity:
and then part of the cell’s voltage is recovered after a aerta
period of rest. When the cell is discharged for 15 minutes at Fi(ti) = Fret(tr), (1)
4C, its terminal voltage drops 7%. Then, after the cell isa@és heret; (t,) is in the operation-time domain & (Fref). The

for 15 minutes, the dropped voltage is restored up to 5.5§ &ference operation-time can be solved offline by using Emp

Moreover, when th‘? cell ca_pacity is I.OW' at a high qiSChar%‘lear curve fitting. On the other hand, the relationshipuaen
rate, the concentration gradient of active species insideéll t andt, is expressed as ’
1 r

gets steeper, reaching the cutoff voltage (see the largagel
drop at the 7-th discharge activity in Fig. 3). This drop belo tj = Fi’lFref(tr). 2)
the cutoff voltage causes the disconnection of the cell fiioen

load, assuming that the cell has been fully dischargedednkst The relationship:leref, as shown in Fig. 4, can be approx-

Discharge Efficiency

of immediate disconnection, by diverting the load demarithated to be a set of linear functionb= {Tq, ™, ---, TG, -+,
to other cells and resting the exhausted cell, it is recavera,}, wheret; (=axt+b) is differentiated by the discharge
quickly, lasting for 40 minutes at/4. rate. For instance, given two points in the operation-time

The first question is then “how can the discharge rate lswmain with a discharge rati€, two corresponding points
adjusted for individual cells?” Although the battery maeag in the operation-time domain are obtained via These two
ment cannot directly control the loads, their connectiomlsa points are then applied 6.+, yielding a voltage drop.
diverted to selected cells. By dynamically selecting theabar The referencell andFe¢, can also be used to simulate or
of cells, the discharge rates can be adjusted independehtlestimate the cell’s operation-time, as in [26]. The refeeen
the loads, and the rest time for an exhausted cell can alsased estimation, however, must consider the recovery effi-
be scheduled. The second question is then “how long dasency to enhance the accuracy in estimation.
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The correlation among these three elements indicates the
monitoring interval at which the charge, discharge, and res
activities should be scheduled and the number of parallel-
connected cells to be discharged, yielding trexovery-
efficiency factorv. For this purpose, we need to establish the
correlation, denoted by the functidh: c x tg xt; — V, where
¢, tq, andt, are the discharge rate, the discharge time, and
the rest time, respectively. Solving féf can be facilitated by
applying a multivariate linear regression for each giveluga

Time (Observation)

of t;, yielding a set of functions. We compute the first-order
derivative ofF with respect toc, and solve‘é—C =0 forv, as
dc— 0. Since we are intezrested in local maximvais filtered
under the condition thafx < 0. As a resulty is used to
determinek, the number of parallel-connected cells, which

ill be detailed next.
The recovery effect depends on the discharge rate, tWe

discharge time, and the rest time. First, the recovery effec
is proportional to the increase in the discharge rate. This
relationship, however, is not linear, as shown in Fig. 5-(a) This section first describes the architecture of the weighte
because the diffusion process occurs even during the cofirs&«RRscheduling framework, and then details its components.
the low-discharge activity. From the recovery-efficienoye,

one can find local optimal discharge rates that maximize the The Architecture

recovery efficiency. For instance, when the cell is dischdrg Tnhe architecture of the weightedRR scheduling frame-

at 0.826C or 2.043%, its recovery effect is locally maximal. york, as shown in Fig. 6, is made up of the adaptive filter,
Second, the discharge time over which the cell is continlyoughe kRRscheduler, and a battery pack built with a battery-cell
discharged has a similar effect on the recovery efficiency ggay and switches. The input of the adaptive filter is a njsto
shown in Fig. 5-(b). For instance, when the cell is dischdrgey the |oads measured at certain intervals, and an estimate
for 5 or 13 minutes at 0.8261C, the recovery efficiency isf the upcoming load demand is provided as an output. The
locally maximal. Third, most of the charge current that hasstimated load demand is passed to KRR scheduler. The
bgen temporarily unavailable is recovgred after a shoit réScheduler, using the feedback from cells, manages charge,
Fig. 5-(c) shows the average cumulative recovery rate Witfischarge, and rest activities with the help of the battery
respect to the rest time. 70% of the dropped voltage jgconfiguration system. The scheduler is responsible teesol
recovered within one minute, and 85% within two minutegq, 5 group thresholddg, with which to partition the cells
into two groups, and determink, the number of cells in

Fig. 4. Timing relationships of @ 3C, and £ againstC along with linear
regressionsy=(2.322, 0.5902)1,=(4.113, 03339), anuz=(6.636,—0.3362).

