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Abstract—Accurate sensing of the spectrum condition is of
crucial importance to the mitigation of the spectrum scarcity
problem in dynamic spectrum access (DSA) networks. Specifi-
cally, distributed sensing has been recognized as a viable means
to enhance the incumbent signal detection by exploiting the
diversity of sensors. However, it is challenging to make such
distributed sensing secure due mainly to the unique features of
DSA networks—openness of a low-layer protocol stack in SDR
devices and non-existence of communications between primary
and secondary devices. To address this challenge, we propose
attack-tolerant distributed sensing protocol (ADSP), under which
sensors in close proximity are grouped into a cluster, and sensors
in a cluster cooperatively safeguard distributed sensing.The
heart of ADSP is a novel shadow fading correlation-based filter
tailored to anomaly detection, by which the fusion center pre-
filters abnormal sensor reports via cross-validation. By realizing
this correlation filter, ADSP minimizes the impact of an attack on
the performance of distributed sensing, while incurring minimal
processing and communications overheads. The efficacy of our
scheme is validated on a realistic two-dimensional shadow-fading
field, which accurately approximates real-world shadowingenvi-
ronments. Our extensive simulation-based evaluation shows that
ADSP significantly reduces the impact of attacks on incumbent
detection performance.

I. I NTRODUCTION

Accurate sensing of spectrum condition is a key to the
opportunistic use of licensed spectrum bands in dynamic
spectrum access (DSA) networks, thus mitigating the spectrum
scarcity problem. The goal of spectrum sensing is to reliably
detect in real time the presence or absence of primary signals
on a spectrum band. To achieve this goal, numerous sensing
techniques and algorithms have been proposed, including
physical-layer signal detection [1], [2], optimal channelse-
lection [3], [4], MAC-layer sensing scheduling and sensor
selection [5], sensor mobility [6], and associated performance
tradeoffs [7], to name a few.1

In particular, distributed sensing [8], [9] has recently re-
ceived considerable attention from the research community
as a viable means to enhance the detection performance by
exploiting spatial diversity in received signal strengths(RSSs)
at sensors. However, the sensor reports from the sensors can
be manipulated by attackers in various ways, such as primary
signal emulation [10], [11] and sensing results falsification
[12]. These sensing-targeted attacks can severely undermine
the primary/incumbent detection performance because the
fusion rule for a final decision relies solely on the reported
RSSs. Sensing-targeted attacks pose a significant threat asthey
can disable opportunistic spectrum access, the basic premise

1In this paper, we use termssecondary userandsensorinterchangeably as
we focus on the sensing functionality of secondary users.

of DSA. We call these unique sensing-targeted attacks in DSA
networkssensing-disorder attacks.

A sensing-disorder attack aims to obscure the existence of
a primary signal by manipulating the spectrum sensing infor-
mation (e.g., measured RSSs) either by raising or lowering
the signal strength. When no primary signal exists, attackers
can raise RSSs to generate an illusion of a primary signal. For
example, in the IEEE 802.22 WRANs [13], an attacker can
transmit a fake sensor report to force all users in the entire
cell (of radius up to100 km) to immediately vacate the channel
[14]. Once users in the cell vacate the channel, the attackercan
freely use the channel without any interruption. When there
is a primary signal, on the other hand, attackers can lower
the RSSs to veil the presence of a primary signal, resulting
in an unacceptable level of interference to the primary users.
In both cases, attackers mislead the fusion center (i.e., BS)
to make an incorrect decision on the existence of a primary
signal, causing a waste of spectrum resources or unacceptable
interference to the primary communications. Therefore, there
is a clear incentive for attackers to launch the sensing-disorder
attacks.

While the sensing-disorder attacks can be easily launched
with the aid of programmable software-defined radio (SDR)
devices, their detection is difficult. Unlike the ordinary Denial-
of-Service (DoS) attacks that exhaust all the network re-
sources, they can be easily mounted by using SDR devices,
such as USRP [15] and Sora [16]. These open-source SDR
platforms can be an attractive target for attackers becauseof
their accessibility of low-layer protocol stacks like PHY and
MAC [17]. Detecting these attacks, however, is not an easy
task. While secure mechanisms such as MAC-layer or crypto-
based authentication work well in traditional wireless net-
works, lack of primary-secondary communications precludes
their usage. Moreover, the detection is exacerbated by the
volatile nature of wireless medium itself, which makes it
hard to differentiate between the legitimate and deliberately
manipulated sensor reports. Despite the seriousness of these
threats, they have been overlooked in the design of existing
distributed sensing schemes. The authors of [12] proposed a
reputation management scheme to minimize the impact of
falsified sensing results. The reputation scheme, however,is
based on a simple voting rule without considering the random-
ness in physical-layer signal propagation characteristics. We
thus need to devise a mechanism that can protect distributed
sensing from the above-mentioned attacks.

In this paper, we propose an attack-tolerant distributed
sensing protocol (ADSP) for DSA networks that filters out the
abnormal sensor reports (caused by either adversaries or mal-



functioning sensors) by exploiting shadow fading correlation
in RSSs. This RSS-based filtering approach is motivated by
the fact that a DSA network relies only on the physical-layer
signal detection for dynamic spectrum access, while attackers
cannot control the physical-layer signal propagation.

A. Contributions

This paper makes the following main contributions:
• Proposal of a novelcorrelation filter for detecting ab-

normal sensor reports that (i) exploitsshadow fading
correlation in RSSs without any additional communi-
cation, (ii) safeguardsboth types of attacks that aim to
increase either the incumbent false-alarm (type-1) or mis-
detection (type-2) rates, and (iii) minimizes processing
and sensing overheads as it requires only a single sample
from each sensor, while achieving high accuracy. Despite
their importance, type-2 attacks have not been considered
in previous work.

