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ABSTRACT
Data Centric Storage (DCS) is a well-known data storage and query
processing mechanism for Wireless Sensor Networks (WSNs), stor-
ing sensed data or their metadata at pre-specified locations. Queries
issued by mobile users are sent to, and processed at, such storage
nodes. However, securing DCS is very difficult because WSNs usu-
ally operate in an unattended environment and hence are subject to
node-capture attacks. Even after capturing a single node, an at-
tacker may be able to subvert the entire system by using the keying
material extracted from the captured node.

To remedy/alleviate the above problem, we proposeAttack-Resil-
ient Collaborative Message Authentication (ARCMA), in which
sensor nodes collaboratively authenticate messages to be sent to,
or received from, remote nodes. In ARCMA, each node belongs to
one ofk groups, and constructs anAuthentication Tree (AT) which
is formed withk nodes, each from a distinct group. Each node col-
laborates with the other nodes in its AT to authenticate messages.
We propose two heuristics, calledMIN andOPT , to construct
ATs. Our analysis shows that the security of ARCMA does not
degrade until the attacker capturek or more nodes. We also evalu-
ate the overhead of constructing ATs and the cost of authenticating
messages using ATs.

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: General–Security
and Protection

General Terms
Design, Security
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1. INTRODUCTION
Data Centric Storage (DCS) [8] is a prominent data-storage and

query-processing mechanism on Wireless Sensor Networks (WSNs).
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Resource-limited sensor nodes collaboratively identify the events
of interest, and report them to storage nodes at predefined locations
according to the event type or the range of sensed data. The stored
event information can then be queried, typically by mobile users,
from anywhere in the network, and the queries are forwarded to the
relevant storage nodes. At storage nodes, the queries are processed
and the results are sent back to the issuer(s).

Despite its importance, securing DCS is very difficult since WSNs
usually operate in an unattended environment. Since sensor nodes
may be physically exposed to attackers, it is relatively easy for at-
tackers to capture and then reverse-engineer them to extract their
secret (keying) information. In such a case, attackers can subvert
the entire system by compromising even a single sensor node. The
attacker may fabricate seemingly valid packets using the keying
material extracted from the captured node to (1) insert fabricated
information into the network, or (2) make unauthorized data ac-
cesses.

Detecting forged messages is very difficult if they are generated
using the valid keying material, especially when they came from
remote nodes. Key pre-distribution schemes [3, 4] may tolerate
eavesdropping when some of sensor nodes are compromised, but
they cannot prevent the issuing of queries or reporting of events us-
ing the valid keying materials. Even an expensive way of signing
with public keys [7,11] cannot handle this problem when messages
are generated using valid (stolen) keying materials. Research has
been on the detection of data forgery using reputation systems and
statistical methods [5], the results of which are effective only for lo-
cal data forgery, not for messages sent from remote nodes. En-route
filtering mechanisms [12, 13] perform data-forgery detection even
in the presence of captured/compromised nodes. However, these
mechanisms rely on the existence of a base station, and cannot be
applied directly to DCS, where data is sent to resource-limited stor-
age (sensor) nodes, located at arbitrary locations.

In this paper, we proposeAttack-Resilient Collaborative Mes-
sage Authentication (ARCMA) to secure DCS, especially under
node-capture attacks. ARCMA focuses on the authentication of
event-report, event-query, and query-response messages that may
take multiple hops to reach their destinations. Specifically, in AR-
CMA, a set of sensor nodes cooperate to evaluate aCollaborative
Message Authentication Code (CMAC) for the messages sent to,
and received from, remote nodes. Like any other traditional MAC,
a CMAC is evaluated both at the sender and the receiver sides, and
only those messages with valid CMACs are accepted by the re-
ceiver. Since the keying material of sensor nodes may be exposed
under node-capture attacks, sensor nodes must collaborate to pro-
vide necessary protection against such attacks. This is akin to the
sensor nodes’ collaboration (to overcome their limitations in sens-



ing capability) to identify the events of interest to the underlying
applications.

