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Abstract—Accurate sensing of the spectrum condition is of of DSA. We call these unique sensing-targeted attacks in DSA
crucial importance to the mitigation of the spectrum scarcty  networkssensing-disorder attacks
problem in dynamic spectrum access (DSA) networks. Specifi- o sensing-disorder attack aims to obscure the existence of

cally, distributed sensing has been recognized as a viableeans . - b inulati h ing inf
to enhance the incumbent signal detection by exploiting the & Primary signal by manipulating the spectrum sensing nfor

diversity of sensors. However, it is challenging to make sic Mation (e.g., measured RSSs) either by raising or lowering
distributed sensing secure due mainly to the unique featu of the signal strength. When no primary signal exists, attacke

DSA networks—openness of a low-layer protocol stack in SDR can raise RSSs to generate an illusion of a primary signal. Fo
devices and non-existence of communications between primya example, in the IEEE 802.22 WRANSs [13], an attacker can

:{ggﬁ?&g‘gﬁ%ig%&eé ;?‘sﬁ%dL?gtsoégfs(ﬁggg)ngueﬁd\gf V\E)hr%ﬁos transmit a fake sensor report to force all users in the entire

sensors in close proximity are grouped into a cluster, and swors ~ Cell (of radius up tal00 km) to immediately vacate the channel
in a cluster cooperatively safeguard distributed sensing.The [14]. Once users in the cell vacate the channel, the attacier

heart of ADSP is a novel shadow fading correlation-based fiétr  freely use the channel without any interruption. When there
tailored to anomaly detection, by which the fusion center pe- g g primary signal, on the other hand, attackers can lower

filters abnormal sensor reports via cross-validation. By ralizing - . . .
this correlation filter, ADSP minimizes the impact of an attack on ("€ RSSs to veil the presence of a primary signal, resulting

the performance of distributed sensing, while incurring mnimal in an unacceptable level of interference to the primarysuser

processing and communications overheads. The efficacy of ou In both cases, attackers mislead the fusion center (i.e), BS

scheme is validated on a realistic two-dimensional shadofding  to make an incorrect decision on the existence of a primary

fonments. Our extoneive Smulaton-based evaluation shothat  SigNal, CauSINg a waste of spectrum resources or unacéeptab

ADSP significantly reduces the impact of attacks on incumben INterféerence to the primary communications. Thereforereh

detection performance. is a cll<ear incentive for attackers to launch the sensingrdées
attacks.

. INTRODUCTION While the sensing-disorder attacks can be easily launched
Accurate sensing of spectrum condition is a key to thiith the aid of programmable software-defined radio (SDR)
opportunistic use of licensed spectrum bands in dynarrﬁ@v'ces’ their detection is difficult. Unlike the ordinargmal-
spectrum access (DSA) networks, thus mitigating the SpIEmrof-Serwce (DoS) attacks that exhaust all the network re-
scarcity problem. The goal of spectrum sensing is to refiabfOUrces, they can be easily mounted by using SDR devices,
detect in real time the presence or absence of primary signgfch @ USRP [15] and Sora [16]. These open-source SDR
on a spectrum band. To achieve this goal, numerous sen _forms ca_n_l_ae an attractive target for attack_ers becafise
techniques and algorithms have been proposed, includi§i" accessmlllty.of low-layer protocol stacks _Ilke PHYica
physical-layer signal detection [1], [2], optimal chanrse- MAC [17}. Detecting these_attacks, however, is not an easy
lection [3], [4], MAC-layer sensing scheduling and sensdfSk- While secure mechanisms such as MAC-layer or crypto-
selection [5], sensor mobility [6], and associated perfamae based authentication work well in traditional wireless-net
tradeoffs [7], to name a fel. works, lack of primary-secondary communications prectude

In particular, distributed sensing [8], [9] has recently reN€ir usage. Moreover, the detection is exacerbated by the
atile nature of wireless medium itself, which makes it

ceived considerable attention from the research commun c ) o )
as a viable means to enhance the detection performancelgjd to differentiate between the legitimate and delitatyat

exploiting spatial diversity in received signal strengfRSSs) Manipulated sensor reports. Despite the seriousness ¢ the
at sensors. However, the sensor reports from the sensors E4gats, they have been overlooked in the design of existing
be manipulated by attackers in various ways, such as prim&igtributed sensing schemes. The authors of [12] proposed a
signal emulation [10], [11] and sensing results falsifizati €Putation management scheme to minimize the impact of
[12]. These sensing-targeted attacks can severely undernﬁ;'f'ed sensing results. The reputation scheme, however,
the primary/incumbent detection performance because ed on a simple voting rule without considering the random
fusion rule for a final decision relies solely on the reporte@€SS in physical-layer signal propagation charactesisifée
RSSs. Sensing-targeted attacks pose a significant thrmﬂ)ast us need to devise a mechanism that can protect distributed

can disable opportunistic spectrum access, the basic peenensing from the above-mentioned attacks. o
In this paper, we propose an attack-tolerant distributed

1in this paper, we use termsecondary useand sensorinterchangeably as sensing pl‘OtOCOl (ADSP) for DSA netw_orks that f'lter$ out the
we focus on the sensing functionality of secondary users. abnormal sensor reports (caused by either adversarieslor ma



functioning sensors) by exploiting shadow fading coriefat  Distributed Sensing in DSA Networks Distributed sens-

in RSSs. This RSS-based filtering approach is motivated mg has been recognized as a viable means to improve the
the fact that a DSA network relies only on the physical-layesensing performance, thus meeting the stringent incumbent
signal detection for dynamic spectrum access, while attackdetection requirements imposed by the FCC. Performance of

cannot control the physical-layer signal propagation. distributed sensing has been studied extensively [3]-H4].
o While most of previous work has considered the benign use of
A. Contributions distributed sensing to improve incumbent detection unker t
This paper makes the following main contributions: assumption that the sensors are completely reliable, wgsfoc

