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ABSTRACT
Feedback mechanisms can help today’s increasingly complex
computer systems adapt to changes in workloads or operating
conditions. Control theory offers a principled way for designing
feedback loops to deal with unpredictable changes, uncertainties,
and disturbances in systems. We provide an overview of the joint
research at HP Labs and University of Michigan in the past few
years, where control theory was applied to automated resource
and service level management in data centers. We highlight the
key benefits of a control-theoretic approach for systems research,
and present specific examples from our experience of designing
adaptive resource control systems where this approach worked
well. In addition, we outline the main limitations of this approach,
and discuss the lessons learned from our experience.

Categories and Subject Descriptors
D.2.10 [SOFTWARE ENGINEERING]: Design –
Methodologies.

General Terms
Algorithms, Management, Performance, Design, Experimentation,
Theory.

Keywords
Control theory, systems research, model, dynamics, and stability.

1. INTRODUCTION
Control theory provides a powerful mechanism for dealing with
unpredictable changes, uncertainties, and disturbances in systems
using feedback. Feedback mechanisms can be found in many
engineering as well as biological systems. Although feedback-
based techniques have also been developed for computing systems
[25, 26] and networks [24] in the past, formal control theory is
rarely used. In conventional systems research, feedback
algorithms are typically designed based on the system designer’s
domain knowledge and intuition instead of a quantitative model
for the behavior of the system being controlled, and parameter
values in these algorithms are often chosen in an ad-hoc fashion.
What control theory brings to systems research is a rigorous
methodology for modeling, analysis, design, and evaluation of
feedback systems.

Figure 1 illustrates a standard feedback control loop. We refer to
the system being controlled as the target system, which has a set
of metrics of interest (referred to as measured output) and a set of
control knobs (referred to as control input). The controller
periodically adjusts the value of the control input such that the
measured output can match its desired value (referred to as
reference input) specified by the system designer. That is, it aims
to maintain the difference between the two (referred to as control
error) at zero, in spite of the disturbance in the system, something
affecting the measured output that is not under control.
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Figure 1. Standard feedback control loop.

n the past decade, control theory has been applied to performance
ontrol in computing systems. A number of good overviews can
e found in [2, 4, 9]. The types of systems that have benefited
rom such an approach include multi-media systems [14], Web
ervers [1, 8], proxy caches [18], database servers [22], multi-tier

eb sites [10], and real-time systems [17]. There has also been
rowing interest in applying control theory to power management
f data center servers and clusters due to the increasing energy
ost in recent years [7, 13].

n particular, researchers at HP Labs and University of Michigan
ave applied a control-theoretic approach to automated resource
nd service level management in data centers. Areas of successful
pplications include performance isolation and differentiation in
torage systems [12], CPU utilization control for resource
artitions [28] and response-time-driven workload management
30] on HP-UX systems, performance control of a three-tier
pplication running in distributed virtual machines [27],
erformance assurance and differentiation for multiple co-hosted
ulti-tier applications [15, 20, 21], and coordinated power
anagement for data centers [23].

n this article, we summarize the lessons we learned from this
xperience. In particular, we describe key strengths of the control-
heoretic approach that make it a powerful tool for building
eedback loops in computing systems, and present specific
xamples from our own work. In addition, we discuss some
imitations in this approach that remain open problems.

. OVERVIEW
ext-generation enterprise data centers and cloud computing

nvironments are being designed with a utility computing
aradigm in mind, where all hardware resources are pooled into a
ommon shared infrastructure and applications share these
esources as their demands change over time. In this new
aradigm, multiple applications share dynamically allocated
esources. These applications are also consolidated to reduce
nfrastructure and operating costs while simultaneously increasing
esource utilization – virtualized infrastructures are becoming
ommonplace in consolidated environments. As a result, data
enter administrators are faced with growing challenges to meet
ervice level objectives (SLOs) in the presence of dynamic
esource sharing and unpredictable interactions across many
pplications. These challenges are:
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Complex SLOs: It is nontrivial to convert individual application
SLOs to corresponding resource shares in the shared virtualized
platform. For example, determining the amount of CPU and disk
shares required for a financial application to achieve a specified
number of transactions per second is difficult.

