
OPAG: Opportunistic Data Aggregation in Wireless Sensor Networks

Zhigang Chen and Kang G. Shin
Real-Time Computing Laboratory,EECS Department

The University of Michigan
Ann Arbor, MI 48109-2121

Email: {zhigangc,kgshin}@eecs.umich.edu

Abstract

We propose Opportunistic Data Aggregation (OPAG)
that incurs no computation error and tolerates moderate
message losses in wireless sensor networks (WSNs). OPAG
performs in-network data aggregation in two layers: (1)
at the data-aggregation layer, aggregation results are com-
puted accurately; and (2) at the data-routing layer, a WSN
node may send intermediate/partial results to its aggrega-
tion node using multi-path routing in order to tolerate mes-
sage losses.
By space-multiplexing messages (i.e., padding multi-

ple partial results or sensor readings in a single mes-
sage), OPAG opportunistically exploits a multi-path rout-
ing scheme, which is more energy-efficient than retransmis-
sion. This is based on a key observation that, when sending
a message, the radio may consume much more energy in
idle listening during the backoff period and the time to wait
for its acknowledgment than transmitting the data bits. We
implemented OPAG on TinyOS 2.x and TMote Sky Mote,
and evaluated its performance on the Motelab Testbed at
Harvard University. When a network is relatively well con-
nected, OPAG can reduce the energy consumption by 33%
at the expense of slightly higher relative errors, compared
to TAG with reliable transmission. Compared to Synopsis
Diffusion, OPAG can reduce the aggregation errors by 50%
while consuming roughly the same amount of energy.

1 Introduction

In a large-scale wireless sensor network (WSN), data
aggregation (e.g., averaging temperature readings across a
network’s coverage area) is crucial for such applications as
environment monitoring and surveillance. Previous stud-
ies (e.g., [15]) show that in-network data aggregation —
intermediate nodes compute partial aggregation results and
propagate them towards the base station (BS) or the data
sink — is significantly more efficient in terms of communi-
cation cost and energy consumption than routing all sensor

readings to the BS which then processes them.
Data-aggregation accuracy in a WSN is affected by the

fidelity of both computation and communication within the
network. First, computation of aggregation results may be
exact or approximate, incurring zero or non-trivial computa-
tion error. Second, intermediate aggregation results may be
routed via a spanning tree or multiple paths, resulting in dif-
ferent degrees of tolerance to message loss. Figure 1 shows
different data-aggregation schemes in the design space.

Zero
Computation Err.

Loss Intolerant

Significant
Computation Err. Sketch

/SD

TD

OPAG TAG

Loss Tolerant

Figure 1. Design space of in-network data aggregation
with respect to computation error and tolerance of data
message loss. OPAG aims to achieve zero computation
error and high tolerance to moderate message loss.

On one side of design space, TAG [14, 15] and Cougar
[21] construct a spanning tree rooted at the BS. Each node
of the tree accurately computes partial aggregation results
and then forwards them to its parent in the tree. This span-
ning tree scheme is simple, but susceptible to data loss dur-
ing communication, because losing a data message over a
link leads to the loss of all sensor readings or partial aggre-
gation results from the sub-tree below the link, thus possibly
resulting in significant loss of aggregation accuracy. In or-
der to reduce data loss, each node may dynamically select
appropriate parent nodes to avoid using poor-quality links
[15], and retransmit lost messages at the expense of much
more energy consumption.
On the other side of design space, Sketch [5], Synopsis

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.21

345

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.21

345

Diffusion (SD) [17], and Tributary-Delta (TD) [16] aggres-
sively exploit multi-path routing to combat message losses.
A sensor reading may be aggregated with other readings
along multiple paths before it reaches the BS, in contrast to
the case of using just one path on the spanning tree. Be-
cause of high communication redundancy, Sketch and SD
are highly loss-tolerant. However, their multi-path rout-
ing is uncontrolled—each node has no or little control of
which nodes get to aggregate its data, and therefore, a par-
tial aggregation result may be aggregated multiple times
into the final result. To deal with duplicate-sensitive aggre-
gates, such as COUNT, SUM, and AVG, statistical count-
ing [13] is used to encode a partial result into a bitmap
(a.k.a. Sketch or SD), and convert duplicate-sensitive ag-
gregates to duplication-insensitiveOR of such bitmaps. The
bitmap obtained at the BS provides an estimate of the aggre-
gation result. The estimation error is non-negligible, and in
particular, the variation of estimation is quite high. Com-
pared to other schemes, Sketch and SD work well under
a very poor network condition. However, they do not work
well for networks under a relatively good condition—which
are more common in real-world—because the estimation er-
ror persists irrespective of the network condition.
We would like to develop a data-aggregation scheme

with zero computation error and good tolerance to mod-
erate message losses because most of real-world networks
have been designed and deployed to operate under reason-
ably good conditions. Moreover, the network conditionmay
be improved by adding or upgrading hardware, dynamically
switching to channels with less interference, or even alter-
ing the deployment. A majority of wireless links are re-
ported to have 0.8 or better delivery probability in both sen-
sor networks [19] and wireless mesh networks [1]. As elab-
orated on in Section 4, our experience with Motelab [20],
the WSN testbed at Harvard University, also confirms this
observation.
Opportunistic Data Aggregation (OPAG) is a new data-

