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Abstract— Electric vehicles operate inefficiently with a naive
battery management system that charges or discharges battery
cells in a pack based solely on application load demands. The
battery pack’s operation-time and lifetime can be extended
significantly by effectively scheduling (thecyber part) battery
charge, discharge, and rest activities, based on the battery
characteristics (the physical part). We propose a set of policies
for scheduling battery-cell activities, called theweighted-k round-
robin (kRR) scheduling framework. This framework dynamically
adapts battery-cell activities to load demands and the condition of
individual cells, thereby extending the battery pack’s operation-
time and making them robust to anomalous voltage-imbalances.
The framework comprises two key components. First, anadaptive
filter estimates the upcoming load demand. Then, based on the
estimated load demand, thekRRscheduler determines the num-
ber of parallel-connected cells to be discharged simultaneously.
The scheduler also effectively partitions the cells in the pack,
allowing the cells to be simultaneously charged and discharged
in coordination with the battery reconfiguration system we
developed earlier [17]. Besides thekRRscheduling framework, we
characterize the discharge and recovery efficiency of a Lithium-
ion battery cell. The kRR scheduling framework is shown to
outperform three alternative scheduling mechanisms with respect
to the operation-time by 7–56%, and improve the tolerance of
voltage-imbalance by up to 50%.

I. I NTRODUCTION

On April 2, 2007, the US Supreme Court identified CO2 as
an air pollutant, authorizing the US Environmental Protection
Agency (EPA) to regulate this greenhouse gas [4]. Green-
house gas emissions could be reduced by half by increasing
use of hybrid, full, and/or fuel-cell electric vehicles (EVs).
For instance, we can achieve an estimated 35% efficiency
for a 5-passenger EV with electricity generated from fossil-
based energy, while achieving a 16% efficiency in converting
gasoline-based energy to vehicle motion. According to a recent
survey [8], due mainly to a sharp increase in fuel cost in 2008,
36% of motorists worldwide wish to buy a car with hybrid
drive, while 46% of them are interested in buying full-electric
cars. To meet this demand, an estimated 10× improvement
of the battery capacity and power is required, making the
performance of rechargeable batteries competitive with, and
attractive alternatives to, conventional gasoline engines.

An important requirement is to prevent the overcharge and
deep-discharge of battery cells. For instance, when a Lithium-
ion cell (that has high electrical energy concentrated in a small
volume in the cell) is overcharged, active materials therein
will most likely react with other materials and electrolytes,
potentially causing an explosion, let alone damaging the cell
itself. When the cell isdeep-discharged, or it continues to

be discharged, despite its terminal voltage below a certain
threshold called thecutoff voltage, it may become short-
circuited, transitioning the cell into an irreversible condition.
When the cells are connected in parallel, on the other hand, it
is important to balance their voltages, since their interactions
and dependencies make their voltages drift apart. Higher-
voltage cells may then inversely charge the lower-voltage cells,
causing the entire terminal voltage to drop from the desired
value of the parallel-connected cells. Moreover, a Lithium-ion
cell has unique characteristics [18], such asdischarge effi-
ciency(the higher the discharge rate, the lower the deliverable
capacity), andrecovery efficiency(the interface-concentrated
gradient inside the cell is diffused during a ‘rest,’ after which
the cell can be charged with large electric current over a short
time).

Given parallel-connected cells, we can schedule their
charge, discharge, and rest activities. For instance, eachcell
can be discharged in a round-robin fashion. Furthermore, the
amount of discharge time can be scheduled in proportion to the
remaining charge current in the corresponding cell, indicated
by the State-of-Charge(SoC) level. This scheduling leads to
weighted (with SoC levels) round-robin scheduling, calledthe
weighted-1RR scheduling. Similar concepts are found in areas
of scheduling tasks in distributed real-time systems, as well
as scheduling packets in the differentiated service architecture,
such as those in [15, 16, 21, 22, 25]. Alternatively, one or all
cells can be discharged sequentially or simultaneously in
parallel. This type of cell discharge has been used widely,
especially for mobile devices such as PDAs and laptops. Also,
using an analytical method, these two mechanisms have been
compared in [2, 5]. In general, however, no single mechanism
outperforms the others in all circumstances, thus calling for a
thorough study of this issue.

Two main challenges exist in scheduling charge, discharge,
and rest activities for large-scale battery systems. First, a
scheduling framework should operate reasonably well in all
circumstances. That is, using the framework, one should be
able to extend a battery cell’soperation-timeas much as
any other scheduling mechanism can. By ‘operation-time,’ we
mean the cumulative time of the charge current drawn from a
battery cell until the cell no longer delivers the required charge
current to applications. That is, the operation-time ends when
the terminal voltage of the cell falls below the cutoff voltage.
To extend the cell’s operation-time, we need to understand
the battery characteristics, such as the discharge and recovery
efficiency. Second, a scheduling framework should be robustto



(inevitable) cell failures in a large-scale battery pack inwhich
cells interact with, and depend on, each other. The terminal
voltage of aweakcell with low capacity tends to drop quicker
than other cells in use. The voltages of all cells (includingthe
weak one) must remain balanced. When a weak cell cannot
reach the full charge owing to highself-discharge[2], and/or
becomes short-circuited, healthy cells could be overcharged.
All of these phenomena will eventually lead to cell failures.

