
20

Secure Routing Based on Distributed Key
Sharing in Large-Scale Sensor Networks

TAEJOON PARK

Samsung Electronics

and

KANG G. SHIN

University of Michigan, Ann Arbor

Sensor networks, usually built with a large number of small, low-cost sensor nodes, are charac-
terized by their large-scale and unattended deployment, necessitating “secure” communications
between nearby, as well as remote, sensor nodes for their intended applications and services. Key
setup/sharing is crucial to the protection of such applications/services from attacks, but existing
(public-key, cluster-based, or pairwise) solutions become too expensive (hence, inefficient) when the
underlying applications/services require communications between distant sensor nodes. To remedy
this inefficiency, we propose a novel distributed key-sharing scheme, in which each participating
sensor node shares unique keys with a small number of other sensor nodes—called distributed key
servers (DKSs)—chosen according to their geographic distance and communication direction. Us-
ing DKSs, we develop two secure routing protocols: (1) secure geographic forwarding that delivers
packets by using a chain of DKS lookups, each secured with its own key and forwarded geograph-
ically; and (2) key establishment that creates a secure session between two distant sensor nodes
based solely on symmetric-ciphers. These protocols enable low-cost, low-power sensors to provide
high-level security at a very low cost.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and Protection; K.6.m [Management of Computing and Information Systems]: Mis-
cellaneous—Security; C.2.1 [Computer-Communication Networks]: Network Architecture and
Design—Distributed Networks

General Terms: Design, Security

Additional Key Words and Phrases: Distributed key sharing and servers, secure geographic for-
warding, key establishment, attack tolerance, large-scale sensor networks

The work reported in this paper is supported in part by the ONR and the NRL under Grant No.
N00014-04-10726, by the NSF under Grant CCR-0329629, and by Cisco Corporation.
Authors’ address: Taejoon Park and Kang G. Shin, Real-Time Computing Laboratory (RTCL), De-
partment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor,
Michigan 48109-2122; email: joy.park@samsung.com, kgshin@eecs.umich.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1539-9087/2008/02-ART20 $5.00 DOI 10.1145/1331331.1331344 http://doi.acm.org/
10.1145/1331331.1331344

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:2 • T. Park and K. G. Shin

ACM Reference Format:

Park, T. and Shin, K. G. 2008. Secure routing based on distributed key sharing in large-scale sensor
networks. ACM Trans. Embedd. Comput. Syst. 7, 2, Article 20 (February 2008), 28 pages. DOI =
10.1145/1331331.1331344 http://doi.acm.org/10.1145/1331331.1331344

1. INTRODUCTION

An increasing number of safety- and security-critical applications, such as situ-
ation monitoring and facility surveillance, rely on a network of small, inexpen-
sive, battery-powered sensor devices that have limited energy supplies, storage,
computation, and communication capacities. These sensor networks can be used
for various critical applications, such as safeguarding of, and early warning
systems for, the physical infrastructure that includes buildings, transportation
systems, water supply systems, waste treatment systems, power generation and
transmission, and communication systems. To meet these applications’ needs,
we must resolve several operational issues and challenges, such as energy effi-
ciency (in the sense of maximizing the lifetime of sensor networks), scalability
to a large number (thousands to millions) of nodes, and survivability even in a
harsh, unattended environment.

With rapid advances in device technology, the processing capability of em-
bedded systems has been improving at an exponential rate. However, this im-
provement in computing performance accompanies a rapid increase in com-
plexity and power consumption. By contrast, the battery and energy storage
technologies have been improving at a much slower pace, failing to meet the
increasing energy demands of emerging embedded systems. Energy efficiency
is, therefore, critical to all portable, embedded computing devices. Specifically,
in sensor networks where it is often very difficult, and sometimes impossible,
to change or recharge batteries for devices after their deployment, energy effi-
ciency is one of their most important requirements.

The critical role of sensor networks in their intended applications requires
high-level security throughout their lifetime. TinySec [Karlof et al. 2004] re-
alizes a link-layer security mechanism for message encryption and authenti-
cation using symmetric-key ciphers. In that scheme, keys can be established
and renewed with conventional public-key algorithms [Asokan and Ginzboorg
2000; Carman et al. 2002], such as the well-known Diffie–Hellman (DH) pro-
tocol. However, these algorithms are not suitable for sensor networks, as they
usually require complicated processing, extensive usage of memory, and large
key lengths, causing faster depletion of battery power if they were used in
sensor devices. Attempts [Watro et al. 2004; Malan 2004] have been made to
realize public-key algorithms on a well-known Mote platform [Crossbow 2003],
to show the feasibility of public-key algorithms on sensor devices. Their imple-
mentations are, however, still too “heavy” to be employed in sensor devices: each
public-key operation consumed 1.19–12.64 [J], allowing just 51,731–4,870 oper-
ations even when a sensor’s total energy budget of 61,560 [J] was devoted solely
to this task. Obviously, this is not acceptable, as sensor nodes must also per-
form other tasks and are required to be operational for at least several months
without replacing/recharging their batteries.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:3

We, therefore, need a lightweight security protocol whose primary design ob-
jective is energy efficiency. To this end, we have taken an approach to building
a secure network layer via “cooperation” among sensor nodes, without rely-
ing on a trusted central server. This approach is motivated by the fact that a
sensor network inherently relies on collective assurance among multiple low-
cost sensor nodes to execute high-precision/assurance missions and, hence, it
is important to use mutual cooperation in developing energy-efficient security
protocols that achieve high-level security without using resource-demanding
public-key ciphers, thus significantly extending the network lifetime.

It is essential to share keys among sensors for them to operate properly
in their link-layer security mechanism. Clearly, the degree of key sharing is
inversely proportional to the level of security the sensor network can achieve.
The highest level of security would be achieved if every pair of sensors share
their own key independently of others, in that individual subversions do not
compromise the rest of the network. However, this scheme is not realistic due
mainly to the large (O(N 2) per sensor) storage requirement where N is the total
number of sensors. Sharing an identical key among all sensors offers the least
security because a single compromised sensor completely reveals the secret of
the entire network. Localized key sharing—either cluster-based [Carman et al.
2000; Basagni et al. 2001; Park and Shin 2004] or pairwise [Carman et al.
2000; Eschenauer and Gligor 2002; Chan et al. 2003]—schemes may mitigate
the risk of sensor subversions, but cannot effectively meet both security and
performance requirements, especially in a large-scale network where a sensor
node may need to communicate with a distant peer. Hence, the degree (and the
way) of key sharing must be chosen (designed) to allow the designer to make a
tradeoff between security and performance.

In this paper, we propose a novel distributed way of sharing keys that op-
timizes the tradeoff between (1) security, in terms of reducing the effects of a
compromised sensor node on the rest of the network; and (2) performance, in
terms of achieving high energy efficiency and low-degree key sharing. The heart
of the proposed key sharing is the concept of distributed key servers (DKSs): a
sensor node serves as DKSs for a small subset of other sensor nodes (chosen
according to their geographic distance and routing direction in the entire net-
work) by sharing unique keys. Using DKSs, we present the following secure
routing protocols:

—secure geographic forwarding that reinforces the coventional geographic
forwarding protocol [Karp and Kung 2000; Jain et al. 2001] with a secure
distributed lookup service that delivers packets based on limited (and dis-
tributed) knowledge of shared keys; and

—key establishment between any pair of sensor nodes, in which the two nodes
equally contribute to the value of the key while achieving secrecy to others,
without relying on the resource-demanding DH protocol.

This approach (1) systematically builds a secure network-layer; (2) realizes
a purely symmetric cipher-based key setup protocol that is flexible enough
to trade security for residual energy; and (3) gracefully tolerates device

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:4 • T. Park and K. G. Shin

compromises in that the network security is gracefully degraded as the num-
ber of undetected compromised sensors increases. We finally show, via in-depth
analysis and simulation, that the proposed protocols are indeed energy efficient,
scalable, flexible, and robust to subversion of individual sensors.

The rest of the paper is organized as follows. Section 2 reviews the related
work and Section 3 describes the proposed protocols. Section 4 analyzes the
security of the proposed protocols while Section 5 evaluates their performance
via simulation. Finally, the paper concludes with Section 6.

2. RELATED WORK

We review the architecture and communication models for sensor networks,
possible security attacks, and, finally, existing security protocols.

2.1 Sensor Network Architecture

Sensor devices are designed to minimize resource requirements, e.g.,
Motes [Crossbow 2003] feature an 8-bit CPU running at 4 MHz, 128 KB of
program memory, 4 KB of RAM and 512 KB of serial flash memory powered
by two AA batteries (2850 mAh each). That is, sensors are usually built with
devices that have limited processing, communication, and memory capabilities,
in order to prolong their lifetime with the limited energy budget.