• Introduction of a cluster-based distributed sensing to ex-
ploit shadowing correlation. Correlation between sensors,
which is entailed by sensor clustering, is known to have a
detrimental impact on incumbent detection performance
[8], [9], [18]. Our simulation study, however, shows that
the proposed clustering does not incur perceivable perfor-
mance degradation even in a very low SNR environment.
Therefore, the sensor clustering is an efficient and useful
approach to the sensing disorder attacks.

• Development of a new data fusion rule tailored to attack-
tolerance. Specifically, we proposeweighted gain com-
bining (WGC) that adaptively assigns different weights
to sensor reports according to their statistical significance
based on the normal shadowing profile. As a result, it
minimizes the influence of the unfiltered attacks (due to
their small deviations) on a final decision, and thus further
improves attack-tolerance.

• In-depth evaluation in a realistic two-dimensional shadow
fading environment, which has not been considered be-
fore; most previous work uses a simple but inaccurate
one-dimensional model. Our simulation results show that
the proposed filtering scheme successfully withstands the
attacks by reducing the false-alarm rate up to99.2 % and
achieving up to97.4 % of maximum achievable detection
rate (see Section VI for details).

B. Organization

The remainder of this paper is organized as follows. Section
II reviews the related work in distributed spectrum sensingand
highlights the original contributions of our work. SectionIII
describes the system and attack models used in this paper. Sec-
tion IV presents our proposed approach for attack detection,
and the generation of a realistic two-dimensional shadowing
correlation model. Section V details our approach for the
filter design and the proposed data-fusion model. Section VI
evaluates the performance of ADSP, and Section VII concludes
the paper.

II. RELATED WORK

In this section, we first summarize distributed spectrum
sensing and then review existing sensing-related attacks and
their countermeasures in DSA networks.

Distributed Sensing in DSA Networks: Distributed sens-
ing has been recognized as a viable means to improve the
sensing performance, thus meeting the stringent incumbent
detection requirements imposed by the FCC. Performance of
distributed sensing has been studied extensively [3]–[9],[18].
While most of previous work has considered the benign use of
distributed sensing to improve incumbent detection under the
assumption that the sensors are completely reliable, we focus
on quantifying the extent to which detection performance can
suffer and tolerate if sensors operate incorrectly or maliciously.

Robust Distributed Sensing: Despite its importance, the
problem of ensuring the robustness in distributed sensing has
only started to receive attention. Our work also belongs to this
category. Anandet al. [11] analyzed the feasibility of the Pri-
mary User Emulation Attack (PUEA) and presented a lower-
bound on the probability of a successful PUEA. However,
they did not address the impact of PUEA on the performance
of distributed sensing. Chenet al. [10] proposed an RSS-
based location verification scheme to detect a fake primary
transmitter. This scheme, however, requires the deployment of
a dense sensor network for estimating the location of a signal
source, and thus, incurs a high system overhead. They also
proposed a robust data-fusion scheme that dynamically adjusts
the reputation of sensors based on the majority rule [12].
Similarly, in the IEEE 802.22 standard draft, a voting rule [19]
has been proposed for secure decision fusion. However, the
voting rule may not work well in a very low SNR environment
where a majority of sensors fail to detect the primary signal.
Kaligineediet al. [20] presented a pre-filtering scheme based
on a simple outlier method that filters out extremely low or
high sensing reports. However, their method is not suitablefor
a very low SNR environment such as 802.22 WRANs where a
final data-fusion decision is very sensitive to small deviations
in RSSs. This scheme will be used as a reference in evaluating
our proposed scheme (see Section VI for details).

Detecting Unauthorized Spectrum Use: The problem of
enforcing/enticing secondary users to observe the spectrum
etiquette has also started to receive attention from the re-
search community. Woyachet al. [21] studied how to entice
secondary users to observe the spectrum etiquette by giving
them incentives via a game-theoretic approach. In a similar
context, Liu et al. [22] studied the problem of detecting
unauthorized use of a licensed spectrum. They exploited the
path-loss effect as a main criterion for detecting anomalous
spectrum usage and presented a machine-learning approach
for more general cases. By contrast, we focus on intelligent
filtering of suspicious sensor reports.

In summary, our scheme differs from previous work in
several key aspects. First, we exploit shadow fading correlation
for anomaly detection, which has not been considered previ-
ously. Second, our scheme is unique in that it enables normal
spectrum sensing operation even in a hostile environment
by proactively filtering out suspicious sensing reports, and
then assigning different weights for the remaining sensor
reports, while most previous approaches are reactive in case
of attack detection. Third, our scheme can detect the attacks
that purposely lower the RSS to obscure the existence of a
primary signal (i.e., type-2 attacks), whereas most of previous
work focused on detecting spoofed primary signals (i.e., type-
1 attacks).



III. SYSTEM AND ATTACK MODEL

We now describe the DSA network model and the received
signal strength (RSS) model to be used throughout the paper.
We then review the energy-detection technique and introduce
the data-fusion model, and finally present the attack model.

A. Network Model

We consider a DSA network where primary (licensed)
and secondary (unlicensed) users coexist. Secondary users
form an infrastructure-based system where a central entity
(i.e., a base station or fusion center) manages their DSA
via distributed spectrum sensing. The central node, which we
assume adversaries cannot compromise, schedules sensing and
decides the presence/absence of a primary signal based on the
sensing reports. The sensors can be stationary or mobile.

In general, two types of primary users exist in DSA net-
works according to their relative location to the secondary
network and transmission power level: (i) long-range primary
signal (e.g., TV transmitters) and (ii) short-range primary
signal (e.g., wireless microphones). In this paper, we consider
a DSA network where the short-range primaries does not exist
or their use is prohibited,2 and focus on long-range primaries,
which are located far away (e.g., tens of kilometers) from the
secondary network, and use high transmit power. Thus, the
entire secondary network (or cell) lies within the detection
range of the primary signal. A typical example of this type
is a TV transmitter in the IEEE 802.22 WRANs. While the
techniques we propose here can be applied to any distributed
sensing, without loss of generality, we will focus on 802.22
WRANs with a DTV transmitter.