. Proposal of a novetorrelation filter for detecting ab- O duantifying the extent to which detection performance ca
normal sensor reports that (i) exploishadow fading suffer and tolerate if sensors operate incorrectly or rialily.

correlation in RSSs without any additional communi- Robust Distributed Sensing Despite its importance, the
cation, (ii) safeguardboth types of attacks that aim to problem of ensuring the robustness in distributed sensasg h
increase either the incumbent false-alarm (type-1) or mignly started to receive attention. Our work also belongi® t
detection (type-2) rates, and (i) minimizes processingategory. Ananct al. [11] analyzed the feasibility of the Pri-
and sensing overheads as it requires only a single samplary User Emulation Attack (PUEA) and presented a lower-
from each sensor, while achieving high accuracy. Despig@und on the probability of a successful PUEA. However,
their importance, type-2 attacks have not been considei®@y did not address the impact of PUEA on the performance
in previous work. of distributed sensing. Cheat al. [10] proposed an RSS-

« Introduction of a cluster-based distributed sensing to ekased location verification scheme to detect a fake primary
ploit shadowing correlation. Correlation between sensottsansmitter. This scheme, however, requires the deployofen
which is entailed by sensor clustering, is known to haveadense sensor network for estimating the location of a kigna
detrimental impact on incumbent detection performané@urce, and thus, incurs a high system overhead. They also
[8], [9], [18]. Our simulation study, however, shows thaproposed a robust data-fusion scheme that dynamicallystsdju
the proposed clustering does not incur perceivable perféie reputation of sensors based on the majority rule [12].
mance degradation even in a very low SNR environmergimilarly, in the IEEE 802.22 standard draft, a voting rule][
Therefore, the sensor clustering is an efficient and usefids been proposed for secure decision fusion. However, the
approach to the sensing disorder attacks. voting rule may not work well in a very low SNR environment

« Development of a new data fusion rule tailored to attackvhere a majority of sensors fail to detect the primary signal
tolerance. Specifically, we proposeeighted gain com- Kaligineediet al. [20] presented a pre-filtering scheme based
bining (WGC) that adaptively assigns different weight®n a simple outlier method that filters out extremely low or
to sensor reports according to their statistical signifiganhigh sensing reports. However, their method is not suitédsle
based on the normal shadowing profile. As a result, &very low SNR environment such as 802.22 WRANs where a
minimizes the influence of the unfiltered attacks (due fénal data-fusion decision is very sensitive to small dewrs
their small deviations) on a final decision, and thus furthé® RSSs. This scheme will be used as a reference in evaluating
improves attack-tolerance. our proposed scheme (see Section VI for details).

« In-depth evaluation in a realistic two-dimensional shadow Detecting Unauthorized Spectrum Use The problem of
fading environment, which has not been considered benforcing/enticing secondary users to observe the spactru
fore; most previous work uses a simple but inaccuratgiquette has also started to receive attention from the re-
one-dimensional model. Our simulation results show thggéarch community. Woyacét al. [21] studied how to entice
the proposed filtering scheme successfully withstands thecondary users to observe the spectrum etiquette by giving
attacks by reducing the false-alarm rate u99@ % and them incentives via a game-theoretic approach. In a similar
achieving up t®7.4 % of maximum achievable detectioncontext, Liu et al. [22] studied the problem of detecting

rate (see Section VI for details). unauthorized use of a licensed spectrum. They exploited the
o path-loss effect as a main criterion for detecting anomslou
B. Organization spectrum usage and presented a machine-learning approach

The remainder of this paper is organized as follows. Sectifor more general cases. By contrast, we focus on intelligent
Il reviews the related work in distributed spectrum sensing filtering of suspicious sensor reports.

hlghllghts the Original contributions of our work. Sectidh In summary, our scheme differs from previous work in
describes the system and attack models used in this pajger. 88veral key aspects. First, we exploit shadow fading caticel
tion IV presents our proposed approach for attack detectiqsy anomaly detection, which has not been considered previ-
and the generation of a realistic two-dimensional shadgwigysly. Second, our scheme is unique in that it enables normal
correlation model. Section V details our approach for t"?)ectrum sensing operation even in a hostile environment
filter design and the proposed data-fusion model. Section My proactively filtering out suspicious sensing reports, and
evaluates the performance OfADSP, and Section Vllconduqﬁen assigning different Weights for the remaining sensor
the paper. reports, while most previous approaches are reactive ia cas
of attack detection. Third, our scheme can detect the attack
that purposely lower the RSS to obscure the existence of a
In this section, we first summarize distributed spectruprimary signal (i.e., typ&-attacks), whereas most of previous
sensing and then review existing sensing-related attackls avork focused on detecting spoofed primary signals (i.gety
their countermeasures in DSA networks. 1 attacks).

II. RELATED WORK



[1l. SYSTEM AND ATTACK MODEL RSS (including the noise power), and it can be approximated

We now describe the DSA network model and the receivé® & Gaussian using the Central Limit Theorem (CLT) as [13]:

signal strength (RSS) model to be used throughout the paper. {N(NO, NT;’Z) Ho (no primary signal)

We then review the energy-detection technique and intreduc 7; ~ R
N (P;+N,, Loy 74, (primary signal exists)

the data-fusion model, and finally present the attack model.

