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ABSTRACT
The rapidly growing capability and world-wide prolifera-
tion of smart phones and mobile handhelds have begun to
attract the attention of virus writers in recent years. The past
three years alone have witnessed an exponential rise in the
number of distinct mobile malware families to over 30, and
their variants to more than 170. These malware can spread
via Bluetooth and SMS/MMS messages, enable remote con-
trol of a device, modify critical system files, damage exist-
ing applications including anti-virus programs, and block
MMC memory cards, to name a few. Current-generation
mobile anti-virus solutions are primitive when compared to
their desktop counterparts, and may not be scalable given the
small footprint of mobile devices as new families of cross-
platform malware continue to appear.

This paper proposes a novel behavioral detection frame-
work to capture mobile worms, viruses and Trojans, instead
of the signature-based solutions currently available for mo-
bile devices. First, we generate a database of malicious be-
havior signatures by studying over 25 distinct families of
mobile viruses and worms targeting the Symbian OS, includ-
ing their 140 variants, reported to date. Next, we describe
a two-stage mapping technique that constructs these signa-
tures at run-time from monitoring the system events and API
calls in Symbian OS. We discriminate malicious behavior
of malware from normal behavior of applications by train-
ing a classifier based on Support Vector Machines (SVMs).
Our evaluation results indicate that behavioral detectioncan
identify current mobile viruses and worms with over 96%
accuracy. We also find that the time and resource overheads
of constructing the behavior signatures from low-level API
calls are acceptably low for practical deployment. Most mo-
bile device manufacturers and mobile service providers can
implement our proposed framework without any major mod-
ification of the handset operating environment.

1. INTRODUCTION
Mobile handsets are increasingly used to access services

such as messaging, video/music sharing, and e-commerce
transactions that have been previously available on PCs and
servers only. However, with this new capability of hand-
sets, there comes an increased risk and exposure to mali-

cious programs (e.g., spyware, Trojans, mobile viruses and
worms) seeking to compromise data confidentiality, integrity
and availability of handset services. The handset manufac-
turers have responded to the increasing threat to mobile de-
vices in several ways. For example, the Symbian Signed [1]
framework derives a unique application certificate from the
Symbian Root certificate issued by its Certificate Authority
(CA) for signing an application. When a signed applica-
tion is installed, the Symbian installer program verifies that
the signature is valid before proceeding with the installation.
This ensures that the software has not been tampered with
during its distribution and has undergone a standard testing
procedure as part of being Symbian Signed. However, given
the vast number of mobile applications available on the In-
ternet, especially peer-to-peer sites, one can not expect all
applications to be signed with a certificate.1 Note that an
application that has been self-signed cannot be trusted to be
free of malicious code. Moreover, even when an application
is signed by a trusted CA, a malicious program can still enter
the system via downloads (e.g., SMS/MMS messages with
multimedia attachments), and it may exploit known vulner-
abilities of an unsigned helper application.

The most prevalent approach for securing handsets is to
detect malicious programs at their arrival via anti-virus soft-
ware. A number of handset manufacturers and network op-
erators have partnered with security software vendors to of-
fer anti-virus programs for mobile devices [2, 3]. However,
current anti-virus solutions for mobile devices are not as so-
phisticated as their counterparts in desktop environments,
and rely primarily on signature-based detection. As a result,
these tools are mostly useful for post-infection cleanup. For
example, if a handset is infected with a mobile virus, these
tools can be used to scan thesystemdirectory for the pres-
ence of files with specific extensions (e.g., .APP, .RSC and
.MDL in Symbian-based devices) and filenames typical of
virus payload. Although the infected files are deleted by the
anti-virus tool, the underlying vulnerability —overwriting
the system directory— is notpatched. As a result, a cleaned
handset may get infected again by another instance of the
same virus, requiring repeated cleanup. Moreover, due to

1Currently, very few operators lock down handsets to preventusers
from installing unsigned applications.
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their limited CPU, memory and storage resources, signature-
based detection will not be viable for mobile devices in fu-
ture if the threats continue to grow at a fast rate. The emer-
gence of crossover worms and viruses [4] that infect a hand-
set when it is connected to a desktop for synchronization
(and vice versa) requires that mobile applications and data
be checked against both traditional as well as mobile virus
signatures. This limits the extent to which signature-based
schemes can be deployed on handsets.

Most of the published studies [5, 6, 7, 8] on the detec-
tion of Internet malware have focused on their network sig-
natures (i.e., traffic generated due to scanning, failed con-
nection attempts, and DNS server accesses). Constructing
network signatures of mobile malware is extremely difficult
due to the mobility of devices and the relatively closed nature
of cellular networks. There is very little published work on
the detection of mobile malware which can spread via non-
traditional vectors, such as Bluetooth, content like games
and video clips, and SMS/MMS messaging [9, 10]. Com-
pared to traditional OSs, Symbian and other mobile OSs
have important differences in the way file permissions and
modifications to the operating system are handled. There-
fore, development of a detection framework that overcomes
the limitations of signature-based methods, while address-
ing unique features and limitations of the mobile operating
system environment, is an important area of research.

An alternative to signature-based methods,behavioral de-
tection[11], has emerged as a promising technique for pre-
venting the intrusion of spyware, viruses and worms. In
behavioral detection, the run-time behavior of an applica-
tion (e.g., its memory and file accesses, API calls) is moni-
tored and compared against a set of malicious behavior pro-
files. The malicious behavior profiles can be specified as
global rules that apply to all applications, as well as fine-
grained application-specific rules. Behavioral detectioncan
detect polymorphic (malware that change their payload sig-
natures) [12] and zero-day (malware that exploit a previously-
unknown vulnerability) [13] worms since it does not rely on
payload signatures. Also, a typical database of behavior pro-
files and rules should be smaller than that needed for storing
specific payload signatures of many different classes of mal-
ware. This makes behavioral detection methods particularly
suitable for handsets. However, deploying behavioral detec-
tion poses two challenges. The first isspecificationof what
constitutes either normal or malicious behavior that covers
a wide range of applications, while keeping the number of
false positives for malicious behavior detection low. The
second ison-line reconstructionof potentially suspicious be-
havior from the run-time behavior of applications, so that
the observed signatures can be matched against a database
of malicious signatures.

The primary contribution of our work is to overcome these
two challenges for the mobile operating environment so that
behavioral detection can be deployed to identify mobile mal-
ware. Our approach attempts to address the shortcomings

of current-generation mobile anti-virus tools and can be de-
ployed in handsets without any modification of the mobile
operating system. The starting point of our approach is to
generate a catalog of malicious behavior signatures by ex-
amining the behavior of current-generation mobile viruses,
worms and Trojans that have been reported in the wild so
far. We specify malicious behavior as a collection of system
calls and resource access attempts made by these malicious
programs, interposed by a temporal logic called thetempo-
ral logic of causal knowledge(TLCK). Monitoring system
call events and file accesses have been used successfully in
intrusion detection [14, 15] and backtracking [16]. In our
approach, we reconstruct the higher-level malicious behav-
ior signatures on-line from lower-level system calls and file
accesses similar to how individual pieces are put together to
form a jigsaw puzzle. The TLCK-based behavior specifi-
cation addresses the first challenge of behavioral detection,
by providing a compact “spatial-temporal” representationof
malicious behavior. The next step is fast and accurate re-
construction of these malicious signatures during run-time
by monitoring system calls and resource accesses so that ap-
propriate alerts can be generated. This overcomes the sec-
ond challenge for deployment of behavioral detection in mo-
bile handsets. In order to detect malicious programs from
their partial or incomplete behavior signatures, we train a
classifier based onSupport Vector Machines(SVMs) [17,
18] so that partial signatures for malicious behavior can be
classified from those of normal applications running on the
handset. For real-life deployment, the resulting SVM model
and the malicious signature database are preloaded onto the
handset by either the handset manufacturer or a cellular ser-
vice provider. These are updated only when new behaviors
(i.e., not minor variants of current malware) are discovered.
The updating process is similar to how anti-virus signatures
are updated by security vendors. However, since new be-
haviors are far fewer than new variants, the updates are not
expected to be frequent.