We propose a weighted-k round-robin (kRR) scheduling
framework as part of large-scale battery management. This
framework relies on synergetic integration of an effective
scheduling mechanism (cyber) and battery characteristics
(physical) to adapt cells to their conditions and various load
demands (orworkloads). The framework comprises two key
components: an adaptive filter and scheduler. First, theadap-
tive filterestimates an upcoming load demand using a recursive
least-squares (RLS) algorithm [14]. Second, thekRR scheduler
determinesk, the number of parallel-connected cells to be
discharged simultaneously. Whenk = 1, the scheduler func-
tions as a weighted-1RRor sequential scheduling (denoted by
1+1RR). Whenk> 1, it functions as a parallel scheduler. All of
the scheduling mechanisms except for the sequential schedul-
ing are based on weights on the cells to be charged/discharged.
The cells can be charged and discharged simultaneously in
coordination with the battery-reconfiguration system we de-
veloped earlier [17]. In particular, the cells are charged via
quick average chargingthat is effective for voltage-balancing
and robust to overstresses occurring to the cells.

The main contributions of this paper are three-fold. First,
to our best knowledge, the proposedkRR scheduling frame-
work is the first comprehensive way of coping with various
workloads and voltage-imbalances; the workload is effectively
handled with 2 ton parallel-connected cells, depending on its
nature, and a group of healthy cells are discharged. Second,we
discovered an intriguing effect of recovery efficiency, estab-
lishing a key criterion in determiningk, and hence extending
the cell’s operation-time. This framework represents a synergy
typical of cyber-physical systems. Third, the battery charac-
teristics are modeled, including the discharge and recovery
efficiency. The model provides a physical insight into battery
characteristics and can be extended to estimate the operation-
time, given a discharge profile.

The rest of the paper is organized as follows. Section II
describes the battery reconfiguration system, the background
of battery characteristics, and the motivation of this work.
Section III models the battery characteristics, includingthe
discharge and recovery efficiency. Section IV describes the
design of thekRR scheduling framework that consists of
the adaptive filter andkRR scheduler, based on the battery
reconfiguration system. Section V presents the analysis of cell
arrangements and discharge profiling. Section VI evaluatesthe
performance of thekRRscheduling framework. We discuss the
related work in Section VII and conclude the paper in Section
VIII.

II. RECONFIGURABLE BATTERY SYSTEM, BATTERY

CHARACTERISTICS, AND MOTIVATION

This section introduces a reconfigurable battery system,
provides a physical insight into rechargeable battery cells, and
then describes the motivation behind our work.

A. Reconfigurable Battery System

A reconfigurable battery system that we developed earlier
[17] is composed of a controller that manages a set of control
units, and an array of battery cells. Each cell is equipped with a
set of switches that each control unit is responsible for turning
on or off, so that the cells can be connected online in series,
in parallel, or both. For instance, as shown in Fig. 1, when
we want the cells to be connected in parallel, each control
unit turns on switches (1) and (4). When switch (3) instead
of (4) is turned on, the cells become a series chain. We can
also make multiple parallel groups, e.g., the simplest parallel
group is made by turning on a first cell’s switches (1) and (3),
and the following cell’s switch (4). More cells can be added
in between. This group can then be separated by terminal
switches (5) and (6). Terminals are connected to the load, or
disconnected if needed.

Terminals

(1)

(2)

(3)

(4)

Terminals

(5)

(6)

Fig. 1. The schematic diagram of the battery reconfigurationsystem that
consists of a set of battery cells and a controller that encompasses multiple
control units (CUs). Each CU is responsible for controlling6 switches.

Here we rely on the system’s three types of capability.
First, the coordination of terminals’ connectivity and the
terminal switches allows the cells to be charged and discharged
simultaneously. That is, we can virtually partition the cells into
two groups for charge and discharge activities, respectively.
Second, an appropriate combination of on-switches allows for
parallel-connected groups of the cells. These groups can then
selectively be discharged at a time. Third, a single battery
pack can be treated as one module, like a single cell, by
connecting all the cells in the battery pack in series. These
battery packs can then be connected in series, in parallel, or
both. For simplicity, a cell is regarded as a module on which
charge and discharge activities are scheduled. Based on these
three types of capability, we build a framework of scheduling
the charge, discharge, and rest activities for battery cells.

B. Battery Characteristics and Motivation

A rechargeable battery cell (e.g., NiCd, NiMH, and Lithium-
ion) is capable of converting chemical energy to electrical
energy, and vice versa, via electrochemical oxidation and re-
duction reactions [3, 18]. These reactions involve the exchange
of electrons through the load between electro-active species
in two electrodes inside the cell, generating a flow of electric
current. Ideally, the total charge, counted in coulomb, from
the cell will always be the same throughout its entire life
cycle. In reality, however, the characteristics of a cell are
nowhere close to being ideal due to the uncertainty of reaction
kinetics, diffusion process, aging, and side effects (e.g., active
material dissolution, electrolyte decomposition, and passive
film formation [18]) inside the cell over time. The battery



type considered in this paper is assumed to be Lithium-ion
or Lithium-polymer, for it has been widely used for power
devices ranging from mobile handsets to electric vehicles.

We have observed two important aspects of the real-life
battery cell characteristics. First, a high discharge rateaf-
fects greatly the cell’s operation-time. That is, the higher the
discharge rate, the less efficient the conversion of the cell’s
chemically-stored energy to electrical energy, thus degrading
more in the deliverable capacity. According to our preliminary
study (see Fig. 2), the cell of 3600 mAh capacity takes 1 hour
to be fully discharged at rateC—1 coulomb is drawn every
second. If the discharge rate doubles, its deliverable capacity
decreases by 4.7%.
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Fig. 2. Voltage degradation at various discharge rates

Second, the cell has a limited charge recovery effect at
a high discharge rate; a high load for a short period of
time causes a high interface-concentrated gradient among
electro-active species inside the cell, making the usable charge
temporarily unavailable due to the lag between reaction and
diffusion rates [18]. Thus, when the cell is allowed to ‘rest’ for
some time at a low (or zero) discharge rate, the voltage that
dropped temporarily goes back up, referred to as therecovery
efficiency.