The main contributions of this paper are summarized as follows.
First, we propose a novel attack-resilient message authentication
mechanism, called ARCMA, in which each node belongs to one of
k groups, and a message is collaboratively authenticated and veri-
fied byk nodes, each from a distinct group. To achieve this, each
node maintains anAuthentication Tree (AT), which is a spanning
tree withk nodes, each from one ofk distinct groups, and collab-
orates with all the nodes in its AT to evaluate CMAC for message
authentication. We also encrypt messages with location-dependent
keys to validate their origin.

Second, we show how ARCMA can be applied to authenticate
messages associated with DCS operations. We show how each
parameter can be set for DCS messages, i.e., event-report, event-
query and query-response messages. Most of previous work fo-
cused on securing event-report messages destined for the base sta-
tion, and does not consider securing the processing of queries is-
sued by mobile users.

Third, we present two distributed heuristic algorithms,MIN
andOPT , to construct ATs without any global view of the network
since it is not available, or too expensive to obtain in a WSN.

Finally, we analyze the security of ARCMA and evaluate its per-
formance. We show that the security of ARCMA does not degrade
if less thank nodes are compromised. Also, we evaluate the over-
head of constructing ATs and exchanging extra messages for mes-
sage authentication for design parameterk and node density.

The rest of this paper is organized as follows. Sec. 2 describes the
system model and assumptions, and the key management for AR-
CMA is described in Sec. 3. Then, ARCMA is detailed in Sec. 4,
followed by descriptions of the AT construction Sec. 5. Sec. 6
presents the security analysis and the performance evaluation of
ARCMA. The paper concludes with Sec. 7.

2. SYSTEM MODEL

2.1 Sensor Network Model
DCS operates on a WSN, which is usually composed of a large

number of resource-limited sensor nodes. For these nodes, hardware-
supported tamper-proofing is not a feasible solution due to its higher
hardware cost. We assume sensor nodes are densely deployed such
that events of interest can be detected by a set of cooperating sensor
nodes near the locations of their occurrence. Detected events will
be sent to remote storage nodes, where information about the event
is stored or aggregated with other information. The storage nodes
are nothing but sensor nodes, which are selecteda priori accord-
ing to a pre-defined rule. An event-report message may traverse a
large number of hops if the storage nodes are located far away from
the location of its occurrence. External mobile nodes, which may
be carried by users or attached to ground/air vehicles, may inter-
act with nearby sensor nodes, issuing queries for the information
of interest. Sensor nodes will forward the such queries to the stor-
age nodes, which will then reply with the queried information. The
mobile nodes usually have more resources than sensor nodes.

In designing ARCMA, we assume existence of the following
three common services: localization [9], time synchronization [10],
and geographic forwarding routing [2]. All of these services are ba-
sic and usually required for other sensor network applications than
DCS; localization and time-synchronization services are required
to provide the location and the time of each identified event, and
geographic forwarding routing is required to forward event-report
and query messages. ARCMA exploits these “already available”
services without incurring additional costs.

2.2 Attack Models
WSNs are inherently vulnerable to various security attacks as

they usually operate in an unattended and hostile environment. Thus,
we assume that attackers can launch any passive or active attacks
including node-capture attacks. Under node-capture attacks, at-
tackers will obtain all the valid keying materials from the compro-
mised nodes. We assume that the goals of attacks with those keying
materials are (1) to disable the targeted DCS by inserting false data
so that the legitimate users will receive incorrect data, or (2) to ac-
cess the stored data for unauthorized purposes. The main focus of
this paper is to secure DCS against this type of severe attacks.

We, however, assume that the network is safe for a while after the
deployment, during which the initialization can be performed. This
is realistic, since it takes time for attackers to learn the existence
and operation of a WSN, and to compromise sensor nodes.

3. KEY MANAGEMENT

3.1 Polynomial-based Key Pre-distribution
We first summarize polynomial-based key pre-distribution [1],

on which the key management of ARCMA relies. A(k−1)-degree1

bivariate polynomial is defined asf(u, v) =
Pk−1

i,j=0 aiju
ivj over

a finite fieldFq, whereq is a prime number large enough to ac-
commodate a cryptographic key. When a bivariate polynomial is
symmetric (i.e.,f(u, v) = f(v, u)), we define a share of the poly-
nomial of nodes asf(s, v), which is a(k−1)-degree univariate
polynomial. By distributing the share of polynomial to every sen-
sor node, any two nodes in the network can set up a pairwise secret
by exchanging only their node IDs. For example, two nodess and
r share a secret by replacing the variable of their share of poly-
nomial with the correspondent’s ID, i.e.,f(s, r) = f(r, s). The
common secret between any two nodes is proven to be safe if less
thank shares of the(k−1)-degree polynomials are revealed to the
adversary, i.e., less thank nodes are compromised.