Sensor networks are deployed for data acquisition for various applications
[Hespanha et al. 1999; Vidal et al. 2002; Duckworth et al. 1996; Mainwaring
et al. 2002] ranging from physical infrastructure to habitat monitoring. A sen-
sor network is usually built with a large number (thousands or even millions)
of sensor nodes, each capable of, for example, reading temperature or detecting
(part of) an object moving nearby. Moreover, the sensor network is usually de-
ployed in a hostile/harsh environment, and removal (because of device failures
or depletion of battery energy) and addition of sensor nodes are not uncommon.
Sensors collaborate and coordinate with one another to perform a higher-level
sensing function, e.g., measuring and reporting, with accuracy, the character-
istics (such as speed and direction) of a moving object.

Many sensor network applications require location awareness. To meet this
requirement, various localization schemes [He et al. 2003; Hu and Evans 2004;
Priyantha et al. 2005] have been proposed that allow sensors to determine, with
reasonable accuracy, their relative locations within their coverage area. These
localization schemes rely on a small number of location–information-equipped
(possibly mobile) anchors that provide reference locations and estimate sen-
sors’ locations via triangulation or hop-count-to-distance translation of these
reference locations.

2.2 Communication Models

The communication models for sensor networks include cluster-based and peer-
to-peer models. The cluster-based model is typically used for a tiered archi-
tecture [Cerpa et al. 2001; Wang et al. 2003], where multiple clusters are
formed statically and/or dynamically, and a cluster head—that is more capable
than the usual member devices—manages and controls operations inside each

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:5

cluster. Cluster heads aggregate sensed data within their own cluster (intr-
acluster communication) as well as disseminating/relaying aggregated data
among themselves (intercluster communication).

Many emerging applications and services rely more on the peer-to-peer
model: each sensor communicates directly with any of the other sensors with-
out relying on dedicated devices. The main challenge associated with a sensor
network is the large volume of data to be collected and processed over the en-
tire network. To address this challenge, researchers have proposed efficient
ways of storing and extracting relevant data from the network based on the
peer-to-peer model. Heidemann, Silva, Intanagonwiwat, Govindan, Estrin, and
Ganesan [2001] proposed data to be named and communication abstractions to
refer to these names rather than sensor IDs. In a data-centric storage [Rat-
nasamy et al. 2003], the sensor network stores and looks up relevant data by
name, i.e., it hashes the data into geographic coordinates (name) using a geo-
graphic hash table (GHT) and stores data at the sensor geographically closest
to the hashed coordinates. The two-tier data dissemination [Ye et al. 2002]
provides, based on a grid structure, a data-delivery mechanism to mobile data
sinks. The locations of mobile data sinks can be looked up through the applica-
tion of location-management schemes [Li et al. 2000; Xue et al. 2001; Park and
Shin 2005a], in which each mobile node chooses a small subset of sensor nodes
and periodically updates them with its location information, thus allowing data
sources to query these nodes for the data sinks’ locations.

Both communication models call for transactions between remote nodes be-
cause data sinks can be far away from the data source and, in such a case,
the data delivery should be done via intercluster communications or data stor-
age/lookup/dissemination services. The need for long-distance communications
will continue to increase as new applications/services are expected to aggres-
sively exploit the large-scale, distributed nature of sensor networks; otherwise,
the deployment of, and internet working among, a large number of sensors
would not be necessary.

2.3 Security Attacks

Sensor networks are vulnerable to various security attacks, especially because
they are deployed in an unattended, hostile environment. For instance, an ad-
versary with a compatible radio receiver/transmitter can easily eavesdrop on-
going communication sessions, inject or modify packets, jam the surrounding
area, and even locate specific sensors or hot spots. Possible types of adversaries
can be classified, in the order of increasing strength, as: (1) passive attackers,
only eavesdropping conversations in the network; (2) active attackers, possess-
ing no cryptographic keys but capable of injecting packets into the network; and
(3) active attackers, having all keys of multiple compromised sensors. The last
type of attacks is considered as insider attacks, while the first two as outsider
attacks.

Attacks on the sensor network can be classified as: (1) physical attacks on
sensor devices, e.g., destroying, analyzing, and/or reprogramming sensors; (2)
service disruption attacks on routing, localization, and time synchronization;

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:6 • T. Park and K. G. Shin

(3) data attacks, e.g., traffic capture, replaying, and spoofing; (4) resource-
consumption and denial-of-service (DoS) attacks [Wood and Stankovic 2002]
that diminishes or eliminates the network’s capacity of performing its normal
function; and (5) sybil attacks [Douceur 2002] by which a single compromised
sensor device claims/presents multiple sensor IDs to control a substantial frac-
tion of the ID space which, in turn, invites other attacks, such as disruption
of routing services [Karlof and Wagner 2003]. The adversary may first cap-
ture, reverse-engineer, modify, and abuse sensor devices. The compromised
sensors can then be redeployed to mount many serious attacks, such as dis-
rupting network services, initiating DoS attacks, and so on. Tamper-proofing
techniques, such as the one by [Park and Shin 2005b], can be used as a coun-
termeasure to these physical attacks. The adversary may also disrupt the
integrity/availability of localization service by using bogus anchors, announc-
ing false locations or hop-count information, replaying messages (wormhole
attacks), and so on [Hu and Evans 2004].

2.4 Security Protocols

Various key establishment protocols [Asokan and Ginzboorg 2000; Carman
et al. 2002] have been developed to derive a common key among nodes us-
ing public-key algorithms like the DH protocol. However, they are unsuitable
for sensor networks, because of their excessive energy demands, let alone the
requirement of exchanging public-key certificates. In particular, existing im-
plementations of the DH protocol on sensor nodes [Watro et al. 2004; Malan
2004] consume 1.19–12.64 [J] per operation, which is too much to be usable on
devices with a limited energy budget, e.g., 61,560 [J] in Mote powered by two
AA batteries. By contrast, symmetric-key ciphers and cryptographic hash func-
tions use significantly less energy, e.g., 0.115 [mJ] in TinySec. It is, therefore,
desirable to set up keys based solely on symmetric-key ciphers.

The cluster-based key management [Carman et al. 2000; Basagni et al. 2001;
Park and Shin 2004] is concerned with (periodic) distribution and refreshment
of a shared cluster key by the cluster head acting as a key server within the clus-
ter. Although this scheme performs well for local transactions, it still has prob-
lems, e.g., each cluster head (even though better-equipped and better-protected
than member sensor nodes) is a single point of failure, implying that it may
break the network’s security if compromised. Moreover, an efficient mechanism
for securing intercluster communications must be provided to deal with trans-
actions between remote nodes. Note that using a globally shared key for all
clusters (rather than inter-cluster key management) makes the entire network
vulnerable to a single sensor compromise.

Key predeployment schemes [Carman et al. 2000; Eschenauer and Gligor
2002; Chan et al. 2003; Liu and Ning 2003a; Liu and Ning 2003b; Liu et al.
2005] statically set up pairwise shared keys based on keys loaded into sensor
devices prior to their deployment. In the probabilistic key sharing [Eschenauer
and Gligor 2002], each sensor is preloaded with multiple (a couple of hun-
dreds) keys randomly chosen from a large pool of keys and, hence, pairwise
key sharing is possible between two sensor nodes only if both happen to have

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:7

a common key. If this scheme is used to set up a key between a pair of distant
sensor nodes, it performs poorly for large-hop path communications, as they
require transcoding (decryption followed by reencryption) for each and every
hop, thereby significantly risking the security as any malicious sensor node on
the path may take control of the communication, as well as increasing sensors’
workloads (as routers) and the packet-delivery latency. Hence, it is preferable
to minimize the number of transcodings per communication for both security
and performance reasons. In fact, this need motivates the proposed DKS ap-
proach that intelligently preconfigures pairwise keys with as small a number
of remote sensors as possible.

Attempts have also been made to combine several key-sharing schemes. For
example, in [Zhu et al. 2003], each node simultaneously maintains an individ-
ual, pairwise, and cluster keys to support in-network processing. However, it
still lacks support for long-distance communications.

3. THE PROPOSED SECURE ROUTING

We first give an overview of the proposed approach and then describe details of
its components.

3.1 Overview

We propose lightweight, secure routing protocols for a network of resource-
constrained sensor devices. The proposed protocols:

—are tailored to secure communications between distant sensor nodes;
—are flexible enough to make a tradeoff between security and energy

consumption;
—augment the existing localized key sharing with a global distributed key

sharing infrastructure;
—preserve compatibility with existing link-layer security mechanisms; and
—support

1. confidentiality that protects data from unauthorized disclosures,
2. data integrity that does not allow unauthorized creation or modification

of data,
3. authenticity that correctly associates the sensor IDs with data/services/

keys, and
4. resilience against service-disruption (e.g., DoS) attacks.

These salient features will enable the proposed protocols to play a crucial role
in securing many critical applications/services, such as data storage based on
GHT, data dissemination, location management, and intercluster communica-
tions for cluster-based networks.

