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ABSTRACT cious programs (e.g., spyware, Trojans, mobile viruses and

The rapidly growing capability and world-wide prolifera- worms) seeking to compromise data confidentiality, intggri
tion of smart phones and mobile handhelds have begun to@nd availability of handset services. The handset manufac-
attract the attention of virus writers in recent years. Thetp  turers have responded to the increasing threat to mobile de-
three years alone have witnessed an exponential rise in the/IC€S in several ways. For example, the Symbian Signed [1]
number of distinct mobile malware families to over 30, and framework derives a unique application certificate from the
their variants to more than 170. These malware can spreadSymbian Root certificate issued by its Certificate Authority
via Bluetooth and SMS/MMS messages, enable remote con-(CA) for signing an application. When a signed applica-
trol of a device, modify critical system files, damage exist- tON is installed, the Symbian installer program verifieatth
ing applications including anti-virus programs, and block the signature is valid before proceeding with the instaltat
MMC memory cards, to name a few. Current-generation This ensures that the software has not been tampered with
mobile anti-virus solutions are primitive when compared to during its distribution and has undergone a standard tgstin
their desktop counterparts, and may not be scalable gieen th Procedure as part of being Symbian Signed. However, given
small footprint of mobile devices as new families of cross- e vast number of mobile applications available on the In-
platform malware continue to appear. ternet, especially peer-to-peer sites, one can not explect a
This paper proposes a novel behavioral detection frame-2Pplications to be signed with a certificdteNote that an
work to capture mobile worms, viruses and Trojans, instead 2PPlication that has been self-signed cannot be trusted to b
of the signature-based solutions currently available form 1€ of malicious code. Moreover, even when an application
bile devices. First, we generate a database of malicious be-'S Signed by atrusted CA, a malicious program can still enter
havior signatures by studying over 25 distinct families of 1€ System via downloads (e.g., SMS/MMS messages with
mobile viruses and worms targeting the Symbian OS, includ- Multimedia attachments), and it may exploit known vulner-
ing their 140 variants, reported to date. Next, we describe @Pilities of an unsigned helper application. _
a two-stage mapping technique that constructs these signa- The most prevalent approach for securing handsets is to

tures at run-time from monitoring the system events and API detect malicious programs at their arrival via anti-virofts
calls in Symbian OS. We discriminate malicious behavior Ware. A number of handset manufacturers and network op-

of malware from normal behavior of applications by train- erators h_ave partnered with sequrity s_oftware vendors-+o of
ing a classifier based on Support Vector Machines (SVMs). fér anti-virus programs for mobile devices [2, 3]. However,
Our evaluation results indicate that behavioral deteatim current anti-virus solutions for mobile devices are not@s s
identify current mobile viruses and worms with over 96% Phisticated as their counterparts in desktop environments
accuracy. We also find that the time and resource overhead@"d rely primarily on signature-based detection. As a tesul
of constructing the behavior signatures from low-level AP| these tools are mostly useful for post-infection cleanup. F
calls are acceptably low for practical deployment. Most mo- example, if a handset is infected le[h a mobile virus, these
bile device manufacturers and mobile service providers can [00!S can be used to scan tagsterirectory for the pres-
implement our proposed framework without any major mod- €NC€ of files with specific extensions (e.g., .APP, .RSC and

ification of the handset operating environment. .MDL in Symbian-based devices) and filenames typical of
virus payload. Although the infected files are deleted by the
1. INTRODUCTION anti-virus tool, the underlying vulnerability —everwriting

) . . _ the system directory- is not patched. As a result, a cleaned
Mobile handsets are increasingly used to access servicehandset may get infected again by another instance of the
such as messaging, video/music sharing, and e-commerc&ame virus, requiring repeated cleanup. Moreover, due to
transactions that have been previously available on PCs and

servers only. However, with this new capability of hand- 1currently, very few operators lock down handsets to preuests
sets, there comes an increased risk and exposure to malifrom installing unsigned applications.




their limited CPU, memory and storage resources, signature of current-generation mobile anti-virus tools and can be de
based detection will not be viable for mobile devices in fu- ployed in handsets without any modification of the mobile
ture if the threats continue to grow at a fast rate. The emer- operating system. The starting point of our approach is to
gence of crossover worms and viruses [4] that infect a hand-generate a catalog of malicious behavior signatures by ex-
set when it is connected to a desktop for synchronization amining the behavior of current-generation mobile viryses
(and vice versa) requires that mobile applications and dataworms and Trojans that have been reported in the wild so
be checked against both traditional as well as mobile virus far. We specify malicious behavior as a collection of system
signatures. This limits the extent to which signature-dase calls and resource access attempts made by these malicious
schemes can be deployed on handsets. programs, interposed by a temporal logic called térapo-