)

A. Network Model where P; is the power of a received primary sign&V,, the

We consider a DSA network where primary (Iicense(ﬂOlse power, and/ the number of signal samples.

and secondary (unlicensed) users coexist. Secondary uger$Hata-Fusion Model

form an infrastructure-based system where a central entityI distributed . he final decisi h
(.e., a base station or fusion center) manages their DSAIN distributed sensing, the final decision on the presence or
bsence of a primary signal can be made via eittemision

via distributed spectrum sensing. The central node, whieh > data fusi ider data fusi h

assume adversaries cannot compromise, schedules sendin léts'ogor. ata fus[on[?]. Hhereli WG; cc?nsfl er atabusmc? rather

decides the presence/absence of a primary signal base@ o h n decision fusion as the final rule for incumbent detectio
hile the decision fusion reduces the overhead in reporting

sensing reports. The sensors can be stationary or mobile. : R . !
g rep y 1t_he sensing results, it is difficult to thwart the sensingedier

In general, two types of primary users exist in DSA ne . . . :
works according to their relative location to the secondafftacks since it only provides a binary value based on a local
ecision.

twork and t issi level: (i) long- ' . . - .
network and transmission power level: (i) long-range prima In fading channels, equal gain combining (EGC) is known to

signal (e.g., TV transmitters) and (ii) short-range priyar . : X X
g (e.g ) (i) ge prn have near-optimal performance without needing to estithete

signal (e.g., wireless microphones). In this paper, we idens , . e .
a DSA network where the short-range primaries does not e)&gpnnel gains [26]. EGC has the following decision statisti

or their use is prohibited and focus on long-range primaries, P

which are located far away (e.g., tens of kilometers) from th Is = Z wi T, ®)
secondary network, and use high transmit power. Thus, the =1

entire secondary network (or cell) lies within the detectiowhereT; is the test statistic of the energy detector at sensor
range of the primary signal. A typical example of this type is the number of cooperative sensors, and the sensors have
is a TV transmitter in the IEEE 802.22 WRANs. While thean identical weight, i.e.w; = 1Vi. The decision threshold to
techniques we propose here can be applied to any distribugsthieve the desired level 6§ 4 can be derived as [25]:
sensing, without loss of generality, we will focus on 802.22

WRANSs with a DTV transmitter. n=Q (Qra) % + s No. (4)

The performance of EGC will be used as a baseline in
1) RSS Model:As mentioned earlier, our scheme reliegvaluating the efficacy of the proposed scheme.

solely on the RSS (i.e., the energy-detector's output)@é@®  Moreover, in order to achieve better attack-tolerance, we

where the received primary signal strength at sensm@n be proposeweighted gain combinindWGC) that adjusts the

expressed as the propagation model [24]: weights so as to minimize the impact of mis-detections on

d, the final decision (detailed in Section V-D).

d;

B. Signal Propagation and Sensing Models

Po=P,() e (wath, (1)

D. Attack Model

where P, is the signal strength at the primary transmitier, 1) Attack ScenariosSensing can be disrupted as follows.

the path-loss exponen, the reference distance, aadthe A sensor is compromised, and then manipulates its sens-
distance from the primary transmitter to the sens@hadow ing reports, i.e., raises or lowers RSSs.

f@dmg is accounted for in** whereX; ~ NV'(0,0°) Vi, while | A’sensor is malfunctioning or faulty, yielding readings
e’ accounts for small-scale multi-path fading, antenna and tnhat deviate from the actual RSS.

device caused losses. The log-normal shadow fading is ofte
characterized by its dB-spreat;z, which has the relationship
0=0.1log,(10)oqp. We assume that the channel bandwidt

is much larger than the coherent bandwidth, so the effect . e ;
multi-path fading is negligible, i.eY; —0 Vi [1]. ?fsolve this problem efficiently, we focus on the detectién o

2) Spectrum Sensing Modelthe energy detector is the &Y abnormal sensing report instead of pinpointing theadctu

most widely-used detection technique for its simple desi gause of abnormality, which is part of our future work.

and efficiency [1], [25]. Although the feature detector isrmo
accurate, it takes much longer (e.@4ms for the field-
sync detector for ATSC) [2] because it looks for a specif
signature of the primary signal that appears infrequerithg
test statistic of the energy detector is an estimate of geer

A common consequence of the above two cases is that the
ensor reports to the fusion center are distorted, thusasang
probability for the fusion center to make a wrong decisio

9Note that another possible attack scenario is a primary

user emulation attack (PUEA), as studied in [10], [11], [22]

However, this attack is relatively easy to detect mainlyshse

the attacker has only a coarse-grained control of RSS at

sensors since signals are broadcast. In the above two gzgnar

ahowever, the attacker has a fine-grained control of RSSs on
2For example, the FCC recently decided to prohibit low powexilry individual S-ensors.’ and thus' the attacks are Stealthm th

devices such as’ wireless microphones operating within 700 ldand, after PUEA, mak'ng their detection ha;rder- Therefore, we willfsc

the end of DTV transition on June 2009 [23]. on the above two attack scenarios.



2) Attack TypesWe consider two types of attacks that can .| ' ‘:
be mounted (caused) by attackers (faulty nodes): r i !
o Type-1 Attacks: increase thdalse-positiverate (classi- I Attack |
fvi . . | . b - s(t) T, R T Data :
ylrt;g a non-primary signal as primary) by raising RSSs » ED 3 detector Fusion | |

an + i i

« Type-2 Attacks: increase théalse-negativeate (causing |Dn L] i _ v i
failure to detect a primary signal) by lowering RSSs. _ Attacker || LI | Msoncing ronore |

We assume that the attackers are intelligent, and thiZ>"%"! ~ \_____ fusioncenter,

know the presence/absence of a primary signal regardless of

iqj i -ig. 1. The ADSP frameworkCompromised (or malfunctioning) sensors
the decision made by the fusion center, and launch typér:w%ht contaminate their sensing repoi®. The attack detector filters out

(tYPe'Z) attacks_ undetty (H1); OtherWise' attacks only serveese contaminated sensor reports based on the shadownetation profile
to improve the incumbent detection performance. and then feeds the remaining ones to the final fusion center.