B. Signal Propagation and Sensing Models

1) RSS Model:As mentioned earlier, our scheme relies
solely on the RSS (i.e., the energy-detector’s output) at sensors
where the received primary signal strength at sensori can be
expressed as the propagation model [24]:

Pi = Po

(do

di

)α

eXieYi (Watt), (1)

wherePo is the signal strength at the primary transmitter,α
the path-loss exponent,do the reference distance, anddi the
distance from the primary transmitter to the sensori. Shadow
fading is accounted for ineXi whereXi ∼ N (0, σ2) ∀i, while
eYi accounts for small-scale multi-path fading, antenna and
device caused losses. The log-normal shadow fading is often
characterized by its dB-spread,σdB, which has the relationship
σ =0.1 loge(10)σdB. We assume that the channel bandwidth
is much larger than the coherent bandwidth, so the effect of
multi-path fading is negligible, i.e.,Yi =0 ∀i [1].

2) Spectrum Sensing Model:The energy detector is the
most widely-used detection technique for its simple design
and efficiency [1], [25]. Although the feature detector is more
accurate, it takes much longer (e.g.,24 ms for the field-
sync detector for ATSC) [2] because it looks for a specific
signature of the primary signal that appears infrequently.The
test statistic of the energy detector is an estimate of average

2For example, the FCC recently decided to prohibit low power auxiliary
devices such as wireless microphones operating within 700 MHz band, after
the end of DTV transition on June 2009 [23].

RSS (including the noise power), and it can be approximated
as a Gaussian using the Central Limit Theorem (CLT) as [13]:

Ti ∼
{

N
(
No,

N2

o

M

)
H0 (no primary signal)

N
(
Pi+No,

(Pi+No)2

M

)
H1 (primary signal exists),

(2)

wherePi is the power of a received primary signal,No the
noise power, andM the number of signal samples.

C. Data-Fusion Model

In distributed sensing, the final decision on the presence or
absence of a primary signal can be made via eitherdecision
fusionor data fusion[7]. Here we consider data fusion rather
than decision fusion as the final rule for incumbent detection.
While the decision fusion reduces the overhead in reporting
the sensing results, it is difficult to thwart the sensing-disorder
attacks since it only provides a binary value based on a local
decision.

In fading channels, equal gain combining (EGC) is known to
have near-optimal performance without needing to estimatethe
channel gains [26]. EGC has the following decision statistic:

TΣ ,

ns∑

i=1

wi Ti, (3)

whereTi is the test statistic of the energy detector at sensori,
ns is the number of cooperative sensors, and the sensors have
an identical weight, i.e.,wi =1 ∀i. The decision threshold to
achieve the desired level ofQFA can be derived as [25]:

η = Q−1(QF A)

√
nsNo√
M

+ nsNo. (4)

The performance of EGC will be used as a baseline in
evaluating the efficacy of the proposed scheme.

Moreover, in order to achieve better attack-tolerance, we
proposeweighted gain combining(WGC) that adjusts the
weights so as to minimize the impact of mis-detections on
the final decision (detailed in Section V-D).

D. Attack Model

1) Attack Scenarios:Sensing can be disrupted as follows.
• A sensor is compromised, and then manipulates its sens-

ing reports, i.e., raises or lowers RSSs.
• A sensor is malfunctioning or faulty, yielding readings

that deviate from the actual RSS.
A common consequence of the above two cases is that the

sensor reports to the fusion center are distorted, thus increasing
the probability for the fusion center to make a wrong decision.
To solve this problem efficiently, we focus on the detection of
any abnormal sensing report instead of pinpointing the actual
cause of abnormality, which is part of our future work.

Note that another possible attack scenario is a primary
user emulation attack (PUEA), as studied in [10], [11], [22].
However, this attack is relatively easy to detect mainly because
the attacker has only a coarse-grained control of RSS at
sensors since signals are broadcast. In the above two scenarios,
however, the attacker has a fine-grained control of RSSs on
individual sensors, and thus, the attacks are stealthier than
PUEA, making their detection harder. Therefore, we will focus
on the above two attack scenarios.



2) Attack Types:We consider two types of attacks that can
be mounted (caused) by attackers (faulty nodes):

• Type-1 Attacks: increase thefalse-positiverate (classi-
fying a non-primary signal as primary) by raising RSSs,
and

• Type-2 Attacks: increase thefalse-negativerate (causing
failure to detect a primary signal) by lowering RSSs.

We assume that the attackers are intelligent, and thus
know the presence/absence of a primary signal regardless of
the decision made by the fusion center, and launch type-1
(type-2) attacks underH0 (H1); otherwise, attacks only serve
to improve the incumbent detection performance.

3) Final Sensor Reports:Under the above model, a final
sensor report to the fusion center can be expressed (in Watt)
as:

Ri = Pi + No + Ei
︸ ︷︷ ︸

ED output (Ti)

+ Di ∀i, (5)

where Ti is the test statistic of the energy detector (ED)
(Eq. (2)) including the measurement errorEi ∼ N (0,

N2

o

M
),

andDi ∈ R is the deviation orattack strength, tampered with
by a compromised sensor;Di = 0 for normal sensors. Note
that no loss of reporting packets is assumed, so we can focus
on the detection of abnormal sensor reports.