B. Recovery Efficiency

IV. WEIGHTED-KRRSCHEDULING
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"‘j; - - one group to be discharged within an interval. These two

g S ", parameters are periodically updated and adapted to various
§ s loads. Particularly, the two groups partitioned g can

g - \_// be charged and discharged simultaneously. At some point,
g OJ-' : : : : ) however, either the charge or discharge process is allowed

exclusively. In what follows, we give a detailed account of
each of the above two components.
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(¢) Cumulative recovery function and dash lines indicate the current and control flow, resmdgf ¢ and d
Fig. 5. Recovery efficiency: (a) A cell is discharged at a tamisrate for 5 are the charge and discharge current. Cells are selectsiedyged and/or
minutes and then rested for 10 minutes; (b) a cell is disethay the rate of discharged. The load is calculated by counting and summngoulombs on
0.8261C for different amounts of time and then rested for @futes; (c) the current at a certain interval, i.al, = [y Idt.
the procedure in (a) is repeated while varying the dischaage from 0.1C
to 4.3C, and the rest time from 1 to 10 minutes.



B. Adaptive Filter 1) Partitioning Battery-Cell Array:The scheduler manages
h?“ cells in the array in accordance with their SoC level,
partitioning it into two groups: (154 in which the member
cells’ SoC level is higher thadg, and (2) G. in which
the member cells’ SoC level is lower than, or equal de,
Also, when an individual cell's voltage is below the cutoff
voltage, the cell is put intd5 . There are two reasons for
this partitioning. First, the scheduler prevents cellsifrbeing
deep-discharged, which may otherwise cause an irreversibl

The filter uses a recursive least-squares (RLS) algorit
[14], and measures & records loads includitig; at p+ 1
intervals (i.e.,(p+1) x At), yielding a history of the loads,
un-1) = [dn,l,n,dn,p,lﬂ. Since the importance of each
element inu(n—1) is different, u(n— 1) is weighted by a
vector filterw,_1 = Wn_1(0), Wn_1(1),---,wn_1(p)]7, estimating
the load demandj;; in the nextAt as:

di=w! ;-u(n—1). (3) damage to the cells. If a high load on the cells with a very low
SoC level causes their voltage to drop sharply below theftuto
Next, we want to minimize the estimation error: voltage,G. plays a buffering role to reserve energy, allowing
only a low load demand to be met. Second, the scheduler
e(n) = [dn—dp|. (4)  allows cells to be charged and discharged simultaneouslis C

Since the filter weights/coefficients dictate the estima&aor, ;{\]NGL can be charged while those @y are being discharged.

e for the fil fici d Wi | 'e will describe the charging mechanism shortly.)
we solve for the filter coefficients to do so. We apply & a4 high discharge rate, a cell’s voltage drops rapidly,lehi
weighted-least-squares error function as a functioe(oj:

it drops slowly at a low discharge rate. Thu§ must be

n _ dynamically adjusted to the load. This dynamic adjustment i
f(wn) = Z))\”*'|e(i)|2, (5) made as .
= 8 — d* x Jmax 9)
NC’

where 0< A < 1 is an exponential forgetting factor that . _ ) .
effectively limits the number of input samples; the smallef/Ner€dmax is an estimated maximum load demand within a
the value of\, the more sensitive to recent samples the filtdfme intervalAt, andNC is the cell's nominal capacity.
becomes, causing more fluctuations in the filter coefficients Fi9- 7 sShows the pseudo-code of partitioning the cells in the
The number of operations required for calculationvaf &Y for charge and discharge activities. First, the salexd

grows proportionally tan, as the number of columns inn) S€tSds based on Eq. (9). The value 6t is updated during

; ; i ; the partitioning. When the SoC of any cell &y is lower

increases. To avoid the repetitive execution of the leashisas ; .

algorithm in updatingn, V\?e apply RLS as: thandg, the corresponding cells are put inB . WhenGy =
0, i.e., no cells available to be discharged, some cell&jin