This recovery efficiency is instrumental in extending the
operation-time of a large-scale battery pack for powering
heavy workloads, such as electric vehicles. For instance, as
shown in Fig. 3, a high load causes a temporary voltage drop,
and then part of the cell’s voltage is recovered after a certain
period of rest. When the cell is discharged for 15 minutes at
4C, its terminal voltage drops 7%. Then, after the cell is rested
for 15 minutes, the dropped voltage is restored up to 5.5%.
Moreover, when the cell capacity is low, at a high discharge
rate, the concentration gradient of active species inside the cell
gets steeper, reaching the cutoff voltage (see the large voltage
drop at the 7-th discharge activity in Fig. 3). This drop below
the cutoff voltage causes the disconnection of the cell fromthe
load, assuming that the cell has been fully discharged. Instead
of immediate disconnection, by diverting the load demand
to other cells and resting the exhausted cell, it is recovered
quickly, lasting for 40 minutes atC/4.

The first question is then “how can the discharge rate be
adjusted for individual cells?” Although the battery manage-
ment cannot directly control the loads, their connection can be
diverted to selected cells. By dynamically selecting the number
of cells, the discharge rates can be adjusted independentlyof
the loads, and the rest time for an exhausted cell can also
be scheduled. The second question is then “how long does
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Fig. 3. The battery cell’s recovery efficiency: the discharge behavior that a
15-minute rest follows 2-minute consecutive discharges of4C is repeated 7
times, and then the discharge rate decreases down to C/4 after the cell rests
for 15 minutes.

an exhausted cell have to rest for its recovery?” To answer
this question, we must understand the recovery efficiency in
detail. The remainder of this paper will focus on answering
these questions.

III. M ODELING OF BATTERY CHARACTERISTICS

An accurate estimation of battery-cell characteristics ises-
sential for scheduling charge, discharge, and rest activities. In
this section we model the battery characteristics including the
discharge and recovery efficiency, with the goal of generating
a reference model for the cell characteristics.

A. Discharge Efficiency

As shown in Fig. 2, the voltage-drop curves for different
discharge rates are very similar. That is, increasing the dis-
charge rate by 1C decreases the operation-time by 50%. Given
the curve-shape similarity, we want to derive the relationship
between the voltage-drop curves with respect to the operation-
time. First, a nonlinear voltage curve at a constant discharge
rate iC is defined as an invertible function,Fi : t → V. We
specify the curveFre f with the constant discharge rateC as
a reference. Then, the operation-times associated withFre f
correspond to those withFi , based on their shape similarity:

Fi(ti) = Fre f(tr), (1)

whereti (tr ) is in the operation-time domain ofFi (Fre f ). The
reference operation-time can be solved offline by using simple
linear curve fitting. On the other hand, the relationship between
ti and tr is expressed as

ti = F−1
i Fre f(tr). (2)

The relationshipF−1
i Fre f , as shown in Fig. 4, can be approx-

imated to be a set of linear functionsΠ = {π1, π2, · · ·, πi , · · ·,
πn}, whereπi (= a∗ t + b) is differentiated by the discharge
rate. For instance, given two points in the operation-time
domain with a discharge rateiC, two corresponding points
in the operation-time domain are obtained viaπi . These two
points are then applied toFre f , yielding a voltage drop.

The reference,Π andFre f , can also be used to simulate or
estimate the cell’s operation-time, as in [26]. The reference-
based estimation, however, must consider the recovery effi-
ciency to enhance the accuracy in estimation.
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Fig. 4. Timing relationships of 2C, 3C, and 4C againstC along with linear
regressionsπ1=(2.322, 0.5902),π2=(4.113, 03339), andπ3=(6.636,−0.3362).

B. Recovery Efficiency

The recovery effect depends on the discharge rate, the
discharge time, and the rest time. First, the recovery effect
is proportional to the increase in the discharge rate. This
relationship, however, is not linear, as shown in Fig. 5-(a),
because the diffusion process occurs even during the courseof
the low-discharge activity. From the recovery-efficiency curve,
one can find local optimal discharge rates that maximize the
recovery efficiency. For instance, when the cell is discharged
at 0.8261C or 2.0435C, its recovery effect is locally maximal.
Second, the discharge time over which the cell is continuously
discharged has a similar effect on the recovery efficiency as
shown in Fig. 5-(b). For instance, when the cell is discharged
for 5 or 13 minutes at 0.8261C, the recovery efficiency is
locally maximal. Third, most of the charge current that has
been temporarily unavailable is recovered after a short rest.
Fig. 5-(c) shows the average cumulative recovery rate with
respect to the rest time. 70% of the dropped voltage is
recovered within one minute, and 85% within two minutes.
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Fig. 5. Recovery efficiency: (a) A cell is discharged at a constant rate for 5
minutes and then rested for 10 minutes; (b) a cell is discharged at the rate of
0.8261C for different amounts of time and then rested for 100minutes; (c)
the procedure in (a) is repeated while varying the dischargerate from 0.1C
to 4.3C, and the rest time from 1 to 10 minutes.

The correlation among these three elements indicates the
monitoring interval at which the charge, discharge, and rest
activities should be scheduled and the number of parallel-
connected cells to be discharged, yielding therecovery-
efficiency factor, ν. For this purpose, we need to establish the
correlation, denoted by the functionFr : c× td× tr→V, where
c, td, and tr are the discharge rate, the discharge time, and
the rest time, respectively. Solving forFr can be facilitated by
applying a multivariate linear regression for each given value
of tr , yielding a set of functions. We compute the first-order
derivative ofFr with respect toc, and solvedFr

dc = 0 for ν, as
dc→ 0. Since we are interested in local maxima,ν is filtered
under the condition thatd

2Fr
dc2 < 0. As a result,ν is used to

determinek, the number of parallel-connected cells, which
will be detailed next.