3.2 Key Distribution and Assignment
ARCMA uses three sets of bivariate polynomials to generate

keys for different purposes.Pairwise-key polynomial, fp(u, v), is
used to generate the pairwise key between any two sensor nodes
in the neighborhood, or between a mobile node and a sensor node.
Each polynomial variable will be replaced by the node ID.Group-
key polynomial, fg(u, v), is used to evaluate the MACs of mes-
sages. One variable of the group-key polynomial will be replaced
by group number, and the other by the node ID.Spatial-key poly-
nomial, fs(u, v), is used to generate encryption-keys for messages
forwarded to remote locations. Since the destinations of such mes-
sages are specified as their location (not ID) in DCS, the variables
are replaced with the location information of the sender and the
receiver of a given message.

Before their deployment, sensor nodes are preloaded with a com-
mon master keyK0. The coefficients of the above three-polynomials
are derived from this key using the common keyed hash function
HK(). The coefficientaij of fp are evaluated asaij = HK0

(i ·
k + j + B) if i ≤ j, andaij = aji otherwise, whereB is set to 0.
The coefficients offg andfs are evaluated similarly by settingB
to k2 and2 ·k2, respectively.K0 is permanently removed from the
memory after evaluating the coefficients of three polynomials.

Once deployed, sensor nodes evaluate their share of pairwise-
key polynomial by replacing one of the variable with their own ID.

1We use(k−1)-degree polynomials instead ofk-degree polynomi-
als as in most literature to simplify notations in the later sections.



Then, each sensor node broadcasts its own ID, and establishespair-
wise keys with its neighbors by evaluating the pairwise-key polyno-
mial with the neighbors’ IDs. After discovering its neighbor nodes,
each sensor node generates a random number for a cluster key to
encrypt local broadcast messages. The cluster key is individually
delivered to all neighbors after being encrypted with pairwise keys.
Let CKs be the cluster key of sensor nodes.

Once local relations are secured, the underlying localization pro-
tocol is evoked and then each sensor node evaluates its share of
spatial-key polynomial. The pairwise keys and cluster keys estab-
lished as above may be used to encrypt/decrypt messages of the
localization protocol, if necessary. When evaluating the spatial-key
polynomial, quantized coordinates are used instead of the raw coor-
dinates. Since the exact coordinates of remote nodes are, in general,
not knowna priori, the exact coordinates of the destination cannot
be used with the spatial-key polynomial to obtain a matching key
both at the source and the destination. The quantized location (Ls)
of a sensors located at(x, y) is defined asLs = ⌊ x

ℓ0
⌋|⌊ y

ℓ0
⌋, where

the quantization indexℓ0 determines the granularity of quantiza-
tion. Then,s’s share of the spatial-key polynomial can be evaluated
to befs(Ls, v).

Group assignment is performed concurrently with the aforemen-
tioned localization. Each node can be assigned to a specific group
either by a group-assignment protocol or by a pre-determined method,
e.g., group numberg of sensor nodes is computed asg = (s modk)+
1. Once group number is assigned, each node evaluates its share of
fg .

Each mobile node also has its share of the pairwise-key and
group-key polynomials by replacing one of the variables with its
ID, i.e., mobile nodem will be loaded withfp(m, v) andfg(m,v).
The mobile node need not hold any information on spatial-key
polynomial.