aggregation scheme designed to take advantage of relatively
good network connectivity, wherever possible. OPAG al-
lows a node to autonomously choose a Data-Aggregation
Node (DAN) within a few hops of itself. Then, if the suc-
cessful delivery ratio over multiple paths to the DAN is
above a given threshold, the node has the DAN aggregate its
partial results. The DAN aggregates the partial results ac-
curately, so as to avoid computation errors, while the other
nodes on the multiple paths just relay it. Such controlled
multi-path routing is likely to be as loss-tolerant as the un-
controlled under a relatively good network condition, al-
though it does not provide as much path redundancy. If
there is not enough path redundancy to provide a satisfac-
tory success ratio, the node sends the partial results to its
parent node as in TAG, and compensates communication
loss by retransmitting them.

OPAG opportunistically uses multi-path routing to com-
pensate communication losses and achieve better energy-
efficiency than other schemes using retransmission. This is
attributed to a key observation that, when sending a mes-
sage, the radio (e.g., CC2420, a widely-used, low-power,
and high-speed radio) may consume much more energy
in idle listening during the backoff period and the time
of awaiting the acknowledgment than transmitting the bits.
Retransmitting a message is not energy-efficient because it
incurs more idle listening on backoff and more time of wait-
ing for the acknowledgment.
In order to avoid extra idle listening, OPAG uses multi-

path routing that differs from traditional multi-path routing.
Each node dynamically pads multiple partial results and/or
sensor readings in a message, i.e., a messagemay carry mul-
tiple partial results each of which traverses a different set of
paths. Every receiver disassembles the message and pro-
cesses the partial results separately—it may aggregate, for-
ward, or discard a partial result, depending on the specified
DAN.
This paper makes the following contributions.

• Development of a new data-aggregation approach,
OPAG. OPAG incurs zero computation error and pro-
vides good tolerance to moderate message losses.
It opportunistically uses the multi-path routing to
compensate communication losses and achieve better
energy-efficiency than those using retransmission.

• Prototype implementation and experimentation on a
real-world testbed. We implemented OPAG on TMote
Skymotes [18] and conducted experiments onMotelab
[20]. The experimental results show OPAG performs
much better than TAG and Sketch/SD under relatively
good network connectivity.

The paper is organized as follows. Section 2 illustrates
the basic idea of OPAG with an example network. Section
3 presents the detailed design of OPAG. Section 4 describes
our prototype implementation and presents the experimen-
tal results on Motelab. Section 5 discusses the related work.
Finally, Section 6 concludes the paper.

2 Basic Idea

OPAG divides in-network data aggregation into two
layers: data aggregation and data routing. At the data-
aggregation layer, the aggregation results are computed
along an overlay spanning tree; underneath the routing
layer, network nodes may opportunistically send interme-
diate/partial results via multi-path routing.
Figure 2 shows an illustrative example. At the routing

layer, the solid edges in the figure indicate child–parent re-
lationships in the spanning tree. Besides the parent node,

346346

Level 3

Level 1

Level 2

N0
N4

N6

N11

N7

N12

N8N5

N9
N10

N1 N3N2

Data Aggregation

Layer

Routing

Layer

Figure 2. Each edge (e.g., N10 → N2)in the overlay tree
shown at the aggregation layer may correspond to mul-
tiple paths at the routing layer (N10 → N6 → N2 and
N10 → N7 → N2).

each node may also communicate with the other nodes at a
lower level in the tree, as indicated by the dotted edges. At
the data-aggregation layer, each link in the overlay tree cor-
responds to a child–parent link or the multiple paths from
this node to its DAN.
Suppose N10 selects N2 as its DAN. There are two paths

from N10 to N2: N10 → N6 → N2 and N10 → N7 → N2.
Therefore, N2 may receive two copies of N10’s data. The
multi-path routing uses this data redundancy to combat
message losses along either of the two paths. In its partial
results, N10 specifies N2 as its DAN. After N6 receives N10’s
message, it extracts the partial results, because the message
may contain other partial results forwarded by N10 (in this
example, we assume N10’s message only contains its own
result). Likewise, N6 receives the data messages from N9
and N11. N6 checks each partial result it receives, and ag-
gregates those specifying N6 as the DAN. Then, N6 sends
the partial results that it should forward as well as its own
— N10, N11, and N6. It discards the partial result of N9 as
N9’s parent node N5 is to aggregate its partial result. N9
does not choose N1 or N0 to aggregate its partial results be-
cause the multiple paths from N9 to N1 or N0 do not provide
a satisfactory successful delivery ratio.
After N2 receives N6’s message, it aggregates the data

from N10 and N11 with its own, because these two data en-
tries specify N2 as the DAN. Then, N2’s message contains
the data of N6, N7, as well as the intermediate result of ag-
gregating its own reading and the data from N10 and N11.
Duplicate data are ignored by N2.
Because of message space multiplexing, each partial re-

sult has more opportunities to reach a specified aggregation
node. Thus, OPAG can tolerate message losses without in-
curring any computation error.

3 Design of OPAG

In this section, we first describe how OPAG selects
DANs, then analyze the energy consumption of data ag-
gregation using multi-path routing and retransmission, and
finally discuss the protocol overhead and limitation.