Time-varying workload demands: The intensity and the mix of
typical application workloads change over the lifetime of an
application. As a result, the demands for individual resources also
change over time. This implies that static resource allocation can
meet application SLOs only when the resources are allocated for
peak demands, wasting resources and increasing operating costs.

Distributed resource allocation: Multi-tier applications spanning
multiple nodes require resource allocations across all tiers to be at
appropriate levels to meet end-to-end application SLOs.

Resource dependencies: Application-level performance often
depends on the application’s ability to simultaneously access
multiple system-level resources.

We address these challenges by using control theory as the basis
for the modeling, analysis, and design of feedback-driven resource
management systems. We have built various controllers towards
this end over the years, all of which culminated in an automated
resource control and adaptation system called AutoControl [20].
In AutoControl, operators can specify the SLO for an application
in a tuple (priority, metric, target), where priority represents the
priority of the application, metric specifies the performance metric
in the SLO (e.g., average throughput, 90th percentile of response
time), and target indicates the desired value for the metric.
AutoControl can manage any resources that affect the application
performance metrics and that can be allocated between the
applications.

Figure 2 shows a three-node subset of a virtualized infrastructure
shared by multiple multi-tier applications, where each tier of an
application is hosted in a virtual machine (VM). AutoControl can
automatically adjust resource allocations to all the VMs in real
time to meet the SLOs of the hosted applications. If this is
mapped to the feedback loop in Figure 1, the control inputs are the
resource allocations, the measured outputs are the measured
values of the performance metrics, and the reference inputs are the
performance targets in the SLOs. The application workloads are
considered “disturbances” since they are not under our control.

Figure 2. Example of a shared virtualized infrastructure with
three nodes hosting multiple multi-tier applications.

AutoControl consists of a set of application controllers
(AppControllers) and a set of node controllers (NodeControllers).
There is one AppController for each hosted application, and one
NodeController for each physical node. For each application, its
AppController periodically polls an application performance
sensor for the measured performance. We refer to this period as
the control interval. The controller compares this measurement

with the application performance target, and based on the
discrepancy, automatically determines the allocation needed for
each resource type in each application tier for the next control
interval, and sends these resource requests to the NodeControllers
for the nodes that host the individual tiers of the application.

For each node, based on the collective resource requests from all
the relevant AppControllers, the NodeController determines
whether it has enough resources of each type to satisfy all the
demands and computes the actual resource allocations. The
resource allocations are then fed into the resource schedulers in
the virtualization layer for actuation, which allocates portions of
the node’s resources to the VMs.

The high-level goal of AutoControl is to meet application-level
SLOs as much as possible while increasing resource utilization in
the shared computing environment. More specifically, our
controller design has the following three main objectives:

 Guaranteed application performance: When system
resources are shared by multiple multi-tier applications, it is
desirable to maintain performance isolation and to ensure
that each application can achieve its SLO if possible.

 High resource utilization: It is also desirable to increase
overall utilization of the shared resources so that fewer nodes
are required to host a given set of applications, reducing the
operating cost of the data center. One way to achieve this is
to maintain a high-enough utilization in individual virtual
machines such that there is more capacity for hosting other
applications. There is a fundamental tradeoff between this
goal and the previous goal, and a systematic approach in
required to reach an appropriate balance between the two.

 Performance differentiation during resource contention:
Whenever a bottleneck is detected in the shared resources,
the controller needs to provide a certain level of performance
differentiation where higher-priority applications experience
lower performance degradation, or none. For example, one
can aim to maintain a certain ratio of response times when
the system is overloaded based on the priority values of the
respective applications.

3. STRENGTHS OF A CONTROL-
THEORETIC APPROACH
We have identified six key strengths of the control-theoretic
approach based on our experience building adaptive resource
control systems. We now discuss these strengths in detail and
illustrate using examples from our own research.