We use the following widely accepted assumptions.

A1. Each sensor is uniquely identified by its location estimate obtained from
the localization service executed during bootstrapping (Section 3.2.2).

A2. Used as an underlying routing protocol is a well-known geographic for-
warding protocol (GFP) [Karp and Kung 2000; Jain et al. 2001], in which a

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:8 • T. Park and K. G. Shin

Secure
Network-Layer

DKS

Geographic Forwarding Protocol

SGFP

TKEP

Application / Service

Fig. 1. The proposed secure network layer.

source or an intermediate sensor sends each packet to one of its neighbors
geographically closest to the packet’s destination.

A3. For the proper operation of GFP, each sensor keeps a list of its neighbors’
locations based on BEACON packets exchanged.

For compatibility, each sensor maintains its own key, as well as the cluster
(shared within its cluster) and/or pairwise keys (shared with its neighbors).
The cluster and pairwise keys are created during the initial bootstrapping of
the network, via the cluster-based key management and key predeployment
schemes, respectively. The challenge in this environment is that each sensor
does not have keying relationships with most of other sensors located outside
the local cluster and/or its neighborhood. To address this challenge, we present
a distributed key-sharing scheme in which a chosen sensor elects, from the en-
tire network, a small number of other sensors to serve as distributed key servers
(DKSs) by creating/sharing unique keys. The proposed scheme builds an effi-
cient, global key-sharing framework that covers the entire network throughout
its lifetime.

Built on top of this framework, we propose two protocols for secure rout-
ing: a secure geographic forwarding protocol (SGFP) and a temporal-key estab-
lishment protocol (TKEP). SGFP provides a secure distributed lookup service
that executes recursive DKS queries, each secured with a shared key, until a
neighbor of the destination node is found. This can be viewed as a secure ex-
tension of the distributed hash table (DHT) routing [Li et al. 2000; Stoica et al.
2001; Ratnasamy et al. 2001; Rowstron and Druschel 2001] for peer-to-peer
and ad-hoc networks. TKEP then relies on SGFP to realize the purely sym-
metric cipher-based key setup. As shown in Figure 1, these security building
blocks interact with each other to form a secure network layer between applica-
tions/services and GFP. Accordingly, applications/services invoke either SGFP
(for per-packet protection) or TKEP (for securing session establishment), which
will then ask GFP to deliver the security-added packets. Note that we use GFP
simply as a mechanism to forward the packets created/processed securely by
SGFP and TKEP, and that security depends on how each packet’s payload is
handled, but not on how the packet gets to its destination.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:9

We define and use three types of unique symmetric keys: (1) a sensor key
(SK) individually generated by each sensor, (2) a mission key (MK) shared by a
sensor and each of its DKSs (or each of its direct neighbors), and (3) a temporal
key (TK) for encrypting/authenticating a data traffic session. We use notation,
SKs, MKi, j and TKi, j , to refer to the SK of sensor s, the MK and TK shared
between sensors i and j , respectively. During their initialization, sensors i and
j agree on a unique MKi, j . TKi, j will be established, whenever needed, between
i and j using TKEP.

3.2 Distributed Key Sharing

The distributed key sharing is proposed to address the challenges in dealing
with a large number of battery-powered sensors. It differs from the dedicated
key-server solution in that (chosen) sensors act both as key servers (i.e., DKSs)
storing a small number of MKs shared with other sensors chosen in the network
coverage area, and as key clients querying DKSs for secure routing. It is essen-
tially a distributed database that is cooperatively maintained and accessed.

3.2.1 DKS Architecture. To control the overhead of initially setting up
DKSs, we enforce that a sensor, called a DKS sensor, builds the DKS map only
if it has no DKS sensor within its neighborhood (just like Bluetooth’s piconet).
Otherwise, a sensor establishes a pairwise key shared with one of its neighbors
that acts as a DKS sensor, thereby relying on that sensor for secure routing.
That is, if a sensor has not heard from the DKS sensor (e.g., via a BEACON
packet), it declares itself as a DKS sensor by broadcasting this decision to all
its neighbors. This way, only a small fraction (≤ 10%) of sensors will execute
the DKS setup process.

Figure 2 shows how each DKS sensor constructs its own map of DKSs as-
sociated with its geographic location. It partitions the network into squares of
various levels and elects DKS(s) in each square. A sensor elects its DKSs based
on the facts that (1) distribution of its DKSs should be denser in its proximity,
but sparser farther away from it, and (2) DKSs are direction-aware, i.e., one
DKS for each of eight directions at the same level.1 Here we allow up to level-K
squares and DKSs.

The DKS map of a DKS sensor s is built as follows. First, a level-0 square,
L0(s), with a predefined area λ2, is formed around s, which then establishes
pairwise keys shared with each of the sensors in L0(s), as well as the shared
cluster key. Second, eight level-1 squares, L1,m(s), m = 1, . . . , 8, each of the same
size as L0(s), are located around L0(s). The DKS sensor closest to the center of
each L1,m(s) is then selected as a level-1 DKS, denoted as DKS1,m(s). Third,
eight level-2 squares, L2,m(s)’s, are formed to surround the cumulative area of
level-0 and all level-1 squares, each with area 9λ2, i.e., nine times the area of
L0(s). Again, the DKS sensors closest to the center of each level-2 square are
elected as level-2 DKSs, i.e., DKS2,m(s), m = 1, · · · , 8. Likewise, higher-level
squares (up to level-K) are constructed and DKSs elected. All DKS sensors in
the network construct their own map of DKSs by using the above procedure.

1The eight directions—NW, N, NE, E, SE, S, SW and W—are assign numbers 1, . . . , 8, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:10 • T. Park and K. G. Shin

L1,1 L1,2 L1,3

L1,5L1,7

L1,8

L2,1 L2,2 L2,3

L2,8 L2,4

L2,5L2,6L2,7

L1,4

L1,6

: DKSs for

Fig. 2. The map of DKSs for a DKS sensor (located at the center) when K = 2. It partitions the
network into squares of levels 1 & 2 and elects DKS for each square.

Each DKS sensor elects no more than 8K DKSs when the network has been
configured to have up to level-K squares. For instance, when K = 2, it elects
up to 16 DKSs regardless of the total number of sensors in the network. The
average value (over the entire network) is slightly less than 8K , since sensors
near the border of the network area would elect less than 8 DKSs for outer levels.

3.2.2 Initial Bootstrapping. Each and every sensor, right after its deploy-
ment, executes the conventional bootstrapping process that consists of the fol-
lowing sequential steps:

B1. determine its location estimate by running the (attack-tolerant) localiza-
tion algorithm with other sensors;

B2. generate its own SK;
B3. set up pairwise keys (and a cluster key) with its neighbors (and a cluster)

according to the existing key predeployment schemes such as [Eschenauer
and Gligor 2002]; and

B4. elect a DKS sensor (either itself or a neighbor) with all its neighbors.

In step B1, we may apply the existing localization protocols that can de-
feat and/or resist localization-targeted attacks. One of such protocols is VeIL
[Park], under which sensors cooperatively safeguard the localization services by
exploiting the high spatiotemporal correlation between adjacent nodes, hence,
requiring no cryptographic bindings among sensors at this stage. For details of
VeIL, see [Park].

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:11

After step B3, any sensor s establishes cryptographic bindings between the
pairwise keys and the neighbors’ IDs leading to the construction of secure links
with each of its neighbors, e.g., it agrees on a unique MKs, g with its neighbor
g . The key predeployment method, albeit communication intensive, has been
widely used in, and is known to be a feasible solution for, resource-constrained
sensor devices. The communication overhead would not be an issue as long as
the bootstrapping is executed only once per sensor.

3.2.3 DKS Setup. After bootstrapping, a sensor s, if elected as a DKS sen-
sor, executes the DKS setup procedure to build key sharing relationships with
other DKS sensors. This is to construct, for each of the DKS sensors, a cryp-
tographic binding between a MK and the IDs of the two remote DKS sensors
based on already-established pairwise keys.

During the DKS setup, s sequentially contacts each of its candidate DKSs
and establishes a shared MK. That is, for 1 ≤ k ≤ K and 1 ≤ m ≤ 8, sensor s:

1. identifies the location of the center of Lk,m(s), based on its own location and
DKS map;

2. discovers fk,m = DKSk,m(s) that is closest to this desired location; and
3. sets up a shared MKs, fk,m with fk,m.

Here, fk,m can be found easily as follows. First, an fk,m-discovery packet is
relayed using GFP until it arrives at the first sensor that has the center of
Lk,m(s) within its transmission range. Note that GFP [Karp and Kung 2000] is
guaranteed to find such a sensor, if it exists, even in the presence of hole(s) along
the path. If the sensor has a neighbor closer to the center of Lk,m(s), it forwards
the packet to that neighbor; otherwise, the sensor determines itself or its DKS
sensor as fk,m of s. If the sensor fails to find fk,m (possibly because of a hole near
the desired location), it may flood the received packet within its proximity to find
a DKS sensor eligible to be fk,m. Also, note that the use of insecure GFP in the
fk,m discovery does not cause any security vulnerability, because GFP is just an
underlying routing protocol used to deliver the security-added packets that will
be processed by external mechanisms like the DH protocol, as described next.