3.1 Selecting Data-Aggregation Node

So far, we have described how a partial result is routed
to, and aggregated at a DAN. We now describe how each
node selects its DAN. Each node maintains a small list of
DAN candidates. A candidate entry contains four attributes:
<id>, <level>, <p>, and <flist>. The attributes <id>
and <level> are the ID and the level of the candidate in the
spanning tree below it, respectively. <p> is the probability
that a candidate node’s data will be successfully delivered
to the data sink via a routing path, and <p> is recursively
computed, as we will describe later. <flist> is a list of for-
warding entries, each of which has two fields, <fid> and
<p f>. The former is the ID of a neighbor which can for-
ward this node’s partial results to the aggregation candidate,
and <p f> is the probability that the neighbor successfully
sends partial results to the candidate.
DAN lists are maintained via DAN announcements. A

node N’s DAN announcement contains a few DAN can-
didates that it wants to advertise. Each entry in the an-
nouncement has <id>, <level>, <p>, and <p′ f>. The
first three fields are from the corresponding DAN entry,
and <p′ f> is computed from the forwarding list as p′ f =
1− ∏

F∈ f list
(1− pFf · p(N,F)). F is a forwarding node in

<flist>, pFf is from <p f> of F , and p(N,F) is the link
quality from N to F , which is maintained in N’s neighbor
table.
If N selectsM as its DAN,

p = p(M) · p′ f (M)
= p(M) · (1− ∏

F∈M′s f list
(1− pFf (M) · p(N,F)))

where p(M) and pFf (M) are provided by M’s DAN entry,
p(N,F) is from the link-quality information N maintains.
Naturally, N picks a DAN candidate,M, by maximizing p.
We use the example in Figure 2 to illustrate how each

node maintains its DAN list and selects its DAN. As-
sume p(N1,N0) = 0.9, p(N2,N0) = 0.9, p(N3,N0) = 0.8,
p(N6,N1) = 0.8, p(N6,N2) = 0.8, p(N6,N3) = 0.9.
The data sink (i.e., N0) broadcasts an announcementwith

< 0,0,1.0,1.0 >. <p> is 1.0 because N0 is the data sink,
and <p′ f> is 1.0, because the sender is advertising itself.
Upon receiving the base station’s announcement,N1 inserts
< 0,0,1.0,{< 0,1.0>} > into its candidate list.

347347

N1 picks N0 as its DAN, so the probability that a par-
tial result of N1 is successfully delivered to N0 is p(N1) =
p(N0) · p f (N0) · p(N1,N0) = 0.9, where p(N0) and p f (N0
are N0’s entry, and p(N1,N0) is from N1’s neighbor table.
Then, N1 may advertise two entries: < 0,0,1.0,0.9 >,

and < 1,1,0.9,1.0 >. The first entry is to re-advertise N0,
so N1 simply copies the three fields from N0’s DAN en-
try — <id>, <level>, and <p>. It also sets <p f> to
p(N1,N0) = 0.9 because N1 is considered as the forwarding
node. The second entry is to advertise itself with <p> as
0.9 (i.e. p(N1) = 0.9) and <p′ f> as 1.0.
Similarly,N6 has four candidates: < 0,0,1.0,{< 1,0.9>

,< 2,0.9 >,< 3,0.8 >} >, < 1,1,0.9,{< 1,1.0 >} >, <
2,1,0.9,{< 2,1.0>}>, and < 3,1,0.8,{< 3,1.0>}>. In
particular, the first entry indicates that N6 can send partial
results to N0 through three paths.
The probability that N6’s partial results are success-

fully delivered via these multiple paths to N0 is p′ f =
1− ∏

F∈ f list
(1− pFf · p(N,F)) = 1−(1−0.9∗0.8)∗(1−0.9∗

0.8)∗(1−0.8∗0.9)= 0.98. So, ifN6 selectsN0 as the DAN,
the probability that its partial results are successfully deliv-
ered to the sink is p= p′ f ∗ p(N0) = 0.98.
Each node should only consider the DAN announce-

ments from other nodes of a lower tree level, and ignore the
announcements from nodes of the same or higher level, be-
cause only a lower-level node can be its DAN. For example,
N1’s announcement should be processed by N9, but ignored
by N2. Moreover, a DAN announcement entry propagates
upward only a few hops to control storage and communica-
tion overheads. For instance, if the hop limit is 3, N9 does
not re-advertise N0 in its announcements.

3.2 Energy Cost of Multi-Path Routing
and Message Retransmission

Both the multi-path routing and retransmission require
the transmission of more bits to tolerate communication
losses. So, a natural question is: which one is more energy-
efficient?
We use the following example to compare the energy

consumption of these two choices. Figures 3(a) and 3(b)
show how the partial results are transmitted using the multi-
path routing and retransmission, respectively.
First, we consider a receiver’s energy consumption. The

receiver turns on its radio at the beginning of the assigned
receiving slot, and sets the radio to the RX mode, waiting
for incoming data from other nodes. The radio is kept on
until the end of the slot, because the senders may transmit
data anytime within the slot. So, the energy consumption
is the same regardless whether or not the senders use multi-
path routing or retransmission.
Second, we examine a sender’s energy consumption.