3.1 Quantitative Input-Output Models
Traditional performance models used in systems problems are
inadequate for feedback controller designs for two reasons: 1)
They may be in a form that is hard to analyze - say, in a look-up
table; 2) They are rarely expressed in the form of an input-output
model, a specific type of model that is required for designing and
analyzing feedback controllers. In control theory, the notion of
input and output refers to the control input and measured output as
defined in Figure 1. Note that they may have nothing to do with
the input and the output of the system. For example, a queuing
system has the incoming and the outgoing requests as the input
and the output, whereas a queue control system may view
resource allocation to the backend process as the input and the
resulting queue length as the output.



Although feedback-based techniques have been used extensively
in systems work, most algorithms are not designed based on an
input-output model. For instance, the adaptive scheduler in [25]
dynamically allocates proportions and periods of CPU time to
threads based on measurements of their progress, where a PID
(Proportional, Integral, and Derivative) controller was used
directly without first identifying an input-output model. Similarly,
the admission controller for Internet servers in [26] manages
performance under overload; its design was based on intuitive
understanding of the server behavior rather than a quantitative
model of the relationship between the control input and the
performance.

Input-output models are not commonly used in systems research
for feedback control design because first-principle models are in
general unavailable for computing systems. In our research, we
have found a black-box approach, where models are inferred from
experimental data, extremely useful [12, 15, 20, 21, 28]. For
example, Figure 3 illustrates an input-output model for an
application running in a VM, for instance, app2 in Figure 2. The
control inputs are the resource allocations to the VM (u). The
measured outputs include the measured application performance
(y) such as response time and throughput, as well as the resource
utilization within the VM (r). Note that, for each type of resource,
utilization is defined as the ratio of the absolute amount of
resource consumed by the VM (v) and the amount of resource
allocated (u), i.e., r = v / u. The incoming workload (d) to the
hosted application is viewed as a “disturbance” because it is not
directly under control, although it has an impact on the measured
outputs. Typically as the workload changes, the quantitative input-
output relationship changes accordingly, increasing the difficulty
in modeling as well as controller design.

(a) Resource utilization (b) Mean response time

Figure 4: Resource utilization and mean response time vs.
CPU allocation for a Web server under different workloads.

In general, for a fixed workload with an average resource demand
D, the relationship between the resource allocation (u) and the
utilization (r) can be approximated by:
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We make two observations about this model. First, it is bimodal.
The system is overloaded when the allocation is below the
demand of the workload, where the utilization is a constant 100%,
and is underloaded when the allocation exceeds the demand,
where the utilization is inversely proportional to the allocation.
Second, when the system is underloaded, the exact function
depends on the workload demand. These observations are
consistent with the result of the modeling experiment as shown in
Figure 4(a) [28]. A feedback controller for managing resource
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Figure 3: Input-output model for a VM-hosted application.

To build a black-box input-output model, the design of the
modeling experiments is critical because they need to cover a rich
set of test conditions to discover the various operating regions.
For example, in [28], we varied the CPU allocation (u) for a
container running an Apache Web server application from 0.2 to
0.9 of a CPU, in 0.05 CPU increments. At each setting, the Web
server was loaded for 60 seconds with a fixed workload, while the
average CPU consumption (v) of the container was observed and
and the relative CPU utilization (r) within the container was
computed. In addition, the mean response time (MRT) of all the
requests completed during this period was computed. The
experiment was repeated at different workload intensities ranging
from 200 to 1100 requests/s.

Figure 4(a) shows the utilization of allocation as a function of the
CPU allocation, and Figure 4(b) shows the measured MRT as a
function of the CPU allocation. Each data point is the average of
10 samples obtained from 10 repeated experiments. The empirical
data provide a basis for inferring analytical models that describe
both the static and the dynamic input-output relationships.

Application

VM

resource allocations
(u)

performance metrics
(y)

resource utilization
(r)

workload
(d)
utilization has to take into account both operating regions.

The relationship between the MRT and the resource allocation is
more complicated. From Figure 4(b), we first observe that the
steady-state relationship between the two is nonlinear, and likely
multi-modal. For example, for a workload of 600 requests/s, the
relationship curve can be classified into three regions: a smooth
region where CPU allocation u is below 0.35, a highly sensitive
region where u is between 0.35 and 0.45, and a highly insensitive
region where u is above 0.45.

