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Abstract

Hypervisors are increasingly utilized in modern computer systems,
ranging from PCs to web servers and data centers. Aside from
server applications, hypervisors are also becoming a popular target
for implementing many security systems, since they provide a small
and easy-to-secure trusted computing base. This paper presents a
novel way of using hypervisors to protect application data privacy
even when the underlying operating system is not trustable. Each
page in virtual address space is rendered to user applications ac-
cording to the security context the application is running in. The
hypervisor encrypts and decrypts each memory page requested de-
pending on the application’s access permission to the page. The
main result of this system is the complete removal of the operating
system from the trust base for user applications’ data privacy. To
reduce the runtime overhead of the system, two optimization tech-
niques are employed. We use page-frame replication to reduce the
number of cryptographic operations by keeping decrypted versions
of a page frame. We also employ lazy synchronization to minimize
overhead due to an update to one of the replicated page frame. Our
system is implemented and evaluated by modifying the Xen hyper-
visor, showing that it increases the application execution time only
by 3% for CPU and memory-intensive workloads.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection

General Terms Design, Security

Keywords Hypervisor, Application Protection, Data Privacy, Vir-
tualization

1. Introduction

Hypervisor, a virtual machine monitor that directly runs on bare
hardware, is becoming popular and has already penetrated deeply
into modern computing environments. The Xen hypervisor [3]
and the VMware ESX Server [30] are representative examples of
this popularity. Hypervisor is not only attractive in consolidating
servers and planning server resources, but also advantageous in
enhancing system security.

Hypervisor can provide a perfect implementation point for
many security applications because it can be inserted between hard-
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ware and operating system. For instance, many intrusion detection
systems based on hypervisors have been proposed [13, 17, 19]. Hy-
pervisor has also been utilized for providing security services to
upper-layer software. For example, hypervisor can provide vir-
tual instances of Trusted Platform Module (TPM) of the trusted
computing architecture [4, 12]. The hypervisor used for enhancing
security relies on the property that it forms a relatively small and
easy-to-secure trusted computing base.

In this paper, we propose a novel usage of hypervisor for im-
plementing a new layer of protection. This protection layer directly
secures the memory contents of user-level applications, guarantee-
ing protection even from a malicious or faulty operating system.
This protection is achieved by encrypting the contents of the user
memory pages; when a program accesses a memory page, the hy-
pervisor determines which image of the page to provide to the pro-
gram. Whether to use a decrypted image of the page or a verbatim
(hence encrypted) image is determined by the access permission of
the program accessing the page.

Our protection system results in a very powerful privacy pro-
tection infrastructure that can secure the entire execution of a user-
level application. The sensitive information of a user application,
including both code and data, is guaranteed to be protected against
malicious or faulty operating systems. Therefore, unless the hyper-
visor itself is compromised, the privacy of an application’s memory
contents and relevant execution context is preserved even when the
operating system has been compromised.

The semantics and interface of this page-based encryption sys-
tem are abstractly defined in terms of a protection model, which
we call Software-Privacy Preserving Platform (SP3). As with any
protection model, SP? defines the relationship between principals
and their access permission. In SP3, a protection domain is defined
to be the principal in which a set of access permissions associates
domains to a set of cryptographic keys. These access rights govern
the ability to use the keys which are to encrypt/decrypt memory
pages. If an application program is running inside an SP?> domain,
the application sees the decrypted memory contents through the
virtual address space; programs outside the domain, including the
operating system, may only see the encrypted memory contents.

In this paper, we focus on the hypervisor-based realization of
this SP3 protection model. Specifically, we describe modifications
and extensions made to the hypervisor to implement SP3. To en-
crypt pages and secure the SP> domain boundary, SP? extends the
semantics of the paging system and interrupt interface of a CPU.
‘We make the hypervisor emulate the extended paging and interrupt
semantics. We also discuss and evaluate techniques to improve hy-
pervisor’s emulation performance.

Page-frame replication is a way to reduce the overhead of en-
cryption. In this technique, a hypervisor retains page frame copies
containing decrypted images of an original page. When a decrypted
image of a page needs to be supplied to a program, the hypervisor



manipulates the page table entry (PTE) to redirect requests to the
page frame copy containing the decrypted image. This reduces the
number of costly cryptographic operations that would have to be
performed on the entire page frame.

Lazy synchronization is also used to further reduce the number
of page-wide encryptions. Under the page-frame replication, syn-
chronization is needed when an update occurs to one of the repli-
cated images. This synchronization propagates the update to the
other images by page-wide encryptions. However, with lazy syn-
chronization, this costly synchronization is deferred as long as pos-
sible: the synchronization happens not when an image is modified,
but when one of the other images is accessed. This technique turns
out to be very effective because no synchronization takes place un-
less two SP? domains actively access the two related images simul-
taneously.

We modified the Xen hypervisor and Linux kernel to implement
a hypervisor-based SP? system. The modified Xen, serving as the
trusted computing base for user-application privacy protection, im-
plements the full semantics of the SP? model. Linux, running on
top of the modified Xen, is thus removed from the trust base of user
applications that are running within SP?> domains. If Linux violates
the protection rules, it will at worst crash the system, but protection
of the applications’ memory privacy is guaranteed.

We evaluated the Xen-based implementation by measuring the
runtime performance of SP3 applications. Our evaluation results
indicate that applications running in the modified Xen experience
only a 3% slowdown compared to the same applications running in
the native Xen environment. The result also confirms the efficacy of
the page-frame replication and the lazy synchronization schemes.

The rest of the paper is organized as follows. Section 2 provides
the background on Xen and Linux’s memory management and
interrupt handling. Section 3 defines the SP> protection model.
Section 4 presents the key ideas for realizing SP3 protection in
a hypervisor. Section 5 details our modification of Xen. Section
6 evaluates the implementation. Section 7 discusses related work.
Finally, Section 8 presents conclusion.