4. ATTACK-RESILIENT COLLABORATIVE
MESSAGE AUTHENTICATION (ARCMA)

4.1 Collaborative Message Authentication
In ARCMA, sensor nodes collaboratively authenticate messages

sent to, and received from, remote nodes. To prevent attacks using
the valid keying material from the captured nodes, ARCMA re-
quires messages to be authenticated collaboratively by a set of sen-
sor nodes. Specifically, each sensor node belongs to one and only
one ofk distinct groups, and members of each group share a group-
key polynomial to generate a common key to evaluate MACs. When
authenticating a message,k nodes fromk distinct groups, one from
each group, evaluate MACs using group-keys, and the CMAC is
evaluated by XORing these MACs.

To evaluate a CMAC, each sensor node needs to know at least
one node for each ofk groups in its neighborhood. Thus, each node
maintains an AT, a spanning tree with at leastk nodes to maintain
information on nodes for each ofk groups. Using its AT, a sensor
node can evaluate or verify the CMAC. For convenience, the AT
maintained by nodes is represented byAT s, and sensor nodes in
AT s are represented asAT s

i , wherei is the group the node belongs
to. Each sensors node maintains the following information in its
AT: the node ID forAT s

i , the next hop toAT s
i , and the number of

hops toAT s
i for each groupi (1 ≤ i ≤ k).

Figure 1 shows an example of ATs. Fig. 1(a) depicts a given
topology, where vertices and edges represent nodes and connectiv-
ity, respectively. The main number and the subscript number in a
vertex represent the node ID and its group number, respectively.
Figures 1(b) and 1(c) show possibleAT 1’s whenk = 5.
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(c) AnotherAT 1

Figure 1: Example of authentication trees. The main number and the sub-
script number in a vertex represent the node’s ID and group number, respec-
tively. These figures show two possible examples of the authentication tree
for node 1 for a given topology whenk = 5.

We now describe how messages are exchanged when sensor node
s located inLs sends a messageM to anther sensor noder located
in Lr. In summary,s computes a CMAC forM and encrypts them
with a proper spatial-key. Whenr receivesM , it evaluates the
CMAC after decrypting it, and checks if the evaluated CMAC and
the received CMAC match. It accepts the message only when the
two CMACs match.

Messages at the sender’s side are exchanged as follows. First,s

sendsM to all nodes inAT s with ID id, timestampts, its location,
Ls, and a proof of message,PM ; id is a parameter other than group
number for the group-key polynomial,ts is used to prevent replay
attacks,Ls is used for the authenticity of the location of reported
data, andPM is used to prevent the compromised node from ask-
ing the message authentication for forged messages. Depending on
the type of a given message, these fields will be filled in with dif-
ferent values. This will be detailed in Sec. 4.2. Second, the nodes
in AT s evaluate the MAC for a given message with the timestamp
and the location ofs, and then the evaluation result is returned to
s. AT s

i evaluates the MAC asMAC(fg(i, id), M |ts|Ls). Note
that this is processed only when a valid proofPM for the given
messageM is provided. Third,s computes the CMAC by XOR-
ing the MACs it received, where CMAC is defined asCMAC =
MAC(fg(1, id), M |ts|Ls)⊕MAC(fg(2, id), M |ts|Ls)⊕ · · · ⊕
MAC(fg(k, id), M |ts|Ls). Finally, s encryptsM with its spatial
key, and sends it tor. s concatenates the timestamp, its location and
CMAC with the message, and sends the concatenated tor using the
underlying routing protocol.

Whenr receives the message, it evaluates the CMAC using its
own AT similarly to the sender side as follows. First,r sendsM
to the nodes inAT r. r decrypts the message withfs(Ls, Lr), and
sends it to the nodes in its AT. Here, the proof of message is not
required sincer’s location is different froms’s location,Ls. Sec-
ond, r receives the MACs evaluated by the nodes inAT r. When
the nodes inr’s authentication tree,AT r, receive the message, they
evaluate the MAC for the given message with the group-key and re-
turn it to r. Third, r evaluates the CMAC and accepts the message
only if CMACs match. Upon receiving replies from the nodes in
AT r, r evaluates the CMAC for the given message by XORing the
received MACs. Only if the CMAC froms matches the CMAC it
computed,r will accept the message.