If a feedback controller is designed to adjust the input without an
input-output model, the following problems may occur:

1. The controller may not converge to equilibrium, if the system
does not have a monotonic relationship between a single
input and a single output. This occurred when the two Web
tiers of two applications a and b shared a single node, and
each application is a two-tier implementation of the RUBiS
online bidding benchmark [3]. We defined la as the number
of lost connections for application a, and the normalized loss
ratio between the two applications as )./( baa lll  We used

the CPU allocation to Web tier a as the input. Figure 5 shows
the non-monotonic input-output relationship when the loss
ratio is chosen as the output; and the monotonic relationship
when a better output metric of the response time ratio is used
instead [21]. For example, for a target ratio of 40% (dotted
line), the controller for the former may oscillate between the
two operating points (circles), whereas the controller for the
latter can easily find the operating point (triangle) using a
simple control algorithm (e.g., an integral controller).
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relationship between the input, u(k), and the output, y(k), in a
system is often represented using the following auto-regressive-
moving-average (ARMA) model:
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The coefficient ia captures the degree of correlation between the

current output and the past output, and the coefficient jb captures

the degree of correlation between the current output and the
notonic input-output relationship between
nd Web tier CPU allocation (input), and a
tput relationship between response time
CPU allocation.
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the Web tier CPU allocation in Figure 5 is p,
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atio at the target value, then the integral gain
r, KI, has to be below 1/p to ensure stability in
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and Transients
dynamics, as defined in control theory, is

omputer systems researchers. In essence,
the transient effects of memory in the system,
between a system’s current and past states.
tems have dynamics because of the presence
stems.

ry characterizes long-term averages, it does
m, transient behaviors. The latter can only be
ely when the dynamics of a system are
. Control theory provides methods for

models. Although dynamics in traditional
tems are represented by differential equations,
te-time systems, such as those computing
erested in, are often better characterized by
. In these models, we use x(k) to represent the
in the kth time interval. A dynamic, linear

current or past input. The parameter d is referred to as “delay” in
the system, indicating the number of time intervals one has to wait
to observe a change in the output y(k) after a change in the input
u(k) has occurred. Such delays can be caused by actuator or sensor
delays, or delay in the system itself. The parameters m and n are
referred to as “orders” of the model, and they capture the length
of memory in the system and its relationship to the time interval.
For example, a system with fully occupied queues may require a
model with higher orders if the time interval is small. Finally, e(k)
represents the noise and disturbances that affect the measured
output and that are not captured by the model. Note that, for a
multiple inputs, multiple outputs (MIMO) system, both u(k) and

y(k) are vectors and ia and jb will be matrices.

These dynamic input-output models can be estimated using data
collected from system identification experiments. In designing
these experiments, it is essential that the inputs be stimulated
sufficiently to capture the full spectrum of the dynamic response
in the system. At the same time, it is usually beneficial and hence
a common practice to ignore nonessential high-order dynamics
and to use low-order models as approximations of the system
behavior. In our research, we have found that first- or second-
order models, representing system memory that lasts one or two
time intervals, are usually good enough approximations of the
dynamics in the computing systems we have tested [12, 15, 20,
28]. This can also simplify the controller design, and offer better
robustness in the resulting control system. However, ignoring
critical dynamics of a system, e.g., ignoring dynamics altogether
or ignoring actuator or sensor delay may lead to instability of the
closed-loop system.