The paper is organized as follows. Section 2 describes
how to construct behavior signatures using the TLCK logic
and shows examples from current-generation mobile mal-
ware. These signatures are generated based on our extensive
survey of mobile viruses, worms and Trojans discovered to
date. We also describe generalized behavior signatures that
cover broad categories of malware so that a compact mali-
cious behavior database can be created. In Section 3, we de-
scribe the implementation of a monitoring layer in Symbian
that constructs these signatures from captured API calls and
system events via a two-stage mapping technique. Section 4
discusses a class of machine learning algorithms calledSup-
port Vector Classification(SVC) that we use to tell mali-
cious behavior from normal behavior based on captured par-
tial signatures. This step is necessary in order to detect a
malware before its complete behavior signature can be cap-
tured by the monitoring layer. We evaluate the effectiveness
of behavioral detection in Section 5 by first training the SVM
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classifier and then testing it against 5 current-generationmo-
bile viruses and worms. We review the related literature in
Section 6 and make concluding remarks in Section 7.

2. MALICIOUS BEHAVIOR SIGNATURES

2.1 Temporal patterns
We definebehavior signature as the resulting manifesta-

tion of a specification of resource accesses and events gener-
ated by applications, including malware. We are interested
in only those behavior signatures that indicate the presence
of a malicious activity such as damage to the handset oper-
ating environment (e.g., draining the battery or overwriting
files in the system directory), installing a rootkit or worm
payload, sending out an infected message, etc. To this end,
it is not sufficient to monitor a single event (e.g., a file reador
write access) of a process in isolation in order to classify an
activity to be malicious. In fact, there are many steps a ma-
licious worm or virus performs in the course of its life-cycle
that may appear to be harmless when analyzed in isolation.
However, a logical ordering of these steps over time often
clearly reveals the malicious intent. Thetemporal pattern—
i.e., the precedence order of these events and resource ac-
cesses in time—is therefore key to detecting such malicious
intent. For example, consider a simple file transfer by calling
the Bluetooth OBEX system call (e.g.,CObexClient::Put()
and related OBEX operations) in Symbian. This is often
used by applications for exchanging data such as games and
music files among nearby handsets. On their own, any such
calls will appear to be harmless. However, when the received
file is of type.SIS(Symbian installation file)and that file is
later executed,and the installer process seeks to overwrite
files in thesystemdirectory, we can say with a high degree
of certainty that the handset has been infected by a virus such
as Mabir [19] or Commwarrior [20]. With subsequent mon-
itoring of the files and processes touched by the above ac-
tivities, the confidence level of detection can be improved
further. This means that if we view the handset as a system
exhibiting a wide range of behaviors over time, we can clas-
sify some of the temporal manifestations of these behaviors
as malicious. Note that the realization of specific behaviors
is dependent on how a user interacts with the handset and
specific infection vectors of a malware. However, thespec-
ification of temporal manifestation of malicious behaviors
can still be prescribeda priori by considering their effect on
the handset resources and the operating environment.

A simple representation of malicious behavior can be given
by ordering the corresponding actions using a vector clock [21]
and applying the “and” operator to the actions. However,
for more complex behavior that requires complicated tempo-
ral relationships among actions performed by different pro-
cesses, simple temporal representations may not be suffi-
cient. This suggests that behavior signatures are best spec-
ified using temporal logic instead of classical propositional
logic. Propositional logic supports reasoning with statements
that evaluate to be either true or false. On the other hand,

temporal logic allows propositions whose evaluation depends
on time, making it suitable for describing sequences of events
and properties of correlated behaviors. There have been sig-
nificant research in applying temporal logic to study dis-
tributed systems, and software programs. There are also
various branches of temporal logic such as linear time and
branching time logic [22]. In Linear Time Temporal Logic
(LTTL), program execution behavior can be modeled as a
linear sequence of states, where each state has a fixed (i.e.,
deterministic) output. On the other hand, the Branching
Time Temporal Logic (BTTL) allows state transitions via
a finite (or infinite) number of reachable states where the
states can be seen to form a reachability tree. Since program
execution and file/memory accesses are not always linear
in time, LTTL is not a suitable choice for our purpose. A
variant of BTTL called thetemporal logic of causal knowl-
edge(TLCK) [23], on the other hand, allows concurrency
relations on branching structures that are naturally suitable
for describing actions of multiple programs. Therefore, we
adopt the specification language of TLCK to represent ma-
licious behaviors within the context of a handset operating
environment.

2.2 Temporal Logic of Malicious Behavior
This section describes how to specify malicious behavior

in terms of system calls and events, interposed by temporal
and logical operators. The specification of malicious behav-
ior is the first step of any behavioral detection framework.
Although our presentation is primarily targeted to the Sym-
bian OS, it can be extended for other mobile operating sys-
tems as well.

First, let us formally define a behavior signature as a finite
set of propositional variables interposed using TLCK, where
each variable (when true) confirms the execution of either
(i) a single or an aggregation of system calls, or (ii) an event
such as read/write access to a given file descriptor, directory
structure or memory location. Note that we donotkeep track
of all system calls and events generated by all processes —
doing so will impose unacceptable performance overhead in
constructing behavior signatures. Therefore, only those sys-
tem calls and events that are used in the specification of mali-
cious behavior are to be monitored. In fact, we find that spec-
ifying behavior signatures for the majority of mobile mali-
cious programs reported to date, requires monitoring only a
small subset of Symbian API calls.

Let PS= {p1, p2, · · · , pm}
S

{i|i ∈N} be a set ofmatomic
propositional variables belonging toN malicious behavior
signatures. Atomic propositions can be joined together to
form higher-level propositional variables in our specifica-
tion. The logical operatorsnot (¬) andand (∧) are defined
as usual. The temporal operators defined using past-time
logic are as follows:

• ⊙t true at time t

• ♦t true at some instant before t

• �t true at all instants before t
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• ♦t−k
t true at some instant in the interval[t −k,t].

The operator♦t−k
t is a quantified temporal operator to

rangek time instants over the time variablet. We make the
following assumptions.

1. Time is represented by an infinite sequence of discrete
time instants.

2. A duration is given by a sequence of time instants with
initiating and terminating instants.

3. A system call or an event is instantiated at a given in-
stant but may take place over a duration.

4. The strong synchrony hypothesis [24] holds for the
handset operating system environment, i.e., the instan-
tiation of a single event at a given instant can generate
other events synchronously. In case of synchronous
events, one can still use relative order to denote rela-
tionship among events.

5. Higher-level events and system calls of greater com-
plexity can be composed by temporal and logical pred-
ications of the above atomic propositional variables.