In the above process, the same messageM is transmitted to all
the nodes inAT s andAT r. This will be very expensive, thus call-
ing for an optimization to reduce the number of message transmis-
sions. Without optimization, the cost of exchanging messages to
evaluate the CMAC increases linearly withk. However, we need
not send the same message to all the nodes individually, since those
nodes may share the same node as the parent node inAT s and
the wireless transmission can be simultaneously received more than
one node. When sending a message,s can encrypt it with its cluster
key,CKs, and a node that forwards the message asking for MAC,
i.e., it has child node(s) inAT s, it can again send the message us-
ing its own cluster key. When MACs are received, the intermediate
nodes in a node’s AT can XOR all the MACs they receive from
their children, and then report the XORed MACs to their parents.
Whens receives such reports from its children, it can compute the



CMAC by XORing them. The CMAC obtained from this optimiza-
tion will be the same as that obtained by XORing individual MACs
at s since XOR is transitive. When the CMAC is verified byr, a
similar step can be taken.

A CMAC mismatch indicates a compromise. If the CMAC com-
puted byr does not match the CMAC froms, at least one node in
eitherAT r or AT s did not report a proper MAC. In such a case,
r can send the same messageM to all the nodes inAT r individ-
ually without optimization. Then,r can send all of the MACs to
s. Upon receiving such a message,s also requests nodes inAT s

to re-evaluate the MACs. If the MACs for a certain group do not
match, either the nodes of a group inAT s or AT r, or both are
compromised. In such a case, both nodes are revoked. This revo-
cation process is expensive since the same message should be sent
to all the nodes inAT s andAT r. However, this type of attack is
not effective from an attacker’s standpoint not only because the at-
tack is easily detectable but also because the compromised nodes
are revoked upon their first attack.

4.2 Securing DCS Operations Using ARCMA
We now describe how ARCMA can be used for securing DCS

messages: event-report, event-query, and query-response messages.
The collaborative authentication described so far can be used for
transmission of messages to remote locations, regardless of their
type. However, different proofs of messages for CMAC evaluation
are required for different types of messages.

Reporting Sensed Data Sensor nodes cooperate to identify events
of interest; an event will typically be detected by multiple sensor
nodes, and their sensor readings will be aggregated for detection
accuracy. When such an event is reported to the corresponding
storage nodes, the report message must be authenticated to guar-
antee its authenticity. ARCMA can be used for this purpose, and
the information about the event can be used as the proof of the mes-
sage. The node density of a WSN is determined so as to cover every
region with more than a certain number of nodes [6] for detecting
each event of interest with a desired level of accuracy since each
sensor node has only limited sensing capability. By adjusting the
sensor node density, we can, therefore, make an event detectable by
at leastk nodes which can participate in authenticating the event to
be reported to the corresponding storage node. These nodes eval-
uate MAC only when the information in the event-report message
is consistent with the information they have, i.e., they use the in-
formation about the event as a proof of the message. Theid field
of ARCMA messages is filled with the ID of the sensor node that
composes each event-report message.

The storage node verifies the authenticity of each event-report
message using its own AT, and stores only validated messages.
Also, the sensor nodes in the storage node’s AT may store the data
to serve as replicas of the storage node.

Processing Queries Issued by Mobile Users An external mo-
bile user may query the sensor network to retrieve the data stored
in DCS. Such queries are routed via multiple hops to the storage
nodes, and then the corresponding results are generated and sent
back to the mobile user. In this scenario, both the query and the
result should be verifiable.

To guarantee that only a legitimate mobile user can issue valid
queries, we make the mobile user to be authenticated by multiple
sensor nodes before issuing any query to the network. When au-
thenticated, the mobile user will be issued a token, which is a se-
curity credential it can present to the sensor nodes that belong to
the same group of the token-issuer. After collectingk tokens, the
mobile user can issue a query by presenting tokens as the proof of
event-query, i.e., the query is validated by the security credentials

issued byk different sensor nodes.
Mobile nodem can be authenticated by sensor nodes by ex-

changing three-way handshakes as follows. First,m sendss its ID
and a nonce,Nm. Second, whens receives such a message, it also
generates a nonce,Ns. Then,s sends its own ID along withNm

andNs after encrypting it with a pairwise key betweens andm,
fp(s,m). Note that boths andm can evaluate the pairwise key us-
ing the pairwise-polynomial after exchanging their IDs. Finally,m

sends the nonce generated bys after encrypting it withfp(s,m).
Now, s andm can authenticate each other.