Whn = Wn_1+ AWn_1, (6) are put back intoGy with a decreased value dig. dc is
linearly decreased by < 1. A flag, Fs, is turned on, indicating
where Awn_1 is a correction factor expressed e@)-g(n), that the SoC level of all cells is too low to meet a high load
whereg(n) is a gain vectorg(n) is obtained by solving the demand. Thus, the scheduling mechanism is switchetRiR
following equation: from kRR Conversely, wherGy is not empty, the scheduler
P(n—1)u(n) _checks whether there are any charged cell§|1nvyhose SoC
g(n) = , (7) s greater than, or equal to, the average So@in If there
A+uT(n)P(n—1)u(n) are, they are placed iGy. As a result, all the cells in the
array are classified into the two groups in accordance with
their SoC level.

whereP(n) is a (p+1) x (p+ 1) inverse correlation matrix.
P(n) is solved recursively via

P(n) =A"'P(n—1) —g(nu" (MA *P(n—1), (8)  Partitioning
1 ) . . Esod(G): return the average SoC of elements in G;
whereP(0) = n~"l wherel is the (p+1) x (p+1) identity o a linear decreasing factor;

matrix andn is a positive constant. Fs — Off;
The RLS algorithm, thus, provides an effective way of

updating the filter while reducing the computation overhead

yielding an estimate of the load demandd, that will be passed

0 < Eq. (9); /x updated for discharging/
move cells(e Gy) into G, conditioningSoGe < dg;

fGu=0
to the scheduler. dg « &g x a; /* decremented/
move cells € G ) into Gy, conditioningSoGg > Og;
C. kRR Scheduler Fs < On; /x switchingkRRto nRRx/
else

A battery cell's voltage is partly proportional to its SoC /+ balancing SoC for charging/
level that can be determined by counting coulombs. However, move cells € G|) into Gy, conditioningSoGe > Esoc(GH);
a lower-voltage cell can be at a higher-SoC level than a ighe
voltage cell, due to the discharge and recovery efficiency.
This discordance suggests that some cells whose voltathesfa
below the cutoff voltage still have a sufficient charge cotite 2) Determining k: The load demandd, is to be shared
deliver, making it essential to schedule the charge, diggha primarily among the cells inGy. Selecting an appropriate
and rest activities. value ofk is crucial since the more cells become available,

Fig. 7. Partitioning of battery cells




the lower the per-cell load. For this purpose, based on the . i thod Fe. Gu):
recovery-efficiency factov, andd* from the adaptive filterk charging tethod Fs, Gn):
is given by

N(G): return the number of elements in G;
H(k, G): returnk cell(s) with the highest SoC level in G;
K— g (10) A(G): return the first available cell in G;
v if Gy =@
. . H =
where 1< k <n, andn is the total number of available cells return; /« fully-dischargeds /
in Gy. Although k is within the range, when the per-cell switchmethod

load is too low (i.e.,v > d/k and k > 2), k is decreased
by 1, thus increasing the per-cell load. Whenis in the
form of an array,k also becomes an array. This way,is
determined to exploit recovery efficiency and prevent eah c
from excessive discharge.

The scheduler selectscells with the highest SoC level in
Gn, referred to as th&RR schedulingand then determines
the per-cell load. Each cellsharesd, weighted by

SoG
><SoCﬁ—~~~+80C;+---,80C;' (11)
This weighted load-sharing is effective for balancing agks

d

case ‘kRR’
k — Eg. (10);
if kK> N(Gy) | Fsis On
k — N(Gp); /* switchingkRRto nRRx/
Gk — H(k, Gp);
case '1RR™
Gk «— H(1, Gu);
case ‘1+1RR’:
Gk «— A(GH);
case ‘nRR’
n — N(Gn);
Gk < ncellse Gy;

DischargeGy based on Eq. (11);

Fig. 8. kRR scheduling of discharge

of the k cells, even when some of them become faulty.