To illustrate the application of the above logic, we apply it
to specify the behavior of a family of mobile worms known
as Commwarrior. Following this, we will specify behavior
signatures that are general enough to cover different families
of mobile worms. This generalization is a key benefit of
using a behavioral detection approach as opposed to payload
signatures, given the small memory and storage footprint of
these devices.

2.3 Example: The Commwarrior worm
The Commwarrior worm [20] targets Symbian Series 60

phones and is capable of spreading via both Bluetooth and
MMS messages. The worm payload is transferred via a SIS
file with randomly-generated names. The payload consists
of the main executablecommwarrior.exeand a boot compo-
nentcommrec.mdlthat are installed under\System\updates,
\System\Apps and \System\Recogs directories. Figure 1
shows the organization of the Symbian filesystem. Each of
the drive letters (C:, D:, E: andZ:) has an identical (but sep-
arate) filesystem tree rooted atSystem. Once the payload is
installed, the SIS file installer automatically starts the worm
processcommwarrior.exe. It then rebuilds a SIS file from the
above files and places it as\System\updates\commw.sis.
Commwarrior spreads via Bluetooth by contacting all de-
vices in range and by sending a copy of itself in a round-
robin manner during the time window from 08:00 to 23:59
hours based on the device clock. It also spreads via MMS
by randomly choosing a phone number from the device’s
phonebook, and sends an MMS message withcommw.sisas
an “application/vnd.symbian.install” MIME attachment so
that the target device invokes the Symbian installer program
upon receiving the message. The daily window for replica-
tion via MMS is only from 00:00 to 06:59 hours, again based
on the device’s own clock. Figure 2 presents a graphical rep-
resentation of the behavior of the Commwarrior worm. Our

Figure 1: Symbian filesystem directories targeted by
malware (OS v8 and earlier)

Figure 2: Behavior signature for Commwarrior worm

goal is to convert this graphical representation into a behav-
ior signature using logical and temporal operators defined in
Section 2.2.

Note that the specification of Commwarrior behavior re-
quires monitoring of a small number of processes and system
calls (N = 6), namely, the Symbian installer, the worm pro-
cess (commwarrior.exe), two Symbian Bluetooth API calls
and the native MMS messaging application on the handset.
By generalizing the behavior signatures across many fam-
ilies of mobile malware, we hope to keepN to be a small
number. To specify Commwarrior in terms of TLCK logic,
we first identify the setPSof atomic propositional variables:

ReceiveFile(f,mode,type): Receive filef via either mode=
Bluetooth or mode=MMS of type SIS. When mode=MMS,
the MIME attachment is of typeapplication/vnd.symbian.install.
InstallApp(f,files,dir): Install a SIS archive filef by extract-
ing filesand installing them in directorydir of the handset.
The specific elements off , f iles anddir are as shown in
Figure 2.
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LaunchProcess(p,parent): Launch an applicationp by a par-
ent processparent, which is typically the Symbian installer.
MakeSIS(f,files): Create a SIS archive filef from files f iles
(files are assumed to have fully-qualified path names).
BTFindDevice(d): Discover a random Bluetooth deviced
nearby.
OBEXSendFile(f,d): Transfer a file f (with fully-qualified
path name) to a nearby Bluetooth deviced via the OBEX
protocol.
MMSFindAddress(a): Look up a random phone numbera in
the device Phonebook.
MMSSendMessage(f,a): Send MMS message with attach-
ment f to a random phone numbera.
SetDevice(act,< condition>): Perform actionact (e.g., re-
set device) when< condition> holds true.< condition>

is typically expressed as a set of other predicates to verify
device time and date (see below).
VerifyDayofMonth(date,< mm: dd >): Verify if current date
is < mm: dd >, e.g., “the 14th day of any month.”

Next, we combine the atomic variables into 7 higher-level
signatures that correspond to the major behavioral steps of
the worm family. These seven signatures can be monitored
during run-time and out of these seven, four signatures can
be placed in our malicious behavior database to trigger an
alarm. In particular, “bt− trans f er” and “mms− trans f er”
are perfectly harmless signatures, where as “activate−worm”,
“ run−worm−1”, “ run−worm−2” and “run−worm−3”
can be used to warn the user, or trigger an appropriate pre-
ventive action, e.g. quarantine the outgoing message instead
of sending it right away. Later, in Section 4, we show that
the detection of malicious behavior can be made more accu-
rately by training a SVM model.

• ⊙t(bt− trans f er) = ♦t(BTFindDevice(d))∧
(⊙t(OBEXSendFile( f ,d)))

• ⊙t(mms− trans f er) = ♦t(MMSFindAddress(a))∧
(⊙t(MMSSendMessage( f ,a)))

• ⊙t(init −worm)=⊙t(ReceiveFile(mode= Bluetooth))
∨⊙t(ReceiveFile(mode= MMS))

• ⊙t(activate−worm) = ♦t(init −worm)∧
(⊙t(InstallApp)∧⊙t(LaunchProcess))

• ⊙t(run−worm−1) = ♦t(activate−worm)∧
(⊙t(MakeSIS)∧⊙t(Veri f yDayo f Month)∧
(♦0:00

1:00(SetDevice)))

• ⊙t(run−worm−2) = ♦t(activate−worm)∧
(⊙t(MakeSIS)∧ (♦8:00

23:59(bt− trans f er)))

• ⊙t(run−worm−3) = ♦t(activate−worm)∧
(⊙t(MakeSIS)∧ (♦0:00

6:59(mms− trans f er)))

2.4 Generalized Behavior Signatures
In order to create generalized signatures that are not spe-

cific to each variant of malware, we studied over25 distinct
families of mobile viruses and worms targeting the Sym-
bian OS, including their140variants, reported to date. For

each family of malware, we generated propositional vari-
ables corresponding to its actions, identified the argument
lists for each variable and assigned TLCK operators to con-
struct the behavior for the malware family. Then, we looked
at these signatures across families of malware, and wherever
possible, extracted the most common signature elements and
recorded the Symbian API calls and applications that must
be monitored to reconstruct a possible match. The result
is a database of behavior signatures for malware targeting
Symbian-powered devices reported to date that depends very
little on specific payload names and byte sequences, but rather
on the behavior sequences. We find that the malware actions
can be naturally placed into three categories based on which
layer of the handset environment the behavior manifests it-
self. The categorization identifies three points of insertion
where malware detection and response agents can be placed
in the mobile operating system.