IV. WEIGHTED-kRRSCHEDULING

This section first describes the architecture of the weighted-
kRRscheduling framework, and then details its components.

A. The Architecture

The architecture of the weighted-kRR scheduling frame-
work, as shown in Fig. 6, is made up of the adaptive filter,
thekRRscheduler, and a battery pack built with a battery-cell
array and switches. The input of the adaptive filter is a history
of the loads measured at certain intervals, and an estimate
of the upcoming load demand is provided as an output. The
estimated load demand is passed to thekRR scheduler. The
scheduler, using the feedback from cells, manages charge,
discharge, and rest activities with the help of the battery
reconfiguration system. The scheduler is responsible to solve
for a group threshold,δG, with which to partition the cells
into two groups, and determinek, the number of cells in
one group to be discharged within an interval. These two
parameters are periodically updated and adapted to various
loads. Particularly, the two groups partitioned viaδG can
be charged and discharged simultaneously. At some point,
however, either the charge or discharge process is allowed
exclusively. In what follows, we give a detailed account of
each of the above two components.

Fig. 6. Schematic diagram of thekRRscheduling framework: arrowed solid
and dash lines indicate the current and control flow, respectively; c and d
are the charge and discharge current. Cells are selectivelycharged and/or
discharged. The load is calculated by counting and summing up coulombs on
the current at a certain interval, i.e.,dn =

R

∆t Idt.



B. Adaptive Filter

The filter uses a recursive least-squares (RLS) algorithm
[14], and measures & records loads includingdn−1 at p+ 1
intervals (i.e.,(p+ 1)× ∆t), yielding a history of the loads,
u(n− 1) = [dn−1, · · · ,dn−p−1]

T . Since the importance of each
element inu(n− 1) is different, u(n− 1) is weighted by a
vector filterwn−1 = [wn−1(0), wn−1(1), · · · ,wn−1(p)]T , estimating
the load demand,d∗n in the next∆t as:

d∗n = wT
n−1 ·u(n−1). (3)

Next, we want to minimize the estimation error:

e(n) = |dn−d∗n|. (4)

Since the filter weights/coefficients dictate the estimation error,
we solve for the filter coefficients to do so. We apply a
weighted-least-squares error function as a function ofe(n):

f (wn) =
n

∑
i=0

λn−i|e(i)|2, (5)

where 0< λ ≤ 1 is an exponential forgetting factor that
effectively limits the number of input samples; the smaller
the value ofλ, the more sensitive to recent samples the filter
becomes, causing more fluctuations in the filter coefficients.

The number of operations required for calculation ofwn
grows proportionally ton, as the number of columns inu(n)
increases. To avoid the repetitive execution of the least squares
algorithm in updatingwn, we apply RLS as:

wn = wn−1 + ∆wn−1, (6)

where ∆wn−1 is a correction factor expressed ase(n) · g(n),
whereg(n) is a gain vector.g(n) is obtained by solving the
following equation:

g(n) =
P(n−1)u(n)

λ +uT(n)P(n−1)u(n)
, (7)

whereP(n) is a (p+ 1)× (p+ 1) inverse correlation matrix.
P(n) is solved recursively via

P(n) = λ−1P(n−1)−g(n)uT(n)λ−1P(n−1), (8)

whereP(0) = η−1I where I is the (p+ 1)× (p+ 1) identity
matrix andη is a positive constant.

The RLS algorithm, thus, provides an effective way of
updating the filter while reducing the computation overhead,
yielding an estimate of the load demand,d∗, that will be passed
to the scheduler.

C. kRR Scheduler

A battery cell’s voltage is partly proportional to its SoC
level that can be determined by counting coulombs. However,
a lower-voltage cell can be at a higher-SoC level than a higher-
voltage cell, due to the discharge and recovery efficiency.
This discordance suggests that some cells whose voltages fall
below the cutoff voltage still have a sufficient charge current to
deliver, making it essential to schedule the charge, discharge,
and rest activities.

1) Partitioning Battery-Cell Array:The scheduler manages
all cells in the array in accordance with their SoC level,
partitioning it into two groups: (1)GH in which the member
cells’ SoC level is higher thanδG, and (2) GL in which
the member cells’ SoC level is lower than, or equal to,δG.
Also, when an individual cell’s voltage is below the cutoff
voltage, the cell is put intoGL. There are two reasons for
this partitioning. First, the scheduler prevents cells from being
deep-discharged, which may otherwise cause an irreversible
damage to the cells. If a high load on the cells with a very low
SoC level causes their voltage to drop sharply below the cutoff
voltage,GL plays a buffering role to reserve energy, allowing
only a low load demand to be met. Second, the scheduler
allows cells to be charged and discharged simultaneously. Cells
in GL can be charged while those inGH are being discharged.
(We will describe the charging mechanism shortly.)

At a high discharge rate, a cell’s voltage drops rapidly, while
it drops slowly at a low discharge rate. Thus,δG must be
dynamically adjusted to the load. This dynamic adjustment is
made as

δG = d∗×
d∗max

NC
, (9)

whered∗max is an estimated maximum load demand within a
time interval∆t, andNC is the cell’s nominal capacity.