IV. T HE PROPOSEDAPPROACH

It is, in reality, impossible to prevent all possible attacks
or misbehavior that can affect the sensor reports. Therefore,
we aim to make distributed sensingattack-tolerant, i.e., min-
imize the impact of compromised sensor reports on the final
decision. For this, we propose anattack-tolerant distributed
sensing protocol(ADSP) that has the following salient fea-
tures: It

1) successfully tolerates attacks (or faults or effects) of
malicious (or faulty) sensors,

2) exploits physical-layer signal propagation characteristics
with low processing overhead,

3) preserves compatibility with existing security and data-
fusion mechanisms, and

4) achieves high detection accuracy and efficiency.
In what follows, we present the design rationale behind ADSP,
its framework, and the methodology to generate a spatially-
correlated shadow fading field.

A. Design Rationale

To maximize attack-tolerance and preserve the detection ac-
curacy of data fusion, ADSP employs anomaly detection based
on statistics. Specifically, ADSP exploits physical-layersignal
propagation characteristics, or the spatial correlation in RSSs
among neighboring sensors. The key insight behind ADSP
is that, in shadow fading environments, RSSs among nearby
sensors are likely to be highly correlated, which can be used
to identify the manipulated sensor reports. The adversaries
must be aggressive in raising or lowering the RSSs reported
to the fusion center in order to influence the outcome of the
final decision. However, any sensor report that significantly
deviates from what is expected is deemed suspicious of being
malicious or malfunctioning, and those sensing results will
be discarded or penalized by the fusion center in making a
final decision. Adversaries must, therefore, lower their attack

ED
s(t) Ti

+

Ri
Data

Fusion

Di

Attacker

Attack

detector

filter out abnormal 

sensing reports
sensor i

... ... corr. profile

fusion center

...

Fig. 1. The ADSP framework: Compromised (or malfunctioning) sensors
might contaminate their sensing reportsRi. The attack detector filters out
these contaminated sensor reports based on the shadowing correlation profile
and then feeds the remaining ones to the final fusion center.

strength, reducing the chance for the fusion center to make a
wrong decision; otherwise, they must risk getting caught bythe
detector. This way, the fusion center can achieve a high level
of attack-tolerance, provided the majority3 of its neighbors are
well-behaving.

B. ADSP Framework

ADSP consists of the following three building blocks:
• sensing managerthat manages sensor clusters and di-

rects the sensors to report their readings at the end of
each scheduled sensing period,

• attack detector that detects and discards (or penalizes)
the abnormal sensing reports based on the pre-established
shadowing correlation profile, and

• data-fusion center that determines the presence or ab-
sence of a primary signal based on the filtered sensing
results.

These three components closely interact with each other and
form a robust distributed sensing system. Fig. 1 depicts the
ADSP framework, which islightweightin that it can be imple-
mented at the fusion center without requiring any modification
to sensors or incurring additional communication overhead.

One important and unique feature of the attack detector is
the ability to tolerateboth type-1 and2 attacks. This feature is
attributed to the fact that the detectorcross-checksthe sensor
reports and the assumption that at least2/3 of the sensors are
well-behaving. As a result, under type-1(2) attacks, the sensor
reports with relatively high (low) values are likely to be flagged
by more of its neighboring sensors, thus making our scheme
applicable regardless of the existence of a primary signal.This
makes the system design simple and efficient, while achieving
high attack-tolerance (see Section VI for detailed results).

C. Generation of Spatially-Correlated Shadow Fading

To incorporate the spatially-correlated shadow fading in our
analysis and simulation, we need a shadow correlation model
in which the statistics accurately reflect the real-world wireless
shadowing environment. Note that a model-based approach
is unavoidable since measurement data for shadow fading is
very scarce, and conducting a field test is too expensive to
do. Gudmundson’s model [27] is one of the most widely-
used models in accounting for the shadowing correlation.
However, it cannot capture spatial shadowing correlation,and
hence, analyses based on this model might yield results that

3We assume that at least2/3 of sensors are well-behaving.
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Fig. 2. Spatially-correlated shadowing random fieldp(·, ·): An example of
p(·, ·) with exponentially-decaying spatial correlation, where the dB-spread
and decorrelation distance are assumed to beσdB = 4.5 dB and Dcorr =
150 m, respectively. The spatial correlation is assumed to beisotropic, i.e.,
the shadowing correlation depends only on the distance between sensors.

are significantly different from those in real-world wireless
environments, as evidenced in both a theoretical study [28]
and empirical measurements [29]. Recently, the authors of [30]
proposed a statistical modeling approach to characterization of
the spatial spectrum behavior of primary signals in the context
of DSA networks.

Along the same line as in [30], we generate spatially-
correlated shadow fading in a two-dimensional area by ap-
plying the convolution method proposed in [31]. We refer to
the thus-generated data set as ashadowing random fieldp
where p(x, y) represents the shadowing gain at a unit grid
area, i.e.,∆×∆ m2, centered at the coordinate(x, y) ∈ R

2.
The shadowing random fieldp(·, ·) is assumed to be an

isotropic,4 wide-sense stationary, and log-normally distributed
random field with zero mean and exponentially-decaying spa-
tial correlation. Then, the covariance between the two points
θi =(xi, yi) andθj =(xj , yj) in p is given as:

E
[
p(θi),p(θj)

]
= Rp(dij) = σ2 · e−dij/Dcorr , (6)

wheredij =‖p(θi)−p(θj)‖ is the Euclidean distance between
the locationsθi andθj , σ is the standard deviation of shadow
fading, andDcorr is the decorrelation distance, which depends
on local wireless environments (e.g., urban or suburban).5

Fig. 2 shows an exampleshadowing random fieldin a
2 × 2 km2 region, which clearly exhibits a strong spatial
correlation in shadow fading. To demonstrate the accuracy
of this method, Fig. 3 compares the one-dimensional auto-
correlation function (ρ) of the random field against the Gud-
mundson’s empirical model with the same set of parameters,
i.e., σdB = 4.5dB and Dcorr = 150 m. The figure indicates
that the synthetic data in the shadowing random field accu-
rately emulates the real-world shadowing correlations. Note
that our detection scheme only requires the one-dimensional
auto-correlation function of the shadowing field, which can
be estimated by the service provider at the time of system
deployment.