3) Discharge Activity: A scheduling mechanism can vary.
with k. First, whenk =1, at each interval, the cell with the charging(Gy, GL):
highest SoC level is selected, referred ta@ad-robin(1RR Vi: nominal voltage;
scheduling. The RRscheduling is effective for balancing SoC L(k, G): returnk cell(s) with the lowest SoC level in G;
levels and voltages of the cells, while it may cause excessiv.
per-cell discharge and the overhead for frequently swiighi fGL=¢ o

. /* The discharge process is inactivg

from one cell to another. Second, when the cell remains G . g
in connection with the load until it gets fully discharged else if Gy = ¢
to the end of its operation-time, this mechanism is referred G¢ < Gi;
to assequential(1+1IRR) scheduling. Obviously, the 1RR  €lse , .
scheduling has nothing to do with voltage-balancing, big it é* TeL?isga)r'ge processes can be actje
vulnerable to excessive per—cgll discharge, una_lble toaodxpl Charae Ce”(s') {LG'C & Vel < Vi) /+ Prevention of overcharge/
the battery characteristics. Third, when alkcells in Gy are
discharged together until the end of their operation-tithes
mechanism is referred to gsarallel (hnRR scheduling. The
nRRscheduling is robust against excessive per-cell discharge
although it fails to exploit the battery characteristicoonc The quick average charging is resilient against overstess
versely, thekRR scheduling acts asRR at a low discharge that occur to the cells experiencing an intensive chargk-an
rate and asRRat a high discharge rate, achieving the meritdischarge cycle. To illustrate this, suppose a simple polic
of all. Note that thekRR scheduling subsumes all of thesas used where individual cells iG_ are deferred from their
three scheduling mechanisms. Fig. 8 shows the pseudo-ctr@asfer toGy until they are fully charged. In this policy, when
of the KRRscheduling of the discharge activity. the charging process is switched to the discharging proeess

4) Charge Activity: For the charging process, priority isjust-fully-charged, weak cell—note that a weak cell may be
given to the cells inG_.. The cell with the lowest SoC charged and/or discharged faster than healthy cells—asylik
level is selected and charged until its SoC level reaches #rlected first for discharge due to its higher-SoC level, and
average SoC level of the cells @4. The charged cell is then then continues being discharged until its SoC level reaches
put into Gy. This procedure, calleduick average charging the average SoC level of the cells@y. At a high discharge
repeats until no cell is left inG_. This way, undesirable rate, the weak cell's SoC level, however, falls beldgvfaster
cases, such as voltage-imbalances at any point in time, than that of the healthy cells which is also closedtg thus
avoided. After all cells inG_ are charged, the cells iGy transferring the weak cell back tG_. Then, the weak cell
start to be charged. Unlike the way applied @, all the is most likely selected for charge again. As a consequence,
cells inGy are charged at the same time. The reason for thise cycle of charging and discharging the weak cell makes it
is that despite the unpredictable disruption of the chayginveaker, eventually leading to its failure.
process, the cells should be available to be dischargedutith )
the concern of voltage-imbalances. To prevent any celisifrd®: Main Program
being overcharged, the charging process stops whenever ang main scheduling program involves offline and online pro-
of the cells inGy is fully charged. Then, individual cells with cedures. In the offline procedure, the reference to the fiyatte
a lower-SoC level are separately charged. Fig. 9 shows ttiaracteristics is created via the charge-and-discharge;c
pseudo code of thkRRscheduling of the charge activity.  this cycle may repeat several times. The reference is useet to

Fig. 9. kRR scheduling of charge




important system parameters includimghe nominal voltage, B. Discharge Profile
and the cqtoff voltage. Inthe onlmg procedure, the refeeds A discharge profile is defined asorkload p, over the
updated since the physical condition of the cells changes oy, eration-time, i.e., a sequence of variable loatds required.

time as long as the charge-and-discharge cycle is repgategl the discharge profileds are approximated by piece-wise
scheduled. In particular is updated periodically, effectively qnstant loads, i.e., represented by a seMofevels of the

offsetting the aging effect of the cells. discharge rate{iy,...,im), whereM is used to characteriz,
given At that is a fraction of the total operation-tim€, As
V. CELL ARRANGEMENT AND DISCHARGE PROFILE discussed earlier, the smaller the value/f the higher the

accuracy in characterizing In caseAt =T, ds are considered

This section describes the numerical evaluation of thgnstant. The load at tinteis denoted as a stepwise function
arrangement of cells in a large-scale battery-cell arragt agf time,

specifies a discharge profile for the purpose of evaluation. r
d(t) = Z p(J) ) l[tj,l, tj)(t)a (13)
A. How Many Cells Do We Need? =