We have done detailed system identification experiments in [28]
to capture the dynamic relationship between the CPU allocation to
a Web server and its measured mean response time (MRT). From
Figure 4(b), we know that the MRT is a nonlinear function of the
CPU allocation in steady-state. However, we observe a linear
dependency between the inverse of MRT (y) and the CPU
allocation (u) within certain operating regions. Therefore, we
varied the CPU allocation randomly between 0.2 and 0.8 in
contiguous time intervals, and calculated the resulting 1/MRT for
each interval. The time interval was fixed as 15 seconds, while the
experiment was repeated for different request rates ranging from
200 to 1100 requests/s. The model in Equation (2) with different
structures and parameters was estimated offline by using the least-
squares method [16] in the Matlab System Identification Toolbox
[19] to fit the input-output data. For convenience, we refer to such
a model as “ARMAmnd” in the following discussion. We
evaluated the fitness of the model using the coefficient of
determination (R2) metric. In general, this metric indicates the
percentage of variation in the output captured by the model. The
results are shown in Tables 1(a) and 1(b).

Web Tier CPU Allocation (% of CPU)



Table 1. R2 values (%) of different input-output models

200 400 600 700 900 1100

ARMA110 -10.2 12.8 2.8 63.1 70.3 78.3

ARMA111 -1 6.7 2.7 -5 0.09 6.4

Model
Workload Rate (r/s)

(a) First-order ARMA models for different workloads

ARMA110 ARMA220 ARMA330 ARMA440

900 70.3 71.7 70.8 71.5

1100 78.3 79.9 80.3 80.2

Workload

Rate (r/s)
Model

(b) ARMA models with different orders

We make the following observations from these tables:

 According to Table 1(a), the simple linear models
(ARMA110 and ARMA111) do not fit the input-output data
for a workload below or equal to 600 requests/s. This
corresponds to the condition where the Web server is under-
loaded. In contrast, when the request rate is above 600
requests/s, ARMA110 (first-order model with no delay) fits
the data quite well, providing a good basis for controller
design. Moreover, ARMA111 (first-order model with one-
step delay) does not explain the system behavior even with
the heavier workload. This means, when there is significant
correlation between the CPU allocation and the MRT, 15
seconds is long enough to observe that correlation.

 Under all conditions where an ARMA model is a good fit, a
first-order model is sufficient. Table 1(b) shows, using rates
of 900 and 1100 requests/s as examples, that increasing the
order of the ARMA model does not increase its fitness value.

3.3 Correlation between Multiple Metrics
In a MIMO system, there are different degrees of correlations
between various inputs and outputs. Although system designers
may have intuition for some of the correlations, it is often hard to
quantify them, making the design of a MIMO controller difficult.

Using control theory, we can develop MIMO models (often
empirically) to capture the correlations between different inputs
and outputs. For example, the dependency of an application’s
throughput (y) on two critical control variables, CPU allocation
( cpuu ) and disk allocation ( disku ), can be represented using the

following linear, second-order, multiple-input, single-output
model [20]:
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The model coefficient cpub ,0 (or diskb ,0 ) captures the degree of

correlation between the measured application throughput in the
kth time interval and the CPU allocation (or disk allocation) in the
(k-1)th time interval. The other coefficients in the model can be
interpreted in a similar fashion. This model can be easily
estimated offline using the least squares method [16] based on the
measured throughput, the CPU allocation, and the disk allocation
for the same set of time intervals. It can also be continuously
updated online using the recursive least squares (RLS) algorithm
[5] every time a new set of measurements is obtained.

Figure 6(a) shows an example for an estimated model from [20].
It shows the model parameters ( cpub ,0 , diskb ,0 , and 1a ) for an

smedia application, a synthetic benchmark for secure media server
[20], as functions of the time interval. The second-order
parameters are not shown due to lack of space. During the first 30
time intervals, we can see that cpub ,0 > diskb ,0 . This is consistent

with the application being CPU-bound. After the 30th interval, we
notice that the value of cpub ,0 dropped below the value of diskb ,0 ,

indicating that the disk had become a more critical resource for
the application. This demonstrates the model’s ability to capture
the correlations between different metrics appropriately. A
comparison between the measured application throughput and the
model-predicted throughput for the same time period is shown in

Figure 6(b). The coefficient of determination ( 2R ) of this model
is 92.2%, and the mean absolute percentage error (MAPE) is
6.9%. These indicate that the model matches the measured data
fairly well.
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systems. For MIMO systems, standard algorithms such as state or
output feedback and Linear Quadratic Regulator (LQR) allow us
to manage multiple inputs and multiple outputs simultaneously
[29]. Designers of feedback control systems can draw from
decades of research that provides guidelines for setting key
parameter values in these algorithms to ensure stability and good
performance of the closed-loop system. In our research, we have
used an adaptive integral controller in [21, 27, 28, 30], a direct
self-tuning regulator in [12], and a linear quadratic optimal
controller in [15, 20] and all of them have worked well.