After authenticating a mobile nodem, s sendsm a token,Tg(m),
if it belongs to groupg. Tg(m) is defined asTg(m) ≡ s|g|m|ts|{s|
g|m|ts}fg(g,m). This token is valid only to the nodes in groupg,
and onlym can present this token to the sensor nodes since onlym

can evaluate the pairwise-keys with arbitrary sensor nodes. Here,
ts is a timestamp to indicate the time when the token is issued, and
may be used by sensor nodes to reject stale tokens.

Whenm issues a queryQ, it is handled as follows. First,m
sendsQ to a nearby sensor nodes with thek tokens it has collected
as the proof of message. Second, when a sensor nodes receivesQ
with the tokens, it sends this information, the current timestamp,
ts, and its locationLs to the nodes in its AT. Third, the nodes in
AT s verify the token, which is the proof of event-query, and sends
s either MAC for the query message orinvalid message. Here,
AT s

i evaluates MAC asMAC(fg(m, i), Q|ts|Ls). Fourth, when
s receives all the MAC, i.e., all the tokens are verified without gen-
eratinginvalid message, it evaluatesCMAC by XORing collected
MACs. Finally, s sends the query message to the storage noder

after encrypting the message using spatial key withfs(Ls, Lr).
When a storage noder receives the query, it first verifies the

message usingAT r, and then composes the query-response,R,
for the valid query. The reply message is again authenticated using
AT r, and then encrypted with the pairwise-key betweenr andm,
fp(r,m), which is evaluated using the pairwise-key polynomial so
that the clear text of message is readable only bym. Whenm,
the query issuer, receives this message, it evaluates CMAC using
its share of the group-key polynomial, and accepts it only when a
valid CMAC is concatenated to the reply message.

5. AUTHENTICATION TREE CONSTRUC-
TION

Since a global view is not available at any given sensor node,
we present two simple heuristic algorithms to construct ATs with-
out incurring too much overhead. The first heuristic, calledMIN ,
builds a minimum-depth tree by selecting the shortest-distance node
from a certain group for the AT. This heuristic adds a small amount
of information in a periodic beacon message, commonly used in
sensor network applications like health monitoring, node discovery,
and route discovery. In each periodic beacon message, a node ad-
vertises the groups it has discovered by using ak-bit vector. When
a sensor node notices that some bits are not set in a neighbor’s bea-
con while the corresponding bits are set in its own bit vector, i.e.,
its neighbor has not yet discovered the nodes in certain groups that
it has already discovered, it announces the information about them
in its next beacon message. When a sensor node detects such infor-
mation in its neighbor’s beacon, it updates its AT. Using these steps,
a t-hops-away node can be discovered withint beacon periods, as
in a distance-vector routing protocol.

The second heuristic, calledOPT , tries to minimize the number
of transmissions in the optimized AT operation. For example, the
MIN heuristic yielded the results in Fig. 1(b) for the topology in
Fig. 1(a). This AT requires four transmissions since nodes 1, 3, 6,



and 8 need to transmit a message for an AT operation. On the other
hand, the AT shown in Fig. 1(c) for the same topology requires only
three transmissions for an AT operation. Even though the nearest
nodes are not chosen for groups 2 and 4, a transmission by node 5
can cover both groups in this example. TheOPT heuristic works
as follows. After discovering one’s neighbor, each node keeps two
sets of nodes; transmission set (T) and candidate set (C). The trans-
mission set contains the nodes which will relay the message in AT
operations. First, each node puts itself in T, and its neighbors to
C after calculating the out-degree, which is defined as the number
of new groups of each neighbor if it is added. At each iteration,
the node with the maximum out-degree will be moved from C to T,
and the neighbors of the node will be added to C. When there is no
node that has a positive out-degree in C, a sensor node will request
the route for the missing groups. Upon receiving such a request, a
sensor node replies if it has access to the group.