(1) User Data Integrity (UDI): These actions correspond to
damaging the integrity ofuserdata files on the device. Most
common user data files are address and phone books, call
and SMS logs, and mobile content such as video clips, songs,
ringtones, etc. These files are commonly organized in the
\System\Apps directory on the handset. The actions (and,

in turn, propositional variables defined to express them) in
this group, when true, confirm execution of system and API
calls that open, read/write and close these data files.
Example: Acallno [25] is a commercial tool for monitoring
SMS text messages to and from a target phone — the tool
has been recently classified as a spyware by security soft-
ware vendors. Acallno forwards all incoming and outgoing
SMS messages on the designated phone to a pre-configured
phone number. We define three UDI variables,CopySMSTo-
Draft(msg), RemoveEntrySMSLog(msg)andForwardSMSToN-
umber(msg,phone number), to represent the major tasks per-
formed by Acallno.CopySMSToDraft(msg)copies the last
SMS messagemsgreceived into a new SMS message in the
Drafts folder. RemoveEntrySMSLog(msg)is true when the
corresponding entry formsgis successfully deleted from the
SMS log so that the user is not aware of the presence of
Acallno.ForwardSMSToNumber(msg,phone number)is true
whenmsgis forwarded to an externalphone number. These
three variables, when interposed with appropriate temporal
logic, represent the behavior of “SMS spying” on a device.
The UDI variable called “InstallApp(f, files, dir)” that we
have already used earlier for Commwarrior has the follow-
ing argument values for Acallno: f [SMSCatcher.SIS], files
[s60calls.exe, s60system.exe, s60system1.exe, s60calls.mdl,
s60sysp.mdl, s60syss.mdl] and dir [\System\Apps,
\System\recogs]. These four UDI actions are present in
all SMS spyware programs such as Acallno, MobiSpy and
SMSSender, and the resultinggeneralizedbehavior signa-
ture can be used for their detection in place of their specific
payload signatures.
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(2) System Data Integrity (SDI): Several malware attempt to
damage the integrity of system configuration files and helper
application data files by overwriting the original files in the
Symbian system directory with corrupted versions. This is
possible for two reasons: (i) the malware files are installed
in flash RAM drive C: under Symbian with the same path
as the operating system binaries in ROM driveZ:. The
Symbian OS allows files inC: take precedence over files in
Z: with the same name and pathname, and therefore, any

file with the same path can be overwritten; and (ii) Symbian
does not enforce basic security policies such as file permis-
sions based on user and group IDs and access control lists.
As a result, the user, by agreeing to install an infected SIS
file, unknowingly allows the malware to modify the hand-
set operating environment. The SDI actions (and the propo-
sitional variables) correspond to attempts to modify critical
system and application files including files required at device
startup.
Example: The actions of Skulls, Doomboot (or, SingleJump),
AppDisabler, and their variants can be categorized under
SDI. These malware overwrite and disable a wide range of
applications running under Symbian, including InfraRed, File
Manager, System Explorer, Antivirus (Simworks, F-Secure),
and device drivers for camera, video recorders, etc. The tar-
get directories are, for example,
\System\Apps\IrApp\ and \System\Apps\BtUi\ for In-

fra Red and Bluetooth control panels, respectively. Any file
with the ”.APP” extension in these directories is an applica-
tion that is visible in the applications menu. If any of these
files is overwritten with a corrupted version, the correspond-
ing application is disabled. Since there are many application
directories under\System\Apps, our goal is to monitor only
those directories that contain critical system and application
files such as fonts, file manager, device drivers, startup files,
anti-virus, etc. We define the variableReplaceSystemAppDi-
rectory(directory)wheredirectory is a canonical pathname
of the target directory of a SIS archive.2 The variable re-
turns true whendirectory matches against a hash table of
pre-compiled list of critical system and application directo-
ries. At this point, the installation process can be halted until
the user permits to go ahead with the installation.

Another serious SDI action is deletion of subdirectories
under\System. One of the actions performed by the Card-
block Trojan is deletingbootdata, data, install, libs,

mail in C:\System. Theinstall directory contains instal-
lation and uninstallation information for applications. Many
Symbian applications log error codes inC:\System\bootdata
when they generate a panic. Without these directories, most
handset applications become unusable. As a general rule,
no user application should be able to delete these directo-
ries. We, therefore, define a variable calledDRSystemDirec-
tory(directory)wheredirectory checks against a hash table
of these directories whenever a process attempts to either

2When there are multiple target directories,ReplaceSystemAppDi-
rectory(directory)is evaluated for each entry in the target list.

delete or rename a subdirectory underC:\System.

(3) Trojan-like Actions: This category of actions are per-
formed by a malware when it is delivered to a device via
either another malware (“dropper”) or an infected memory
card. These actions attempt to compromise the integrity of
user and system data on the device (without requiring user
prompts) by exploiting specific OS features and by mas-
querading as an otherwise useful program (“cracking”). Once
a malware infects a device with Trojan-like actions, it may
use UDI and SDI actions to alter the handset environment.
To date, we find that there are two types of vectors for mobile
Trojans: (i) memory cards and (ii) other malware. The mem-
ory cards used in cell phones are primarily Reduced-Size
MultiMediaCard (RS-MMC) and micro/mini Secure Digital
(SD) cards that can be secured using a password. As shown
in Figure 1, the Symbian driveE: is used for memory cards
with the same \System directory structure as of the other
drives.

Example: The Cardblock Trojan mentioned earlier, is a
cracked version of a legitimate Symbian application called
InstantSis. InstantSis allows a user to create a SIS archive
of any installed application and copy them to another de-
vice. Cardblock appears to have the same look and feel of
InstantSis, except that when the user attempts to use the pro-
gram, it blocks the MMC memory card and deletes the sub-
directories in C:\System (SDI action). The Trojan-like ac-
tion of Cardblock is the locking of the MMC card which
it accomplishes by setting a random password to the card.
Detection of Cardblock must be done either when it is first
installed on the device or before it actually performs its two
tasks (MMC blocking and deleting system directories). We
define a variable calledSetPasswdtoMMC()to capture the
event that a process is attempting to set a password to the
MMC card without prompting the user.

For lack of space, we do not provide a listing of behavior
signatures organized by these three action categories. We
refer to [29] for a complete listing of these signatures for
mobile malware we have analyzed to date.

2.4.1 SDI Actions and Symbian OS V9

In order to restrict applications from accessing the entire
filesystem, Symbian has recently introducedcapabilitiesbe-
ginning with Symbian OS v9 [1]. A capability is an access
token that allows the token holder to access restricted system
resources. In previous versions of Symbian OS, all user-
level applications had read/write access to the entire filesys-
tem, including \System and all its subdirectories. There-
fore, malicious applications can easily overwrite or replace
critical system files in all previous versions of Symbian, in-
cluding OS v8. However, in the new Symbian platform se-
curity model, access to certain functions and APIs will be
restricted by capabilities. In order to access the sensitive
capabilities, an application must be “Symbian Signed” by

6



Symbian. In case of self-certified applications, the phone
manufacturer must recommend the application developer for
access to desired capabilities from Symbian. The three ca-
pabilities that can prevent many SDI actions currently per-
formed by mobile malware areAllFiles, TCB(Trusted Com-
puting Base) andDiskAdmin. Without these capabilities, an
application will no longer be able to access the “/sys” di-
rectory where most of the critical system executables and
data are stored. For example, it requiresAllFiles capability
to read from andTCB capability to write to “/sys”. Most
user applications in Symbian OS v9 are allowed to access
a single directory called “/sys/bin” to install executables and
create a private directory called “/private/SID” for temporary
files, where SID refers to the Secure ID of the caller appli-
cation, assigned when the application is Symbian Signed.
There are also important changes in OS v9 regarding how
an application is installed. The“\System\Apps” subdirec-
tory previously used by applications for storing application
information (resource files, bitmap files, helper application,
etc.) is no longer supported. Instead, a separate filesystem
path called“\resource\apps” is used for storing application
information. By separating system and application data in
different filesystems and by introducing capabilities for ac-
cessing sensitive system resources, Symbian OS v9 clearly
improves the security model for mobile devices and will pre-
vent a number of current-generation malware from damag-
ing the integrity of the device. However, it may not pre-
vent (i) mobile worms that spread via SMS/MMS or Blue-
tooth and social engineering techniques, (ii) malware from
launching DoS attacks on other phones or communication
infrastructure due to other vulnerabilities.