We present three different ways of setting up MKs, fk,m . First, the DH pro-
tocol can be applied to establish a unique MK between s and fk,m. The use of
DH protocol at this stage is acceptable, because it is executed only during the
DKS setup while future transactions will be secured by our proposed protocols.
Second, s and fk,m can use the key predeployment scheme (over a multihop
path) to find if they have a common preloaded key. If so, they can come up
with their own MKs, fk,m using this common key. Third, we may simplify the
MK establishment under the assumption that each sensor is safe against phys-
ical attacks for a certain period of time after its initial deployment, during
which it can complete the DKS setup.2 Then, relaying sensors would not harm
the DKS setup process and, hence, s and fk,m exchange their SKs and ran-
dom numbers, n1 and n2, and then compute MKs, fk,m using these values. The

2The rationale behind this assumption is that it would take time for an adversary to locate/capture
the victims.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:12 • T. Park and K. G. Shin

Fig. 3. The routing table of s, having 8K DKS entries.

delivery of {SKs, n1} from s to fk,m is protected by pairwise keys of intermediate
sensors: s uses its pairwise key to get to one of its neighbors, which will then
forward it to the next sensor closer to fk,m after reencrypting it with its own
pairwise key; this process will be repeated until {SKs, n1} arrives at fk,m. Like-
wise, {SK fk,m , n2} will be delivered from fk,m to s via hop-by-hop transcoding.
Finally, s and fk,m computes MKs, fk,m = F (SKs, SK fk,m , n1, n2), where F is a
fixed hash function. Again, the hop-by-hop transcoding is used only once during
this MK setup while SGFP will be applied to protect future communications
from attacks and compromised sensors.

A complete DKS setup protocol is summarized as follows. For each k ≤ K
and m ≤ 8,

D1. s generates a packet containing the location of Lk,m(s)’s center and the
security context (necessary to set up MK), and geographically forwards the
packet toward the center of Lk,m(s);

D2. a sensor receiving the packet:
D2.1. if it (or its neighboring DKS sensor) is closest to the location marked

in the packet, declares itself (or its neighbor) as fk,m, who will then reply
back to s with its own location and security context;

D2.2. else, relays the received packet to the next hop toward the center of
Lk,m(s);

D3. both s and fk,m compute (or agree on) a unique MKs, fk,m and store it in their
routing table.

Figure 3 shows the structure of the routing table of DKS sensor s built ac-
cording to the above procedure. It consists of three fields—the DKS level, the
location, and a shared MK—for all 8K DKS sensors chosen during the DKS
setup. Hence, each DKS sensor stores, at most, 8K additional MKs (e.g., 16
MKs when K = 2), which is significantly fewer than the requirement of N 2

MKs (where N is the total number of sensors in the network) needed for maxi-
mum security. This indicates that our distributed key sharing is very efficient in
terms of the key storage requirement, incurs a very low degree of key sharing,
and scales well with the network size.

When K = 2, the DKS setup incurs eight medium-distance (level-1) and eight
long-distance (level-2) handshaking processes to less than 10% of sensors in

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:13

the network. This overhead of initially setting up DKSs should not be an issue,
as it takes place only once in the beginning (and incremental reconfiguration
of DKSs thereafter as described in Section 3.5) and only those chosen sensors
participate in computing/sharing MKs. Moreover, this overhead is insignificant,
compared to the overhead of localization (that must be executed for other appli-
cations/services). Both SGFP and TKEP, even with this overhead, will extend
the lifetime of the network significantly by consuming much less energy than
existing schemes, especially for securely transporting long-distance traffic.

3.3 Secure Geographic Forwarding

SGFP is a multihop routing protocol that establishes a secure, unidirectional
path between two arbitrary sensors based on the limited and distributed knowl-
edge of DKS sensors’ locations/MKs. SGFP achieves a high level of toler-
ance/robustness to sensor compromises by minimizing the number of transcod-
ings for each route discovery.3

We use the term “link” to refer to GFP between two sensors in the DKS
relationship. Each fi → f j is said to be a level-k link if f j = DKSk,m(fi). The
security is preserved over each link by using the shared MK, e.g., MK fi , f j for
the fi → f j link. Since each link uses a unique MK, the edge sensor relaying
the packet from one link to another should transcode the packet, e.g., from
MKs, fi to MK fi , f j .

The heart of SGFP is the DKS selection rule that determines a DKS to estab-
lish a link to: if a node is not a DKS sensor, it chooses a neighbor DKS sensor;
else, it chooses one of its DKSs that significantly reduces the distance to the
destination. Using this simple DKS selection rule, SGFP constructs the path by
concatenating multiple GFP links, each of which is secured by a distinct MK.
Hence, SGFP successfully sets up a path to d upon successful completion of all
of its underlying GFP operations. Described below is SGFP:

S1. if a sensor s is a DKS sensor,
S1.1. it forwards the packet to an intermediate sensor fk,m (k ≤ K)—

instead of the destination d—that is closest to d among DKSs listed
in its routing table;

S1.2. fk,m, upon receiving the packet, forwards the packet to one of its own
DKSs closer to d ;

S1.3. the subsequent forwarding is handled in the same way until the packet
reaches f1,m′ for which d ∈ L0(f1,m′); and, finally,

S1.4. f1,m′ uses a pairwise/cluster key to deliver the packet to d ;
S2. else, it asks its nearby DKS sensor to deliver the packet to d (through

steps S1.1–S1.4).

SGFP takes a “divide-and-conquer” approach: when d belongs to a level-k
square of s where 1 ≤ k ≤ K , SGFP builds at most k links, s → fk,∗ → · · · →
f1,∗, until a DKS sensor belonging to L0(d) is found. Figure 4 illustrates how

3The transcoding of a packet consists of (1) decrypting and verifying the authenticity of the packet
using the current MK, then (2) reencrypting and recomputing the message authentication code
with the next MK.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:14 • T. Park and K. G. Shin

: DKSs for s: DKSs for f2,1

L

MK

2,1(s) d L1,3(f2,1)

s

f2,1

f
f ,f

1,3
2,1 1,3

f2,1S,MK

Fig. 4. SGFP from s to d .

SGFP forwards the packet from s to d when d resides in L2,1(s). s (being a DKS
sensor) selects f2,1 = DKS2,1(s) according to the DKS selection rule, encodes
the packet with MKs, f2,1 , then geographically forwards it to f2,1. Since f2,1 �= d ,
f2,1 repeats the same procedure. d now belongs to L1,3(f2,1) and, hence, f2,1 gets
f1,3 = DKS1,3(f2,1), transcodes the packet with MK f2,1, f1,3 , and geographically
forwards it to f1,3. Note that f2,1 suffices to search up to level-1 DKSs. Finally,
f1,3 finds that d is its neighbor, thus forwarding the received packet to d using
the pairwise or cluster key.

When d is outside all level-K squares, s chooses and forwards the packet
to its level-K DKS, f ′

K ,∗ closest to d . If d belongs to one of f ′
K ,∗’s squares, the

packet is routed via f ′
K ,∗ → f K ,∗ → · · · → f1,∗; otherwise, f ′

K ,∗ again forwards
the packet to one of its level-K DKS. Therefore, it incurs one or more level-K
links in the beginning.

It is possible that d is not directly reachable from f1,∗ due mainly to the errors
in the location estimates, irregular deployment of sensors, absence of the shared
key, etc. In such a case, f1,∗ selects, and forwards the packet to, its neighbor
g which is closer to d . Then, g will likely have a pairwise key, MKg ,d , shared
with d , and successfully deliver the packet. Otherwise, g will repeat the same
procedure. Thus, SGFP incurs additional (hop-by-hop) transcoding to reach d .

3.4 Temporal-Key Establishment

When two sensors need to maintain a persistent session for a certain period of
time, it is preferable to establish a shared TK for that session if they do not yet
have a shared key. To meet this need, we present TKEP that enables any two
sensors to agree on a common TK, meeting the following two requirements:

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:15

Fig. 5. TKEP between s and d .

R1. none of the two sensors can dictate the value of TK, and
R2. the rest of the network should not be able to duplicate the TK established

between the two.

TKEP is a purely symmetric cipher-based key setup protocol and, hence, serves
as a lightweight alternative to the resource-demanding DH protocol in a large-
scale network of sensors.