When an outgoing message is posted on the radio stack,

2 43

1

5

h d1

h d2 h d3 h d4d1 d1 d1

backoff

backoff backoffbackoff

(a) Multi-path routing

1

2

h d1 h d1 h d1backoff backoff backoff

(b) Retransmission

Figure 3. Wireless communication uses CC2420 radio
stack in TinyOS-2.x

the radio is turned on and set to the RX mode for sensing
the channel condition. When the channel becomes clear, the
radio starts transmission of the message. After completing
the transmission, the sender may turn off the radio, or wait
for an acknowledgment if the message is unicast and con-
figured to be acknowledged. If the acknowledgment is not
received before the acknowledgment timeout, the sender re-
transmits the message. The sender turns off the radio if the
acknowledgment is received, or the retransmission limit is
reached.
In Figure 3(a), node 1 broadcasts a message consisting

of a common header (h) and its partial result (d1) after a
backoff period of waiting for clear channel. In the next slot,
the forwarding nodes 2, 3, and 4 broadcast d1 together with
their own data (d2, d3, and d4, respectively). The total en-
ergy cost for d1 is Prx ∗Tbacko f f +Ptx ∗ (Th+4∗Td1), where
Ptx and Prx are the power consumption when the radio is in
the TX and RX mode, respectively, and Th and Td1 are the
time for actually transmitting d1 and the common header
(h), respectively. In Figure 3(b), node 1 unicasts its partial
result with two retransmissions. Then, the total energy cost
is (Prx ∗ (Tbacko f f +Tack)+Ptx ∗ (Th+Td1))∗ 3.
In general, the total energy cost for the multi-path routing

(Pmp) and the retransmission (Pretx) are

Pmp = Prx ∗Tbacko f f +Ptx ∗ (Th+(k+1)∗Td1)

and

Pretx = (Prx ∗ (Tbacko f f +Tack)+Ptx ∗ (Th+Td1))∗ (r+1)

348348

where k is the number of nodes that forward d1, and the
r is the number of retransmissions.
To have a back-of-the-envelop calculation of the energy

cost, we ran a few tests on the Motelab testbed, which
consists of about 65 TMote Sky nodes using the popular
CC2420 radio. We measured the time for the initial backoff,
transmitting the payload, and waiting for the acknowledg-
ment by setting timestamps at a number of points in the ra-
dio stack. We find that Tbacko f f = 7.6ms, Tack = 2.9ms, and
the time of transmitting d bytes is d ∗ 0.035ms. From the
CC2420 radio datasheet, Prx = 31.3mW and Ptx = 35.5mW .
The common header of the CC2420 radio stack, including
both the physical header and the MAC header, is 20 bytes
long. These numbers show that transmitting a few extra
bytes consumes much less energy than idle listening during
the backoff and the wait for an acknowledgment. Therefore,
the multi-path routing is more energy-efficient than retrans-
mission.
Based on the analysis, OPAG lets a node exploit multi-

path routing if the successful delivery ratio over redundant
paths is above a given threshold, and uses retransmission
otherwise.

3.3 Protocol Overhead and Limitation

OPAG incurs both communication and storage over-
heads.
The communication overhead consists of two parts: the

messages for DAN announcements, and the extra bits the
forwarding nodes transmit to compensate communication
losses.
The former can be omitted because the DAN announce-

ments are scheduled in the beacon slots, during which each
node has to send and receive the beacons anyway. Of
course, the DAN announcements should not make up too
many messages, jamming the radio channel. Because each
node only advertises a few nodes at the top of the candidate
lists, it only needs to send one extra message in each beacon
slot. If, for optimization, a beacon slot is omitted since link
quality does not change much, the DAN announcements
may also be skipped without hurting the performance since
DANs are selected using the link-quality information.
The latter is the cost OPAG pays to combat communi-

cation losses. We argue that, to tolerate moderate commu-
nication losses, transmitting more bits can be much more
energy-efficient than retransmitting the entire message. We
will show the improvement of energy-efficiency in the next
section.
The storage overhead incurs for the DAN candidate list

and the data buffers. OPAG only keeps a few good DAN
entries, so the space cost is small. Each node needs a data
buffer to store the partial results it has to forward. Since
all DANs are within a few hops, there are only a limited

TopoMgt

NbrTable DanMgt

DataMgt

Link Layer

Message Seq#
& Link Quality

Partial Results

Overheard LQ

My DANLink Quality

Link Quality

Beacon,
Data Messages, & Logs

Figure 4. Architecture of OPAG implementation on TMote
Sky Node.

number of partial results a node may need to forward. In
very dense networks, a node can randomly pick a few partial
results it may consider to forward based on the availability
of space.

4 System Implementation and Evaluation

This section first details the architecture of our imple-
mentation, then describes our evaluation methodology and
experimental setup, and finally presents our experimental
results.