3) Final Sensor ReportsUnder the above model, a final
sensor report to the fusion center can be expressed (in Watt)
as: strength, reducing the chance for the fusion center to make a
Ri=P,+No+ E;,+D; Vi (5) wrong decision; otherwise, they must risk getting caugtthisy
— detector. This way, the fusion center can achieve a higH leve

here T is the test statistic of th detector (E ofattack-to_lerance, provided the majofityf its neighbors are
where T; is the test statistic of the energy detec orz( DWeII-behavmg.

(Eg. (2)) including the measurement errBy ~ N(0, %),

andD; € R is the deviation oattack strengthtampered with B. ADSP Framework

by a compromised sensof); = 0 for normal sensors. Note ADSP consists of the following three building blocks:

that no loss qf reporting packets is assumed, so we can focug sensing managerthat manages sensor clusters and di-

on the detection of abnormal sensor reports. rects the sensors to report their readings at the end of
each scheduled sensing period,

.. L . ) « attack detector that detects and discards (or penalizes)
It'is, in reality, impossible to prevent all possible attack  the abnormal sensing reports based on the pre-established

or m[sbehaV|or thgt can affect th_e sensor repor_ts. Thg&efor shadowing correlation profile, and

we aim to make distributed sensiiagfack-toleranti.e., min- | gata-fusion centerthat determines the presence or ab-

imize the impact of compromised sensor reports on the final gepce of a primary signal based on the filtered sensing

decision. For this, we propose attack-tolerant distributed results.

sensing protoco(ADSP) that has the following salient fea'These three components closely interact with each other and

tures: It form a robust distributed sensing system. Fig. 1 depicts the
1) successfully tolerates attacks (or faults or effects) @fpsp framework, which iightweightin that it can be imple-

ED output (I’;)

IV. THE PROPOSEDAPPROACH

malicious (or faulty) sensors, _ _ . mented at the fusion center without requiring any modifarati

2) exploits physical-layer signal propagation charast@s 14 sensors or incurring additional communication overhead
with low processing overhead, _ One important and unique feature of the attack detector is

3) preserves compatibility with existing security and datgne apility to toleratdothtype-l and2 attacks. This feature is
fusion mechanisms, and N attributed to the fact that the detectmoss-checkshe sensor

4) achieves high detection accuracy and efficiency. reports and the assumption that at legét of the sensors are

In what follows, we present the design rationale behind ADSRell-behaving. As a result, under type-1(2) attacks, thrsse
its framework, and the methodology to generate a spatialieports with relatively high (low) values are likely to begitged
correlated shadow fading field. by more of its neighboring sensors, thus making our scheme
. . applicable regardless of the existence of a primary sigras
A. Design Rationale mprfkes the sygstem design simple and efficignt, wﬁ/ile gckgevin
To maximize attack-tolerance and preserve the detection a@yh attack-tolerance (see Section VI for detailed rejults
curacy of data fusion, ADSP employs anomaly detection based _ ) )
on statistics. Specifically, ADSP exploits physical-laggmal C. Generation of Spatially-Correlated Shadow Fading
propagation characteristics, or the spatial correlatioR8Ss  To incorporate the spatially-correlated shadow fadingun o
among neighboring sensors. The key insight behind ADSRalysis and simulation, we need a shadow correlation model
is that, in shadow fading environments, RSSs among neailywhich the statistics accurately reflect the real-worldabgss
sensors are likely to be highly correlated, which can be usedadowing environment. Note that a model-based approach
to identify the manipulated sensor reports. The adversarig unavoidable since measurement data for shadow fading is
must be aggressive in raising or lowering the RSSs reportgsty scarce, and conducting a field test is too expensive to
to the fusion center in order to influence the outcome of th. Gudmundson’s model [27] is one of the most widely-
final decision. However, any sensor report that signifiganthsed models in accounting for the shadowing correlation.
deviates from what is expected is deemed suspicious of befgwever, it cannot capture spatial shadowing correlatioj
malicious or malfunctioning, and those sensing results witence, analyses based on this model might yield results that
be discarded or penalized by the fusion center in making a
final decision. Adversaries must, therefore, lower thetiack 3We assume that at leagf3 of sensors are well-behaving.
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Fig. 2. Spatially-correlated shadowing random figid(-, -): An example of Fig. 3. Comparison of auto-correlation functiorTheoretical model (solid
p(, -) with exponentially-decaying spatial correlation, whene tiB-spread line) vs. synthetic data from a random field(-,-) (dotted line). The
and decorrelation distance are assumed tarhg = 4.5dB and D, =  correlation is below0.2 beyond the decorrelation distané#.,,,» =150 m.
150 m, respectively. The spatial correlation is assumed tasb&opig i.e.,

the shadowing correlation depends only on the distancedagtvgensors.