3. RUN-TIME CONSTRUCTION OF BEHAV-
IOR SIGNATURES

To build a malware detection system, the behavior sig-
natures described in Section 2 must be constructed at run-
time by monitoring the target set of system events and API
calls. For the early generation of mobile handsets, building
such a monitoring layer in the OS would cause unaccept-
ably high performance overhead. However, in recent years,
many embedded microprocessor vendors, especially ARM,
have implemented features that allow real-time tracing of
program instruction flow and data accesses. There are al-
ready a number of commercial tracing and debugging tools
for ARM cores with an Embedded Trace Macrocell (ETM)
unit, for resolving real-time application issues when tradi-
tional “halt-and-debug” methods cannot be used. In what
follows, we describe the implementation of the monitoring
layer in Symbian.

3.1 Monitoring of API calls via Proxy DLL
Since Symbian is a proprietary OS and provides neither

kernel monitoring APIs nor system-wide hooks (e.g., Win-
dowsmessage hooksor Linux netfilter hooks), intercepting
API calls is extremely difficult, if not impossible. Fortu-

Func(a,b)

Application

Func(a,b) {

  Rlibrary::Load(Foo.dll);
  FuncAddr = 

  Rlibrary::Lookup(FuncOrd);

  Return (*FuncAddr)(a,b);  }

Foo.lib Foo.dll

a)  An application invokes an exported function in DLL

Application

Func(a,b) {

  Rlibrary::Load(Foo.dll);

  FuncAddr = 
  Rlibrary::Lookup(FuncOrd);

  Return (*FuncAddr)(a,b);  }

Foo.lib
Foo.dll (Proxy dll)

b)  Using Proxy DLL to log API call events

Func(a,b)

EXPORT_C Func (a,b) 
{

   …. 

}

EXPORT_C Func (a,b) {

   Rlibrary::Load(orign_foo.dll);

   FuncAddr =  

     Rlibrary::Lookup(FuncOrd);

   ret = (*FuncAddr)(a,b);

   log(timestamp , ret, a, b) ; 

   return ret;     }

orign_foo.dll

EXPORT_C 

Func (a,b) {
   …. 

}

Figure 3: Proxy DLL to capture API call arguments

nately, the Symbian SDK is accompanied with a Symbian
OS emulator which is a Windows application that accurately
emulates almost all functionalities of a real handset, suchas
input devices, user interfaces and APIs for services (Blue-
tooth, SMS/MMS, filesystem accesses). Most Symbian-based
handset developers, therefore, build and test mobile applica-
tions using the emulator before transferring them to the real
handset. Moreover, the emulator implements all the Sym-
bian APIs in the form of Dynamic Link Libraries (DLLs)
which are loaded into memory at run-time. This is the fea-
ture that we were able to utilize to build our monitoring layer.
Specifically, due to the dynamic load feature of the DLLs,
the API traces of applications running in the emulator could
be collected via a “Proxy DLL” shown in Figure 3. This
is a popular technique used by many anti-virus tools written
for Windows — they need the ability to hook into Winsock’s
I/O functions, e.g., to analyze data being transferred between
email clients and mail servers for virus signatures.

Before delving into the details ofProxy DLL, we briefly
discuss how DLLs work in the Windows OS. When a DLL
is built, each function exported by the DLL is assigned a
unique integer value known as itsordinal number. DLL
functions are invoked at run-time by first loading the DLL
library into memory, then looking up this ordinal in the DLL
to find the memory address of the corresponding functions,
and finally executing them. However, since the ordinal num-
ber is difficult to use and remember, programs using func-
tions in the DLL often statically link to animport library
(.lib). The role of the import library is to define the same set
of functions as their counterparts in the DLL that are stati-
cally linked to the corresponding executables. In each func-
tion, the import library simply invokes its counterpart in the
DLL file based on its ordinal number. Therefore, with the
import library, we can invoke functions with more meaning-
ful (and easy to remember) function names instead of their
ordinal numbers.

Figure 3 shows an example of Proxy DLL that we imple-
mented in the Symbian OS emulator to log our target API
calls (e.g., func(a,b) exported by foo.dll). Figure 3(a) shows
that without the Proxy DLL, when an application makes a
function call func(a,b), the import library will load the corre-
sponding DLL (i.e., foo.dll), search for the function address
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Figure 4: Major components of the monitoring system

and invoke the correct function. The DLL is loaded at run-
time and transparently to user applications. Thus, we can
replace the original DLL files with new Proxy DLLs instru-
mented with logging functionalities without any modifica-
tion of both applications and import libraries. For instance,
in Figure 3(b), the original foo.dll is replaced with a Proxy
DLL with the same name and exported function (func(a,b)).
When the import library (foo.lib) loads the DLL with the
name foo.dll, the new Proxy DLL is loaded into the memory.
After the application makes a function call func(a,b), the im-
port library invokes the exported func(a,b) in the Proxy DLL
which then loads the original DLL (originfoo.dll) into the
memory and runs the true func(a,b). Meanwhile, the Proxy
DLL logs information about these API invocation events,
including process ID, timestamp, parameters passed to the
function and its return value.

Since we are not interested in logging every API call, the
monitoring system was customized to log only those func-
tions that can be exploited by mobile malware. In particular,
only functions that constitute the atomic proposition vari-
ables described in Section 2 were entered in the Proxy DLL
so that they can be logged. The number of function calls to
be monitored may increase in future as new malware fam-
ilies emerge. However, the logging overhead is relatively
low (600 microseconds) and acceptable. For microproces-
sors that allow real-time tracing, this overhead is expected to
be minimal.

The rest of this section describes a two-stage mapping
technique that we have used to construct the behavior sig-
natures from the captured API calls. Figure 4 presents a
schematic diagram of how low-level system events and API
calls are first mapped to a sequence of atomic propositional
variables (see Section 2.2), and then by graph pruning and
aggregation, a set of behavior signatures. These two stages
are elaborated next.

3.2 Stage I: Generation of Dependency Graph
Using the Proxy DLL, our monitoring agent logs a se-

quence of API calls invoked by all processes running in the
system. The next step is to correlate these API calls using the
TLCK logic described in Section 2.2, and build the behavior
signatures (see Section 2). Note that the monitoring layer
captures system-wide events and therefore API calls from
different processes are intermingled with each other in the
log. However, constructing behavior signatures requires ap-

plication of TLCK logic to calls made by different processes.
To efficiently represent the interactions among processes,we
construct a dependency graph from logged API calls that ef-
fectively correlates different processes. This is achieved by
applying the following rules to the captured API calls.

Intra-process rule: API calls that are invoked by the same
process IDs are directly connected in the graph accord-
ing to their temporal order. For example, in Figure 5,
we represent the dependency graphs for two processes
that generate two atomic propositional variables,
MakeSIS(f,files)andOBEXSendFile(f,d), respectively.
The dependency graph for Process 2 (a set of API calls
for sending files via Bluetooth) is an example of intra-
process temporal ordering. Because all the functions
had been called by a single process, they are connected
with directed arrows indicating their temporal order.
The result of this temporal ordering is the atomic propo-
sitional variableOBEXSendFile(caribe.sis,d)becom-
ing true.

Inter-process rule: Since malware behavior signatures of-
ten involve multiple processes, we define two inter-
process rules.