Fig. 7 shows the pseudo-code of partitioning the cells in the
array for charge and discharge activities. First, the scheduler
setsδG based on Eq. (9). The value ofδG is updated during
the partitioning. When the SoC of any cell inGH is lower
thanδG, the corresponding cells are put intoGL. WhenGH =
/0, i.e., no cells available to be discharged, some cells inGL
are put back intoGH with a decreased value ofδG. δG is
linearly decreased byα < 1. A flag,FS, is turned on, indicating
that the SoC level of all cells is too low to meet a high load
demand. Thus, the scheduling mechanism is switched tonRR
from kRR. Conversely, whenGH is not empty, the scheduler
checks whether there are any charged cells inGL whose SoC
is greater than, or equal to, the average SoC inGH . If there
are, they are placed inGH . As a result, all the cells in the
array are classified into the two groups in accordance with
their SoC level.

Partitioning:
ESoC(G): return the average SoC of elements in G;
α: a linear decreasing factor;
FS← Off;

δG ← Eq. (9); /∗ updated for discharging∗/
move cells(∈GH) into GL, conditioningSoCcell ≤ δG;
if GH = φ

δG ← δG×α; /∗ decremented∗/
move cells (∈GL) into GH , conditioningSoCcell > δG;
FS← On; /∗ switchingkRRto nRR∗/

else
/∗ balancing SoC for charging∗/
move cells (∈GL) into GH , conditioningSoCcell ≥ ESoC(GH);

Fig. 7. Partitioning of battery cells

2) Determining k: The load demand,d, is to be shared
primarily among the cells inGH . Selecting an appropriate
value of k is crucial since the more cells become available,



the lower the per-cell load. For this purpose, based on the
recovery-efficiency factorν, andd∗ from the adaptive filter,k
is given by

k =
d∗

ν
, (10)

where 1≤ k≤ n, andn is the total number of available cells
in GH . Although k is within the range, when the per-cell
load is too low (i.e.,ν > d/k and k > 2), k is decreased
by 1, thus increasing the per-cell load. Whenν is in the
form of an array,k also becomes an array. This way,k is
determined to exploit recovery efficiency and prevent each cell
from excessive discharge.

The scheduler selectsk cells with the highest SoC level in
GH , referred to as thekRR scheduling, and then determines
the per-cell load. Each celli sharesd, weighted by

d×
SoCi

SoC1+ · · ·+SoCi + · · · ,SoCk
. (11)

This weighted load-sharing is effective for balancing voltages
of the k cells, even when some of them become faulty.

3) Discharge Activity:A scheduling mechanism can vary
with k. First, whenk = 1, at each interval, the cell with the
highest SoC level is selected, referred to asround-robin(1RR)
scheduling. The 1RRscheduling is effective for balancing SoC
levels and voltages of the cells, while it may cause excessive
per-cell discharge and the overhead for frequently switching
from one cell to another. Second, when the cell remains
in connection with the load until it gets fully discharged
to the end of its operation-time, this mechanism is referred
to as sequential(1+1RR) scheduling. Obviously, the 1+1RR
scheduling has nothing to do with voltage-balancing, but itis
vulnerable to excessive per-cell discharge, unable to exploit
the battery characteristics. Third, when alln cells in GH are
discharged together until the end of their operation-time,this
mechanism is referred to asparallel (nRR) scheduling. The
nRRscheduling is robust against excessive per-cell discharge,
although it fails to exploit the battery characteristics. Con-
versely, thekRR scheduling acts as 1RR at a low discharge
rate and asnRRat a high discharge rate, achieving the merits
of all. Note that thekRR scheduling subsumes all of these
three scheduling mechanisms. Fig. 8 shows the pseudo-code
of the kRRscheduling of the discharge activity.

4) Charge Activity: For the charging process, priority is
given to the cells inGL. The cell with the lowest SoC
level is selected and charged until its SoC level reaches the
average SoC level of the cells inGH . The charged cell is then
put into GH . This procedure, calledquick average charging,
repeats until no cell is left inGL. This way, undesirable
cases, such as voltage-imbalances at any point in time, are
avoided. After all cells inGL are charged, the cells inGH
start to be charged. Unlike the way applied inGL, all the
cells in GH are charged at the same time. The reason for this
is that despite the unpredictable disruption of the charging
process, the cells should be available to be discharged without
the concern of voltage-imbalances. To prevent any cells from
being overcharged, the charging process stops whenever any
of the cells inGH is fully charged. Then, individual cells with
a lower-SoC level are separately charged. Fig. 9 shows the
pseudo code of thekRRscheduling of the charge activity.

Discharging (method, FS, GH ):
N(G): return the number of elements in G;
H(k, G): returnk cell(s) with the highest SoC level in G;
A(G): return the first available cell in G;

if GH = φ
return;/∗ fully-discharged∗/

switch method
case ‘kRR’:

k ← Eq. (10);
if k > N(GH ) | FS is On

k ← N(GH ); /∗ switchingkRRto nRR∗/
Gk ← H(k, GH );

case ’1RR’:
Gk ← H(1, GH );

case ‘1+1RR’:
Gk ← A(GH );

case ‘nRR’:
n← N(GH );
Gk ← n cells∈ GH ;

DischargeGk based on Eq. (11);

Fig. 8. kRR scheduling of discharge

Charging(GH , GL):
Vn: nominal voltage;
L(k, G): returnk cell(s) with the lowest SoC level in G;

if GL = φ
/∗ The discharge process is inactive∗/
Gc ← GH ;

else if GH = φ
Gc ← GL;

else
/∗ The discharge processes can be active∗/
Gc ← L(1, GL);

Charge cell(s) (∈Gc & Vcell < Vn) /∗ Prevention of overcharge∗/

Fig. 9. kRR scheduling of charge

The quick average charging is resilient against overstresses
that occur to the cells experiencing an intensive charge-and-
discharge cycle. To illustrate this, suppose a simple policy
is used where individual cells inGL are deferred from their
transfer toGH until they are fully charged. In this policy, when
the charging process is switched to the discharging process, a
just-fully-charged, weak cell—note that a weak cell may be
charged and/or discharged faster than healthy cells—is likely
selected first for discharge due to its higher-SoC level, and
then continues being discharged until its SoC level reaches
the average SoC level of the cells inGH . At a high discharge
rate, the weak cell’s SoC level, however, falls belowδG faster
than that of the healthy cells which is also close toδG, thus
transferring the weak cell back toGL. Then, the weak cell
is most likely selected for charge again. As a consequence,
the cycle of charging and discharging the weak cell makes it
weaker, eventually leading to its failure.