2. Background

In this section, we provide background on the internal workings
of hypervisor and operating system. We focus on paging (Section
2.1) and interrupt interface (Section 2.2) as they are closely related
to the description of our implementation. We summarize them
with an example (Section 2.3) by stepping through what happens
when we execute a program in a virtual machine environment. In
the following discussion, we assume Linux running on the x86
architecture as the choice of computing platform. We also use Xen
as our choice of hypervisor.

2.1 Paging

Paging is the fundamental facility for memory management in con-
temporary systems. Supported by a hardware Memory Manage-
ment Unit (MMU), a physical memory page is mapped to a vir-
tual address space via the Page Table Entry (PTE) structure. The
MMU translates a virtual address to a physical address by page-
table lookup using the virtual address to find a PTE that contains
the physical page frame number. Each PTE also contains bit flags
such as Present (P) bit (accessing a page with P bit cleared causes a
non-present page-fault), Writable (W) bit (writing a page with W bit
cleared causes a read-only access-violation page-fault), and Dirty
(D) bit (the processor sets D bit when data has been written to the
mapped page).

Operating systems, without a hypervisor, directly manipulate
the MMU data structure to implement the virtual address space

and various paging tricks such as demand-paging, copy-on-write,
virtual memory, and disk buffer cache.

With a hypervisor present, an operating system runs on a Vvir-
tualized hardware platform where the operating system is given a
“physical memory” of virtual machine that is an illusion created by
the hypervisor. Running between the bare hardware and operating
systems, the hypervisor adds another layer of address translation.
One way to implement this translation layer is to use shadow page
tables [30]. In this technique, a guest operating system’s page tables
are “shadowed” by real page tables to be directly used by the pro-
cessor. The hypervisor intercepts all references and updates to the
guest operating systems’ page tables, performing additional trans-
lation, which is called “physical-to-machine” translation.

In para-virtualized systems where operating systems are modi-
fied to run on a virtual machine, part of the “physical-to-machine”
translation is performed by the guest operating system. This is to
avoid complexity and overhead that would otherwise be incurred
in a fully virtualized system. Although a para-virtualized system
directly exposes MMU states to the guest operating system, the hy-
pervisor still enforces strict rules regarding MMU and page table
updates, thus guaranteeing safety to the hypervisor.

2.2 Interrupt

If the processor receives a hardware interrupt or generates an excep-
tion, it suspends its execution of current program in order to serve
the interrupt or exception. The processor saves the context of the in-
terrupted program for later use when the program is to be resumed.
In the x86 architecture, this context, called “exception frame”, is
saved in the kernel-mode stack upon interrupt. The interrupt is usu-
ally the point where the kernel is entered; it causes the processor to
vector to the kernel’s interrupt/exception handler and the processor
mode is switched from user-mode to privileged-mode.

Operating systems, without the hypervisor present, directly han-
dle interrupts. An operating system is to directly program interrupt
vector tables to cause the processor to jump to appropriate handler
code in the kernel. The handler then performs appropriate actions
to resolve the source of the interrupt or exception. Upon completion
of handling the event, the kernel runs a scheduler to select the next
program to run. To switch the context to the selected program, the
kernel executes an instruction called “return from interrupt” with
the saved exception frame as the argument of this instruction. The
processor switches back to the user mode and resumes execution of
the user program.

With the hypervisor present, however, the hypervisor intercepts
every interrupt and exception. It examines the cause and nature of
the interrupt and then decides whether to handle the interrupt itself
or to forward the interrupt to the guest operating system. When
it decides to forward the interrupt, it creates an exception frame
on the guest operating system’s kernel mode stack to emulate the
processor’s behavior. The content of this exception frame can be
programmed by the hypervisor to suit its need.

From an operating system’s perspective, the underlying hyper-
visor’s involvement is completely hidden in the case of full vir-
tualization. In a para-virtualized case, such as Xen, the operating
system is required to be modified to use the para-virtualized inter-
rupt interface. Nevertheless, the para-virtualizing hypervisor is able
to intercept every interrupt and exception and thus fully protected
from guest operating systems.

2.3 Example

Here we summarize paging and interrupt in a virtualized environ-
ment by using an example where we step through an application be-
ing executed. When a user application program is first executed by a
process calling exec () system call, the kernel handling exec ()
loads the binary (e.g., ELF executable) to read the program header



information. Then, the kernel maps code, data, and stack area to
the process address space. At this time, the operating system only
assigns virtual memory regions and memory is not assigned; the
corresponding PTEs for the regions are with their P bit cleared.
This is because of the demand-paging scheme. The actual mapping
occurs when non-present page-faults on these unmapped pages are
handled.

During these events of system call, PTE manipulation, and
page-faults, the hypervisor intervenes to virtualize hardware by
page-table shadowing and forwarding interrupts: each non-present
page-fault vectors first to the hypervisor’s handler. If the hypervi-
sor determines the fault should be handled by the guest operating
system, it forwards the fault to the guest operating system. Then
the page-fault handler in the guest operating system allocates and
maps a physical page to the faulting address by updating the corre-
sponding PTE. This PTE update is too intercepted by (or submitted
to) the hypervisor for its implementation of shadow paging.

3. SP? protection model

This section first provides an overview of the SP> system and then
illustrates with an example how it provides data privacy protection
to user-level applications.

3.1 SP? definition

As the principal of the SP? protection, we use the concept of
protection domain [20]: access permission is determined based
on the domain context. Each domain of a running SP? system is
uniquely assigned and identified by an SID (SP?> Domain ID) value.
To identify the currently executing domain, the SP? system may
keep a variable called current SID. The operating system is assigned
SID of 0. Therefore, current SID is automatically switched to 0
when an interrupt or an exception occurs. In most cases, it is safe to
consider a domain as a process, but a domain is not exactly the same
as a process; multiple processes can share the same SP3 domain.
The kernel always execute with SID 0.