_ i _where 1(t) is an indicator functionp can be obtained from
Clearly, the more the cells included in the array, the h'gh%rmpiricaf measurements. For the purpose of evaluation, we

the power it can deliver, but the costlier its manufacturin%enerate a synthetic discharge profile, such tat = d(i —
Also, the efficiency of converting chemical energy to eleelr 1), y wherey is an increment or decrement that is expressed

energy is nonlinear, depending on applications includifig &, 4 random discharge that follows a Gaussian distribution.
components of an electric vehicle. This question must then

be narrowed down to how many parallel-connected cells are V1. EVALUATION
necessary to_allow a battery-cell array to be both schetkilab o, goal is to extend a battery pack’s operation-time and
and long-lasting. lifetime—defined as the duration during which the pack pro-

Given the requirement op watts where 745.70 watts isvides required (converted) electrical energy to the loadevh
equivalent to 1 mechanical horsepower (HP), the cells asé beach of its cells repeats the charge-and-discharge cygle—b

to be connected in series and in paraIIeI as follows: eﬁective|y Schedu“ng Charge' discharge, and rest digsyi
To evaluate the efficacy and efficiency of the weighit&R
p=m-Vx(1+q)-n-v, (12) scheduling, the metrics we use include the battery pack’s

) operation-time and usability, and the reduction in voltage
wherem andn are the numbers of series-connected cells angpalance between parallel-connected cells in the pack.
parallel groups, respectively/ is a cell's discharge-varying e first describe the evaluation setup and then, based on
terminal voltage;q is the redundancy factor, whe@> 0. the metrics, demonstrate the superior performance okRR

When g = 0, no redundant parallel groups are available fojcheduling over the other three scheduling mechanisRR, 1
scheduling. Obviously, the higher the redundancy, the dligh +1RR andnRR

the schedulability. _

Suppose that 35 HPs, on average, is required for an electic Evaluation Setup
vehicle. Then, how many parallel groups should we havewe designed a battery management emulator that in-
while exploitingv? This depends mainly upon the requiredludes the four scheduling mechanisms, discharge profile,
supply voltage and). As shown in Fig. 10, the higher theand battery-activity profiling. Two-step recovery effecise
supply voltage, the fewer the number of parallel groupshwitconsidered In the battery-activity profiling: cells aretezsfor
the discharge rate adjusted to Without redundancy, at a At or 2x At, whereAt = 1 (minute). To generate a reference
high discharge rate (the average electric current is setit@luding Fer and M presented in Section IlI-A, we use
v = 2.0435C) with the supply voltage of 615W¥n(= 150), on Dualfoil [10, 12, 13]. Note, however, that the evaluatioauks
average, 23 parallel groups are required. At a low dischargiethis section are not subject to Dualfoil's accuracy in the
rate ¢ = 0.8261C) with the same voltage, average 57 grougsnulation. Dualfoil simply offers a reference to Lithiumai
are required. cell characteristics as most battery manufacturers do.

The battery management emulator uses the discharge pro-
file, p, specified in Eqg. (13). Ip, the random dischargeis
normally distributed as

y~d x N(0, 0.5), (14)

whered, = 0.4C x At which is a lower bound op. The upper
bound,d,, of p is set to 43C x At. We also setlnax andd(0)
to dy and d, respectively. Based on these parameter values,
we specify the discharge profile. Given the discharge profile
100 150 200 250 300 the battery management emulator simulates the cell digehar

# of series-connected battery cells (=m) according to each scheduling mechanism. The battery pack is
Fig. 10. Battery-cell arrangement for the supply power o# %, with high - 555;med to contain 4 parallel-connected cells, but it can be

recovery efficiency. The cell's terminal voltage rangesnfr@.5V to 4.1V . . . . !
during its operation-time. For simplicity, no redundansyconsidered. extended in various ways, as discussed in Section II-A, e.g.

# of parallel groups (=n)




parallel-connected battery packs wfseries-connected cells.is set to 5, i.e.p = 4. Individual elements in the history are
In addition to the discharge profile, we set a cell's nominaleighted separately; we with 50 samples, which converges
capacity (NC) to 3602.7mAh, assuming that all cells in th® [0.1012 0.1916 0.0708 1.0377 —0.3881". In solving
battery pack have the same characteristics, unless specifir the filter coefficients, the exponential forgetting fach
otherwise. Also, the cell's terminal and cutoff voltages aet is set to 0999, making it less sensitive to recent samples.
to 4.06267V and 2.00000V, respectively. Also, the gain factoig(n) is obtained by recursively solving
an inverse correlation matri®(n) with P(0) = n=I, where