D. Main Program

A main scheduling program involves offline and online pro-
cedures. In the offline procedure, the reference to the battery
characteristics is created via the charge-and-discharge cycle;
this cycle may repeat several times. The reference is used toset



important system parameters includingν, the nominal voltage,
and the cutoff voltage. In the online procedure, the reference is
updated since the physical condition of the cells changes over
time as long as the charge-and-discharge cycle is repeatedly
scheduled. In particular,ν is updated periodically, effectively
offsetting the aging effect of the cells.

V. CELL ARRANGEMENT AND DISCHARGE PROFILE

This section describes the numerical evaluation of the
arrangement of cells in a large-scale battery-cell array and
specifies a discharge profile for the purpose of evaluation.

A. How Many Cells Do We Need?

Clearly, the more the cells included in the array, the higher
the power it can deliver, but the costlier its manufacturing.
Also, the efficiency of converting chemical energy to electrical
energy is nonlinear, depending on applications including all
components of an electric vehicle. This question must then
be narrowed down to how many parallel-connected cells are
necessary to allow a battery-cell array to be both schedulable
and long-lasting.

Given the requirement ofp watts where 745.70 watts is
equivalent to 1 mechanical horsepower (HP), the cells are best
to be connected in series and in parallel as follows:

p = m·V× (1+q) ·n ·ν, (12)

wherem andn are the numbers of series-connected cells and
parallel groups, respectively;V is a cell’s discharge-varying
terminal voltage;q is the redundancy factor, whereq ≥ 0.
When q = 0, no redundant parallel groups are available for
scheduling. Obviously, the higher the redundancy, the higher
the schedulability.

Suppose that 35 HPs, on average, is required for an electric
vehicle. Then, how many parallel groups should we have
while exploiting ν? This depends mainly upon the required
supply voltage andν. As shown in Fig. 10, the higher the
supply voltage, the fewer the number of parallel groups, with
the discharge rate adjusted toν. Without redundancy, at a
high discharge rate (the average electric current is set to
ν = 2.0435C) with the supply voltage of 615V (m= 150), on
average, 23 parallel groups are required. At a low discharge
rate (ν = 0.8261C) with the same voltage, average 57 groups
are required.
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Fig. 10. Battery-cell arrangement for the supply power of 35HPs, with high
recovery efficiency. The cell’s terminal voltage ranges from 3.5V to 4.1V
during its operation-time. For simplicity, no redundancy is considered.

B. Discharge Profile

A discharge profile is defined asworkload, ρ, over the
operation-time, i.e., a sequence of variable loads,ds, required.
In the discharge profile,ds are approximated by piece-wise
constant loads, i.e., represented by a set ofM levels of the
discharge rate,(i1, . . . , iM), whereM is used to characterized,
given ∆t that is a fraction of the total operation-time,T. As
discussed earlier, the smaller the value of∆t, the higher the
accuracy in characterizingρ. In case∆t = T, ds are considered
constant. The load at timet is denoted as a stepwise function
of time,

d(t) =
T

∑
j=1

ρ( j) ·1[t j−1, t j )(t), (13)

where 1[ )(t) is an indicator function.ρ can be obtained from
empirical measurements. For the purpose of evaluation, we
generate a synthetic discharge profile, such thatd(i) = d(i−
1)+ γ, whereγ is an increment or decrement that is expressed
by a random discharge that follows a Gaussian distribution.

VI. EVALUATION

Our goal is to extend a battery pack’s operation-time and
lifetime—defined as the duration during which the pack pro-
vides required (converted) electrical energy to the load while
each of its cells repeats the charge-and-discharge cycle—by
effectively scheduling charge, discharge, and rest activities.
To evaluate the efficacy and efficiency of the weighted-kRR
scheduling, the metrics we use include the battery pack’s
operation-time and usability, and the reduction in voltage-
imbalance between parallel-connected cells in the pack.

We first describe the evaluation setup and then, based on
the metrics, demonstrate the superior performance of thekRR
scheduling over the other three scheduling mechanisms: 1RR,
1+1RR, andnRR.

A. Evaluation Setup

We designed a battery management emulator that in-
cludes the four scheduling mechanisms, discharge profile,
and battery-activity profiling. Two-step recovery effectsare
considered In the battery-activity profiling: cells are rested for
∆t or 2×∆t, where∆t = 1 (minute). To generate a reference
including Fre f and Π presented in Section III-A, we use
Dualfoil [10, 12, 13]. Note, however, that the evaluation results
in this section are not subject to Dualfoil’s accuracy in the
emulation. Dualfoil simply offers a reference to Lithium-ion
cell characteristics as most battery manufacturers do.