The definition of SP? is divided into three parts. First, the
secure paging extends the interface of a general paging system to
maintain the domain boundary. Second, the secure domain switch
is responsible for safe domain crossing upon interrupts. Last, the
domain operations handle the dynamics of domain creation and
deletion as well as transferring access permissions for sharing. In
this section, we only outline the SP3 constituents, omitting details
relevant to actual implementation.

Secure paging: The page table entry (PTE) structure is extended
to include a new multi-bit field, called KID (Key ID), which is
used to locate a symmetric key. An SP3 system internally keeps
a database that stores symmetric keys, called the key database. The
KID value of a PTE serves as an index to the key database. The
SP3 system also maintains a permission bitmap that tells which
domain (identified by SID) can use which symmetric key (identified
by KID). The operating system is prohibited from directly accessing
the key database and the permission bitmap, but it is allowed to
modify the KID field in a PTE. When a domain with SID s accesses
memory, page tables are traversed for virtual-to-physical address
translation. During the page traversal, the KID k of the matching
PTE is checked against the permission bitmap to see if s can
use k. If so, the SP? system renders the decrypted image of the
physical page using the symmetric key indexed by k. Otherwise,
the SP? system renders the verbatim image of the page. KID 0 is
defined as a ‘null’ key, which always renders the verbatim image
when it is used in a PTE. SID O is reserved for the domain of the
operating system.

Secure domain switch: The current SID changes to 0 when in-
terrupts or exceptions occur, since these events cause traps into
the operating system. However, before the operating system takes
over control, the execution context of an outgoing domain must
be securely stored to prevent information leakage and hijacking
of domain context. Thus, the value of machine registers and SID
of the interrupted domain are encrypted, creating a secure domain
context, which is passed to the operating system and then safely
stored as an opaque data structure. The secure domain context is
also tagged by an authentication hash to prevent overriding SID.

Domain operations: For creation and deletion of domains, we
define two operations, A11loc and Free. Alloc creates a domain
by assigning an SID, loading symmetric keys to the key database,
and initializing KID permissions by setting appropriate bits in the
permission bitmap. Symmetric keys may be loaded via a key ex-
change protocol: a unique public key pair (K;, Kp ) is assigned
to an SP? system. To deliver a symmetric key K to the system,
{KX}K; is passed as an argument to the A11oc, which uses K to
extract K, and store it to the key database. Free deletes a domain
by revoking the key permission and releasing the SID. To transfer
key access permissions, two operations, Grant and Release, are
defined. Grant allows a domain to permit the other domain to use
a key by setting the permission bitmap accordingly. Granting suc-
ceeds only when the current domain executing Grant already has
permission to the key. To securely identify other domains, each SID
is tagged with an identifier, which is loaded when Al1loc is called.
The identifier may be unique to each application and only known to
trusted applications. Release clears the permission bitmap. The
last two operations enable secure shared memory among trusted
applications.

3.2 SP3 example

Figure 1 illustrates how SP3 renders different views of the virtual
memory as the current SID changes. In the figure, there are three
active domains in the system. Two of them, domains 1 and 2,
were created by the Alloc operation, loading symmetric keys
to the system along the operations. The remaining domain is the
domain 0, which is the domain of the operating system. Using the
Grant operation, the permission bitmap was set as shown in the
figure. The three domains share the same page table. The figure
also shows a section of the page table with the KID values of PTEs.
When domain 1 was executing, it saw decrypted images of pages
at virtual address 31 and 32. The two pages were decrypted by
the symmetric keys referenced by KID 1 and 3. When an interrupt
occurred, the current SID was changed to 0. Now, the operating
system is running, but it cannot see the decrypted image at the
virtual address 31 and 32, because it does not have permission to
KID 1 and 3. Instead, the operating system sees the pages’ verbatim
images. The domain is switched again when the operating system
returns from the interrupt. The operating system uses the saved
encrypted domain context for domain 2, which will be executing
after the domain switch. Domain 2 will see the decrypted images
at the virtual address 31 and 33, according to the KID values of
corresponding PTEs and permission bitmap entries.

We now illustrate how a user application is generated from
source code, transferred to an SP3-capable host, loaded to mem-
ory, and finally, executed on the host. First, an application source
code is compiled normally. Compiler/linker tricks are used to en-
sure the sections are aligned with page boundaries. Then, the bi-
nary is encrypted using K;. A special header that contains {K} K

is attached to the executable, which is then transferred to an SP3 -
capable host and stored on the disk. When a user runs the appli-
cation, the executable is loaded by the exec system call, which
detects the special header and executes A1 1oc that creates domain
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Figure 1. An example SP3 system. SP> renders different views of the virtual memory as the current SID changes. Domain 1 has permission to KID 1 and
3, thus it sees decrypted images at virtual addresses 31 and 32. Domain O has no permission to any keys, thus the memory contents are rendered as verbatim
images. Domain 2 has permission to KID 1 and 2, thus memory contents at virtual addresses 31 and 33 are rendered decrypted.

s, loads K on KID k, and sets the permission bitmap on (s,k). The
binary is to be loaded to the user address space, but pages have
not yet been mapped due to the use of demand paging. Later, when
the application causes page-faults on these unmapped pages, the
page is loaded from the disk as is, which is the verbatim image en-
crypted with K. The corresponding PTE is fixed to map the page
and to contain k in the KID field. When the application resumes, it
will see the decrypted image.

Running within the context of the SP3 protection domain, the
loaded application sees the decrypted content of the memory pages
via its entire virtual address space. Note that this decryption is done
transparently to the application. Also, minimal effort is required
from the application in accessing this decrypted image: the appli-
cation does not have to call special functions nor does it have to
set up special barriers in its code. The application can use differ-
ent cryptographic keys to access different virtual address regions
by using different KIDs to PTEs that map the regions. Using a null
KID, the application can also set virtual address regions that are not
encrypted.

4. Design

In this section, we describe how to realize the SP? protection model
using a hypervisor. We first present how to efficiently emulate
SP3 secure paging by introducing page-frame replication and lazy
synchronization. Then we discuss how to realize SP3 secure do-
main switch by changing interrupt semantics. Finally, we provide
how to emulate SP?> domain operations.