3.4.1 Basic TKEP. Built on top of SGFP, TKEP realizes the concept of spa-
tial diversity by exploiting the novel DKS infrastructure. Suppose s initiates
TKEP between itself and d where both s and d are DKS sensors (for ease of
description). If forward and backward SGFP paths (s-to-d and d -to-s, respec-
tively) were run via different sets of DKSs, both sensors could contribute to TK
via each of the two paths, while no other sensors could duplicate the complete
TK. In practice, they exchange random seeds, Rs and Rd (generated by s and d ,
respectively) using SGFP and, then, individually compute TKs,d = F (Rs, Rd),
where F is a fixed hash function. TKEP consists of the following steps.

T1. In the forward path, s:
T1.1. randomly generates Rs;
T1.2. transmits Rs to d using SGFP.

T2. In the backward path, d :
T2.1. randomly generates Rd ;
T2.2. transmits Rd to s using SGFP.

T3. s and d individually compute TKs,d = F (Rs, Rd).

Figure 5 illustrates how TKEP works between s and d . Let fk,∗’s and rk,∗’s re-
fer to DKSs on the forward and backward paths, respectively. Then, the forward
and backward SGFP paths are routed via { f2,1, f1,3} and {r2,5, r1,7}, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:16 • T. Park and K. G. Shin

As shown in this example, TKEP satisfies the requirement R1 that both s and
d must equally contribute to the value of TK. The requirement R2 (keeping
the rest of the network from duplicating the TK) would be met if no sensors
other than s and d can get the plaintexts of both Rs and Rd . This condition is
automatically met by using SGFP, as explained next.

Thanks to the way DKSs are constructed, all fk,∗’s and rk,∗’s must be distinct
sensors. For example, in Figure 5, f2,1 and f1,3 reside in L1,7(d) (one of d ’s
level-1 squares) and L0(d) (d ’s level-0 square), respectively, while r2,5 and r1,7
must belong to the d ’s level-2 square (= L2,5(d)) and, trivially, DKSs in each
of the two paths must be distinct. Therefore, no sensor can serve as DKS for
both forward and backward paths. Moreover, all the MKs involved in TKEP
are unique. Each link is thus secured using MK known only to the end sensors,
implying that no intermediate sensors on that link can decipher it. As a result,
sensors other than s and d may decrypt at most one of Rs and Rd , but cannot
reproduce both of them. For example, even if the link d → r2,5 uses f1,3 as
a relaying node (in Figure 5), f1,3 does not know MKd ,r2,5 and, hence, it can
neither decrypt Rd nor construct TKs,d .

3.4.2 TKEP with Randomization. To withstand attacks from compromised
DKSs,4 s (and d) “randomly” selects the next DKS fk,∗ (and rk,∗) to form an SGFP
path to d (and s). Note that only s and d randomly select the next DKS while in-
termediate DKSs follow the basic TKEP, thus guaranteeing delivery of packets
to their destination. That is, if the basic TKEP converges, so does this scheme.

Because the initial DKSs are randomly picked, the odds that two compro-
mised nodes (sharing common information) are on each of the two paths are
very small. Thus, it is very difficult for the adversary to create a general policy
to choose victims to compromise. For example, he has to compromise 14 sen-
sors to figure out TK of a single (s,d) pair. However, this would be too much of
an effort for the attacker to make because there are no hot spots or dedicated
devices (like cluster heads) in our distributed environment and, hence, he has
no other way but to compromise as many sensors as possible to take control of
the entire network.

3.4.3 μ-Split TKEP. We may achieve the highest-level protection of TK
for a session between a pair of distant nodes s and d in the presence of com-
promised nodes by splitting each random seed into μ pieces and then for-
warding each of them over a randomly chosen SGFP path. Note that there
may be as many as 8K distinct routes because it may choose one of 8 DKSs
for each level. As a result, both s and d collect all the pieces and compute
TKs,d = F (Rs,1, . . . , Rs,μ, Rd ,1, . . . , Rd ,μ). This scheme is capable of trading se-
curity for computation (and energy consumption) via the choice of μ.

3.5 Steady-State Operations

We now describe the DKS reconfiguration process that adds/removes DKS sen-
sors to/from the DKS infrastructure and renews shared MKs.

4See Section 4.3 for details of this attack scenario.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:17

3.5.1 DKS Reconfiguration. The DKS architecture is reconfigured period-
ically, setting up a new DKS sensor s to replace the old one c within its prox-
imity. It is compatible with the power-saving mode operation [Chen et al. 2001;
Miller and Vaidya 2005], allowing sensors to sleep to conserve energy as well
as balance their energy consumption. Using this DKS reconfiguration, nearby
sensors periodically rotate (in an a priori agreed-on order) the role of a DKS
sensor among themselves while keeping the rest in a low-power state if the
power-saving mode was activated. This enables our proposed protocols to resist
attacks on DKS sensors because a malicious device cannot dictate the role of a
DKS sensor, thus significantly lowering the risk of network-wide service disrup-
tion and stressing the adversary to compromise many sensors. The frequency
of reelecting DKS sensors is a network-wide design parameter that makes a
tradeoff between security and energy consumption. It can be preconfigured at
the time of deployment.

The DKS reconfiguration that replaces c with s (a neighbor of c) consists of
the following operations: s discovers the 8K sensors—that elected c as their
DKS—this operation can be done efficiently via the following steps. For each
k ≤ K and m ≤ 8:

1. s contacts gk,m that is closest to the center of Lk,m(s) by executing the dis-
covery protocol of DKS setup;

2. gk,m broadcasts locally (within at most a few hops) to find fk,m that has a
shared MK with c; then

3. fk,m deletes (or deactivates) the entry corresponding to c from its routing
table and elects s as a new DKS by establishing a shared MK fk,m,s with s.

Upon successful completion of the above operations, s serves as DKSs for the
8K sensors that have been relying on c. Note that fk,m expects to be contacted
periodically by no more than one sensor (near the current DKS) and, hence,
any activity deviating from this normal behavior will be regarded as an attack.
Note, also, that this scheme achieves fair energy consumption among sensors
regardless of the addition of DKS sensors.

3.5.2 Renewal of MKs. It is required to renew keys in stream ciphers such
as that of TinySec resulting from the limitation in the maximum number of
packets that can be transmitted using the same key. In our proposed key shar-
ing, two DKS sensors can set up a new MK from two random seeds, each (1) gen-
erated independently and individually, (2) encrypted with the current shared
MK, and then (3) exchanged via GFP links. The MK can be renewed periodically
to simplify the implementation on sensor devices.

4. SECURITY ANALYSIS

This section discusses how our proposed protocols defend against possible
attacks.

4.1 Prevention of Sybil Attacks

It is possible that a compromised sensor joins the network and creates/uses
many different IDs/locations to mount a sybil attack. However, we detect/

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:18 • T. Park and K. G. Shin

prevent sybil attacks by providing countermeasures in all our protocols as de-
scribed below.

First, the DKS setup and reconfiguration mechanisms can defeat sybil at-
tacks as follows. It is impossible for a DKS sensor to claim multiple locations
because the eligibility for DKS, as well as the underlying packet delivery, de-
pend on locations. That is, a malicious DKS sensor cannot make its (multiple)
fake locations inserted into the others’ routing tables during the DKS setup.
Moreover, the sybil attack is not an issue for non-DKS sensors, because they
should ask, for secure routing, their own DKS sensors, each of which may act as
a central entity for checking 1-to-1 correspondence between IDs and locations
of sensors in its neighborhood.

Second, a malicious sensor node cannot claim arbitrary locations due mainly
to the correlation among locations of neighboring sensors. Let’s assume a (sim-
ple or two thirds) majority of neighbors of a sensor within the region of interest
are well behaving. Then, if a malicious device announces a new location with-
out changing the ID, its neighbors would easily detect this discrepancy via
cooperative location validation among themselves to blacklist/block the mis-
behaving sensor from the network. Thus, the malicious node must risk being
detected if the false location deviates too far away from its true location because
its unusual distances to its neighbors make it conspicuous in their neighbors’
routing tables. Otherwise, the bogus locations would not impose more threat
than a compromised node, which does not lie about its location.

Third, the malicious node may claim to be a new sensor node by creating the
binding of ID and falsified location. In this case, however, it must go through
the bootstrapping and DKS setup phases to be qualified as a legitimate sensor
as well as establishing shared keys. If addition of new sensors is disallowed
after network-wide bootstrapping, the neighbors can simply ignore the new ID
from the network; otherwise, we may easily capture the misbehaving device
by applying a strong access control mechanism, such as the program integrity
verification (PIV) in [Park and Shin 2005b], during the initial setup.

In summary, the sybil attack takes place in a decentralized virtual network,
the ID space of which is completely decoupled from physical network connec-
tivity [Douceur 2002]. However, this is clearly not the case in our proposed
protocols and environments thanks to their reliance on spatial correlation. A
systematic, distributed way of detecting invalid locations (i.e., far from the ma-
jority of others’ locations in the neighborhood) has been proposed in [Park] for
the development of attack-tolerant localization service.