6. EVALUATION

6.1 Security Analysis
We analyze the security of ARCMA against the various attacks

described in Sec. 2.2. Since all the messages are encrypted with the
relevant keys, the proposed protocol is safe from passive or active
outsider attacks as long as a proven cryptography is used. Also,
replay attacks are prevented since all the messages including tickets
contain time-stamps. Thus, our analysis will focus on node-capture
attacks, where valid keying materials are exposed to attackers.

An attacker should acquirek group keys to obtain a valid CMAC
for the given messages. Since the security of a(k−1)-degree bi-
variate polynomial is preserved as long as no more thank−1 nodes
are captured [1], the attacker should capture at leastk nodes to ob-
tain all thek keys to derive a valid CMAC. Therefore, the attacker
cannot insert false data into storage, or make unauthorized data ac-
cesses by issuing queries, i.e., the system remains secure as long as
less than thank nodes are captured.

Also, ID spoofing and Sybil attacks can be prevented by using
the bivariate polynomials. Without knowledge of the pairwise-key
polynomial, the attacker cannot generate the secret keys for the
spoofed IDs. Therefore, the attacker cannot launch a Sybil attack
with spoofed IDs.

However, denial-of-service (DoS) attacks are still possible. When
a compromised node is asked to authenticate a valid mobile node,
it may not respond at all, or may issue an invalid token. When this
occurs, the performance of ARCMA may degrade. Similar DoS
attacks could occur when a compromised node is asked to verify
the query at the query location. This attack may be detected with
NIDS using abnormal behavior activities, but it is beyond the scope
of this paper.

6.2 Performance Evaluation
Memory Requirement A sensor node has only limited memory.

Even though this may become a lesser problem in future due to
the decreasing cost and increasing density/capacity of memory, the
memory will still be a limited resource for sensor nodes or a larger
memory may consume the battery power much faster.

Each sensor node needs to store three polynomials, each of which
hask terms, each being a member inFq, whereq is a prime num-
ber large enough to hold the security keys. In ARCMA, only sym-
metric cryptographic functions are used, and a 128-bit key will be
sufficient. Thus, each sensor node needs the memory of3 ·k ·128
bits=384·k bits.

Each sensor node also maintains an AT. For each of thek groups,
the ID of the node, the ID of the next-hop node, and the number of

hops should be stored. When 16-bit node IDs are used and the
maximum hop count is less than 255, the storage requirement for
the AT at each node is(2·16+8)·k bits=40·k bits.

The intermediate nodes in an AT need to store the information
about the nodes in its own subtree. Ak-bit vector should be stored
for this purpose. Since each node will, on average, be an interme-
diate node ofk−1 other nodes, the node needsk·(k−1) bits.

The total memory requirement for ARCMA is the sum of the
above three requirements, resulting ink2+423·k bits. Whenk=20
for example, the memory requirement is about 1.1 Kbytes.

CMAC Evaluation and AT Construction Costs We evaluate
the two heuristics to build ATs in terms of the CMAC evaluation
and AT construction costs. The CMAC evaluation cost is defined
as the average number of transmissions to deliver a message to all
the nodes of the AT. We average the number of transmissions by
dividing it by the number of groups in an AT to show the cost of
reaching a node (or group). The construction cost is defined as the
average number of iterations and route request/reply messages per
group to build the ATs.

We also show the cost of reconstructing the AT when a sensor
node is removed from the network since it is either faulty or com-
promised. When such a problem node is removed from the net-
work, all the nodes in the subtree rooted at the problem node should
also be removed. Then, ATs should be reconstructed without using
the problem node for the subsequent CMAC evaluations. We will
adopt the number of nodes affected by the problem node and the
number of iterations required to reconstruct the ATs as the evalua-
tion metrics of the AT reconstruction cost.

The simulation parameters are set as follows. We assumed the
transmission range (R) of the sensor node to be 100 m (equal to
that of MicaZ). All simulations are conducted for a 1000 m× 1000
m coverage area. The number of nodes (N ) in the area is varied to
be 250, 500 and 1000, i.e., the average number of neighbors varies
from 7.85 to 31.4. The number of groups,k, is varied from 2 to 50,
and the pre-determined group assignment,g = (s modk) + 1, is
used. For each ofN andk, 10 different topologies are generated
using a uniform distribution. We also changed the network size
while maintaining the same node density. Finally, all the simulation
results are derived by averaging 10 simulation runs.