4.1 Implementation Details

We implementedOPAG on the TinyOS 2.0.1, and TMote
Sky platform which is equipped with an 8MHz TI MSP430
processor, 10K RAM, and a 250Kbps Chipcon radio oper-
ating at 2.4GHz. It supports various sensors, such as light,
temperature, and humidity.
The implementation of OPAG is based on the Collection

Tree Protocol (CTP) in TinyOS-2.x source[7]. As shown
in Figure 4, OPAG has four major components: TopoMgt
(Topology Management, a modified version CtpRoutin-
gEngine), NbrTable (Neighbor Table, slightly modified
from LinkEstimator), DanMgt (Data Aggregation Node
Management), and DataMgt (Data Management, modified
from CtpFowardingEngine).
Like CtpRoutingEngine, TopoMgt estimates and ex-

changes link-quality information by periodically broadcast-
ing beacon messages. Then, based on the link quality,
TopoMgt forms a spanning tree. However, TopoMgt makes
the following three changes to CtpRoutingEngine: (1) each
beacon message bears the current clock to achieve a loose
time synchronization; (2) the beacon timer is modified so
that each node only broadcasts beacons during the beacon

349349

slots, and after each beaconmessage, a DAN announcement
message is sent; (3) in addition to using bidirectional link
quality, TopoMgt skips those neighbors with poor outgoing
link quality when selecting a parent node.
DataMgt extracts the partial results from incoming data

messages, and then processes them in three different ways:
(1) if a partial result’s DAN is the current node, DataMgt
aggregates it; (2) if the result’s DAN is not in the DAN can-
didate list, DataMgt discards it, because this node would
have received some advertisements of the DAN if it is on a
forwarding path; (3) for the other partial results, DataMgt
selectively forwards some of them, depending on the avail-
ability of message payload length.
DanMgt maintains the list of DAN candidates and com-

putes the probabilities to select the best DAN. NbrTable
maintains the neighbor table and link-quality information,
just like LinkEstimator.
Because the multi-path routing is more energy-efficient

than retransmission, a node exploits the multi-path routing
opportunistically. If the best DAN can meet a given prob-
ability requirement, it sends its partial result in a broadcast
message, and therefore, the partial result may be forwarded
via multiple paths; otherwise, it sends the partial result in
a unicast message to its parent node. In the former case,
broadcastmessages are not acknowledged; in the latter case,
the parent node only sends an acknowledgment if it success-
fully receives the child node’s partial result, rather than the
entire message.
To support the acknowledgment of a specific partial re-

sult rather than the entire message, we added in the CC2420
radio stack a segment CRC checking [10]: instead of hav-
ing one CRC checksum for the entire message, a 1-byte
CRC checksum is added to each of the partial results within
the message. The original CRC checksum only verifies the
message header. Upon receiving a unicast message from a
child node, the parent node first checks the header’s CRC.
If the header is corrupted, the whole message is dropped.
If the child’s partial result was received correctly, the par-
ent node sends an acknowledgment. Other partial results,
if received correctly, are processed as usual, or discarded
if corrupted. The child node needs to retransmit the uni-
cast message unless it receives the acknowledgment of its
partial result or the retransmission limit is reached. Other
nodes overhear the unicast message and process the partial
results individually.
Aggregation query and accuracy: In this paper, we focus
on commonly-used, duplicate-sensitive aggregates, such as
COUNT, SUM, and AVG. The size of a partial result for
these simple aggregates is usually small, so a data mes-
sage can hold several partial results, thereby making mes-
sage multiplexing possible. For complicated queries, like
histogram and Sketch, the partial result size may vary, de-
pending on the amount of data involved and the accuracy of

the partial result [11, 9]. So, there is contention for limited
message space between the accuracy of a partial result it-
self, and the need for message multiplexing to tolerate mes-
sage losses. This accuracy–energy tradeoff for complicated
queries is left as our future work.
We use the relative error to evaluate the performance of

different aggregation approaches. The relative error is de-
fined as |x−x̂|

|x| , where x̂ is a result and x the true value. In
order to exclude the effect of the sensor data, we run the
COUNT aggregate over the entire network. In the figures
of aggregation accuracy, unless otherwise noted, we show
the median values as well as the 5 and 95 percentiles. We
do not use the percentage contribution because it does not
reflect the computation error incurred by statistical counting
in SD.
Energy-efficiency: Each node stays awake throughout the
beacon slot and its receiving slot, and hence the difference
is the energy it spends in sending data messages. So, we
measured the time of sending data messages and converted
it to energy consumption.
We timestamped a few points in the CC2420 radio stack

and measured the time each node spends in TX/RX mode
during the sending slots. To get the energy consumption,
we multiply the time in RXmode by Prx = 35.5mW (i.e., the
receive power), and the time in TX mode by Prx = 31.3mW
(i.e., the maximum transmit power). We also used a lower
transmit power, Ptx = 22.5mW in our evaluation.

4.2 Experimental Setup

For the purpose of performance comparison, we im-
plemented OPAG (OPAG without the redundancy control),
TAG (TAG’s tree-based approach), TAG-RETX (TAG with
retransmission), and SD (Synopsis Diffusion over the ring
structure), based on the CTP source. Because the level-1
nodes are just one hop away and cannot establish multiple
paths to the BS, SD allows these nodes to send each data
message three times [17]. For a fair comparison, the level-1
nodes in TAG also send each data message up to three times.
TAG and SD do not retransmit lost messages except for the
level-1 nodes. TAG-RETX retransmits a message unless it
is acknowledged or there have been 4 retransmissions. We
do not include Sketch, because it is almost identical to SD,
except that SD uses 32-bit bitmaps, while Sketch uses 16-bit
bitmaps.
To compensate for message losses, OPAG uses multi-

path routing if the redundant paths give a success ratio no
less than p, and use retransmissions if there is no redundant
path or the multiple paths yield a success ratio less than p.
A node sets p to 0.95 if it has aggregated the sensor read-
ings of more than 3 nodes, and 0.9 otherwise. Therefore,
the partial results with more contribution to the final aggre-
gation result are unlikely to be lost.