1. Process-process relationshipwhere a process cre-
ates another process by forking and cloning within
the context of a single application. In this case,
the API calls become a new branch in the forked
or cloned process.

2. Process-file relationshipwhere a process creates,
modifies or changes the attributes of a file,andthe
same file is read by another process. Establish-
ing a chain of events fromprocess-file accessre-
lationships is similar to the concept of backtrack-
ing [16], which identifies potential sequences of
activities that occurred during an intrusion. We
use a similar procedure to construct calling-process
dependency relationships. Figure 5 shows an ex-
ample of the inter-process dependency rule, where
Process 1, createsispackages some files into a
SIS archive file (caribe.sis), and subsequently,Pro-
cess 2reads the file and sends it via Bluetooth.
The result of this step is the construction of a larger
signature:MakeSIS(caribe.sis, ..)∧
OBEXSendFile(caribe.sis, ..).

3.3 Stage II: Graph Pruning and Aggregation
Since every process has its own call-chain graph and may

be connected to other processes via dependency links, the
graph for system-wide process interactions could be very
large. Note that propositional variables created from the
monitoring log should be automatically assigned an expira-
tion time so that one can discard as many unnecessary de-
pendency graph elements as possible. A simple expiration
policy is to destroy the call-chain graph of a process upon its
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Figure 5: Dependency graphs for constructing atomic
propositional variables
termination. However, this has an undesirable consequence
because it will not allow building a future inter-process de-
pendency graph with propositional variables generated by
another process or application. This “information loss” can
be exploited by a mobile malware by waiting for some time
after each of its steps and avoiding detection by not letting
its behavior signature to be completely built! To avoid such
a scenario while still keeping memory requirements reason-
able for generating behavior signatures, we implemented the
following rules in the monitoring layer.

The dependency graph and propositional variables gener-
ated from API calls made by a process are discarded (upon
its termination) if and only if:

1. The process didn’t have inter-process dependency re-
lationships with any other process (i.e., it is indepen-
dent);

2. Its graph doesn’tpartially match with any behavioral
signature that has inter-process dependencies;

3. It didn’t create or modify any directory in the list of
directories maintained in a hash table of critical user
and system directories (see Section 2.4); and

4. It is a helper process that takes input from a process
and returns data to the main process.

Since the dependency graphs can grow over time, we aggre-
gate each API call sequence (e.g., Process 1 and Process 2 in
Figure 5) as early as possible to reduce the size of the overall
storage.

Finally, To construct a behavior signature by composing
TLCK operators over the propositional variables, we use a
state transition graph for each behavior signature, where the
transition of each state is triggered by the invocation of one
or more atomic propositional variables. The advantage of
encoding each atomic variable into a state transition graph
is that the monitoring system can easily validate the variable
from operations performed in Stage I. A behavior signature
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Figure 6: State-transition diagram for signature FindDe-
vice

is, therefore, constructed as a jig-saw puzzle by confirming
a set of atomic propositional variables along its state transi-
tion graph until a terminal state is reached. This process of
applying TLCK operators in the state diagram is shown in
Figure 6 for the behavior signatureFindDevice. It shows two
parallel branches used to discover Bluetooth devices nearby,
depending on which protocol is invoked by the application.
State transitions along a branch are invoked by specific Sym-
bian API calls.

The outcome of the two stages is a behavior signature that
is to be classified either malicious or harmless by the detec-
tion system.

4. BEHAVIOR CLASSIFICATION
The behavior signatures for the complete life-cycle of a

malware, such as those developed in Section 2, are placed
in a malicious behavior database for run-time classification
of signatures constructed via the two-stage mapping tech-
nique described above. However, if we wait until the com-
plete behavior signature of a malware is constructed by the
monitoring layer, it may be too late to prevent the malware
from inflicting some damage to the handset. In order to ac-
tivate early response mechanisms, our malicious behavior
database must also contain partial signatures that have a high
probability of manifesting as malicious behavior. These par-
tial signatures (e.g.,bt-transfer, sms-transferandinit worm
in Section 2.3) are directly constructed from the complete
life-cycle malware signatures in the database. However, this
introduces the problem of false-positives, i.e., partial signa-
tures that may also represent the behavior of legitimate ap-
plications running on the handset, but may be falsely classi-
fied as malicious. Therefore, we need a mechanism to sepa-
rate the partial (or incomplete) malicious behavior signatures
from similar signatures of legitimate applications.

We use a learning method for classifying these partial be-
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havior signatures from the training data of both normal and
malicious applications. In this paper, we focus on the binary
classification problem where the goal is to generate a func-
tion that can classify the input behavior signatures as belong-
ing to either malicious (+1) or not (-1). In what follows, we
describe a particular machine learning approach calledSup-
port Vector Machines(SVMs)that we implemented for the
binary classification problem of partial behavior signatures.

4.1 Support Vector Machines
SVMs, based on the pioneering work of Vapnik [30] and

Joachim [31] on statistical learning theory, have been suc-
cessfully applied to a large number of classification prob-
lems, such as intrusion detection, gene expression analysis
and machine diagnostics. SVMs address the problems of
overfitting and capacity control associated with the classical
learning machines such as neural networks. Traditional neu-
ral networks suffer from generalization, resulting in models
that can overfit the training data. For a given learning task
with a finite training set, the learning machine must strike a
balance between the accuracy obtained on the given training
set and thecapacityof the machine which measures its abil-
ity to learn future unknown data without error. A machine
with either high or low capacity may result in falsely clas-
sifying new observations. The flexible generalization ability
of SVMs makes the approach suitable for real-world appli-
cations with a limited amount of training data. Here we refer
to solving classification problems using SVMs asSupport
Vector Classification(SVC).

Let (x1,y1), · · · ,(xm,ym) denotem observations (or the
training set) of behavior signaturesx. Each behavior sig-
naturexi is of dimensiond corresponding to the number
of propositional variables, andyi = ±1 is the correspond-
ing class label (i.e., malicious or non-malicious) assigned
to each observationi. We denote the space of input signa-
tures (i.e.,xi ’s) asΘ. Given this training data, we want to
be able togeneralizeto new observations, i.e., given a new
observation̄x ∈ Θ, we would like to predict the correspond-
ing y ∈ {±1}. To do this, we need a function,k(x, x̄), that
can measure similarity (i.e., a real-valued scalar distance)
between data pointsx andx̄ in Θ:

k : Θ×Θ → ℜ (1)

(x, x̄) ֌ k(x, x̄). (2)

The functionk is called akerneland is most often repre-
sented as a canonical dot product. For example, given two
behavior vectorsx andx̄ of dimension d, the kernelk can be
represented as

k(x.x̄) = Σd
i=1(x)i .(x̄)i . (3)

The dot-product representation of kernels allows geomet-
rical interpretation of the behavior signatures in terms ofan-
gles, lengths and their distances. In fact, the dot product
represents the cosine of the angle between vectorsx and x̄
when their lengths are normalized to 1. A key step in SVM

is mapping of the vectorsx from their original input space
Θ to a higher-dimensional dot-product space,F , called the
feature space. This mapping is represented asΦ : Θ → F .
The mapping functions are chosen such that the similarity
measure is preserved as a dot product inF :

k(x, x̄) → K(x, x̄)) := (Φ(x).Φ(x̄)) (4)