4.1 Emulating SP3 secure paging

As defined in Section 3.1, the heart of the SP? system is the
SP3 secure paging, which is capable of rendering different views of
the same page frame. That is, the page frame referenced by a PTE
with non-zero KID should be rendered as decrypted if the page is
accessed when the current SID has the permission to use the KID.
We now discuss how to use a hypervisor to emulate such semantic
of SP? paging.

In the design of hypervisor-based emulation of SP? paging, we
should consider the performance impact of encryption. To provide
the decrypted view of a page, the hypervisor should perform a soft-
ware decryption on the page the size of which typically 4KB. Obvi-
ously, a naive design would incur significant run-time performance

overhead. Thus, we would like to minimize the performance over-
head by using two schemes that can minimize the number of cryp-
tographic operations as described below.

Page-frame replication is the primary vehicle for efficient em-
ulation of SP3 paging. In this scheme, the hypervisor maintains
copies of decrypted images of a page frame. Each of the decrypted
images contains the decryption result on the original page using a
particular symmetric key. The hypervisor keeps these images in its
privately-maintained memory area. Rendering a decrypted view of
a page is thus realized by redirecting the page to one of the de-
crypted images. The hypervisor can realize this redirection by vir-
tualizing access to the page tables; it intercepts modifications on
page tables to realize the extended KID field, and it induces page-
faults to provide the hypervisor the points to check the permission
and to perform actual redirection. These operations are directly
handled by the hypervisor, and thus hidden to the operating sys-
tem.

Figure 2 illustrates how a hypervisor implements the page-
frame replication scheme. In Figure 2(a), physical page frame num-
ber (PFN) 2 has two decrypted images located on PFN 5 and 7, each
of which is the decryption of PFN 2 using the symmetric key se-
lected by KID 1 and 2, respectively.! Figure 2(b) shows page tables
virtualized by the hypervisor. On the right side is the virtualized
page table which the operating system can modify. The virtual-
ized page table is shadowed by the real page table which the MMU
refers to. In the figure, the operating system programmed virtual-
ized page table such that PEN 2 is mapped in three different PTEs
with different KID values of 0, 1, and 2. The corresponding PTEs
in the real page table then contain PFN 2, 5, and 7, and thus, the
hypervisor renders decrypted views on the same page, realizing the
SP? paging semantic.

Although keeping decrypted images reduces the number of
cryptographic operations, those images must be synchronized if
one of the images or the original page gets modified. The synchro-
nization is necessary for providing consistent views on all images;
if a program modifies a decrypted image, then the original page,
although its content is encrypted, must reflect the change when ac-

! Actual hypervisor adds another layer of address indirection by which
a “physical address” (the virtualized address local to a virtual machine)
translates to a “machine address” (the physical address of the underlying
hardware). To simplify the discussion, we ignore this translation layer.
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Figure 2. Shown in (a), the hypervisor keeps decrypted copies of an
original page frame (PFN 2) in different memory locations (PFN 5 and 7).
The hypervisor uses one of these page frames when the original frame is
mapped with a PTE with a KID value. The redirection of page frame is
performed transparently by manipulating page tables as shown in (b).

cessed later. Obviously, this involves cryptographic operations and,
unless properly handled, incurs high runtime overhead.

We solve this problem by employing lazy synchronization that
reduces the number of synchronizations among the images by de-
laying update propagation until the last minute. Synchronization is
performed only to the pages that need to be updated and only when
it is necessary; the synchronization happens not when one image is
modified, but when one of the other images is accessed. This is re-
alized by keeping track of the most-recently updated image among
the images including the original. Tracking the most-recently up-
dated image is achieved by checking D (dirty) bit of PTE. The con-
tent of the most up-to-date copy is propagated to one of the ‘stale’
pages by means of the hypervisor’s page-fault handler. The hyper-
visor clears P bit of those stale pages to induce a page-fault through
which the hypervisor can propagate updates behind the scene.

The lazy synchronization scheme is highly effective because
it exploits the fact that there are limited occurrences of active
sharing in application programs: if a page is not accessed during
the activation of the particular SP> domain, it will not generate any
page-fault. Therefore, the images of a page frame are synchronized
only when necessary, thereby reducing the runtime overhead of re-
encryption for synchronization. Note that this lazy synchronization
does not incur any encryption overhead for most of the normal
application execution scenarios because page frames are not shared
among different SP3 domains.

4.2 Emulating SP3 secure domain switch

The SP3 secure domain switch extends the interface of interrupt and
exception. To recap, the current domain switches to operating sys-
tem’s domain, SID 0, when an interrupt or exception occurs. Also,
upon occurrence of these events, the execution context of the outgo-
ing domain must be securely stored in the ‘secure domain context’
to prevent information leakage and hijacking of the domain con-
text. We now discuss how to emulate such SP3 interrupt semantic
in a hypervisor.

We can realize the transition of current domain by intercept-
ing every interrupt and exception generated by hardware. Hyper-
visors are, by definition, capable of intercepting all interrupts and

exceptions. When the hypervisor forwards an interrupt to a guest
operating system, the hypervisor can change the current domain by
setting current sid variable to 0.

The secure domain context, which is to contain register con-
texts and SID of the outgoing domain, is realized by extending the
exception frame structure. As briefed in Section 2.2, the proces-
sor generates an exception frame into the kernel mode stack upon
an interrupt, and the hypervisor already simulates this behavior to
virtualize interrupts. We extend this exception frame to contain a
secure domain context. Thus, this extended exception frame has a
new field for general-purpose registers (GPRs) and SID value of
the outgoing domain. These fields are encrypted and hashed. When
the hypervisor forwards an interrupt to a guest operating system, it
generates this extended exception frame instead of the original one.

The GPRs are cleared when the hypervisor raises a virtual
interrupt by generating a secure exception frame. Upon receipt of
this interrupt, the guest operating system will find the GPRs to be
zeroed out. This is to prevent information leakage upon domain
switch, because the operating system is untrusted.