350350

All of the approaches under consideration follow the
same scheduling as follows. Each epoch is 120s long and
consists of 24 slots. A common slot is assigned for all nodes
to exchange beacon messages. Each node is assigned a re-
ceiving slot to receive partial results from other nodes, and a
sending slot to send its own partial result (and the partial re-
sults it has to forward under OPAG, depending on the level
of the node in the topology.
To evaluate our implementation, we used Motelab, the

wireless sensor network testbed at Maxwell Dworkin Labo-
ratory of Harvard University. Motelab has about 190 Tmote
Sky nodes scattered across a number of rooms on three
floors, and about 65 nodes can be programmed. The envi-
ronment should have enough multi-path effects from obsta-
cles and interference from other wireless communications
as a realistic sensor network deployment does.
Each node uses a CC2420 radio operating at the de-

fault radio frequency — channel 11 of IEEE 802.15.4
(2.405 GHz) with the maximum transmit power. It uses
the CC2420 radio stack in TinyOS-2.0.1, which sends
802.15.4-compliant packets, but does not implement the
802.15.4 MAC protocol. The physical header and the MAC
header use 20 bytes. The message payload length is lim-
ited by the size of the physical data buffer (120 bytes). We
set the maximum payload size to 60 bytes. Each partial re-
sult is 10 bytes long, including 1-byte reserved for filtering
probability and 1-byte CRC checksum.
We used the maximum transmit power), corresponding

to 0 dBm, respectively. We set node 2 to be the data sink,
and then have 59 nodes join the spanning tree. Therefore,
we have a topology of relatively strong connectivity with an
average node degree of 9.7, and a network diameter of 6.
For the results presented in this paper, all DAN adver-

tisements are propagated within 2 hops for the following
reason. When the DAN is located 3 hops away, the multiple
paths from a node to that DAN are very likely braided. In-
stead of deriving the accurate success ratio over the braided
paths, we simply multiply 0.8 to the ratio which assumes
the paths are independent of each other. Then, using the
estimated success ratio, a node very rarely selects its DAN
from 3 hops or more away.
We ran each test 5 times, and each run lasted about 25

minutes. The first 5 minutes is the warm-up period, in
which nodes build up a spanning tree. Then, the query runs
for 8 epochs, each for 2 minutes.

4.3 Experimental Results

4.3.1 Aggregation Accuracy

Figure 5 shows the aggregation accuracy of the four
schemes. In both topologies, TAG has the worst average
relative error due to message losses. Using retransmissions,
TAG-RETX can reduce the error by 50-65%, as compared

Figure 5. Aggregation accuracy

to TAG. Compared to TAG-RETX, OPAG incurs a slightly
higher error, because the nodes have better connectivity and
thus form more redundant paths. OPAG uses multi-path
routing more aggressively, therefore, with a small proba-
bility, a partial result may be lost on all paths, leading to
slightly higher aggregation error, as compared with TAG-
RETX.
SD is very insensitive to the change of topology and net-

work connectivity because (1) its multi-path routing is ex-
tremely aggressive, and (2) the variance of the estimation is
significant. More than 5% of the estimated results are off
the true value by more than 20%.

4.3.2 Energy-Efficiency

Before analyzing energy-efficiency,we first show the break-
down of time and energy in sending a message by the num-
ber of retransmissions in Figure 6 and Figure 7 respectively.
They illustrate that the energy cost increases significantly
as more retransmissions are incurred. In fact, as shown in
Figure 7, idle listening (in the backoff and the ack waiting)
takes more than 90% of the energy cost, and sending a mes-
sage with 4 retransmissions consumes 7 times as much as
sending a message without retransmission.
Because the time for transmitting data is much less than

the backoff time and the time for waiting for the acknowl-
edgments, it is more energy-efficient to let the forwarding
nodes on the multiple paths to send a few extra bytes than
retransmitting the lost messages.
In Figure 8, we show the distribution of the transmitted

messages by the number of retransmissions. In both topolo-
gies, about 88% of the messages are sent successfully with-
out retransmission. Due to better connectivity, OPAG can
take advantage of the multi-path routing and increase this
percentage to about 95% at the expense of slightly lower ac-
curacy. The energy cost is reduced by about 33% compared
to TAG-RETX, and is about the same as SD, as shown in
Figure 9. This indicates that our opportunistic schemes can
cut the aggregation error by half at roughly the same energy
cost in networks of good connectivity.
TAG consumes the least amount of energy because each

351351

Figure 6. Time breakdown by # of retransmissions

Figure 7. Energy breakdown by # of retransmissions

node sends one short message without retransmission. SD
consumes more energy than TAG because it needs to trans-
mit more bytes in each message.
Additionally, Figure 7 and Figure 8 show that OPAG can

balance the energy consumption, because some nodes can
avoid retransmissions which incur much higher energy con-
sumption, and the forwarding nodes only need to consume
a little more energy for transmitting more bits,