1) The battery characteristics are modeled effectively'n — 100. With these values applied, as shown in Fig. 12-(a),
Our battery-cell characteristics model is reference-teased the adaptlve_ filter is highly effective in estimating th(_a fowts.
captures the discharge and recovery efficiency. Based bp€ €stimation errors are very low, as shown in Fig. 12-(b),
the model, four scheduling mechanisms are comparativeéipd the average error ratio of estimated outputs to realusitp
evaluated. For this comparison to be effective, it is imaott is as low as 0.0024.
to evaluate the accuracy in its simulation of battery atési 6
A discharge profile is synthetically specified such that the e A
workload consists of charge at rate C for 10 minutes, rest
for 2 minutes, charge at rate C for 10 minutes, and charge at
rate 2C for 20 minutes; this is sufficient to show the discharg
and recovery efficiency. The discharge profile is then poed

B. Evaluation Results

Load (CxA't)
N

N

our battery management emulator and Dualfoil, thus yigidin s = TR S ——
voltage curves over the operation-time as shown in Fig. 11- Operation time (minutes)
(a). The two voltage curves are almost identical excepttier t (a) True and estimated workloads
turning points at which the voltage drops steeply. To be more 10
precise, we calculatg?-distance [11] as: <
<)
T 2 g 107
2 X -Y) =
X, Y) =5y~ L 15 g
X“(X, Y) i; X 1Y) (15)
w
whereX andY are terminal voltage samples from Dualfoll 05 50 100 150 200 250
1 2 __ i Sample (minutes)
and our mogel, respectively, a’ﬂ'd: 42. Clearlyxc =0 if anzd (b) Estimation errors
only if all X’s samples matcl¥’s. The lower the value of?, Fig. 12. An effective adaptive filter

the more closely the two curves match. As shown in Fig. 11- )

(b), the difference between the two curves is negligibly lkma 3) kRR outperfqrmg th_e others: kRitd nRR are load-
Between the 10-th and the 12-th samples during which tﬁga_red. That isd |s_d|str|buteq to par_al]el-connected cells
recovery effect takes place, our model is shown to accyrat@vailable in proportion to their remaining SoC level. By
simulate the recovery efficiency. Also, even when the disgha contrast, individual cells are discharged, one at a time, in

rate is abruptly changed at the 22nd minute, the distaneevaPth lRRand 1+RR Thus, RRand 1+RRare likely to
(i.e., difference), from that point, is still below 2.5E-and make individual cells overloaded and hence exhausted1Big.

thus, thex? distance is as small as 0.0208 (V). compares the operation-time _gainskRR 1RR 1+1RR and
nRR with the discharge profiles generated from Egs. (13)
and (14). ApplyingkRR the battery pack lasts up to 44%
longer than RR 56% longer than 14RR and 7% longer
thannRR nRRoutperforms RRand 1+RRby 41% and 54%,

Py g respectively. 1+RR performs as ineffectively asRIR
E \
§ 3 ’ I <RR
- — o 4
: o] | 2 =
3 | [ 11+1IRR
25 : I nRR

=
o

0 10 20 30 40
Operation-time (minutes)

(a) Voltage curves

Operation-time gain
=

I
3]

H
O\
b

0

kRR 1RR 1+1RR nRR
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Fig. 13. Comparison of the average operation-time gain$ e four
scheduling mechanisms from 100 runs of the charge-andhalige cycle.

Distance value (V)

i
>

=
o

S B e maee s 4) kKRR and nRR are suitable for heavy workloadhe
(b) Similarity with respect to(? distance results shown in Fig. 14 confirm these two mechanisms’

Fig. 11. Comparison of Dualfoil and our model w.r.t. voltageange ~ Sulitability for heavy workloads. By contrastRRand 1+RR

2) The adaptive filter operates effectivelfthe adaptive make it overwhelming for individual cells to cope with
filter used in our scheduling framework is based on the RLiie heavy workload, limiting their capability of effective
algorithm that recursively calculates an estimate fromweyi scheduling. Although RR outperforms 1+RR both 1RRs
history of real outputs. The size of the history in this eedilion and 1+RRs battery usability appears degraded significantly



as the workload becomes heavier. Also, the difference in thinder heavy workloads, however, it appears difficult to atju

battery usability betweenRIRand 1+RR andkRRandnRR &g due mainly to unmanageable, abrupt, and steep voltage

grows up to 19% larger. drops, implying that the high load for an individual cell is a
kRR effectively adapts itself to different workloads develdominating factor in the efficiency of scheduling the disgea

oped in 4 phases. For workloads lighter thad X T (Phase and rest activities.