V. DETECTION OFABNORMAL SENSORREPORTS VIA

S . . . CORRELATION ANALYSIS
are significantly different from those in real-world wirste

environments, as evidenced in both a theoretical study [28]!n this section, we formulate the anomaly-detection prob-
and empirical measurements [29]. Recently, the authordajf [ l€m as a hypothesis testing, and present the design of a
proposed a statistical modeling approach to charactiizat correlation-based filter. To further improve the attacletance

the spatial spectrum behavior of primary signals in the exint Of our scheme, we propose a new data-fusion rule, called the

of DSA networks. weighted gain combinin/VGC), followed by the description
Along the same line as in [30], we generate spatiall;p-f ADSP- . . ) )

correlated shadow fading in a two-dimensional area by ap_For distributed sensing, the deS|gna,ted Sensors _(m_a form

plying the convolution method proposed in [31]. We refer t8f clusters) report their energy-detector's output aloriig Vs

the thus-generated data set astmdowing random fielgb ocation information to the fusion center, at the end of each

where p(z,y) represents the shadowing gain at a unit griaensing perioé.The Ioca_ltior] informati_on is required_to exploit
area, i.e.Ax Am?, centered at the coordinate, y) € R2. the shadowing correlation in RSSs; it may be available at the

The shadowing random fielg(-,-) is assumed to be anfusion center when the sensors are fixed, e.g., CPEs in 802.22

isotropic? wide-sense stationary, and log-normally distribute/ RANS. On the other hand, when they are mobile, sensors
n obtain their location via location service, e.g., GR8] a

random field with zero mean and exponentially-decaying sp# ; X . <
tial correlation. Then, the covariance between the two tpoint en report it along with the RSS. Sensors can employ egistin
0, = (z:,v:) and@; = (z;,y;) in p is given as: secure IocaI.|zat!on protpcols (e.g., [33]) to obtain aater
Lo A sensor location information.
_ _ 2 _—dij/Dcorr

E[p(0:), p(0:)] = Fip(dig) = o7 - ™™ ’ ®) A Characterization of the Correlation in Sensor Reports
whered;; =||p(6;) —p(0;)|| is the Euclidean distance between We first study the correlation structure of the sensor report
the locations); andé;, o is the standard deviation of shadowwvhich the fusion center actually receives from the sensbrs.
fading, andD..,,.. is the decorrelation distance, which dependegy observation is that the correlation structure of shaagw
on local wireless environments (e.g., urban or suburban). components{eX:} is preserved in the sensor repoft®;}

Fig. 2 shows an examplshadowing random fieldn a under the following conditions:
2 x 2km* region, which clearly exhibits a strong spatial « no attack (or misbehavior), i.el); =0, and
correlation in shadow fading. To demonstrate the accuracys weak primary signal, i.e.?; + N, ~ N,.”

of this method, Fig. 3 compares the one-dimensional auto-ypger the above conditions, and treating all the other terms
correlation function £) of the random field against the Gud+n Eq. (1) (excepe: and E;) as constants, we can express
mundson’s empirical model with the same set of parameteggnsor;'s report in Eq. (5) as:
i.e., o4 = 4.5dB and D.,,» = 150m. The figure indicates .
that the synthetic data in the shadowing random field accu- Ri=Cie™' +Co+ Ei (Watt), (7
rately emulates the real-world shadowing correlationsteNo - o - N2, .
that our detection scheme only requires the one-dimenisio here Oy = Po(do/di)", C = N,, and B, ~ N(0, 72) is

e measurement error of ED. The correlation in shadowing

auto-correlation function of the shadowing field, which ca mponent=X: does not change when we add/multiply the

ggp?(f;'r;n:;?d by the service provider at the time of sySte(sfﬁlme number to/by all of the shadowing components.

SWe consider two-dimensional sensor coordinates for saitpliwhile the
4Note that we do not consider the angular dependency in shagow actual terrain profile is three-dimensional.
correlation for analytical tractability. "This is a reasonable assumption in a very low SNR environmenqt,
5For example, a measurement study [32] indicates that adydiecorrela- —20dB, where the average primary signal power is only abb% of the
tion distance is in the range d20 — 200 m in suburban areas. noise power, i.e.E[P;] = 0.01 XE[N,].



Moreover, the variance in measurement error is much
smaller than that of shadowing component, i¥ar[E;] <
VarleXi], since the number of sample® is sufficiently
large even with a short sensing time, ey/,= 6 x 103 for
Ts =1ms. So, the correlation in the received sensor reports
R; almost preserves the correlation of the shadow fadifg
i.e.,Corr(R;, Rj) =~ Corr(eXi, eX7); furthermore, the degree
of correlation varies with their relative locations.

PDF

B. Cluster-based Hypothesis Testing

Although we try to exploit shadowing correlation for attack received signal power (¢%) (Watt)x 10"
detection, the degree of correlation decreases expoiigntia

with the distance between sensors. This motivates us to fofi 4. Estimation of sensor report as a shifted log-normal disttion: The
empirical data for sensor reports (solid line) obtainedanftbe shadowing field

NC . . .
sensor Clusmrg(tck}_‘k:_l among the sensors in (?lose ProXiMitan pe accurately approximated as a log-normal distribuitashed line).
so that sensors within the same cluster are highly corakfate

In 802.22 WRANS, clusters can be easily formed since the
sensors (i.e., CPEs) represent households, and henceretlist-rom Eq. (7), we have the following approximation after
by their nature. Therefore, for each sensothe correlation- simple manipulation:
filter checks whether or not it exhibits a proper correlation . X, 41 C,
behavior by examining the following hypothesis testing for et +Cme™ + Ei, ©)
each of its neighbors: where Z; ~ N(pz,0%) and X; ~ N(0,0%) with ox = 0.
a ‘ ) We set the constar® = 4 o so that the probability of the