4Note that we do not consider the angular dependency in shadowing
correlation for analytical tractability.

5For example, a measurement study [32] indicates that a typical decorrela-
tion distance is in the range of120 − 200 m in suburban areas.
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Fig. 3. Comparison of auto-correlation function: Theoretical model (solid
line) vs. synthetic data from a random fieldp(·, ·) (dotted line). The
correlation is below0.2 beyond the decorrelation distanceDcorr =150 m.

V. DETECTION OFABNORMAL SENSORREPORTS VIA
CORRELATION ANALYSIS

In this section, we formulate the anomaly-detection prob-
lem as a hypothesis testing, and present the design of a
correlation-based filter. To further improve the attack-tolerance
of our scheme, we propose a new data-fusion rule, called the
weighted gain combining(WGC), followed by the description
of ADSP.

For distributed sensing, the designated sensors (in a form
of clusters) report their energy-detector’s output along with its
location information to the fusion center, at the end of each
sensing period.6 The location information is required to exploit
the shadowing correlation in RSSs; it may be available at the
fusion center when the sensors are fixed, e.g., CPEs in 802.22
WRANs. On the other hand, when they are mobile, sensors
can obtain their location via location service, e.g., GPS, and
then report it along with the RSS. Sensors can employ existing
secure localization protocols (e.g., [33]) to obtain accurate
sensor location information.

A. Characterization of the Correlation in Sensor Reports

We first study the correlation structure of the sensor reports,
which the fusion center actually receives from the sensors.A
key observation is that the correlation structure of shadowing
components{eXi} is preserved in the sensor reports{Ri}
under the following conditions:

• no attack (or misbehavior), i.e.,Di =0, and
• weak primary signal, i.e.,Pi + No ≈ No.7

Under the above conditions, and treating all the other terms
in Eq. (1) (excepteXi and Ei) as constants, we can express
sensori’s report in Eq. (5) as:

Ri = C1 eXi + C2 + Ei (Watt), (7)

where C1 = Po

(
do/di

)α
, C2 = No, and Ei ∼ N (0,

N2

o

M
) is

the measurement error of ED. The correlation in shadowing
componenteXi does not change when we add/multiply the
same number to/by all of the shadowing components.

6We consider two-dimensional sensor coordinates for simplicity, while the
actual terrain profile is three-dimensional.

7This is a reasonable assumption in a very low SNR environment, e.g.,
−20 dB, where the average primary signal power is only about1% of the
noise power, i.e.,E[Pi] = 0.01×E[No].



Moreover, the variance in measurement error is much
smaller than that of shadowing component, i.e.,V ar[Ei] <
V ar[eXi ], since the number of samplesM is sufficiently
large even with a short sensing time, e.g.,M = 6 × 103 for
TS = 1 ms. So, the correlation in the received sensor reports
Ri almost preserves the correlation of the shadow fadingeXi ,
i.e.,Corr(Ri, Rj) ≈ Corr(eXi , eXj ); furthermore, the degree
of correlation varies with their relative locations.

B. Cluster-based Hypothesis Testing

Although we try to exploit shadowing correlation for attack
detection, the degree of correlation decreases exponentially
with the distance between sensors. This motivates us to form
sensor clusters{Ck}

Nc

k=1
among the sensors in close proximity

so that sensors within the same cluster are highly correlated.8

In 802.22 WRANs, clusters can be easily formed since the
sensors (i.e., CPEs) represent households, and hence clustered
by their nature. Therefore, for each sensori, the correlation-
filter checks whether or not it exhibits a proper correlation
behavior by examining the following hypothesis testing for
each of its neighbors:

Ha
0 : Corr(Ri, Rj) = ρ(dij) j ∈ N(i), (8)

where the neighbor setN(i) is defined as the sensors belong to
the same cluster of sensori. As a result of the cross-validation,
the number of flags raised by the neighboring sensors will be
used as a filtering criterion (see Section V-E for details). From
now on, we focus on the analysis of shadowing correlation in
sensor reports.

C. Correlation Analysis for Filter Design

Although the shadowing correlation coefficient(ρ) is an ob-
vious metric for the above hypothesis testing (i.e., Eq. (8)), it is
not suitable to use it directly in our problem for the following
reasons. First, estimation of the correlation coefficient would
require a sequence of samples; this can incur significant time
and energy overheads for sensing, and can also slow down the
detection of returning primary users. Second, when the sensors
are mobile, it is difficult to estimate the correlation between the
sensors since their relative distances are not fixed. Therefore,
we detect a per-sample abnormal behavior by examining their
similarity using the conditional probability distributions of the
sensor reports. This is an alternative, but efficient approach
since higher correlation entails greater similarity, which can
be measured via a conditional distribution of sensor reports,
as we will describe next.

In order to capture the similarity between sensor reports,
we first derive the probability distribution ofRi, which is the
sum of non-zero mean normal (i.e.,Ei) and log-normal (i.e.,
eXi ) random variables, as indicated in Eq. (7). To the best of
our knowledge, there is no closed-form expression for such a
distribution. However, a close examination of Eq. (7) implies
that Ri can be approximated as ashifted log-normal random
variable, i.e., the sum of a log-normal random variable and a
constant.

Let us denote the sensor reports by a shifted log-normal
random variable, i.e.,Ri = eZi + C whereZi ∼ N (µZ , σ2

Z).

8The locations of clusters are assumed to be uniformly distributed with in
the secondary network, and the issue of optimal selection (or formation) of
sensors (or clusters) is not our focus in this paper.
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From Eq. (7), we have the following approximation after
simple manipulation:

eZi + C ≈ eXi+ln C1 + Ei, (9)

where Zi ∼ N (µZ , σ2

Z) and Xi ∼ N (0, σ2

X) with σX = σ.
We set the constantC = 4 σE so that the probability of the
right-hand side of Eq. (9) become less thanC is close to zero
(i.e., ≈ 3 × 10−5). This is important because the log-normal
random variableeZi cannot have a negative value.