5 Related Work

A number of researchers studied data aggregation in
wireless sensor networks [15, 14, 21, 23, 17, 5, 16]. Their

Figure 8. The distribution of retransmission

Figure 9. Avg. energy consumption for sending data per
epoch per node

approaches use a tree topology (value-splitting can be con-
sidered as a special approach based on a tree topology) with
exact computation of aggregate results, a ring topologywith
statistical estimation, or both. The tree-based approaches
[15, 14, 21, 23] do not incur any computation error, but are
not robust to message losses. On the contrary, the ring-
based approaches [17, 5] are very robust against message
losses by aggressively exploiting multi-path routing, but
statistical estimation leads to significant result inaccuracy.
To combine the advantages of tree topologies and multi-

path routing, Tributary-Delta (TD)[16] allows a WSN to
form a hybrid topology, visually termed as tributary-delta,
where a tributary refers to an area where nodes in a very
good network condition form a sub-tree, and the delta refers
to the area where the BS and some nodes form a multi-path
sub-graph. When the network condition changes, the delta
area and the affected tributary areas can be adjusted adap-
tively subject to the restrictions of topological correctness.
TD can significantly improve the accuracy of aggregate re-
sults over that of Sketch/SD only if the BS receives exact
partial aggregate results that make up a good portion of the
final result. This requires the BS to be fed directly by some
sub-trees which cover a large part of the network. However,
with strict restriction of topological correctness, such sce-
narios are unlikely to hold in the real world. Only a few
random spots under poor network conditions can make the
delta area cover almost the entire network.
OPAG is a new data aggregation scheme with zero com-

putation error and good tolerance to moderate message loss.
It separates in-network data aggregation into two layers: (1)
at the data-aggregation layer, aggregation results are com-
puted exactly along an overlay tree; and (2) at the under-
neath routing layer, a node opportunistically uses a multi-
path routing scheme to send its partial result to a data ag-
gregation node. And the multi-path routing in OPAG differs
from that of Sketch, SD and TD.
GRAB [22] proposes a credit-based forwarding scheme

to control the redundancy of multiple paths between a data

352352

source and a data sink. Each node of the sensor network
is assigned a cost, which is the minimum energy to for-
ward a packet from this node to the sink. Every packet
is broadcast with a credit, and only the neighbors whose
costs are below the credit re-send the packet. Therefore, the
amount of credit determines the redundancy of the forward-
ing mesh. Through simulations, GRAB shows how much
credit is needed to achieve a certain success ratio. In con-
trast, OPAG is motivated to control the redundancy of data
entries rather than that of the paths. We analyze the rela-
tionship between the data redundancy and the success ratio,
and then design an algorithm that probabilistically forwards
the data entries with minimum redundancy while retaining
a given success ratio.
Boulis et al. [3] study the tradeoff between the aggrega-

tion accuracy and the energy consumption by taking advan-
tage of the spatial-temporal correlation among sensor val-
ues. The idea is to create a system-level energy vs. accuracy
knob whereby the more less accurate the aggregation results
need to be, the less sensor values are used to estimate the
aggregate results by using the data correlation more aggres-
sively, and therefore less messages need to be exchanged.
This approach is orthogonal to OPAG, as OPAG takes ad-
vantage of good network connectivity rather than data cor-
relation. Proper combination of the two approaches may
achieve better accuracy-energy tradeoff.
In the context of splitting a packet over a number of dis-

jointed paths with forward error correcting (FEC) codes,
Dulman et al. [6] analyzed the relationship between the
number of successfully delivering paths and the overall suc-
cess probability of restoring the packet. By contrast, OPAG
delivers each data entry through a set of paths without split-
ting it, and its analysis focuses on the relationship between
the data redundancy and the success ratio of data delivery.
Parametric Probabilistic Routing [2] is a multi-path rout-

ing scheme for one-to-one communication in WSNs. In-
stead of specifying the paths between a source and a sink,
the scheme allows each neighbor to forward packets with
a certain probability based on the hop counts between the
source, the sink, and the forwarding node. OPAG deals with
in-network data aggregation, and the forwarding probabil-
ity of a data entry is based on the data redundancy and the
given threshold of success ratio.
Directed Diffusion [12, 8] proposes a data-driven com-

munication paradigm for WSNs. A data sink distributes
a sensing task in the sensor network as an “interest,” and
the distribution process sets up gradients which are used to
forward data from the data sources to the sink along mul-
tiple paths. Local rules are exploited to reinforce one or a
small number of high-quality paths to reduce data redun-
dancy. The tradeoff between the maintenance overhead of
alternative paths and the resilience to node failures is also
studied. The scheme is not tailored to in-network data ag-

gregation, and do not explore the relationship between the
data redundancy and the success ratio, either.
Dozer [4] presents a data-gathering system which

achieves impressive power efficiency — in the magnitude
of 0.2% radio duty cycles. It uses a spanning tree topology
and coordinates the communication between a parent and
its children nodes by a TDMA protocol. Because wireless
communication is inherently lossy. OPAG can be comple-
ment to Dozer in reducing retransmissions and further low-
ering the energy consumption.