4.2 Attacks on DKS Setup/Reconfiguration

The key management protocols would usually become susceptible to mas-
querading and man-in-the-middle attacks without proper key authentication
that cryptographically binds the key and the communicants’ IDs. Fortunately,
this security risk does not exist in our distributed scheme, because it first estab-
lishes the “local” cryptographic bindings using a well-known method and then
builds the proposed “remote” bindings using the thus-established local bind-
ings. Therefore, if the former resists the above-mentioned attacks, so does our

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:19

distributed scheme. Moreover, the DKS setup/reconfiguration is safe against
man-in-the-middle attacks if the DH protocol (one of three options as described
earlier) is used to establish MKs.

A malicious device can appoint itself as a DKS sensor to intercept messages
to be transcoded by itself. However, our proposed protocols successfully tolerate
this threat via DKS reconfiguration (Section 3.5.1), under which all sensors in
the neighborhood periodically rotate the role of a DKS sensor. Thus, the mali-
cious device cannot always eavesdrop messages, because it can neither dictate
the role of DKS sensor nor freely initiate a DKS reconfiguration, which, in
turn, significantly lowers the risk of abusing the DKS reconfiguration process.
Moreover, as described in Section 3.4.2, the attacker that owns multiple com-
promised slaves can only decipher a small fraction of network traffic, thanks to
our distributed environment that uses neither hot spots nor dedicated devices.
To further thwart attacks from compromised nodes disguised as DKS sensors,
we may apply a soft tamper-proofing protocol [Park and Shin 2005b] that does
a deep inspection of the program code of the node chosen as a DKS sensor to
make sure it is genuine.

Finally, one may argue a malicious device can establish MKs with a large
number of other DKSs by replying, to the packet destined for some remote
location, as though it were the correct destination. However, this belongs to the
category of sybil attacks and, hence, a cooperative defense mechanism like the
one in [Park] can be applied to defeat this attack.

4.3 Attacks on TKEP/SGFP

To establish a TK between s and d , s sends Rs through the forward SGFP path,
and d replies with Rd through the reverse SGFP path. With a collusion attack,
if the two malicious nodes, m1 and m2, are on each of the two paths, they may
share information to reconstruct the TK. However, this collusion attack is quite
opportunistic in that the secrecy of TK is broken only if the attacker happens
to own DKSs on both paths. As analyzed in the Appendix, this probability
is very small unless he compromises a large number of sensors in the entire
network. Moreover, the application of randomization and μ-split schemes in
selecting DKSs, as well as DKS reconfiguration, make TK eavesdropping very
unlikely. Therefore, TKEP “tolerates” collusion attacks by degrading its security
gracefully as the number of undetected compromised sensors increases.

We do not consider DoS attacks on SGFP (precisely speaking, on GFP) as-
suming the existence of an external countermeasure to the DoS attacks.

4.4 Tolerance to Physical Attacks

Both SGFP and TKEP tolerate physical attacks very well since they are robust
to compromises of individual sensors, thanks to the distributed key sharing that
allows each DKS sensor to share only a small number of MKs. By compromis-
ing/owning a sensor c, an attacker can only take over the data traffic passing
through and transcoded by c. Therefore, the only way to take control of a sig-
nificant portion of network traffic is to capture/compromise as many sensors
as possible. Moreover, there is no difference between random and “planned”

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:20 • T. Park and K. G. Shin

Table I. PSGFP and PTKEPμ
versus pc

pc PSGFP PTKEP1
PTKEP3

0.001 0.0041 0.000017 1.95 × 10−14

0.005 0.0202 0.000409 2.90 × 10−10

0.010 0.0401 0.0016 1.75 × 10−8

0.020 0.0791 0.0062 0.99 × 10−6

0.050 0.1887 0.0356 1.66 × 10−4

selection of victims. For instance, the adversary can capture a “cut” through
the network to monitor all traffic over the cut. However, he can decode only a
small portion of the traffic that happens to have been encoded with the key he
knows of. Consequently, the security will be degraded gracefully as the number
of undetected compromised sensors increases. This is important as it stresses
the adversary’s attempts to subvert the entire network. Note that the adver-
sary can still eavesdrop communications of specific sensors for a certain period
of time by compromising those sensors serving as DKSs for them.

To quantify the tolerance/robustness of SGFP and TKEP to sensor compro-
mises, we derive, in the Appendix, the following probabilities: (1) PSGFP of eaves-
dropping SGFP packets and (2) PTKEPμ

of breaking μ-split TKEP. Both proba-
bilities provide a useful basis for evaluating robustness to sensor compromises
in very large-scale sensor networks. Table I shows the numbers obtained from
Eqs. (10–12) (derived in the Appendix) while varying the ratio of the number
of compromised sensors to the total number of sensors (fully captured in pc)
when K = 3 and α = 1.2.5 PSGFP is shown to be proportional to pc, i.e., approx-
imately four times pc. This means that the required number of sensors to be
compromised will be very large, demonstrating the robustness of SGFP. PTKEPμ

is shown to be almost negligible, when there are a small number of compro-
mised sensors, and to increase gradually with pc. Moreover, when μ = 3, it is
very unlikely for an adversary to be able to eavesdrop even after compromising
5% (e.g., 500 out of 10,000) of sensors, indicating TKEP’s robustness to sensor
compromises.

5. PERFORMANCE EVALUATION

We use simulation to evaluate the performance of proposed protocols in terms
of the overhead and energy consumption. We first quantify the initial DKS
setup overhead, then compare the energy consumption of TKEP and the DH
key setup protocol, and finally evaluate the security/energy tradeoffs.

5.1 Simulation Environment

Although ns-2 is widely used to simulate network protocols, it cannot be used
to evaluate our proposed protocols for the following reasons. First, the ns-2
simulation is limited to network sizes in the order of a couple of hundreds
of sensors [Ratnasamy et al. 2003] and, hence, it is very difficult, albeit not
impossible, to simulate very large-scale networks. By contrast, SGFP and TKEP

5See the Appendix for the definition of pc, K and α.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:21

are tailored to very large-scale networks of thousands to millions of sensors,
thanks to their capability to work at arbitrary K values, meaning that ns-2
is unsuitable for the evaluation of these protocols. Second, we do not need a
detailed simulation of link-layer behavior, packet losses, sensor dynamics, and
the effects of energy depletion, because we are only interested in network-layer
behaviors. We, therefore, developed a customized simulator with a simple radio
transmission model: at any time, each sensor can directly communicate with all
the sensors within its transmission range, and the packet delivery to neighbors
is instantaneous and error-free. It is reasonable to use this simplified model as
sensors are stable and stationary, and hence, the neighbors of each sensor do
not vary with time [Ratnasamy et al. 2003].

Our simulation environment is based on a network of 10,000 sensors, placed
in a square area of 200 × 200 [m2] and electing up to level-3 DKSs (K = 3).
Each sensor has a radio transmission range of radius 5–6 [m].6 The location
(estimate) of each sensor is generated randomly within the network coverage
area. That is, we do not simulate the localization service because it is not our
intended contribution in this paper. The GFP is implemented/simulated as fol-
lows: either the source or the relaying sensor determines its next-hop sensor as
the one closest in the direction to the destination. The distance to a neighbor
is not considered, as the selection of next-hop based on specific distance-based
policies (e.g., either minimum- or maximum-distance policies) has its own mer-
its and demerits. We, therefore, only use the direction-based policy, assuming
that each sensor can adjust the transmission power according to the distance
to the next-hop sensor so as to minimize interferences.

5.2 Overhead of DKS Setup

We measured the total number of packets generated and sent/relayed during
the DKS setup (counting each hop as a distinct packet) while varying the size
of level-0 square and the transmission range. We also counted the number of
DKS sensors chosen during this setup; it elected 6.8–9.7% of sensors as DKS
sensors, depending on the transmission range (i.e., the larger the transmission
range, the smaller the number of DKS sensors). We then divided these values by
the total number of sensors to compute the average number of packets relayed
per sensor. This average behavior is important, because all sensors take turns
to serve as DKS sensors throughout their lifetime (Section 3.5). Figure 6 plots
the results: each sensor received/relayed less than 20 packets during the DKS
setup. Moreover, when K is set to 2, this overhead gets even smaller. This
initial DKS setup overhead is reasonable (and low) considering the localization
overhead that takes place prior to the DKS setup.

5.3 Energy Consumption

Experimental results [Malan 2004; Carman et al. 2000] have shown public-key
algorithms to consume a significant amount of energy. To compare the energy

6Note that this choice is just for the purpose of simulation. The realistic values for transmission
range and network coverage area would depend on other factors, such as the accuracy of localization
service.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:22 • T. Park and K. G. Shin

5 6 7
0

5

10

15

20

25

Length of the Level-0 Square [m]

A
v
e
ra

g
e

 #
 P

a
c

k
e
ts

 R
e
la

y
e
d

 p
e
r

S
e
n

s
o

r

Tx radius: 5 [m]

Tx radius: 6 [m]

Fig. 6. The average number of packets relayed by each sensor.