Then, we estimate the mean and variance ofeZi using
a moment-matching method. By matching the mean and
variance of both sides of Eq. (9), we obtainσ̂2

Z and µ̂Z as:9

σ̂2
Z = log

[

C2
1 (eσ2

X − 1) e2µX+σ2

X + σ2
E

(C1 eµX+σ2

X
/2 + µE + C)2

+ 1

]

, (10)

and

µ̂Z = log

[

C1 eµX+σ2

X/2 + µE + C

eσ̂2

Z
/2

]

. (11)

Fig. 4 shows an example of such an approximation. While
the figure indicates that the sensor reports can be accurately
estimated by such a distribution, it becomes less accurate as the
sensing durationTS increases. Note, however, that we would
like to capture the correlation among sensors in a tractable
form, not an accurate approximation that only complicates
the analysis without yielding a considerable improvement in
detection performance. The impact of the approximation error
will be discussed in Section VI.

Based on Eqs. (9), (10), and (11), the p.d.f. of a sensor
report can be expressed as:

fR(r) =
1

(r − C) σZ

√
2π

exp

[

− (ln(r − C)− µZ)2

2σ2
Z

]

, z ≥ 0.

(12)
Recall that we are interested in examining the similarity ofthe
reports measured at nearby (thus spatially-correlated) sensors.
To measure the similarity between sensor reports, we derive
the conditional p.d.f. ofRi given Rj =rj using Eq. (12) as:

fRi|Rj
(ri|rj)

=
1

(ri −C) σRi|Rj

√
2π

exp

[

− 1

2

(
ln(ri − C)− µZi|Zj

σZi|Zj

)1/2]

,

(13)

9The derivations of Eqs. (10) and (11) are straightforward, and omitted due
to space limit.
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where
µZi|Zj

= µZi
+ ρij

σZi

σZj

[
ln(rj − C)− µZj

]
, (14)

and

σZi|Zj
= σZi

√

1− ρ2
ij(dij). (15)

Eq. (15) indicates thatσZi|Zj
decreases as the correlationρij

increases, and thus greater similarity between sensor reports.
Eqs. (13), (14), and (15) indicate that the conditional distri-

bution of the sensor reports are also log-normally distributed.
We thus set the lower and upper thresholds on the sensor
reports based on conditional p.d.f. in Eq. (13), and then mark
any outlier that resides outside of the thresholds. To set the
thresholds, we first derive the cumulative distribution function
(c.d.f.) of sensori’s reportri, given sensorj’s reportrj as:

FRi|Rj
(x) = Prob(Ri ≤ x |Rj = rj)

=
1

2
+

1

2
erf

[
ln(x− C)− µZi|Zj

σZi|Zj

√
2

]

, x ≥ 0, (16)

whereerf(x) = 2√
π

∫ x

0
e−t2dt.

Using Eq. (16), the thresholdsTH{L,U} with a 100× (1−
ǫ)% confidence interval can be derived as:

TH{L,U}(ǫ) = exp
[√

2·erf−1
(
g(ǫ)

)
·σZi|Zj

+µZi|Zj

]

+C, (17)

where

g(ǫ) =

{

ǫ− 1 for THL

1− ǫ for THU
0 ≤ ǫ ≤ 0.5, (18)

whereµZi|Zj
and σZi|Zj

are conditional mean and variance
in Eqs. (14) and (15), respectively.

Therefore, the null hypothesisHa
0 , i.e., Corr(Ri, Rj) =

ρ(dij), cannot be rejected ifri ∈ [THL, THU ], as depicted
in Fig. 5. Note that the thresholds are set differently for each
neighboring sensor, depending on their relative distance and
measured RSSs. Clearly, there is a tradeoff in determining the
threshold parameterǫ; i.e., the higher the threshold, the higher
(lower) the attack false-alarm (mis-detection) rates.

D. The Proposed Data-Fusion Rule

While the correlation filter accurately detects RSS devia-
tions, we observed that it often mis-detects small deviations
(e.g.,≤0.3 dB). These small deviations can still influence the
data-fusion results in a very low SNR environment due to the
high sensitivity of the fusion decision to RSSs. Unfortunately,
however, with our design ofhard filtering, this problem might
not be easily overcome by simply increasing the cluster size

Algorithm 1 ATTACK-TOLERANT DISTRIBUTED SENSING
WITH WEIGHTED GAIN COMBINING

ProcedureADSP WGC({Ri}, QF A, β)
1: Initialize the decision statisticTΣ ← 0
2: Initialize the number of normal sensor reportsNnormal ← 0

// Step 1. Filtering
3: for each sensor clusterCk k = 1, . . . , Nc do
4: for each sensori ∈ Ck do
5: (Isnormal(i),wi)← CorrFilter (i, {Rj}j∈N(i), β)
6: end for
7: end for

// Step 2. Data fusion
8: for each sensor clusterCk k = 1, . . . , Nc do
9: for each sensori ∈ Ck do

10: if Isnormal(i) = 1 then
11: updatewi using Eq. (19)
12: TΣ ← TΣ + wi Ri

13: Nnormal ← Nnormal + 1
14: end if
15: end for
16: end for
17: TΣ ← TΣ ×Nnormal/

∑
wi // Normalization

18: Calculate the decision thresholdη using Eq. (4)
19: if TΣ > η then
20: return 1 // Primary exists
21: else
22: return 0 // No primary signal
23: end if

due to the correlated nature of the sensor clusters. Therefore,
as a second line of defense, we propose a new data-fusion
rule, namelyweighted gain combining(WGC), to provide a
better attack-tolerance to such small deviations. The ideais to
assign different weights to the sensor reports according totheir
significance level based on the conditional c.d.f. in Eq. (16).
This way, the mis-detected (unfiltered) attacks are highly
likely to be assigned relatively small weights compared to the
legitimate sensor reports because of their lack of significance.
Thus, the weights in WGC are defined as:

wi ,

∑

j∈Nv(i) wij

|Nv(i)| where wij = 1− 2
∣
∣FRi|Rj

(ri | rj)− 0.5
∣
∣,

(19)
whereNv(i) is the set of valid neighbors of sensori. The thus-
obtained weights are used in calculating the decision statistic
TΣ (in Eq. (3)), and compared with the thresholdη (in Eq. (4)).