After handling the virtual interrupt, the guest operating system
requests the hypervisor to perform a ‘return-from-interrupt’ opera-
tion using the extended exception frame that have been saved from
a previous interrupt. Upon receipt of this request, the hypervisor
processes the extended exception frame to restore GPRs and SID
value.

4.3 Emulating SP> domain operations

In the hypervisor-based realization, the domain operations are ba-
sically requests made to the hypervisor. Therefore, the interface for
the domain operations could be simply realized by creating a new
hypercall entry for each domain operation. However, we can alter-
natively achieve this by creating virtual ‘instructions’ for the do-
main operations. Execution of this instruction opcode will generate
an ‘invalid-opcode’ fault, which should be captured by the hyper-
visor. The hypervisor will then examine the opcode to perform the
matching SP> domain operation.

We favor defining new instruction opcodes than extending hy-
percall entries, because by creating new opcodes, the entire SP3 in-
terface looks as if the processor were supporting SP3: from the per-
spective of an operating system, and hence, feels no functional dif-
ference between the hypervisor-based implementation and direct-
hardware modification. Using the ‘invalid-opcode’ fault has no per-
formance disadvantage over extending hypercall, because a hyper-
call is also implemented by generating a software interrupt.

5. Implementation

We modified Xen hypervisor [3] which runs on top of x86 (IA-32)
architecture [16]. Xen runs with higher privilege than the virtual
machines it manages, and thus, it has a safe perimeter against op-
erating systems.2 Note that Xen’s administrative virtual machine,
known as dom0, cannot access the private area of Xen, therefore
guaranteeing safety.

One unfortunate name collision needs to be resolved before we
proceed. In Xen-terminology, a “domain” refers to a virtual ma-
chine instance created by Xen. In this paper, this usage is dis-
couraged to eliminate confusion with our SP? protection domain.
Henceforth, Xen’s “domain” is referred by ‘virtual machine’, and
we use ‘SP? domain’ or simply ‘domain’ to refer to SP? domain.

2We can say that Xen and its SP3 extension implemented within, can
form a small and secure trust base, provided Xen is securely bootstrapped
and attested. Secure bootstrapping and providing integrity measures are
important for securing a trusted computing base, but it is out of scope of
this paper. We refer the readers to secure bootstrapping [18] for safe and
secure loading of the Xen hypervisor.
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Figure 3. Extensions made to x86 PTE and exception frame structures.
The extended PTEs includes a new multi-bit field for KID value. The secure
exception frame, which is to be generated on the kernel stack upon interrupt,
is larger than the original exception frame to contain fields for the GPRs and
SID of outgoing domain.

In this section, we first describe the implementation of emulat-
ing the modified interface of extended x86 architecture for SP3 sup-
port. Then, we detail the realization of our design on the hypervisor,
focusing on the mechanisms to efficiently emulate the SP3 secure
paging.

5.1 Emulating the modified x86 interface

It is straightforward to incorporate into Xen the data structures
directly related to the SP3 protection model. We modified Xen to
keep variables for storing the permission bitmap and cryptographic
keys. To identify which SP3 domain is executing in the system, an
integer variable called current_sid is created to store the SID
value of currently executing SP?> domain.

It gets tricky when we make Xen emulate the new extensions
to CPU-level interface, specified in Figure 3. The extensions are
to reflect the new KID field in PTE structure, and to generate
a secure interrupt frame upon interrupt. Obviously, we did not
actually modify the hardware; the specification given here is used
as the reference interface that Xen ultimately emulates.

Figure 3(a) shows the modified PTE structures into which the
KID field is integrated. In its ‘native’ paging mode, the original x86

has 3 bits available for the KID field.3 In its Physical Address Ex-
tension (PAE) paging mode, which has an expanded PTE structure,
27 bits available for the KID field. The actual number of bits re-
quired for the KID depends on the size of required KID space. For
instance, when 10 bits from the PAE-enabled PTE structure are se-
lected as KID field, as shown in the figure, it allows the KID space
to range from O to 1023.

We modified Xen to emulate this PTE extension by adding a
code that can interpret the KID field. This code is added to the
Xen’s handler routine responsible for PTE updates. This handler
routine is always invoked when a guest operating system modifies
a PTE to map a page. Since MMU updates are sensitive, Xen
makes sure it intercepts all PTE updates. In the para-virtualized
environment of Xen, operating systems can update a PTE either by
making a PTE-update hypercall, or by directly modifying the PTE.
Either way, Xen can always intercept the PTE update: a hypercall
causes trap to Xen by definition; a modification to a PTE incurs
a page-fault since the pages used as guest page tables are always
mapped with W bit cleared, meaning any attempt to write to the
guest page tables causes a access-violation page-fault, trapping into
Xen. Therefore, by modifying the Xen’s handler for PTE updates,
the safe and transparent illusion of the extended KID field can be
achieved. A guest operating system can update a PTE as if the
hardware supported the KID extension.

Another modification we made to CPU-level interface is the
secure version of x86 exception frame as specified in Figure 3(b).
This secure exception frame, instead of the original x86 exception
frame, is generated on the operating system’s kernel mode stack
when an application running in an SP? domain gets interrupted. As
shown in the figure, the first top 128 bytes of the secure exception
frame represent the secure domain context , which is encrypted
using a key private to the SP? system. This encrypted part contains
the entire register context of the interrupted program. The SID value
of the interrupted SP3 domain is also saved at SID-0 to SID-3 field.
SID value is stretched and then hashed to avoid overriding SID. The
secure domain context is followed by the plaintext part which is
identical to the original x86 exception frame except for the zeroed
EIP and ESP fields.