1 in the figure),kRR acts as RR which is most effective.

This, compared tmRR suggests that at a very low discharge

rate, electrochemical dynamics inside the cell are inefficin

converting chemical energy to electrical energy althougg t

effect is subject to individual cell characteristics. Cargnl

to 1+1IRR 1RRis found to perform better at a low discharge

rate, showing a 13% performance gain. As the workload gets

heavier, however,RRloses its performance since the recovery

efficiency lags behind the discharge rate. In PhaskRRs -0015

performance is excellent, becaus®R effectively determines -0.02; : s s :

the right number of parallel-connected cells to accommmdat Constant discharge rate (C) over T

the increasing workload while attempting to make best oif therig. 15.  Operation-time gain dRRwith dynamic3g over staticdg; the

recovery efficiency. As a resulkRR outperforms RR and same configuration as in Fig. 14 is applied.

1+1IRR by up to 11% and 21%, respectively, and achieves

. 0 .
:caz?jsu?ir:]ableegg:%:;cle.?s/ooig:i/r:eﬂr?aRelnasphecl)soedﬁglakmfﬁ Voltage-imbalances should be avoided in discharging [sral
other worgsp as few araII’eI—connectged, cellg as 4 a}e inSLcJ:]anected cells. When voltages of individual cells drifagp-
L ; Pe which is, to some degree, unavoidable—higher-voltagescell
ficient for kRRto exploitv. As the workload becomes even ;
. .can charge lower-voltage cells, thereby causing the lbatter
heavier (Phase 4), more parallel-connected cells are nextjui ; ! : .
. . . . . ck’s terminal voltage to drop. Thus, scheduling the disgha
since not enough time is spent on offsetting a S|gn|f|caH9. . . : .
: activity must cope with voltage-imbalances. As shown in
voltage drop. Obviously, such a large voltage drop can lrl_r? 16-(a), KRR manages to keep the difference in voltage
handled by using more parallel-connected cells. TRRRacts 9 ’ 9 P 9

. " . under 0.5%, while RR is subject to various loads and the
asnkR kRRmaX|m|zes the battery_L_Jsabmty by sche_duh_ng th%ells’ SoC Tevel since a singlfa cell should accommodate the
charge, discharge, and rest activities while adaptindfitse

the varying workloads whole load at a time. For instance, at low SoC levels of
' the cells, the difference in their voltage goes up to 2.5%
1 ‘ ‘ ‘ for the IRR scheduling. Obviously, voltage-imbalances are
0.95 rarely experienced underRRas long as all the cells of the
same characteristics are discharged simultaneously sathe
rate. nRRis susceptible to cell failures or anomalous voltage
variations (thus unbalancing voltages). As shown in Fig. 16
(b), despite the weighted discharggkRexperiences voltage-
imbalances. By contraskRRand IRR quickly suppress it up
to 50%.

0.02

0.015
0.01 average
0.005

0

-0.005

Operation-time gain

-0.01

6) KRR and 1RR are more tolerant of voltage-imbalances:

o
©
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Average usability
o
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o
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Constant discharge rate (C) over T
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[

Fig. 14. Battery usability with respect to workloa® % T); the battery
pack is discharged at a constant discharge rate dvarhe discharge rate is
increased by aC from 0.4C to 4.3C. This procedure is repeated 100 times.

Difference in Voltage (%)

2

50 100 150 200
Operation-time (minutes)

5) Dynamicdg improves the schedulabilitydg is a thresh- (a) All four with the same characteristic
old according to which parallel-connected cells are gartiéd
into Gy and G.. The cells whose SoC level is belodg
are put intoG,. This classification is to prevent the cells
from suffering the entire terminal voltage drop of the batte
pack due mainly to instantaneous high loads at their low '
SoC level. MoreoverG, serves as a buffer in which the * operation-time (mimutes)
charge is reserved and then delivered to accommodate light (b) One faulty cell with 10% less voltage and capacity
loads. The size of the buffer, however, should be adjustgld . _ . , ,