The battery management emulator uses the discharge pro-
file, ρ, specified in Eq. (13). Inρ, the random dischargeγ is
normally distributed as

γ∼ dl ×N(0, 0.5), (14)

wheredl = 0.4C×∆t which is a lower bound ofρ. The upper
bound,du, of ρ is set to 4.3C×∆t. We also setdmax andd(0)
to du and dl , respectively. Based on these parameter values,
we specify the discharge profile. Given the discharge profile,
the battery management emulator simulates the cell discharge
according to each scheduling mechanism. The battery pack is
assumed to contain 4 parallel-connected cells, but it can be
extended in various ways, as discussed in Section II-A, e.g., n



parallel-connected battery packs ofm-series-connected cells.
In addition to the discharge profile, we set a cell’s nominal
capacity (NC) to 3602.7mAh, assuming that all cells in the
battery pack have the same characteristics, unless specified
otherwise. Also, the cell’s terminal and cutoff voltages are set
to 4.06267V and 2.00000V, respectively.

B. Evaluation Results
1) The battery characteristics are modeled effectively:

Our battery-cell characteristics model is reference-based and
captures the discharge and recovery efficiency. Based on
the model, four scheduling mechanisms are comparatively
evaluated. For this comparison to be effective, it is important
to evaluate the accuracy in its simulation of battery activities.
A discharge profile is synthetically specified such that the
workload consists of charge at rate C for 10 minutes, rest
for 2 minutes, charge at rate C for 10 minutes, and charge at
rate 2C for 20 minutes; this is sufficient to show the discharge
and recovery efficiency. The discharge profile is then portedto
our battery management emulator and Dualfoil, thus yielding
voltage curves over the operation-time as shown in Fig. 11-
(a). The two voltage curves are almost identical except for the
turning points at which the voltage drops steeply. To be more
precise, we calculateχ2-distance [11] as:

χ2(X, Y) =
T

∑
i=1

(X − Y)2

(X + Y)
, (15)

whereX andY are terminal voltage samples from Dualfoil
and our model, respectively, andT = 42. Clearly,χ2 = 0 if and
only if all X’s samples matchY’s. The lower the value ofχ2,
the more closely the two curves match. As shown in Fig. 11-
(b), the difference between the two curves is negligibly small.
Between the 10-th and the 12-th samples during which the
recovery effect takes place, our model is shown to accurately
simulate the recovery efficiency. Also, even when the discharge
rate is abruptly changed at the 22nd minute, the distance value
(i.e., difference), from that point, is still below 2.5E-4,and
thus, theχ2 distance is as small as 0.0208 (V).
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Fig. 11. Comparison of Dualfoil and our model w.r.t. voltagechange
2) The adaptive filter operates effectively:The adaptive

filter used in our scheduling framework is based on the RLS
algorithm that recursively calculates an estimate from a given
history of real outputs. The size of the history in this evaluation

is set to 5, i.e.,p = 4. Individual elements in the history are
weighted separately; wew with 50 samples, which converges
to [0.1012, 0.1916, 0.0708, 1.0377, −0.3881]T. In solving
for the filter coefficients, the exponential forgetting factor λ
is set to 0.999, making it less sensitive to recent samples.
Also, the gain factorg(n) is obtained by recursively solving
an inverse correlation matrix,P(n) with P(0) = η−1I , where
η = 100. With these values applied, as shown in Fig. 12-(a),
the adaptive filter is highly effective in estimating the outputs.
The estimation errors are very low, as shown in Fig. 12-(b),
and the average error ratio of estimated outputs to real outputs
is as low as 0.0024.
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Fig. 12. An effective adaptive filter

3) kRR outperforms the others: kRRand nRR are load-
shared. That is,d is distributed to parallel-connected cells
available in proportion to their remaining SoC level. By
contrast, individual cells are discharged, one at a time, in
both 1RR and 1+1RR. Thus, 1RR and 1+1RR are likely to
make individual cells overloaded and hence exhausted. Fig.13
compares the operation-time gains ofkRR, 1RR, 1+1RR, and
nRR with the discharge profiles generated from Eqs. (13)
and (14). ApplyingkRR, the battery pack lasts up to 44%
longer than 1RR, 56% longer than 1+1RR, and 7% longer
thannRR. nRRoutperforms 1RRand 1+1RRby 41% and 54%,
respectively. 1+1RRperforms as ineffectively as 1RR.
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Fig. 13. Comparison of the average operation-time gains with the four
scheduling mechanisms from 100 runs of the charge-and-discharge cycle.

4) kRR and nRR are suitable for heavy workloads:The
results shown in Fig. 14 confirm these two mechanisms’
suitability for heavy workloads. By contrast, 1RRand 1+1RR
make it overwhelming for individual cells to cope with
the heavy workload, limiting their capability of effective
scheduling. Although 1RR outperforms 1+1RR, both 1RR’s
and 1+1RR’s battery usability appears degraded significantly



as the workload becomes heavier. Also, the difference in the
battery usability between 1RRand 1+1RR, andkRRandnRR
grows up to 19% larger.

kRR effectively adapts itself to different workloads devel-
oped in 4 phases. For workloads lighter than 1C×T (Phase
1 in the figure),kRR acts as 1RR which is most effective.
This, compared tonRR, suggests that at a very low discharge
rate, electrochemical dynamics inside the cell are inefficient in
converting chemical energy to electrical energy although the
effect is subject to individual cell characteristics. Compared
to 1+1RR, 1RR is found to perform better at a low discharge
rate, showing a 13% performance gain. As the workload gets
heavier, however, 1RRloses its performance since the recovery
efficiency lags behind the discharge rate. In Phase 2,kRR’s
performance is excellent, becausekRReffectively determines
the right number of parallel-connected cells to accommodate
the increasing workload while attempting to make best of their
recovery efficiency. As a result,kRR outperforms 1RR and
1+1RR by up to 11% and 21%, respectively, and achieves
a reasonable gain of 1.4% againstnRR. In Phase 3,kRR’s
scheduling performance is, on average, as good asnRR’s. In
other words, as few parallel-connected cells as 4 are insuf-
ficient for kRR to exploit ν. As the workload becomes even
heavier (Phase 4), more parallel-connected cells are required
since not enough time is spent on offsetting a significant
voltage drop. Obviously, such a large voltage drop can be
handled by using more parallel-connected cells. Thus,kRRacts
asnRR. kRRmaximizes the battery usability by scheduling the
charge, discharge, and rest activities while adapting itself to
the varying workloads.
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Fig. 14. Battery usability with respect to workload (C× T); the battery
pack is discharged at a constant discharge rate overT. The discharge rate is
increased by 0.1C from 0.4C to 4.3C. This procedure is repeated 100 times.