Table II. Energy Costs of TinySec and DH Protocols

TinySec DH
Encryption MAC Protocol

Energy [mJ] 0.04796 0.06677 1185

Table III. Comparison of Energy Costs for TKEP and DH

Energy [mJ] TKEP/DH
μ TKEP DH [%]
1 2.2603 0.19
2 5.4382 1185 0.46
3 8.1573 0.69

consumption of TKEP and DH protocols, we use the measurement results of
[Malan 2004] for the energy costs of relevant ciphers (summarized in Table II).

As derived in the Appendix, the average number of transcoding attempts per
TK setup for both basic and μ-split TKEP are 2(K +α + pn − 1

8) and 2μ(K +α +
pn + 7

8), respectively. Using the fact that each transcoding requires two TinySec
encryptions and MAC computations, we can compute the energy consumption
of TKEP given the protocol parameters such as μ, K , α, and pn. When K = 3,
α = 1.25, and pn = 0.9, Table III presents, as a function of μ, the energy costs
for TKEP and the DH protocol, and the amount of energy savings by TKEP. The
result shows that TKEP consumes energy far less than 1% of the DH protocol,
confirming its high energy efficiency.

5.4 Security-Energy Tradeoffs

Tables I and III demonstrate how TKEP can make a tradeoff between secu-
rity and energy consumption of cryptographic operations. Figure 7 plots the
probability, PTKEPμ

, of eavesdropping TKEP as a function of energy consump-
tion in [mJ], while varying the percentage of compromised sensors. The result
confirms PTKEPμ

to be inversely proportional to the energy consumption. Thus,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:23

2 5 8 11 14
10e-18

10e-12

10e-06

1

Energy Consum ption [m J]

P
ro

b
a
b

il
it

y
 o

f
E

a
v
e
s
d

ro
p

p
in

g
 T

K
E

P

K = 3

 5 % compromised

 2 % compromised

 1 % compromised

0.5% compromised

Fig. 7. PTKEPμ
vs. energy consumption.

TKEP is very “flexible” in that any sensor, either as source or destination, can
reconfigure TKEP according to its residual energy.

We also measured the number of transcodings for both SGFP and GFP to
evaluate SGFP’s capability to withstand compromised sensors. GFP incurred
24.7–27.8 transcodings (hops) per path, while SGFP required about 5.5
transcodings per path. That is, the risk of compromised sensors to SGFP is
just about one fifth of the hop-by-hop transcoding scheme.

In terms of the energy consumption in communicating packets, SGFP gener-
ated 20–30% more packets than GFP. This increase was caused by making the
insecure GFP secure. Without SGFP, one would have to rely on the hop-by-hop
transcoding (via the key predeployment schemes) or the on-demand key estab-
lishment (via the public-key algorithms). However, the former suffers higher
risks to physical attacks as well as larger processing and key storage overheads,
while the latter incurs extremely large processing overheads. This shows SGFP
successfully achieved the two conflicting goals of both high-level security and
low-energy consumption, by effectively trading away the communication over-
head for processing and the key storage overhead.

6. CONCLUSION

In this paper, we proposed two protocols for secure routing—a secure ge-
ographic forwarding protocol (SGFP) and a temporal-key establishment
protocol (TKEP)—as cost-effective security solutions for large-scale sensor
networks. The distributed key sharing played a crucial role in our proposed
protocols: by having a sensor share keys only with a small number of other sen-
sors chosen based on their geographic location and communication direction,
we successfully (1) constructed a light-weight, secure network layer and (2)
replaced the resource-expensive DH key-setup protocol with a purely symmetric
cipher-based (hence, energy efficient) alternative.

Our security analysis and performance evaluation have shown that the dis-
tributed key sharing is practically useful and effective in defeating and/or

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:24 • T. Park and K. G. Shin

tolerating many critical attacks, such as sybil, physical, man-in-the-middle, and
collusion attacks, while incurring (consuming) only a small amount of overhead
(energy) in the packet forwarding and key setup. This, in turn, enabled the re-
alization of light-weight, secure routing protocols at the expense of initial setup
overhead in constructing DKS relationships.

APPENDIX

We derive the probability that the adversary eavesdrops SGFP and TKEP when
a portion of the network had been compromised, and the expected number of
transcodings for both SGFP and TKEP.

A.1 Preliminaries

We make the following assumptions: (1) the adversary eavesdrops communi-
cations for a sufficiently large period of time; (2) sensors are uniformly dis-
tributed in the entire network; (3) each sensor has up to level-K DKSs; (4) a
level-0 square contains, on average, N0 sensors in a λ × λ square area; and (5)
the network covers a square area of (3K λ) × (3K λ). Then, the expected total
number of sensors in the network, Nnet , is 9K N0. The adversary randomly se-
lects and manipulates sensors to acquire all MKs stored in the compromised
sensors. Note that compromising the currently active DKSs does not increase
the eavesdropping probabilities as compared to the random selection, because
a compromised sensor can serve as the DKS only for a very small fraction of
the observation time interval.

Let s and d denote source and destination sensors establishing an SGFP
path between them. The number of compromised sensors is denoted by Nc. We
define a set of all compromised sensors as C = {ci, i = 1, . . . , Nc}. The set of
all uncompromised sensors is then U = Cc. The probability that a randomly
selected sensor f has already been compromised is defined as

pc = Pr{ f ∈ C} = Nc

9K N0
(1)

We define the level-k cumulative area of s as:

Ak(s) =
{

L0(s) k = 0∑8
m=1 Lk,m(s) 1 ≤ k ≤ K

(2)

Then, the probability that d lies within Ak(s) is given by:

pAk = Pr{d ∈ Ak(s)} =
{

1
9K k = 0
8·9k−1

9K 1 ≤ k ≤ K
(3)

We also define the conditional probability associated with Ak(s) as:

pLk,m|Ak = Pr{ d ∈ Lk,m(s) | d ∈ Ak(s) } = 1
8

(4)

where 1 ≤ k ≤ K and 1 ≤ m ≤ 8.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:25

A.2 Eavesdropping Probabilities

The sample space is a set � = { (s, d), s �= d , d ∈ ∑K
k=0 Ak(s)}, and the event

space E consists of (s, d) pairs for which the adversary successfully decrypts
an SGFP packet. Let PSGFP (= Pr{ E}) and PTKEPμ

denote the probabilities
of eavesdropping SGFP and μ-split TKEP, respectively. We then define the
following conditional probabilities associated with E :

Pk = Pr{ E | s ∈ U , d ∈ Ak(s) }, 0 ≤ k ≤ K (5)

and

Qk,m = Pr{ E | s ∈ U , d ∈ Lk,m(s) } (6)

where 1 ≤ k ≤ K , 1 ≤ m ≤ 8.
We derive PSGFP and PTKEPμ

by considering the following two cases. First,
when s ∈ U and d is located inside A0(s), the adversary can decrypt the packet if
d and/or intermediate sensors have been compromised. Hence, P0 = α· pc where
α is the average number of hops taken inside the level-0 square. Second, when
s ∈ U and d lies within Ak(s), k ≥ 1, Pk is derived by considering d ∈ Lk,m(s),
m = 1, . . . , 8, for each of which the adversary decrypts the SGFP packet with
the success probability Qk,m. Therefore, the following relationship holds:

Pk =
8∑

m=1

pLk,m|Ak · Qk,m (7)

If d ∈ Lk,m(s), s asks fk,m = DKSk,m(s) to search, on behalf of itself, a reduced
area Ak−1(fk,m) for d . In this case, the adversary succeeds in eavesdropping if
fk,m ∈ C or fk,m ∈ U , but the subsequent forwarding inside Ak−1(fk) is routed
via compromised DKSs. Therefore,

Qk,m = pc · 1 + (1 − pc) · Pk−1 (8)

Consequently,

Pk =
{

αpc k = 0
pc + (1 − pc)Pk−1 1 ≤ k ≤ K

(9)

From Eqs. (3) and (9), PSGFP is derived as:

PSGFP =
K∑

k=0

pAk Pk (10)

PTKEP1 of the basic TKEP (with no randomization) is then derived from the
event that the attacker eavesdrops both Rs and Rd as:

PTKEP1 = P2
SGFP (11)

Finally, each SGFP path of the μ-split TKEP is bounded by [pc + (1 − pc)PK]μ

and, hence,

PTKEPμ
≤ [pc + (1 − pc)PK]2μ (12)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:26 • T. Park and K. G. Shin

A.3 Expected Number of Transcodings

Let TSGFP and TTKEPμ
denote random variables that count the transcodings by

SGFP and TKEP, respectively, and pn the ratio of the number of non-DKS sen-
sors to the total number of sensors. We first derive the conditional expectation,
EAk [TSGFP] = E[TSGFP|d ∈ Ak(s)], as:

EAk [TSGFP] = k + α + pn, 0 ≤ k ≤ K (13)

E[TSGFP] is then derived as:

E[TSGFP] =
K∑

k=0

pAk EAk [TSGFP] (14)

= K + α + pn − 1
8

(
1 − 1

9K

)
(15)

Finally, E[TTKEPμ
] is approximated as:

E[TTKEPμ
]

{
2
(
K + α + pn − 1

8

)
μ = 1

2μ
(
K + α + pn + 7

8

)
μ ≥ 1

(16)

REFERENCES

ASOKAN, N. AND GINZBOORG, P. 2000. Key agreement in ad hoc networks. Computer Communica-
tions, 1627–1637.