Ho « Corr(Ri, Bj) = pldiy) 5 € NG), @) right-hand side of Eq. (9) become less th@rs close to zero
where the neighbor sé¢ (i) is defined as the sensors belong tfi-€., ~ 3 x 10~°). This is important because the log-normal
the same cluster of sensorAs a result of the cross-validation,random variable:”* cannot have a negative value,
the number of flags raised by the neighboring sensors will beThen, we estimate the mean and variancee®f using
used as a filtering criterion (see Section V-E for detailsynF @ moment-matching method. By matching the mean and
now on, we focus on the analysis of shadowing correlation ¥@riance of both sides of Eq. (9), we obtai$ and /i as’

sensor reports. 2 (0% 1) p2ux+ol 2
_ _ _ _ 6% —log |G DTN TN Hon ) (g
C. Correlation Analysis for Filter Design (CyerxTox/2 4 g + C)2
Although the shadowing correlation coefficiép) is an ob- and
vious metric for the above hypothesis testing (i.e., EQ, {Bis A CretxTo%/2 4 yp 4 C
not suitable to use it directly in our problem for the followi fiz = log o2 /2 : (11)

reasons. First, estimation of the correlation coefficieatid
require a sequence of samples; this can incur significare tim Fig. 4 shows an example of such an approximation. While
and energy overheads for sensing, and can also slow downtte figure indicates that the sensor reports can be acopratel
detection of returning primary users. Second, when theosensestimated by such a distribution, it becomes less accusateea
are mobile, it is difficult to estimate the correlation beémehe Sensing duratiof’s increases. Note, however, that we would
sensors since their relative distances are not fixed. Tiveref like to capture the correlation among sensors in a tractable
we detect a per-sample abnormal behavior by examining th&fm, not an accurate approximation that only complicates
similarity using the conditional probability distributions of thethe analysis without yielding a considerable improvement i
sensor reports. This is an alternative, but efficient apgroadetection performance. The impact of the approximatioarerr
since higher correlation entails greater similarity, whizan Will be discussed in Section VI.
be measured via a conditional distribution of sensor report Based on Egs. (9), (10), and (11), the p.d.f. of a sensor
as we will describe next. report can be expressed as:

In order to capture the similarity between sensor report?, (r) = 1 exp | (In(r = C) — pz)?
we first derive the probability distribution d;, which is the /"'’ ~ (r—C)ozV2r P 202
sum of non-zero mean normal (i.&%;) and log-normal (i.e.,
eX) random variables, as indicated in Eq. (7). To the best
our knowledge, there is no closed-form expression for suc
distribution. However, a close examination of Eq. (7) irepli
that R; can be approximated assaifted log-normal random

, z2>0.

geiecall that we are interested in examining the similarit(flr%
t{reaoorts measured at nearby (thus spatially-correlatethoss.

0 measure the similarity between sensor reports, we derive
the conditional p.d.f. of?; given R;=r; using Eq. (12) as:

variable, i.e., the sum of a log-normal random variable and ?R”Rj (rilry)

constant. L2
Let us denote the sensor reports by a shifted log-normal 1 exp {_ }(ln(m -C)— Mzi\Zj) }

random variable, i.e.R; = eZi + C whereZ; ~ N(uz,0%). (ri —C)or, g, V2T 2 027,12,

(13)

8The locations of clusters are assumed to be uniformly disted with in
the secondary network, and the issue of optimal selectiorfofmation) of 9The derivations of Egs. (10) and (11) are straightforwardi amitted due
sensors (or clusters) is not our focus in this paper. to space limit.



Algorithm 1 ATTACK-TOLERANT DISTRIBUTED SENSING
WITH WEIGHTED GAIN COMBINING
ProcedureADSP_WGC({R;}, Qra, 3)

1: Initialize the decision statisti@s, <« 0
2: Initialize the number of normal sensor repois.o,mai < 0
/I Step 1. Filtering

PDF

|
|
I
|
:
0 TH M THU X

> 3: for each sensor clusteh, k =1,..., N, do
L 4.  for each sensoi € C;, do
5: Isnormal(7), w;) < CorrFilter (i, {R;},en), 3
Fig. 5. The correlation filter for anomaly detectio®ensori’s reportr; will 6: ené for (@) ) (04 J}JEN( »4)
be flagged if it resides outside of the lower and upper thidsha.e., TH, 7: end for
and T Hy;. The conditional p.d.f. is derived using Eq. (13). Thus, #teck /I Step 2. Data fusion
false alarm probability can be calculated B§ , = Prob(r; < THr) + 8: for each.sensor clusteh, k = 1 N. do
Prob(ri > THy). 9: for each sensoi ¢ C;, do
10: if Isnormal(z) =1 then
where 11: updatew; using Eq. (19)
_ . 0Zz; o _ 12: Ts «— T +w; R;
Kz;\z; = Kz; + pij oz, [ID(TJ C) )LLZj]7 (14) 13: Nv_wr-mal — Npormal + 1
d 14: end if
an 15:  end for

(15) 16: end for
17: Ts «+ T, X Npormai/ Y, w; I/ Normalization

Eq. (15) indicates that z,| 7, decreases as the correlatipp igf I?f’%;ufts t?heegeusmn threshaidusing Eq. (4)

increases, and thus greater similarity between sensortsepo 20; return’ 1 // Primary exists
Egs. (13), (14), and (15) indicate that the conditionalrdist 21: else

bution of the sensor reports are also log-normally distedu 22:  return 0 // No primary signal