. . g. 16. Balancing voltages: The discharge profile shown itp E2-(a)
to the load; the higher the load, the larger the valued@f is applied. The difference in voltages is obtained by caling (Vinax—
The dynamic adaptation @ supports the schedulability andVimin)/Vimaxx 100%.
hence extends the battery pack’s operation-time. Fig. d&/sh
the operation-time gains by applying the dynardjc Under
wide-ranging workloads (below.3C x T), the dynamicdg Appropriate control of charge current and discharging be-
proves to be effective; the maximum gain reaches 0.01%tavior helps extend a battery’'s operation and life times. Fo

N
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VIl. RELATED WORK



instance, discharging cells completely one-by-one, iraler  [2]
or in a round-robin fashion [15, 16, 25] makes a great impact
on a battery’s operation and life times. A method for valigt 5
such policies usually relies on a stochastic model of batter
behavior [7,19, 20, 24]. Using a stochastic model, Bemini ]
al. [2] observed that virtual parallel discharge is more effec-
tive in maximizing a battery’s operation-time than seqignt [5]
discharge. Similarly, Chiasserini and Rao [5] considetsa t
recovery effect. Their models, however, capture only disgh [6]

Luca Benini, Davide Bruni, Alberto Macii, Enrico Macignd Massimo
Poncino. Discharge current steering for battery lifetin@irnization.

Trans. on Com.52(8):985-995, Aug. 2003.

Henk Jan Bergveld, Wanda S. Kruijt, and Peter H.L. Natt@&attery
Management Systems: Design by modellingSBN 1-4020-0832-5.
Kluwer Academic Publishers, 2002.

Eben Burnham-Snyder. Supreme court: Heat-trappingaadioxide is
pollution. ht t p: // www. nr dc. or g/ nedi a/ 2007/ 070402. asp.

Carla-Fabiana Chiasserini and Ramesh R. Rao. Energyeeffibattery
managementJSAG 19(7):1235-1245, July 2001.

Song Ci, Jiucai Zhang, Hamid Sharif, and Mahmoud Alahmad

novel design of adaptive reconfigurable multicell batteoy power-

behavior and ignore the dependency between the discharge aware embedded network sensing systemsGlsbecom pages 1043—

rate and the recovery rate, thus limiting their schedulingﬂ
efficacy. They need a comprehensive model for battery-ce
characteristics to validate scheduling policies as weltaask  [8]
scheduling techniques such as those [21, 22].

A synergetic battery pack [9] is a simple battery charger
designed to charge 4 cells connected in series, with the]
accompanying control circuitry. In the pack, two switchés a
each cell are set at its boundary, making it connected to (g
disconnected from power buses. Likewise, a battery switch
array system [1,23] presents an architecture for arrangiﬂq]
micro-scale cells, allowing them to be bypassed. This ayste
however, similar to a configurable multi-cell battery [64il§
to select appropriate cells dynamically, based on battetly-
characteristics such as SoC, state-of-health, and loadidsn

[12]

[13]

VIII. CONCLUSION [14]

For longer operation and life times of a large-scale batte[yS]
pack, one must effectively and efficiently schedule the gbar
discharge, and rest activities for the cells in the pack.his t
paper, we presented the weighte®R scheduling framework
to not only extend the battery pack’s operation-time, but
also make it robust to anomalous voltage-imbalances. \l&l
started by modeling the battery-cell characteristics|uiding
the discharge and recovery efficiency. We found conditionss)
under which the recovery efficiency is maximized. Based an
this finding, we designed thkRR scheduling framework to (19
effectively schedule the charge, discharge, and restiaesv
The framework is composed of the adaptive filter and tHedl
kRR scheduler. The adaptive filter returns an estimate of the
upcoming load demand. The scheduler determigéise num- [21]
ber of parallel-connected cells to be discharged, whileingak
best of recovery effects. The scheduler also balances #uslo 22]
(and thus voltages) amorkgeells. Our evaluation results show
that the kRR scheduling framework allows the battery pack
to last up to 56% longer than theRR scheduling, and be (23]
50% more fault-tolerant of voltage imbalances than mirR
scheduling. Th&kRRscheduling framework effectively adapts
itself to various workloads, improving the battery usdkilin 24
summary, at a high discharge rate, the energy conversion in
battery cells is inefficient, and their voltage-imbalanomsst
be minimized. ThekRR scheduling offers a unique solutionf?®!
to the inefficiency in charging and discharging battery sell
greatly improving the adaptability to various load conatits.

[16]

[26]
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