To generate this secure exception frame, we modified Xen’s in-
terrupt bouncer code that handles forwarding of an interrupt to a
guest operating system. Xen monitors every interrupt by intercept-
ing it. If Xen decides to forward an interrupt to a guest operat-
ing system, it “artificially” creates an exception frame by writing
to the kernel mode stack of the guest operating system, emulat-
ing the behavior of the CPU. This forwarding is implemented by
the interrupt bouncer code which we modified in such a way that
if current_sid is not 0, it generates an secure exception frame
instead of standard one. At the moment Xen transfers control to
the guest operating system, General-purpose registers (GPRs) are
cleared and current_sidis set to 0.

To perform a return-from-interrupt on this secure exception
frame, we defined a new instruction, called S_IRET. Executing this
instruction causes traps to Xen via invalid-opcode fault. We mod-
ified Xen’s invalid-opcode handler to unwind the secure exception
frame and resume the interrupted program. To restore SP> domain
context, Xen reloads GPRs and sets current_sid back from the
saved values of the secure exception frame. The SP? paging exten-
sion takes advantage of this to correctly prepare a data structure
when the operating system requests page table update with a non-
zero KID value.

A scheme is provided for the operating system and user ap-
plications to pass arguments and return values via GPRs. In this

3 In fact, these bits are intended to be utilized by the operating system. But
Linux, the operating system we use, does not utilize them.



scheme, GPRs are normally cleared unless the cause of exception is
a software interrupt; a user process can pass system call parameters
via GPRs. The Type field tells whether GPRs have been cleared
or not, indicating that the secure exception frame was generated
by a software interrupt or another type of exception. Upon receipt
of an interrupt-return request, Xen reloads GPRs from the saved
register values unless the Type indicates the the secure exception
frame was generated by a software interrupt, enabling a convenient
channel for passing system call return values. Note that this facility
does not necessarily incur leakage of information through GPRs,
because applications can always clear contents of registers unused
in the system call before generating a software interrupt.

5.2 Implementation detail of SP3 secure paging

During initialization, Xen reserves a pool of physical page frames
for storing decrypted images. A page frame containing decrypted
image is mapped by PTEs with PEN value of original page frame
and non-zero KID field. It is important to recognize this class of
PTEs with non-zero KID and the page frames mapped by them.
Hence, we assign names for them to facilitate description. In the
following discussion, we will refer to a page mapped with non-zero
KID as SP? page and the PTE for SP page as SP? PTE.

We use the P (present) bit of SP> PTE so that the processor
can generate a non-present page-fault. These extra page-faults are
intended to provide trap into Xen when accessing a SP> page needs
attention of Xen, such as performing a check for PTE redirection.
The page-fault handler of Xen is modified to separate this type
of page-fault from other normal page-faults by examining the KID
field of the PTE that caused the non-present page-fault.

Under the para-virtualizing architecture of Xen, this nontradi-
tional usage of P can cause problems, since page tables are directly
exposed to the operating system. We clear the P bit purposely even
though the page is physically mapped by the operating system ker-
nel. However, the operating system may be confused because it is
possible for the operating system to see the P bit cleared when the
bit was set before.

Without the hypervisor’s shadow page table support, we would
have only resolved this problem by modifying the operating sys-
tem. However, Linux —our target operating system— already has
a mechanism that can treat PTEs with P bit cleared as physi-
cally present. This facility fortunately enabled us to avoid excessive
modifications. In the current version of Linux, a page is considered
non-present only if both P bit and PAT bit (bit 7) are cleared.* We
exploit this by setting PAT bit for SP? PTEs so that Linux can rec-
ognize the page as present. Also, Linux does not get any additional
page-fault from this because Xen filters page-faults generated by
SP* PTE.

When a page-fault is generated by SP> PTE, Xen fixes the fault
by setting P bit with an appropriate value on PTE. Which page
should be used is determined according to the SP? rule: if the
current SID has access to the KID, Xen uses the decrypted image
page. In other cases, original page is used. In this process, the D
(dirty) bit of the PTE is checked to synchronize between the two
copies. The synchronization entails 4Kb AES operation which is
time-consuming. However, under our lazy synchronization scheme,
it happens only when it is needed. In practice, the synchronization
is under full control of a user program (e.g., the program explicitly
shares an SP? page with another SP? domain), or it occurs if the

4This facility is devised for memory regions mapped with PROT_NONE
type. Linux clears P bit but sets PAT bit when loading a PTE for a page
of that type. This way, the page is considered present by the kernel but CPU
generates a non-present fault upon access. This way the kernel can raise
protection violation, realizing PROT_NONE semantic.

operating system wants to swap out the page to disk, which is rare
in modern platforms and already a very slow operation.

SP3 PTEs have to be invalidated by clearing P bit when-
ever domain is changed. This ensures the access permission of
SP3 pages to be reevaluated when the other SP? domain accesses
that SP? pages. Once the SP? page is made present, access on the
page will not generate any page-fault and the program can proceed.
However, if the SP? PTEs’ P bits are not cleared when SID changes,
the other domain will access the old page, which can possibly con-
tain decrypted image. Therefore, this SP> PTE invalidation ensures
the access permission of SP? pages to be reevaluated.

To implement this invalidation logic, Xen maintains a list of
SP3 PTEs that should be made non-present upon change of SID.
When Xen reevaluates an SP3 PTE by setting P bit, it also adds the
PTE to the list. Later when SID changes, Xen goes through this list
to clear the P bit, and the list is emptied. Exceptions and S_IRET
can only change SID, the SP? PTE invalidation is performed when
Xen handles those operations.

6. Evaluation

In our evaluation, we want to answer the following questions:

e How much performance degradation do SP? applications expe-
rience?

e How effective are the page-frame replication and the lazy syn-
chronization?

e How does the performance overhead vary with application’s
memory access pattern?

e What is the impact of SP? secure interrupt on performance?

To evaluate the impact on the performance of using SP> protec-
tion, we first measured overall performance overhead with CPU-
and memory-intensive workloads. Such a workload is chosen since
our modifications are made on the CPU and the memory manage-
ment part. We then performed a micro-benchmark measuring the
performance impact of the locality of the applications’ page refer-
ence patterns.