There are many choices for the mapping functions in the
feature space, such as polynomials, radial basis functions,
multi-layer perceptron, splines and Fourier series, leading to
different learning algorithms. We refer to [17] for an ex-
planation of requirements and properties of kernel-induced
mapping functions. We found the Gaussian radial basis func-
tions an effective choice for our classification problem:

K(x, x̄)) = exp(−
‖x− x̄‖2

2σ2 ). (5)

With these definitions, the two basic steps of SVC can be
written as: (i) map the training data into a higher-dimensional
feature space viaΦ, and (ii) construct a hyperplane in fea-
ture space F that separates the two classes with maximum
margin. Note that there are many linear classifiers that can
separate the two classes but there is onlyonethat maximizes
the distance between the closest data points of each class
and the hyperplane itself. The solution to this linear hyper-
plane is obtained by solving a distance optimization problem
given below. The result is a classifier that will work well on
previously-unseen examples leading to good generalization.
Although the separating hyperplane in F is linear, it yields
a nonlinear decision boundary in the original input spaceΘ.
The properties of the kernel functionK allow computation
of the separating hyperplane without explicitly mapping the
vectors in the feature space. The equation of the optimal
separating hyperplane in the feature space to determine the
class of a new observationx is given by:

y = f (x) = sgn

(

m

∑
i=1

yi αi . (Φ(x) .Φ(xi)) + b

)

= sgn

(

m

∑
i=1

yi αi .K(x,xi) + b

)

. (6)

The Lagrange multipliersαi ’s are found by solving the fol-
lowing optimization problem:

maximize W(α) =
m

∑
i=1

αi −
1
2

m

∑
i, j=1

αiα jyiy j K(x,xi) (7)

subject to the following constraints:

αi ≥ 0, i = 1,2, · · · ,m (8)
m

∑
i=1

αiyi = 0, (9)

wherexi ’s denote the training data of the behavior vectors.
Note that only those data that have non-zeroαi contribute to
the hyperplane equation. These are termedSupport Vectors
(SVs). If the data points are linearly separable, all the SVs
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will lie on the margin and therefore, the number of SVs will
be small. As a result, the hyperplane will be determined by
a small subset of the training set. The other points in the
training set will have no effect on the hyperplane. With an
appropriate choice of kernelK, one can transform a linearly
non-separable training set into one that is linearly separable
in the feature set and apply the above equations as shown.
The parameterb (also called the “bias”) can be calculated
from:

b =
1
2

m

∑
i=1

αiyi [K(xi ,xr)+K(xi ,xs)] (10)

wherexr andxs are any SVs from each class satisfyingαr ,αs >

0 andyr = −1,ys = 1.
In practice, a separating hyperplane may not always be

computed due to high overlap of the two classes in the in-
put behavior vectors. There are modified formulations of
the optimization problem, e.g., with slack variables andsoft
margin classifiers[17], resulting in well-generalizing classi-
fiers in this case. We have not explored this in the present
study.

5. EVALUATION AND RESULTS

5.1 Methodology
We evaluate the proposed behavioral detection framework

as follows. First, we wrote several applications for the Sym-
bian OS that emulated known Symbian worms: Cabir, Mabir,
Lasco, Commwarrior and a generic worm that spreads by
sending messages via MMS and Bluetooth. For each mal-
ware, we faithfully reproduced the infection state machine,
in particular, the API calls and system events that these mal-
ware invoke in the Symbian OS. We also included variants
of each malware based on our reviews of the malware fam-
ily published by various anti-virus vendors. For example,
we included 32 variations of Cabir in our implementation,
from the descriptions available as part of F-Secure [2] virus
descriptions. For most malware, this involved adding dif-
ferent variations in application lifetime, number and subject
of messages sent to other devices, file type and attachment
sizes, different installation directories for the worm payload,
etc. We also built three legitimate applications that shared
several common partial behavior signatures with the worms.
These are Bluetooth OBEX file transfer, MMS client, and
the MakeSISutility in Symbian. The latter creates a SIS
archive file from a given list of files and directory names.
It is also one of the applications that are typically invoked
by Commwarrior and other worms to create a payload on
the victim host.

These eight (5 worms and 3 legitimate) applications con-
tain many execution branches corresponding to different be-
havior signatures that can be captured by the monitoring
layer. To execute all possible API calls of these various
branches, we run these applications in the emulator many
times so that most branches are executed at least once. Each
run of an application results in a set of behavior signatures

Length Signatures
1 179
2 537
3 175
5 4
6 12
7 11
8 14
9 4

Table 1: Distribution of unique behavior signatures by
length (number of propositional variables)

that are captured by the monitoring layer. Depending on the
time window over which these behavior signatures are cre-
ated from the monitoring logs, we obtain partial signatures
of various predicate lengths. Next, we filter all repeated sig-
natures (from the same branch and same set of input vari-
ables), and collect only the unique signatures generated from
the above runs to create a training dataset and a test dataset
that are subsequently used for our evaluation. We generate
several training and test datasets by repeating the above pro-
cedure in the emulator so that expected averages of classifi-
cation accuracy, false positive and false negative rates can be
calculated. Table 1 shows the distribution of unique behav-
ior signatures in one of our training sets with different num-
bers of atomic propositional variables (“signature length”).
The training set consists of a total of 302 malicious signa-
tures (labeled as +1) and 634 legitimate signatures (labeled
as -1). Next, we use the training data to calculate the SVM
model parameters (see Section 4.1), and classify each signa-
ture in the test data using this model to determine the SVM
classification accuracy.

5.2 Accuracy of SVM Classification
To evaluate the effectiveness of the kernel function, we

first vary the size of the training set to determine its effecton
the classification error.

Table 2 shows the classification accuracy, number of false
positives and false negatives for a test data size of 905 unique
signatures and different training data sizes. We found that
SVC almost never falsely classifies a legitimate application
signature to be malicious. On the other hand, for small train-
ing data sizes, the number of false negatives (malicious sig-
natures classified as legitimate) is high. However, as the
training data size is increased, the classification accuracy in-
creases quickly, reaching near 100% detection of malicious
signatures. In our experiments with other training and test
dataset sizes, we observed very similar behavior of the clas-
sification system.

Table 3 shows the number of Support Vectors (SVs) for
each training set. The SVs indicate the size of the SVM
model that must be included in the monitoring layer for clas-
sifying the run-time behavior signatures. Since a training
data size of 150 is sufficient for the five worms we studied,
on average, about 50 SVs are included in the SVM model
for run-time detection. Each SV corresponds to a signature
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Training Set Accuracy False Positives False Negatives
Size % (total count) (total count)

22 82.1 0 16
47 97.9 1 18
56 97.5 0 22
74 98.4 0 14
92 99.4 0 5

122 99.5 0 4
142 99.2 0 7
153 99.6 0 3
256 100 0 0
356 99.7 0 2
462 100 0 0
547 99.8 0 1
628 99.8 0 1
720 100 0 0
798 99.8 0 1

Table 2: SVM classification accuracy of partial behavior
signatures

Training Set Support Vectors
22 21
47 22
56 20
74 34
92 29

122 30
142 51
153 38
256 48
356 82
462 61
547 95
628 106
720 68
798 186

Table 3: Number of Support Vectors (SVs) for different
training data sizes

in the training dataset and therefore, the number of signa-
tures needed for classification for 100’s of variants of these
five worms is relatively small.