E. Protocol Description

We now present the attack-tolerant distributed sensing pro-
tocol (ADSP) with the proposed WGC for final fusion.Algo-
rithm 1 describes the overall data-fusion procedure in ADSP.
At the end of each sensing period, the fusion center collects
sensor reports{Ri} from the designated sensors, which are
co-located in clusters. Then, it invokes the correlation filter to
selectively discard the abnormal sensor reports. Note thatthe
weights are assigned after the filtering process (line 11) sothat
the filtered abnormal sensor reports would have no influence
on them.Algorithm 2 details the filtering procedure. For each
sensor report, the filter counts the number of flags raised by
its neighbors in the cluster. Then, it will returnIsnormal=0 if
more thanβ ∈ [0, 1] fraction of its neighboring sensors mark it
as abnormal, whereβ is a design parameter; otherwise, it will
return Isnormal = 1. The filter also returns the weight vector
(wi) for future use in the final data-fusion process (i.e., WGC).



Algorithm 2 FILTERING ALGORITHM BASED ON CORRELA-
TION ANALYSIS

ProcedureCorrFilter (i, {Rj}j∈N(i), β)
1: Initialize the counterblacklist counter(i)← 0
2: Initialize the weight vectorwi ← [ 0, . . . , 0 ]T

3: Initialize the indicatorIsnormal← 1
4: for each neighborj ∈ N(i) do
5: wij ← update using Eq. (19)
6: if Corr(Ri, Rj) 6= ρ(dij) using Eq. (17)then
7: + + blacklist counter(i)
8: end if
9: end for

10: if blacklist counter(i) > β ·N(i) then
11: Isnormal← 0 // Mark it as abnormal
12: end if
13: return (Isnormal,wi)

The computational complexity of the algorithm is bounded by
O(|C|2) where|C| is the number of sensors in a cluster.

VI. PERFORMANCEEVALUATION

The performance of ADSP is evaluated via MATLAB-based
simulation. We first describe the simulation setup and then
present the simulation results for both types of attacks under
various attack scenarios.

A. Simulation Setup

To demonstrate the effectiveness of ADSP, we consider
an IEEE 802.22 WRAN environment with a single DTV
transmitter with 6 MHz bandwidth and multiple secondary
users (sensors) located at the edge of thekeep-out radiusof
150.3 km from the DTV transmitter [1]. A secondary network
(cell) of radius30 km is considered for our evaluation, and we
generate a two-dimensional shadowing field with a unit grid of
20 × 20 m2 to emulate a realistic shadow fading environment
in a cell. Throughout the simulation, we assume5 sensor
clusters located randomly within the cell, with6 sensors in
each cluster; the sensors are located in different grids, and
the distances between sensors within a cluster range from0 m
to 70 m. We consider the worst-case attack scenario; in each
cluster, one-third of the sensors are malicious. Table I lists the
system parameters used in our simulation. Each simulation is
conducted on5×104 randomly-generated shadowing fields and
their average values are taken as the performance measures.

TABLE I
SYSTEM PARAMETERS USED IN SIMULATION

Parameter Value Comments

Ns 30 Number of collaborating sensors

Nc 5 Number of clusters
TS 1 ms Sensing duration

M 6 × 106
× TS # of signal samples per sensing

σdB 4.5 dB Shadow fading dB-spread

Dcorr 150 m Decorrelation distance
∆ 20 m Dimension of a grid

No −95.2 dBm Noise power

γ −20 dB Signal-to-noise ratio (SNR)
QF A 0.01 Target false-alarm probability

β 0.34 Attack detection threshold
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Fig. 6. Effect of sensor clustering on incumbent detection performance:
Sensor clustering withNc = 5 achieves94 % of the detection performance
without clustering, in a very low SNR environment, i.e.,γ =−20 dB. Each
cluster consists of6 sensors andQF A is set to0.01 in all scenarios.

B. Effect of Sensor Clustering

While ADSP exploits shadowing correlation via sensor
clustering, correlated sensor readings is, in general, known
to degrade the detection performance as it limits diversity
gain [8], [9], [18]. Therefore, we first study the effect of
sensor clustering on detection performance to understand the
efficiency vs. robustness tradeoff in ADSP. Fig. 6 compares
the achieved incumbent detection probabilities (QD) with and
without sensor clustering (i.e., random sensor selection). As
expected, distributed sensing without clustering yields higher
detection probability than with sensor clustering with−20dB
SNR. However, the performance gap decreases as more sen-
sors are involved in distributed sensing, e.g., sensing with 5
clusters achieves94 % of that without clustering. Note that this
performance with clustering gets even closer to that of random
selection as the SNR increases. Therefore, we can conclude
that sensor clustering is not critical to incumbent detection,
while it provides an efficient means of attack detection.

C. Attack-Tolerance

We now demonstrate the robustness of ADSP to both type-
1 and type-2 attacks. Fig. 7 plots the normalized incumbent
false-alarm (QFA) and detection (QD) probabilities under
type-1 and type-2 attacks, respectively. The figure shows that
the correlation filter is efficient in mitigating the effect of
attacks on incumbent detection performance, e.g.,99.2 % for
type-1 and97.4 % for type-2 attacks, thanks to its ability to
accurately filter out manipulated sensor reports. By contrast,
without ADSP (denoted by EGC in Fig. 7),QFA and QD

rapidly converge to 1 and 0, respectively, i.e., attacks have
maximal influence on the data-fusion results.