Figure 2 shows the CMAC evaluation cost of the two heuristics.
When k = 2, the average CMAC evaluation cost is around 0.5,
meaning that only 1 transmission is required, because at least one
of a node’s neighbors will likely belong to a different group than
its own in a dense network. Ask increases up to a certain point,
the average cost decreases since all or most of groups are likely to
be found within a single or a very small number of hops. However,
the average cost slowly increases ask increases under theMIN
heuristic, while it remains stable under theOPT heuristic. From
these observations, we conclude that theOPT heuristic requires
fewer transmissions, i.e., less energy consumption for an CMAC
evaluation than theMIN heuristic. Also, a denser network is
observed to incur a lower cost in both heuristics because a node
will have more neighbors, i.e., a smaller number of hops will be
required to reach a certain group in a denser network.

The costs of constructing ATs with the two heuristics are shown
in Fig. 3. Fig. 3(a) shows the number of iterations to construct
ATs. With both heuristics, a sparser network takes longer to build
ATs than a denser network, as it will take more hops to reach all
the groups in a sparser network. Figure 3(b) shows the average
number of route request/reply messages. As expected, the required
number of messages decreases asN increases. When comparing
the two heuristics, we observe that theMIN heuristic exchanges
fewer messages than theOPT heuristic in a sparser network. On
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the other hand, theOPT heuristic exchanges fewer messages in a
denser network than theMIN heuristic.

Figures 4 and 5 plot the performance evaluation results when a
node is removed from the network. Fig. 4 shows the average num-
ber of nodes removed for each AT upon occurrence of a problem
node. There was only a small difference between the two heuris-
tics. However, the number of affected AT nodes increases as the
network gets sparser ork increases. In a sparser network, there are
unlikely many alternative routes from a node to other nodes, i.e., a
node is likely to be on more routes. Thus, one problem node can
affect more nodes. Whenk increases, the number of alternative
nodes of a certain group decreases. Fig. 5 shows the number of
iterations to finish the reconstruction of ATs.MIN is found to
take much fewer iterations thanOPT . This means that it will take
much longer to construct ATs with theOPT heuristic when a node
becomes faulty or compromised.

We also evaluated the performance of ARCMA for different net-
work sizes while maintaining the same node density. However, we
found that the network size does not affect the performance of AR-
CMA for the same node density, and thus, we did not repeat the
result here.

7. CONCLUSION
In this paper, we proposed a novel security mechanism for DCS,

called ARCMA, especially against node-capture attacks in WSNs.
Under such attacks, securing DCS is very difficult since attack-
ers have access to all the valid keying materials extracted from
captured nodes. In ARCMA, sensor nodes collaboratively authen-
ticate event-reporting and query-processing messages which typi-
cally travel multiple hops. Each sensor node belongs to one ofk

groups, and builds and maintains an AT withk nodes, each from
a distinct group. With the help from the nodes in its AT, a sensor
node can evaluate CMACs to authenticate messages.

When an event is identified by a set of cooperating sensor nodes,
they generate an event-report with CMAC, which will then be for-
warded to, and verified by, storage nodes. Before a mobile user is-
sues a query, s/he needs to collectk tokens by contactingk sensor

nodes, one from each distinct group. When a query is issued along
with these tokens, it is authenticated as was done for an event-report
message, and then forwarded to storage nodes. Finally, the storage
node verifies and processes the valid message. Likewise, a response
to the query can be authenticated.

ARCMA is shown to be(k−1)-collusion resistant, i.e., the same
level of security is preserved if no more than(k− 1) nodes are
captured. We also presented and evaluated two heuristics (MIN
andOPT ) to build ATs.MIN builds ATs using the nearest nodes
from a specific group, which constructs ATs within a much fewer
iterations both when ATs are constructed from scratch and when
ATs are reconstructed after revoking faulty or compromised nodes.
On the other hand,OPT incurs a lower operation cost (i.e., less
transmissions to send one message to all the nodes in an AT) and a
slower growth in the operation cost, while it takes longer and more
messages to build ATs.
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