5.3 Generality of Behavior Signatures
A major benefit of behavioral detection is its capability of

detecting new malware based on existing malicious behav-
ior signatures in cases where the new malware shares some
of the behavior of the existing malware signatures. In case
of payload signature-based detection systems, updates must
be made to the database to detect the new malware. In order
to evaluate the generalization effectiveness of our malicious
behavior signatures, we divide the four worms (Cabir, Mabir,
Lasco, and Commwarrior (CW)) into two groups. The sig-
natures of the first group (“known worms”) are placed in the
malicious behavior signature database including their partial
signatures. These worms are used to train the SVM classi-
fication model. The worms in the second group (“unknown
worms”) are then executed in the emulator — their signa-
tures are captured in the monitoring layer and comprise the
test dataset. The resulting detection rates for different com-
binations of known and unknown worms are summarized in

Table 4. The results show that the combination of TLCK-
based signature generation and SVC classification method-
ology detect unknown worms even when the training data
sets are relatively small. This is especially true for malware
that are similar in behavior to each other, e.g., Lasco and
Cabir. We plan to explore this further as part of our future
work so that the size of the malicious signature database can
remain small as new strains of malware targeting handsets
are discovered.

Training Set Testing Set Overall
Cabir Mabir CW Lasco

Cabir 100 17 35 72.5 56
Mabir 100 100 51 27 69.5
CW 100 30.5 100 69.5 75
Lasco 64.5 17.5 38.5 100 55.1

Cabir Mabir 100 100 42 54 74
Cabir CW 100 45 100 100 86.3
Cabir Lasco 100 27 50.5 100 69.4
Mabir CW 100 100 100 100 100
Mabir Lasco 100 100 100 100 100
CW Lasco 100 34.5 100 100 86.3

Cabir Mabir CW 100 100 100 76.5 94.1
Cabir Mabir Lasco 100 100 100 100 100
Cabir CW Lasco 100 99.5 100 100 99.9
Mabir CW Lasco 100 100 100 100 100

Table 4: Detection accuracy (%) for unknown worms
5.4 Overhead of Proxy DLL

The major overhead of our monitoring system comes from
replacing the original DLLs with a Proxy DLL that enables
real-time logging of API call sequences. To estimate the
overhead imposed by Proxy DLL, we measure the execu-
tion time of functions before and after they are wrapped by
Proxy DLL. Some of the typical function calls are: establish
a session with the local Bluetooth service database, display
a message in the screen, SMS messaging library calls and
allocate new objects. The average overhead is shown in Ta-
ble 5. To measure the overhead, each function is executed
10,000 times and we divide the overall time taken by 10,000
to get the overhead of an individual function call. The over-
head of Proxy DLL is, on average, 600 microseconds. We
conjecture that this is primarily due to the disk access over-
head, since each time a function being monitored is called,
the monitoring system updates the log file. Since we only
selectively monitor a small subset of all the APIs, this over-
head is acceptably low for practical deployment. In future,
we plan to implement the monitoring layer using ARM’s na-
tive APIs for real-time tracing so that the overhead can be
reduced.

Overall, we find that the behavior signature-based detec-
tion is highly effective for mobile malware discovered to
date. Our proposed framework can be easily integrated in
most mobile OS platforms, without any modification of the

Session Display Object Average
Establishment Message Creation

564.2µs 670µs 625.8µs 608.5µs

Table 5: Overhead of Proxy DLL invocation
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operating environment. Further, the behavioral detectionof-
fers a better alternative to signature-based detection dueto
the small number of behaviors that are sufficient to represent
many families of malware.

6. RELATED LITERATURE
The most relevant to our work are analysis of mobile viruses

and worms [9, 32, 33], behavior-based worm detection [11,
34], backtracking [16] and Support Vectors for intrusion de-
tection [35, 36]. Many well-known mobile viruses and worms,
including some of the malware mentioned in this paper, have
been analyzed in [9] and [33]. There have also been recent
studies to model propagation of such malware in cellular
and adhoc (e.g., in Bluetooth piconets) networks. For exam-
ple, the authors of [32] proposed an analytical model called
probabilistic queuing for modeling malware propagation in
an ad-hoc Bluetooth environment. Although the focus of
our study is primarily handset-based detection, analysis and
propagation modeling of mobile viruses and worms help us
devise appropriate behavior signatures and response mecha-
nisms.

The pioneering work by Elliset al. [11] was the first to
present a novel approach for automatic detection of Inter-
net worms using their behavioral signatures. These signa-
tures were generated from worm behaviors manifested in
network traffic, e.g., during transfer of infected payloads
to other hosts, tree-like propagation and reconnaissance and
changing a server into a client. Our approach is fundamen-
tally different from [11] since it is extremely difficult to gen-
erate behavior signatures from network traffic in a cellular
network due to their closed nature. The Primary Response
from Sana Security [34] is another host-based behavioral ap-
proach that monitors desktop applications and employs mul-
tiple behavioral heuristics (e.g., writing to Windows Reg-
istry, calls to keylogging procedures, process hijacking,etc.)
to identify a malicious application. It also correlates actions
of multiple running applications to decide whether an appli-
cation is Spyware. Both of these studies do not address mo-
bile malware that can spread via non-traditional vectors such
as Bluetooth and SMS/MMS messages. To the best of our
knowledge, there does not exist any prior work to formulate
a behavioral detection model for mobile environments. The
goal of the BackTracker [16] is to automatically identify po-
tential sequences of activities that occurred in an intrusion.
Starting with a single detection point (e.g., a suspicious file),
BackTracker recursively identifies files and processes that
could have affected the detection point, and displays chains
of events in a dependency graph. We use a similar technique
to build dependency graphs for generating behavior signa-
tures that manifest in interactions among multiple applica-
tions.

Recently, Support Vector Machines (SVMs) have been
used in intrusion detection. For example, [35] compares
the performance of neural networks-based and SVM-based
systems for intrusion detection using a set of benchmark
data from DARPA (Defense Advanced Research Projects

Agency). The authors of [36] describe Adaptive Model Gen-
eration (AMG), a real-time architecture for implementing
data mining-based intrusion detection systems. The AMG
uses SVMs as one specific type of model generation algo-
rithms for unsupervised anomaly detection. Methods for
unsupervised SVM [37] can be easily implemented in our
framework, eliminating the need for labeled training data.

7. CONCLUDING REMARKS
We have presented a novel detection framework for emerg-

ing viruses, worms and Trojans that increasingly target mo-
bile handsets (smart phones, PDAs and similar devices). Our
framework begins with extracting key behavior signatures of
such malware by applying TLCK logic on a set of atomic
steps that these malware attempt to perform on a target host.
We have generated a malicious behavior signature database
based on a comprehensive review of mobile malware re-
ported to date. Since behavior signatures are fewer and shorter
than traditional payload signatures, the database is compact
enough to be placed on a handset. Further, a behavior sig-
nature describes behavior for an entire family of malware
including its variants. This eliminates frequent updatingof
the behavior signature database as new variants appear. We
have implemented a monitoring layer in Symbian for run-
time construction of behavior signatures from low-level API
calls and system events. In order to identify malicious be-
havior from partial signatures, we have used SVM to train a
classifier based on training data we obtained from the mon-
itoring layer. Our results indicate that behavioral detection
not only results in very high detection rates (over 96%) but
may also detect new worms and viruses if they display any
behavioral pattern already in the database.
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