We make the following four main observations. First, the
performance of ADSP suffers in case of low strength attacks
(e.g., < 0.4 dB for type-1 attack). This is because they do
not exhibit deviations significant enough to be detected (thus
causingunder-filtering), yet they affect data-fusion decisions.
The proposed weighted gain combining (WGC) mitigates this
performance deficiency for both types of attacks by adaptively
adjusting sensor reports’ weights based on their statistical sig-
nificance. However, WGC performs as well as, or even worse
than, EGC when the attack strength is either (i) extremely
low so that most of attacks will not be filtered out or (ii) large
enough so that most (or all) of attacks are filtered out, as can
be seen in Fig. 7 withǫ = 0.01. This is because, in the first
case, the unfiltered attacks will adversely affect the weights
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used in the data fusion decreases asǫ increases, under both type-1 (upper) and type-2 (lower) attacks.

of the legitimate sensor reports, while sharing large weights
among themselves. On the other hand, in the second case, the
legitimate sensor reports with extreme values are likely tobe
assigned small weights despite their critical role in accurate
detection of incumbents.

Second, ADSP outperforms the statistics-based filtering
method proposed in [20] (denoted by Outlier in Fig. 7).
In Outlier, the fusion center filters out the sensor reports
falls outside the range[ e1 − δ · eiqr, e3 + δ · eiqr ] where e1

and e3 represent the first and third quartile of the samples,
respectively, andeiqr = e3 − e1 is the interquartile range
(see Eq. (4) in [20]). This method does not require sensor
clustering, and thus, one might think that it performs well
when attack strength is strong enough to be easily detected
as an outlier. However, the performance depends strongly on
the filtering range, i.e., the choice ofδ, the result of which
varies with attack scenarios. For example, whenδ = 0.7,
the performance suffers from over-filtering with a high attack
mis-detection rate. On the other hand, whenδ = 1, the
performance suffers from under-filtering, and as a results,QFA

and QD converges to1 and 0, respectively, even in case of
high attack strengths. By contrast, ADSP accurately detects
the manipulated sensing reports by considering shadowing

correlation and its heavy-tailed distributions.
Third, even in case of high attack strengths, ADSP does

not completely eliminate the effects of attacks for the follow-
ing reasons. First, the fixed threshold parameterǫ does not
work optimally for all attack strengths, thus causing either
over- or under-filtering, both of which degrade the detection
performance. The over-filtering caused by a large threshold
value (e.g.,ǫ = 0.1) turned out to lower bothQFA and QD,
as shown in Fig. 7. The impact ofǫ on incumbent detection
performance will be detailed in Section VI-D. Second, as a
result of filtering, the fusion center will have less samples
to be used for data fusion. Since the data fusion is sensitive
to the number of samples used, especially in very low SNR
environments (as shown in Fig. 6), the incumbent detection
performance degrades. For example, with20 sensor reports
remaining after filtering out all the10 manipulated sensor
reports, the average achievableQD is 0.88, which corresponds
to the normalizedQD of 0.93 in Fig. 7.

Fourth, in the absence of attacks, the correlation filter incurs
a small increase in bothQFA andQD. This is caused by the
inaccuracy in the log-normal approximation of sensor reports,
which causes over-filtering even in case of no attacks. We
observed that this performance anomaly can be mitigated by



reducing the sensing durationTS (e.g.,<1 ms), which makes
the approximation more accurate because the distribution of
the sensing reports becomes closer to a normal distribution.

D. Tradeoff in Detection Threshold

Fig. 8 plots the impact of the filtering thresholdǫ on
incumbent detection performance. In this simulation, we fixed
the attack strength at0.1 dB for both types of attacks. Fig. 8(a)
shows thatQFA monotonically decreases asǫ increases for
both fusion rules, implying that filtering out more sensor
reports always helps lower the false-alarm rate of incumbents.
For the same reason, however, a largeǫ degrades the detection
probability QD. This can be explained by the heavy-tail of
a log-normal distribution of shadow fading; filtering out high
RSSs at the tail lowers the decision statistics significantly, thus
reducing the chance of generating false-alarms (or detecting
incumbents). Another observation is that WGC outperforms
EGC in case of under-filtering, e.g.,ǫ ∈ [0.01, 0.06], for type-1
attacks, as discussed in Section VI-C. For type-2 attacks, WGC
also outperforms EGC, but the performance gain decreases
as ǫ increases. Fig. 8(b) shows the average number of valid
sensor reports (i.e., those that passed the filter) along with
their standard deviations for both types of attacks. It clearly
indicates that the filter becomes more aggressive in rejecting
the sensor reports asǫ increases, thus reducing the number of
sensor reports to be used for making a final fusion decision.
Therefore, the filter must be carefully designed to make the
tradeoff between false-alarm and detection probabilities, while
considering their dependency on attack strengths.

VII. C ONCLUSION AND FUTURE WORK

The design of reliable distributed sensing for opportunistic
spectrum use is a major research challenge in DSA networks.
To meet this challenge, we have developed a novel attack-
tolerant distributed sensing protocol (ADSP) that selectively
filters out abnormal sensor reports, and thus maintains the
accuracy of incumbent detection. The key idea behind this
mechanism is that the measured primary signal strength at
nearby sensors should be correlated due to shadow fading,
which had not been considered before. To realize this idea,
we proposed a sensor clustering method and designed filters
and data-fusion rules based on the correlation analysis of the
sensor reports. ADSP can readily be implemented in 802.22
WRANs, incurring very low processing and communication
overheads. Our proposed scheme is evaluated in realistic
shadowing environments, demonstrating its ability to tolerate
both type-1 and type-2 attacks.
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