We thus set the lower and upper thresholds on the senggr end if

reports based on conditional p.d.f. in Eq. (13), and therkmar

any outlier that resides outside of the thresholds. To set th

thresholds, we first derive the cumulative distributiondiion  gye to the correlated nature of the sensor clusters. Threrefo
(c.d.f.) of sensor’s reportr;, given sensoy’s reportr; as: a5 a second line of defense, we propose a new data-fusion
B B rule, namelyweighted gain combiningWGC), to provide a
Fry|r; () = Prob(Ri < ¢ | R; =) better attack-tolerance to such small deviations. The isléa

0z;|z; =02z, 1- p?j(dij)'

_1 N le*rf {ln(m -C) - uzmzjl 23>0, (16) assign different weights to the sensor reports accorditiggio
2 2 o'Z”Zj\/i ’ -7 significance level based on the conditional c.d.f. in Eq).(16
This way, the mis-detected (unfiltered) attacks are highly
whereer f(z) = 2= fo likely to be assigned relatively small weights comparechi t
Using Eq. (16) the threshoIdEH{L_,U} with 2100 x (1 — legitimate sensor reports because of their lack of sigmifiea
€) % confidence interval can be derived as: Thus, the weights in WGC are defined as:
THyuy(e) = exp [\/5.6”@71(9(6)) 02,2, +Mzi\zj] +C, A7) W, & W where w;; =1 — 2| Fg, g, (ri| ;) — 0.5,
where , ) , (19)
c—1 for TH whereN, (i) is the set of valid neighbors of sensoiThe thus-
gle) = { 1—e for THf] 0<e<0.5, (18) obtained weights are used in calculating the decisionssiati

Tx (in Eqg. (3)), and compared with the threshqgl@in Eq. (4)).

where iz, 7, andoy, 2, are conditional mean and varianc .
in Egs. (14) and (15), respectively. E. Protocol Description
Therefore, the null hypothesikg, i.e., Corr(R;, R;) = We now present the attack-tolerant distributed sensing pro

p(d;;), cannot be rejected if; € [THL,THU] as depicted tocol (ADSP) with the proposed WGC for final fusioflgo-
in Fig. 5. Note that the thresholds are set differently fozhearithm 1 describes the overall data-fusion procedure in ADSP.
neighboring sensor, depending on their relative distamzk aAt the end of each sensing period, the fusion center collects
measured RSSs. Clearly, there is a tradeoff in determitiag tsensor report§ R;} from the designated sensors, which are
threshold parameter i.e., the higher the threshold, the higheco-located in clusters. Then, it invokes the correlaticefito
(lower) the attack false-alarm (mis-detection) rates. selectively discard the abnormal sensor reports. Notetlizat
i weights are assigned after the filtering process (line 1ihab
D. The Proposed Data-Fusion Rule the filtered abnormal sensor reports would have no influence
While the correlation filter accurately detects RSS devian them.Algorithm 2 details the filtering procedure. For each
tions, we observed that it often mis-detects small deviatiosensor report, the filter counts the number of flags raised by
(e.g.,<0.3dB). These small deviations can still influence thés neighbors in the cluster. Then, it will retulshormal =0 if
data-fusion results in a very low SNR environment due to theore tharg € [0, 1] fraction of its neighboring sensors mark it
high sensitivity of the fusion decision to RSSs. Unfortaigt as abnormal, wherg is a design parameter; otherwise, it will
however, with our design dfard filtering, this problem might returnlsnormal = 1. The filter also returns the weight vector
not be easily overcome by simply increasing the cluster sige;) for future use in the final data-fusion process (i.e., WGC).



Algorithm 2 FILTERING ALGORITHM BASED ON CORRELA
TION ANALYSIS
ProcedureCorrFilter (i, {R;}c (), 5)

1: Initialize the countemblacklist_counter(z) « 0 o °f

2: Initialize the weight vectow; — [0,...,0]" o

3: Initialize the indicatorlsnormal «— 1

4: for each neighboy € N(i) do

5. w;; < update using Eq. (19) ’ B clustering

6: if Corr(Rs, R;) # p(ds;) using Eq. (17)then o I randor selection

7: + + b|ack|ist_counter(i) 6 12 18 24 30 36 42 48 54 60

s end if number of sensors (N,)

9: end for ) ) ) )

10: if blacklist_counter(i) > 8- N (i) then Fig. 6. Effect of sensor clustering on incumbent detection peréoe
11: Isnormal <« 0 // Mark it as abnormal Sensor clustering withVe =5 achieves94 % of the detection performance
12: end if without clustering, in a very low SNR environment, i..— —20dB. Each

cluster consists 0 sensors and) g 4 is set t00.01 in all scenarios.
13: return  (Isnormal, w;)

B. Effect of Sensor Clustering

The computational complexity of the algorithm is bounded by while ADSP exploits shadowing correlation via sensor
O(|c?) where|C| is the number of sensors in a cluster.  clustering, correlated sensor readings is, in generalywkno
to degrade the detection performance as it limits diversity
VI. PERFORMANCEEVALUATION gain [8], [9], [18]. Therefore, we first study the effect of
The performance of ADSP is evaluated via MATLAB-basedensor clustering on detection performance to understaand t
simulation. We first describe the simulation setup and thefficiency vs. robustness tradeoff in ADSP. Fig. 6 compares
present the simulation results for both types of attackseundhe achieved incumbent detection probabiliti€s,( with and

various attack scenarios. without sensor clustering (i.e., random sensor selectiés)
. ) expected, distributed sensing without clustering yieldgér
A. Simulation Setup detection probability than with sensor clustering witB0 dB

To demonstrate the effectiveness of ADSP, we consid8NR. However, the performance gap decreases as more sen-
an IEEE 802.22 WRAN environment with a single DTVsors are involved in distributed sensing, e.g., sensing wit
transmitter with 6 MHz bandwidth and multiple secondaryclusters achieve$4 % of that without clustering. Note that this
users (sensors) located at the edge ofkéep-out radiusof performance with clustering gets even closer to that of oamd
150.3km from the DTV transmitter [1]. A secondary networigelection as the SNR increases. Therefore, we can conclude
(cell) of radius30 km is considered for our evaluation, and wéhat sensor clustering is not critical to incumbent detecti
generate a two-dimensional shadowing field with a unit gfid avhile it provides an efficient means of attack detection.