5) DynamicδG improves the schedulability:δG is a thresh-
old according to which parallel-connected cells are partitioned
into GH and GL. The cells whose SoC level is belowδG
are put intoGL. This classification is to prevent the cells
from suffering the entire terminal voltage drop of the battery
pack due mainly to instantaneous high loads at their low
SoC level. Moreover,GL serves as a buffer in which the
charge is reserved and then delivered to accommodate light
loads. The size of the buffer, however, should be adjusted
to the load; the higher the load, the larger the value ofδG.
The dynamic adaptation ofδG supports the schedulability and
hence extends the battery pack’s operation-time. Fig. 15 shows
the operation-time gains by applying the dynamicδg. Under
wide-ranging workloads (below 3.3C× T), the dynamicδG
proves to be effective; the maximum gain reaches 0.0179.

Under heavy workloads, however, it appears difficult to adjust
δG due mainly to unmanageable, abrupt, and steep voltage
drops, implying that the high load for an individual cell is a
dominating factor in the efficiency of scheduling the discharge
and rest activities.
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6) kRR and 1RR are more tolerant of voltage-imbalances:
Voltage-imbalances should be avoided in discharging parallel-
connected cells. When voltages of individual cells drift apart—
which is, to some degree, unavoidable—higher-voltage cells
can charge lower-voltage cells, thereby causing the battery
pack’s terminal voltage to drop. Thus, scheduling the discharge
activity must cope with voltage-imbalances. As shown in
Fig. 16-(a),kRR manages to keep the difference in voltage
under 0.5%, while 1RR is subject to various loads and the
cells’ SoC level since a single cell should accommodate the
whole load at a time. For instance, at low SoC levels of
the cells, the difference in their voltage goes up to 2.5%
for the 1RR scheduling. Obviously, voltage-imbalances are
rarely experienced undernRRas long as all the cells of the
same characteristics are discharged simultaneously at thesame
rate.nRR is susceptible to cell failures or anomalous voltage
variations (thus unbalancing voltages). As shown in Fig. 16-
(b), despite the weighted discharge,nRRexperiences voltage-
imbalances. By contrast,kRRand 1RRquickly suppress it up
to 50%.
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Fig. 16. Balancing voltages: The discharge profile shown in Fig. 12-(a)
is applied. The difference in voltages is obtained by calculating (Vmax−
Vmin)/Vmax×100%.

VII. RELATED WORK

Appropriate control of charge current and discharging be-
havior helps extend a battery’s operation and life times. For



instance, discharging cells completely one-by-one, in parallel,
or in a round-robin fashion [15, 16, 25] makes a great impact
on a battery’s operation and life times. A method for validating
such policies usually relies on a stochastic model of battery
behavior [7, 19, 20, 24]. Using a stochastic model, Beniniet
al. [2] observed that virtual parallel discharge is more effec-
tive in maximizing a battery’s operation-time than sequential
discharge. Similarly, Chiasserini and Rao [5] considered the
recovery effect. Their models, however, capture only discharge
behavior and ignore the dependency between the discharge
rate and the recovery rate, thus limiting their scheduling
efficacy. They need a comprehensive model for battery-cell
characteristics to validate scheduling policies as well astask
scheduling techniques such as those [21, 22].

A synergetic battery pack [9] is a simple battery charger
designed to charge 4 cells connected in series, with the
accompanying control circuitry. In the pack, two switches at
each cell are set at its boundary, making it connected to or
disconnected from power buses. Likewise, a battery switch
array system [1, 23] presents an architecture for arranging
micro-scale cells, allowing them to be bypassed. This system,
however, similar to a configurable multi-cell battery [6], fails
to select appropriate cells dynamically, based on battery-cell
characteristics such as SoC, state-of-health, and load demands.

VIII. C ONCLUSION

For longer operation and life times of a large-scale battery
pack, one must effectively and efficiently schedule the charge,
discharge, and rest activities for the cells in the pack. In this
paper, we presented the weighted-kRRscheduling framework
to not only extend the battery pack’s operation-time, but
also make it robust to anomalous voltage-imbalances. We
started by modeling the battery-cell characteristics, including
the discharge and recovery efficiency. We found conditions
under which the recovery efficiency is maximized. Based on
this finding, we designed thekRR scheduling framework to
effectively schedule the charge, discharge, and rest activities.
The framework is composed of the adaptive filter and the
kRRscheduler. The adaptive filter returns an estimate of the
upcoming load demand. The scheduler determinesk, the num-
ber of parallel-connected cells to be discharged, while making
best of recovery effects. The scheduler also balances the loads
(and thus voltages) amongk cells. Our evaluation results show
that thekRR scheduling framework allows the battery pack
to last up to 56% longer than the 1RR scheduling, and be
50% more fault-tolerant of voltage imbalances than thenRR
scheduling. ThekRRscheduling framework effectively adapts
itself to various workloads, improving the battery usability. In
summary, at a high discharge rate, the energy conversion in
battery cells is inefficient, and their voltage-imbalancesmust
be minimized. ThekRR scheduling offers a unique solution
to the inefficiency in charging and discharging battery cells,
greatly improving the adaptability to various load conditions.
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