6.1 Methodology

The machine used in our evaluation has a 3.2 GHZ Pentium 4
(HT) processor with 1 GB of RAM. We used Xen version 2.0.4
and Linux kernel version 2.6.10, which is para-virtualized for Xen.
Only single virtual machine instance, namely domO, is used for all
experiments. Xen allocates 512 MB of RAM for this guest virtual
machine. For the Linux kernel setting, we used the default config-
uration in the original Xen distribution, which results in a unipro-
cessor kernel image without highmem support. We chose AES and
RSA for our cryptographic primitives whose implementation was
taken from OpenSSL version 0.9.7¢ as C code without additional
optimization.

We measured the performance of the SP? system by executing
benchmark programs on a system running our SP? enabled Xen.
This modified Xen is allocated additional 256 MB of RAM dedi-
cated for storing decrypted images. For each benchmark program,
two executables are generated from the same source code: one is an
encrypted executable that can be executed only on the SP3 enabled
system, and the other is a normal insecure executable that can be
used for performance comparison with a system without SP? pro-
tection. Both executables are statically linked with a modified ver-
sion of dietlibc C library [1].

6.2 The price of protection measured in performance penalty

We wanted to know how much an application needs to pay for the
SP3 protection in terms of performance penalty. Since our SP? im-
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Figure 4. Application benchmark results. The bars and the numbers on
top represent runtime of benchmark programs normalized to native Linux.
Each value is the mean of 5 trials.

plementation changed the paging interface, we chose CPU- and
memory-intensive workloads for measuring the impact on perfor-
mance. For the workloads, we selected 8 programs from the SPEC
CPU2000 integer benchmarks. Measuring the time to complete
each program, we compared the running time of the workloads in
three different setups. In the first setup, labeled as “Without SP3*,
normal insecure executables were executed on the native Xen. In
the second setup, labeled as “With SP?’, the encrypted SP> executa-
bles were executed on the modified Xen. In the last setup, normal
executables were executed on native Linux without Xen. To avoid
disk loading, all measurements were made right after a prior run of
the same program.

Figure 4 shows the benchmark results. The performance over-
head is presented as a relative runtime normalized to native Linux
without Xen. Overall, it takes less than 3% longer to finish the same
program with SP3 protection, except for vortex benchmark.

This good performance result empirically confirms that both
page-frame replication and lazy synchronization are indeed effec-
tive in reducing costly cryptographic operations. Since Xen keeps
the copies of decrypted images, decryption is performed only when
the image is initially created from the page that contains the original
verbatim image. Once the decrypted image is created, it continues
to be used without incurring any further decryption until there is a
need to synchronize among images. However, this synchronization
does not occur even after the application updates the decrypted im-
age, thanks to the lazy synchronization. The update in a decrypted
image propagates to the original page only when the operating sys-
tem accesses the original page, which rarely happens because an
operating system doesn’t usually access application memory under
the normal condition.

Since the overhead of page-wide encryptions is negligible, we
can assume that the runtime penalty comes from the overhead of
the PTE invalidation and subsequent page-fault for reevaluation.
This type of penalty is paid less by a program with a small runtime
footprint (i.e., accessing less pages during its activation between
interrupts) than by one with a large footprint. If we assume that
a statically larger program has also a larger runtime footprint, we
can therefore expect that a statically larger program pays a higher
penalty due to PTE invalidation than smaller one. In fact, it is found
that there is a positive relationship between the runtime footprint
and the performance penalty. In Section 6.3, we present a more
clear relationship between them with a micro-benchmark varying
the size of dynamic memory footprint.
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Figure 5. Impact of memory access locality. Performance of a test pro-
gram is shown as the dynamic memory footprint of the test program in-
creases. The y-axis shows increased runtime in SP? system normalized to
the native Xen.

Securing interrupts can be another source of potential perfor-
mance degradation. Although securing an interrupt involves cryp-
tographic operations, in general it does not add much overhead be-
cause the frequency of interrupt is very low relative to the processor
clock speed in modern computing systems, and also the overhead is
overshadowed by the greater overhead of interrupt service routines
and the resulting I/O operations. However, it is possible that se-
curing interrupts can degrade performance of certain applications,
such as the one that requests many simple system calls that the ker-
nel can quickly return.

Secure interrupts are the culprit of the anomaly of the vortex
benchmark program in this experiment. vortex is an object-
oriented database program which is modified for the inclusion to
the SPEC benchmark suite. The result of the modification is a
program that runs in a tight loop of database transactions, which
incur a lot of system calls. In Section 6.4, we analyze the system
call overhead in detail.

We were curious how disk buffer cache affects performance
since loading an executable from the disk carries initial decryp-
tion overhead in addition to the disk access overhead. We therefore
performed a comparison between ‘cold’ and ‘hot’ runs of the work-
loads. In ‘cold’ run, we execute a workload program in boot-clean
state without prior execution of the program, whereas in ‘hot’ run,
we execute the program right after executing the same program.

When we measured and compared the two, we failed to find
any significant difference. Although it is a non-trivial overhead to
decrypt a page for creation of a decrypted image copy, it is obvious
that the encryption penalty is hidden under the heavier overhead of
disk I/O operation.

6.3 Impact of memory access locality on performance

To obtain a more clear relationship between the runtime foot-
print and the PTE invalidation penalty, we performed a micro-
benchmark with a varying runtime footprint size. The benchmark
program touches all of the allocated pages continuously through
a loop, therefore we can artificially control the dynamic memory
footprint.

Figure 5 shows the results. As expected, runtime penalty in-
creases as dynamic memory footprint increases. If the dynamic
footprint is small enough (less than 4MB), the performance degra-
dation is less than 15%. The performance penalty increase as the
footprint increases, and when the footprint hits 14MB, it takes twice
as long.