3.5 Stability Guarantees
In conventional systems research, a design is considered
satisfactory if it meets the design goals (e.g., maintaining system
utilization below a threshold) under the conditions that are tested
in the experiments. Stability is rarely considered an explicit
criterion. However, for systems with feedback, stability becomes
an important metric because a poorly designed feedback controller
can introduce large oscillations to an otherwise stable system.

Control theory offers analytical methods for assessing the stability
of the closed-loop system, given models of the target system and
the controller, and provides guidelines for choosing the controller
parameter values to ensure stability. For example, for the
nonlinear relationship between the resource allocation (u) and the
utilization (r) shown in Equation (1), we have designed the
following self-tuning, integral controller [28] to regulate the
utilization within a VM such that it can be maintained at a desired

level specified by the reference input refr :
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 (4)

We have proven that this adaptive controller is globally stable for

./10 refr In other words, the closed-loop system using this

controller is always stable under any workload demands. In
practice, it is almost impossible to completely eliminate
oscillation in the measured output in a computing system due to
actuator and sensor noises. A stabilizing controller helps minimize
the oscillation around the reference input, therefore improving
predictability in the system performance.

Moreover, there is a fundamental tradeoff between stability and
responsiveness. The latter can be characterized by the amount of
time it takes for the measured output to track a step change in the
reference input (e.g., a change in the SLO) or for it to go back to
the normal state after a disturbance occurs (e.g., a change in the
workload). Heuristic designs either do not address this issue or
deal with it in an ad-hoc manner. This tradeoff is explicitly
handled in control theory. For example, in standard LQR designs,
such tradeoff is dealt with using weighting matrices [29]. In
another example, the AppController in [20] periodically
minimizes a quadratic cost function. The optimizer in the
AppController determines the resource allocation required in
order for the application to meet its performance target. It does so
without causing large oscillations in the resource allocation by
including a stability factor (q) that allows system designers to
make tradeoffs between stability and fast responses in the output.
The general form of the optimization takes the form

cpa JqJJ  , where the performance cost (Jp), a penalty for

the deviation of the application’s measured performance from its
target, is jointly taken into account in the optimization with the

control cost (Jc), which is used to curtail the amount of resource
allocation changes the controller can make in a single interval.

Figure 7 shows the achieved throughput of a TPC-W application,
a multi-tier e-commerce benchmark, where the CPU and the disk
allocations for the VMs hosting the application were managed by
the AppController. Multiple experiments were run with the
stability factor q set to different values. In each experiment, at the
30th time interval, the workload for the application surged to a
higher level, and the throughput target was adjusted accordingly.
As we can see, q = 1 results in faster and more aggressive
response in the controller, with oscillations in the throughput
around the target; for q = 10, the controller is sluggish and does
not track the change in the target fast enough; among the three
values tested, q = 2 offers the best tradeoff between fast tracking
and stability in the delivered application performance.
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nlinear and Time-Varying Behavior
control theory [5] offers a well-studied methodology for
controllers for systems whose behavior (encoded in the
ut model) varies over time, or systems whose input-
ationships (such as the one shown in Figure 4) can be
ted using linear models around an operating point. It
y online estimation of model parameters and automatic
of controller parameters based on the model. Ad hoc
rarely adapt their parameters automatically.