20 x 20m? to emulate a realistic shadow fading environmer& Attack-Tolerance

in a cell. Throughout the simulation, we assumesensor

clusters located randomly within the cell, withsensors in  We now demonstrate the robustness of ADSP to both type-
each cluster; the sensors are located in different gridg, ahand type-2 attacks. Fig. 7 plots the normalized incumbent
the distances between sensors within a cluster range@nom false-alarm @) and detection @p) probabilities under

to 70m. We consider the worst-case attack scenario; in eap€-1 and type-2 attacks, respectively. The figure shoas th
cluster, one-third of the sensors are malicious. Tabled tise the correlation filter is efficient in mitigating the effecf o
system parameters used in our simulation. Each simulasiorpftacks on incumbent detection performance, €92 % for
conducted o5 x 10 randomly-generated shadowing fields anfyPe-1 and97.4 % for type-2 attacks, thanks to its ability to

their average values are taken as the performance measurdgcurately filter out manipulated sensor reports. By cehtra
without ADSP (denoted by EGC in Fig. 7§)r4 and Qp

rapidly converge to 1 and 0, respectively, i.e., attacksehav

— PARAMEI@E;—ES'ED N SIMULATION maximal influence on the data-fusion results. _
We make the following four main observations. First, the
performance of ADSP suffers in case of low strength attacks

;arameter ” ;/Zlue ” Em::'rn; collaboraing Sensor(' (e.0., <04 dB .fo.r type-1 gttack). This is because they do
s ] not exhibit deviations significant enough to be detecteddth
Ne > Number of clusters causingunder-filtering, yet they affect data-fusion decisions.
Ts 1ms . Sensing duration : The proposed weighted gain combining (WGC) mitigates this
M 6x10° xTs || # of signal samples per sensingl  harformance deficiency for both types of attacks by adajgtive
948 4.5dB Shadow fading dB-spread adjusting sensor reports’ weights based on their staaissig-
Deorr 150m Decorrelation distance nificance. However, WGC performs as well as, or even worse
A 20m Dimension of a grid than, EGC when the attack strength is either (i) extremely
No —95.2dBm Noise power low so that most of attacks will not be filtered out or (ii) larg
gl —20dB Signal-to-noise ratio (SNR) enough so that most (or all) of attacks are filtered out, as can
Qra 0.01 Target false-alarm probability be seen in Fig. 7 witke =0.01. This is because, in the first
B 0.34 Attack detection threshold case, the unfiltered attacks will adversely affect the wisigh
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Fig. 8. Effect of threshold parametee) (a) Q4 and Qp exhibit different behaviors under variousvalues, and (b) the number of sensor reports to be
used in the data fusion decreasescascreases, under both type-1 (upper) and type-2 (loweayledt

of the legitimate sensor reports, while sharing large wisighcorrelation and its heavy-tailed distributions.
among themselves. On the other hand, in the second case, thEhird, even in case of high attack strengths, ADSP does
legitimate sensor reports with extreme values are likelp¢o not completely eliminate the effects of attacks for thedaf
assigned small weights despite their critical role in aateir ing reasons. First, the fixed threshold parameteloes not
detection of incumbents. work optimally for all attack strengths, thus causing aithe
Second, ADSP outperforms the statistics-based filterigyyer- or under-filtering, both of which degrade the detettio
method proposed in [20] (denoted by Outlier in Fig. 7)erformance. The over-filtering caused by a large threshold
In Outlier, the fusion center filters out the sensor repor@lue (e.g.c=0.1) turned out to lower botl®Qr4 andQp,
falls outside the rangée; — & eiqr, €3+ - €iqr ] Wheree; as shown in Fig. 7. The impact efon incumbent detection
and ez represent the first and third quartile of the samplepgerformance will be detailed in Section VI-D. Second, as a
respectively, ande;,, = e —e; is the interquartile range result of filtering, the fusion center will have less samples
(see Eq. (4) in [20]). This method does not require senstor be used for data fusion. Since the data fusion is sensitive
clustering, and thus, one might think that it performs wetb the number of samples used, especially in very low SNR
when attack strength is strong enough to be easily detectswvironments (as shown in Fig. 6), the incumbent detection
as an outlier. However, the performance depends strongly performance degrades. For example, with sensor reports
the filtering range, i.e., the choice éf the result of which remaining after filtering out all the0 manipulated sensor
varies with attack scenarios. For example, whies= 0.7, reports, the average achieval)}e is 0.88, which corresponds
the performance suffers from over-filtering with a high eltta to the normalizedyp of 0.93 in Fig. 7.
mis-detection rate. On the other hand, whén= 1, the Fourth, in the absence of attacks, the correlation filtenisc
performance suffers from under-filtering, and as aresjitsy  a small increase in bot®@r4 and@p. This is caused by the
and @p converges tol and 0, respectively, even in case ofinaccuracy in the log-normal approximation of sensor regor
high attack strengths. By contrast, ADSP accurately detegthich causes over-filtering even in case of no attacks. We
the manipulated sensing reports by considering shadowiolgserved that this performance anomaly can be mitigated by
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