6 Conclusion

In this paper, we presented a novel approach, called
Opportunistic Data Aggregation (OPAG), to in-network
data aggregation with no computation error and tolerance
to moderate message losses in wireless sensor networks.
By space-multiplexingmessages, OPAG divides in-network
data aggregation into two layers: (1) at the data-aggregation
layer, intermediate aggregation results are computed exactly
along an overlay tree; and (2) at the underlying routing
layer, a node may send intermediate results to its aggrega-
tion node via multiple paths.
OPAG opportunistically uses multi-path routing to com-

bat communication losses and achieve better energy-
efficiency than using retransmission. This is attributed to
the observation that, when sending a message, the radio
(e.g., the widely-used CC2420 radio) may consume much
more energy on idle listening during the backoff period and
the time on waiting for the acknowledgment than transmit-
ting data bytes. Retransmitting a message is not energy-
efficient because it incurs more idle listening on more back-
offs and more time of waiting for an acknowledgment. In
order to avoid extra idle listening, OPAG uses a multi-path
routing scheme that differs from the traditional multi-path
routing. Each forwarding node dynamically sends multi-
ple partial results—including the partial results it needs to
forward and its own partial result—in one message. The
receivers disassemble the message and process the partial
results in the message individually—they may aggregate,
forward, or discard a partial result, depending on the aggre-
gation node specified in the partial result.
We implemented OPAG on TinyOS-2.x and the TMote

Sky node, and evaluated its performance on the Motelab
Testbed. With good network connectivity, OPAG has more
opportunities to exploit multi-path routing, thus reducing
the energy cost by 33%, compared to the reliable TAG (TAG
with retransmission). and its relative error is only slightly
higher. Compared to SD, OPAG cuts the aggregation error
by half at roughly the same energy cost.
In future, we would like to consider the tradeoffs be-

tween the accuracy of intermediate results and degree of tol-
erance to message losses by space-multiplexing messages

353353

for complex queries.

Acknowledgement

The work reported in this paper was supported in part by
the US Army Research Office under Grant W911NF-05-1-
0421, and by the NSF under CNS-0435023.

References

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.
Link-level measurements from an 802.11b mesh network.
In SIGCOMM, 2004.

[2] C. L. Barrett, S. J. Eidenbenz, L. Kroc, M. Marathe, and
J. P. Smith. Parametric probabilistic sensor network routing.
In Proceedings of the 2nd ACM international conference on
Wireless sensor networks and applications, 2003.

[3] A. Boulis, S. Ganeriwal, and M. Srivastava. Aggregation
in sensor networks: an energy-accuracy trade-off. In SNPA,
2003.

[4] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer:
ultra-low power data gathering in sensor networks. In IPSN,
2007.

[5] J. Considine, G. K. F. Li, and J. Byers. Approximate aggre-
gation techniques for sensor databases. In ICDE, 2004.

[6] S. Dulman, T. Nieberg, J. Wu, and H. Havinga. Trade-off
between traffic overhead and reliability in multipath routing
for wireless sensor networks. In Wireless Communications
and Networking Conference, 2003.

[7] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and
A. Woo. The collection tree protocol, tinyos-2.x tep 123.
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html.

[8] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin.
Highly-resilient, energy-efficient multipath routing in wire-
less sensor networks. Mobile Computing and Communica-
tions Review, 1(2), 2002.

[9] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and
J. Heidemann. An evaluation of multi-resolution storage for
sensor networks. In ACM SenSys, 2003.

[10] R. K. Ganti, P. Jayachandran, H. Luo, and T. Abdelzaher.
Datalink streaming in wireless sensor networks. In Proceed-
ings of ACM SenSys, 2006.

[11] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Be-
yond average: Toward sophisticated sensing with queries. In
IPSN, 2003.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A scalable and robust communication paradigm
for sensor networks. In Proceedings of 6th Annual Inter-
national Conference on Mobile Computing and Networking
(MobiCom’00), 2000.

[13] P. F. jolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications. Computer and System Sci-
ences, 1985.

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acqusitional query processor for sensor net-
works. In SIGMOD, June 2003.

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a tiny aggregation service for ad-hoc sensor
networks. In OSDI, December 2002.

[16] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
deltas: Efficient and robust aggregation in sensor network
streams. In SIGMOD, 2005.

[17] S. Nath. Synopsis diffusion for robust aggregation in sensor
networks. SIGMOBILE Mob. Comput. Commun. Rev., 8(4),
2004.

[18] S. (previously as Moteiv). Moteiv. http://www.sentilla.com/.
[19] N. Reijers, G. Halkes, and K. Langendoen. Link layer mea-

surements in sensor networks. In Int. Conf. on Mobile Ad-
hoc and Sensor Systems, 2004.

[20] G. Werner-Allen, P. Swieskowski, and M. Welsh. Mote-
lab: A wireless sensor network testbed. In IPSN’05, Special
Track on Platform Tools and Design Methods for Network
Embedded Sensors (SPOTS), 2005.

[21] Y. Yao and J. E. Gehrke. Query processing in sensor net-
works. In First Biennial Conference on Innovative Data
Systems Research (CIDR), January 2003.

[22] F. Ye, G. Zhong, S. Lu, and L. Zhang. A robust data delivery
protocol for large scale sensor networks. In Proceedings of
the 2nd International Workshop on Information Processing
in Sensor Networks, 2003.

[23] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates
for monitoring wireless sensor networks. In IEEE SPNA,
2003.

354354