te this behavior, we studied a combination of a multi-
ation (RUBiS) and multiple instances of a media server
sharing a virtualized infrastructure across multiple
r RUBiS, we used the default browsing mix workload
threads emulating 600 concurrent clients connecting to
S server, and used 100 requests per second as the
t target. Each of the smedia applications was driven
threads emulating 40 concurrent clients downloading
ams at 350KB/sec. We then ran an experiment for 90
vals and varied the percentage of encrypted streams
from smedia to create a shift of resource bottleneck in
e virtualized nodes. For the first 29 intervals, smedia1

ia2 on node 1 were CPU-bound, whereas smedia3 and
n node 2 were disk-bound. At interval 30, smedia1 and
n node 1 were switched to disk-bound, and at interval
3 and smedia4 on node 2 were switched to CPU-bound.
hows that AutoControl was able to achieve the targets
applications (only RUBIS is shown) in spite of the fact

source bottleneck occurs either in the CPU or in the disk
and Figure 10 show the CPU and disk allocations over
both tiers of the RUBiS application distributed across

cal nodes experienced resource contention.

T
Time intervals (every 20s)



Figure 8: Measured RUBiS throughput.

Figure 9: CPU allocations at node 1 using AutoControl.
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systems. However, this approach requires controlled
experiments. Existing data collected from production
systems are hard to use for modeling purposes because it
often lacks sufficient excitation to identify all relevant
correlations.

3) Most classical control problems are formulated as tracking
problems, i.e., the controller maintains the outputs at certain
reference values. However, this may not be appropriate for
all design problems in systems. For example, a meaningful
design objective for a Web server may be to minimize the
mean or percentage response time instead of keeping it at a
certain value. For such problems, design methodologies that
provide stability guarantees are not generally available.

4) Classical control theory only deals with continuous inputs.
Many computing systems have input variables that only take
on discrete values. For the systems where input values are
discrete and numerical (e.g., number of servers allocated or
P-states in a processor with dynamic voltage scaling
enabled), it is possible to design controllers assuming
continuous input variables. This approach may suffer from
instability or inefficiency due to quantization errors. For
systems with input values that are logical (e.g., Linux kernel
version), discrete-event control theory [6] can be explored.

5) Many computing systems were not designed to be
controllable in the first place. For example, many application
e 10: Disk allocations at node 1 using AutoControl.

also shows a comparison between AutoControl and two
source management policies commonly used in data
work-conserving and static allocation. It is clear that the
policies cannot ensure application performance or adapt

es in the workload (see a more detailed study in [20]). We
inced from our experience that adaptive control is an
approach for feedback designs in computing systems

linear relationships and time-varying behavior, because it
he controller to automatically adapt to changes in
s or operating conditions.

ITATIONS OF CONTROL THEORY
also discovered a number of limitations in the control-
approach as applied to systems research.

st inter-relationships in computing systems are nonlinear.
s makes modeling difficult. Unlike classical linear control
ry that is more intuitive and accessible to people outside
field of control, nonlinear control theory and adaptive
trol theory are much harder to understand and to apply in
tice. Adaptive control also imposes limitation on how
workloads or system behavior can change.

lack of first-principle models requires an empirical
roach to inferring input-output models for computing

configuration parameters (e.g., number of threads) cannot be
changed at runtime, prohibiting online control of these
parameters. Moreover, until recent years, most performance
sensors produce measurements at the time granularity of
minutes, making it impossible to design controllers that
respond to changes at shorter time scales. For the computing
systems to become amenable to dynamic feedback control,
both actuator and sensor designs need to become an integral
part of the computing systems design itself. In [11], we
presented a set of necessary and sufficient conditions for a
system to be controllable by a family of adaptive controllers.

5. CONCLUSIONS
In summary, feedback-based techniques, when applied to data
center resource and service level management, can help
computing systems adapt to changes in workloads or operating
conditions. However, if not designed properly, such adaptation
may become too aggressive or overly sensitive to small noises in
the measurements or transients in the workloads, resulting in large
oscillations in the controlled metrics. In our own research, we
have used control theory to guide the modeling and designing of
these feedback loops to achieve a proper balance between faster
responses to changes and better stability in the system. For
computing systems, better stability implies lower variance,
therefore more predictability in the system performance.

Traditional systems research relied heavily on experimental
validation of innovative design ideas. We believe that by
combining such an experimentally oriented approach in systems
research with the rigorous methodology in control theory, we can
build better and more robust feedback systems.
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