BASAGNI, S., HERRIN, K., BRUSCHI, D., AND ROSTI, E. 2001. Secure pebblenets. In Proceedings of ACM
MobiHoc ’01. Long Beach, CA.

CARMAN, D. W., KRUUS, P. S., AND MATT, B. J. 2000. Constraints and approaches for distributed
sensor network security. NAI Labs Technical Report #00-010.

CARMAN, D. W., MATT, B. J., AND CIRINCIONE, G. H. 2002. Energy-efficient and low-latency key man-
agement for sensor networks. In Proceedings of 23rd Army Science Conference.

CERPA, A., ELSON, J., ESTRIN, D., GIROD, L., HAMILTON, M., AND ZHAO, J. 2001. Habitat monitoring:
application driver for wireless communications technology. In Proceedings of ACM Workshop on
Data Communications in Latin America and Caribbean.

CHAN, H., PERRIG, A., AND SONG, D. 2003. Random key predistribution schemes for sensor networks.
In Proceedings of IEEE Symposium on Security and Privacy ’03.

CHEN, B., JAMIESON, K., BALAKRISHNAN, H., AND MORRIS, R. 2001. SPAN: an energy-efficient coor-
dination algorithm for topology maintenance in ad hoc wireless networks. In Proceedings of
ACM/IEEE MobiCom ’01. Rome, Italy.

CROSSBOW. 2003. MICA, MICA2 Motes & Sensors. Available: http://www.xbow.com/.
DOUCEUR, J. 2002. The Sybil attack. In Proceedings of 1st International Workshop on Peer-to-Peer

Systems.
DUCKWORTH, G. L., GILBERT, D. C., AND BARGER, J. E. 1996. Acoustic counter-sniper system. In

International Symposium on Enabling Technologies for Law Enforcement and Security. SPIE,
Boston, MA.

ESCHENAUER, L. AND GLIGOR, V. D. 2002. A key-management scheme for distributed sensor net-
works. In Proceedings of ACM CCS ’02. Washington, DC.

HE, T., HUANG, C., BLUM, B. M., STANKOVIC, J. A., AND ABDELZAHER, T. 2003. Range-free localization
schemes for large scale sensor networks. In Proceedings of ACM/IEEE MobiCom ’03.

HEIDEMANN, J., SILVA, F., INTANAGONWIWAT, C., GOVINDAN, R., ESTRIN, D., AND GANESAN, D. 2001. Build-
ing efficient wireless sensor networks with low-level naming. In Proceedings of ACM SOSP ’01.

HESPANHA, J. P., KIM, H. J., AND SASTRY, S. 1999. Multiple-agent probabilistic pursuit-evasion
games. In Proceedings of the 38th Conf. on Decision and Control. IEEE, Phoenix, AZ.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

Secure Routing Based on Distributed Key Sharing • 20:27

HU, L. AND EVANS, D. 2004. Localization for mobile sensor networks. In Proceedings of ACM/IEEE
MobiCom ’04.

JAIN, R., PURI, A., AND SENGUPTA, R. 2001. Geographical routing using partial information for
wireless ad hoc networks. IEEE Personal Communications.

KARLOF, C. AND WAGNER, D. 2003. Secure routing in wireless sensor networks: attacks and coun-
termeasures. Ad Hoc Networks.

KARLOF, C., SASTRY, N., AND WAGNER, D. 2004. TinySec: A link layer security architecture for wire-
less sensor networks. In Proceedings of ACM SenSys ’04.

KARP, B. AND KUNG, H. T. 2000. GPSR: Greedy perimeter stateless routing for wireless networks.
In Proceedings of ACM/IEEE MobiCom ’00. Boston, MA.

LI, J., JANNOTTI, J., COUTO, D. S. J. D., KARGER, D. R., AND MORRIS, R. 2000. A scalable location
service for geographic ad hoc routing. In Proceedings of ACM/IEEE MobiCom ’00. Boston, MA.

LIU, D. AND NING, P. 2003a. Establishing pairwise keys in distributed sensor networks. In Pro-
ceedings of ACM CCS ’03.

LIU, D. AND NING, P. 2003b. Location-based pairwise key establishment for static sensor networks.
In Proceedings of ACM SASN ’03.

LIU, D., NING, P., AND DU, W. 2005. Group-based key pre-distribution in wireless sensor networks.
In Proceedings of ACM WiSe ’05.

MAINWARING, A., POLASTRE, J., SZEWCZYK, R., CULLER, D., AND ANDERSON, J. 2002. Wireless sensor
networks for habitat monitoring. In Proceedings of ACM WSNA ’02. Atlanta, GA.

MALAN, D. 2004. Crypto for tiny objects. Technical Reprot TR-04-04, Harvard University.
MILLER, M. J. AND VAIDYA, N. H. 2005. A MAC protocol to reduce sensor network energy consump-

tion using a wakeup radio. IEEE Transactions on Mobile Computing 4, 3 (May/June).
PARK, T. LiSP: Lightweight security protocols for wireless sensor networks. Ph.D. thesis, EECS

Department, The University of Michigan, Ann Arbor, MI.
PARK, T. AND SHIN, K. G. 2004. LiSP: A lightweight security protocol for wireless sensor networks.

ACM Transactions on Embedded Computing Systems 3, 3 (Aug.).
PARK, T. AND SHIN, K. G. 2005a. Optimal tradeoffs for location-based routing in large-scale ad hoc

networks. IEEE/ACM Transactions on Networking 13, 2 (Apr.).
PARK, T. AND SHIN, K. G. 2005b. Soft tamper-proofing via program integrity verification in wireless

sensor networks. IEEE Transactions on Mobile Computing 4, 3 (May/June).
PRIYANTHA, N. B., BALAKRISHNAN, H., DEMAINE, E. D., AND TELLER, S. 2005. Mobile-assisted localiza-

tion in wireless sensor networks. In Proceedings of IEEE INFOCOM ’05. Miami, FL.
RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2001. A scalable content-

addressable network. In Proceedings of ACM SIGCOMM ’01. San Diego, CA.
RATNASAMY, S., KARP, B., SHENKER, S., ESTRIN, D., GOVINDAN, R., YIN, L., AND YU, F. 2003. Data-

centric storage in sensornets with ght, a geographic hash table. Mobile Networks and Applica-
tions (MONET) Special Issue on Algorithmic Solutions for Wireless, Mobile, Ad Hoc and Sensor
Networks.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed
Systems Platforms.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F., AND BALAKRISHNAN, H. 2001. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM ’01. San
Diego, CA.

VIDAL, R., SHAKERNIA, O., KIM, H. J., SHIM, H., AND SASTRY, S. 2002. Probabilistic pursuit-evasion
games: Theory, implementation and experimental evaluation. IEEE Transactions on Robotics
and Automation 18, 5 (Oct.).

WANG, H., ESTRIN, D., AND GIROD, L. 2003. Preprocessing in a tiered sensor network for habitat
monitoring. EURASIP JASP Special Issue of Sensor Networks.

WATRO, R., KONG, D., CUTI, S., GARDINER, C., LYNN, C., AND KRUUS, P. 2004. TinyPK: Securing sensor
networks with public key technology. In Proceedings of ACM SASN ’04. 59–64.

WOOD, A. D. AND STANKOVIC, J. A. 2002. Denial of service in sensor networks. IEEE Computer 35, 10
(Oct.).

XUE, Y., LI, B., AND NAHRSTEDT, K. 2001. A scalable location management scheme in mobile ad hoc
networks. In Proceedings of IEEE Conf. on Local Computer Networks (LCN).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

20:28 • T. Park and K. G. Shin

YE, F., LUO, H., CHENG, J., LU, S., AND ZHANG, L. 2002. A Two-Tier Data Dissemination Model for
Large-scale Wireless sensor networks. In Proceedings of ACM/IEEE MobiCom ’02. Atlanta, GA.

ZHU, S., SETIA, S., AND JAJODIA, S. 2003. LEAP: Efficient security mechanisms for large-scale dis-
tributed sensor networks. In Proceedings of ACM CCS ’03.

Received July 2005; revised February 2006; accepted November 2006

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 2, Article 20, Publication date: February 2008.