Since many applications exhibit strong locality in accessing
main memory, as can be seen in our SPEC benchmark, users of
SP? system should not generally concern the performance degra-
dation. Also this result is obtained from the un-optimized imple-



mentation: we didn’t aggressively optimized the invalidation and
reevaluation logic. It is probable that we can further reduce the im-
pact of invalidation on the performance by optimizing the invali-
dation logic. For example, we are considering invalidating a page
directory entry instead of page table entry to reduce the number of
entries in the invalidation list.

6.4 Impact of frequent system call on performance

SP? applications that request system calls frequently are expected
to suffer from the encryption overhead of SP? secure interrupt. To
assess the increased cost of system calls in SP3, we performed
a micro-benchmark that measures the overhead of system calls.
We used system call latency benchmark of 1mbench, which was
slightly modified to fit to the SP? environment.

[ Syscall Type [[ With SP? | Without SP* | Native Linux ]

null 10.6 0.952 0.322
open 22.9 3.27 2.07

Table 1. System call latency measured in microsecond.

Table 1 shows the benchmark results. ‘null” measures the round
trip overhead between user and kernel mode with minimum work
required inside the kernel. ‘open’ measures how long it takes to
open and then close a file, thus more time is spent in the kernel.

As expected, the system call overhead is significant higher in
SP3 compared to both native Xen and Linux. This increased latency
is due to the increased round trip time for user/kernel crossing,
which is caused by the encryption of SP3 secure interrupt frame.
This result also confirms the slowdown of vortex benchmark in
Section 6.2: vortex calls the system more than 500k times until
its completion. Since it takes less than 4 minutes to compete in
native Linux, the rate of system call is roughly 2,100 requests per
second, which explains the anomaly of the vortex benchmark.

7. Related work

Virtual machine monitors are being utilized to solve systems secu-
rity problems. IntroVirt [17] used virtualization to log/replay sys-
tem events, achieving a perturbation-free intrusion detection sys-
tem that can also detect past intrusions. Garfinkel and Rosenblum
[13] designed an intrusion detection system based on virtual ma-
chine introspection. The proposal of using hypervisor in commod-
ity mobile systems [11] is motivated by the advantage of using hy-
pervisor for implementing security services.

SecVisor [26] is a tiny hypervisor that protects the code integrity
of kernels. It achieves small code size by supporting only one oper-
ating system instance and virtualizing only memory. SecVisor en-
sures integrity of the code executing in privileged mode, thereby
preventing unauthorized kernel modification. In contrast, our sys-
tem protects user-mode application’s data secrecy, not the kernel
integrity. In addition, SP* protects applications even in the pres-
ence of a compromised kernel.

Proxos [29] is a hypervisor-based trust-partitioning system in
which users can configure the trust on the operating system. A
trusted application runs in a private trusted operating system cre-
ated by underlying hypervisor. A set of system calls, which the
user can specity, is dynamically forwarded into another operat-
ing system instance, which is full-fledged operating system but un-
trusted. In contrast, our system provides protection to user memory
in per-page basis, and does not require a private operating system
instance.

The protection ring [24, 25] defines multiple levels of privilege
mode on a processor. Using more than two protection rings (the

least privileged ring is given to user space), multiple layers of ker-
nel can be constructed with varying degrees of privilege, and hence,
importance. Although many processors support multiple privileged
rings, they are not widely used except for the layer of hypervisors
[3,5]. Many other architectures have been proposed to protect the
more important kernel part against failures of less important kernel
parts [8,31]. In contrast, our approach has a completely different
goal: SP3 aims to protect the user applications running in the least
privileged ring against operating system compromises.

Secure processors are a class of processors with hardware im-
plementation of various cryptographical primitives. Some of them
can provide secrecy and integrity protection directly to individual
processes bypassing all or most of the operating system. AEGIS
[28] and Cerium [7] are among them and focus primarily on phys-
ical tamper-resistance. The XOM secure processor [21] can host a
fully-untrusted operating system, and can thus protect applications
from operating system compromises. However, XOM requires spe-
cial hardware and heavy compiler/assmembler support, limiting its
practicality.

Many of approaches to protection of applications’ sensitive in-
formation can be viewed as code obfuscation [9, 10, 22]. Unfortu-
nately, obfuscating a program is considered a weak form of protec-
tion, as shown by Barak ef al.[2]. In contrast, our system is stronger
than obfuscation since we use cryptography directly for the protec-
tion of information.

Reducing the size of trust base as well as separating trust depen-
dency have been general strategies to enhance system security and
robustness. Those strategies are used to solve problems in many ar-
eas such as file system [33], kernel construction [31], application
partitioning [6,32] and relocating service to the virtual machine
monitor [12, 19].

The negative impact of the size and complexity of a trusted com-
puting base (TCB) on system security has been widely recognized
[15]. Hartig’s Nizza architecture [14], Singaravelu’s AppCore [27],
and IBM’s PERSEUS [23] are example efforts to reduce TCB size
and complexity.

8. Conclusion

In this paper, we presented a novel way of using hypervisors to
protect application data privacy. Even if the operating system is
not trustable, the hypervisor prevents application information from
unauthorized exposure. This protection is achieved by encrypting
the contents of the user memory pages; when a program accesses a
memory page, the hypervisor determines which image of the page
to provide to the program. Whether to use a decrypted image of the
page or a verbatim image is determined by the access permission
of the program accessing the page.

We detailed the modifications and extensions made to the hy-
pervisor to realize this page-granular secrecy protection. To encrypt
pages and secure the protection boundary, we extended the seman-
tics of paging system and interrupt interface of a processor. We
made the hypervisor emulate the extended paging and interrupt se-
mantics.

We also employed performance-improving techniques, such as
page-frame replication and lazy synchronization: page-frame repli-
cation reduces the number of cryptographic operations by keep-
ing multiple decrypted versions of the same page frame; lazy syn-
chronization further minimizes the overhead triggered by an update
on one of the replicated page frames. Our system is implemented
and evaluated by modifying the Xen hypervisor, showing that it
increases the application execution time only by 3% for CPU and
memory-intensive workloads.
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