Most of the published studies [5, 6, 7, 8] on the detec- ral logic of causal knowledgéTLCK). Monitoring system
tion of Internet malware have focused on their network sig- call events and file accesses have been used successfully in
natures (i.e., traffic generated due to scanning, failed con intrusion detection [14, 15] and backtracking [16]. In our
nection attempts, and DNS server accesses). Constructingapproach, we reconstruct the higher-level malicious behav
network signatures of mobile malware is extremely difficult ior signatures on-line from lower-level system calls and fil
due to the mobility of devices and the relatively closed ratu  accesses similar to how individual pieces are put together t
of cellular networks. There is very little published work on form a jigsaw puzzle. The TLCK-based behavior specifi-
the detection of mobile malware which can spread via non- cation addresses the first challenge of behavioral detectio
traditional vectors, such as Bluetooth, content like games by providing a compact “spatial-temporal” representattbn
and video clips, and SMS/MMS messaging [9, 10]. Com- malicious behavior. The next step is fast and accurate re-
pared to traditional OSs, Symbian and other mobile OSs construction of these malicious signatures during ruretim
have important differences in the way file permissions and by monitoring system calls and resource accesses so that ap-
modifications to the operating system are handled. There-propriate alerts can be generated. This overcomes the sec-
fore, development of a detection framework that overcomes ond challenge for deployment of behavioral detection in mo-
the limitations of signature-based methods, while address bile handsets. In order to detect malicious programs from
ing unique features and limitations of the mobile operating their partial or incomplete behavior signatures, we train a
system environment, is an important area of research. classifier based oSupport Vector Machine§SVMs) [17,

An alternative to signature-based methdmhavioral de- 18] so that partial signatures for malicious behavior can be
tection[11], has emerged as a promising technique for pre- classified from those of normal applications running on the
venting the intrusion of spyware, viruses and worms. In handset. For real-life deployment, the resulting SVM model
behavioral detection, the run-time behavior of an applica- and the malicious signature database are preloaded onto the
tion (e.g., its memory and file accesses, API calls) is moni- handset by either the handset manufacturer or a cellular ser
tored and compared against a set of malicious behavior pro-vice provider. These are updated only when new behaviors
files. The malicious behavior profiles can be specified as (i.e., not minor variants of current malware) are discodere
global rules that apply to all applications, as well as fine- The updating process is similar to how anti-virus signagure
grained application-specific rules. Behavioral detectian are updated by security vendors. However, since new be-
detect polymorphic (malware that change their payload sig- haviors are far fewer than new variants, the updates are not
natures) [12] and zero-day (malware that exploit a previsus expected to be frequent.
unknown vulnerability) [13] worms since it does not rely on The paper is organized as follows. Section 2 describes
payload signatures. Also, a typical database of behavir pr  how to construct behavior signatures using the TLCK logic
files and rules should be smaller than that needed for storingand shows examples from current-generation mobile mal-
specific payload signatures of many different classes of mal ware. These signatures are generated based on our extensive
ware. This makes behavioral detection methods partigularl survey of mobile viruses, worms and Trojans discovered to
suitable for handsets. However, deploying behavioralddete date. We also describe generalized behavior signaturées tha
tion poses two challenges. The firstsigecificatiorof what cover broad categories of malware so that a compact mali-
constitutes either normal or malicious behavior that cever cious behavior database can be created. In Section 3, we de-
a wide range of applications, while keeping the number of scribe the implementation of a monitoring layer in Symbian
false positives for malicious behavior detection low. The that constructs these signatures from captured API catls an
second i®n-line reconstructionf potentially suspiciousbe-  system events via a two-stage mapping technique. Section 4
havior from the run-time behavior of applications, so that discusses a class of machine learning algorithms c&llgs
the observed signatures can be matched against a databagmrt Vector ClassificatiofSVC) that we use to tell mali-
of malicious signatures. cious behavior from normal behavior based on captured par-

The primary contribution of our work is to overcome these tial signatures. This step is necessary in order to detect a
two challenges for the mobile operating environment so that malware before its complete behavior signature can be cap-
behavioral detection can be deployed to identify mobile-mal tured by the monitoring layer. We evaluate the effectivenes
ware. Our approach attempts to address the shortcomingf behavioral detection in Section 5 by first training the SVM



classifier and then testing it against 5 current-generation temporal logic allows propositions whose evaluation dejsen
bile viruses and worms. We review the related literature in ontime, making it suitable for describing sequences of s/en

Section 6 and make concluding remarks in Section 7. and properties of correlated behaviors. There have been sig

2. MALICIOUS BEHAVIOR SIGNATURES nificant research in applying temporal logic to study dis-
tributed systems, and software programs. There are also

2.1 Temporal patterns various branches of temporal logic such as linear time and

branching time logic [22]. In Linear Time Temporal Logic

We definebehavior signature as the resulting manifesta- (LTTL), program execution behavior can be modeled as a
tion of a specification of resource accesses and events-geneli qar sequence of states, where each state has a fixed (i.e

?‘ted by applications.’ inqluding malwar_e. We are interested deterministic) output. On the other hand, the Branching
in only those behavior signatures that indicate the présenc Tjmq Temporal Logic (BTTL) allows state transitions via
of_a mallqlous activity such as damage to the handset_qper-a finite (or infinite) number of reachable states where the
a_ltmg_enwronment (e:g., dramlr_lg the_ battery or _over\mgu states can be seen to form a reachability tree. Since program
files in the system directory), installing a rootkit or worm execution and file/memory accesses are not always linear
payload, sending out an infected message, etc. To this endm time, LTTL is not a suitable choice for our purpose. A

itis not sufficient to monitor asingle event (€.g., afileread 5 iant of BTTL called theemporal logic of causal knowl-
wnt_e_access) ofa_l process in isolation in order to classify a edge(TLCK) [23], on the other hand, allows concurrency
activity to be mal_|C|ous. In fact_, there are many Steps & Ma- (q|ations on branching structures that are naturally blgta
licious worm or virus performs in the course of its _Ilfe.-cgcll for describing actions of multiple programs. Therefore, we
that may appear to be harmless when analyzed in 'SOlat'on'adopt the specification language of TLCK to represent ma-

However, a logical ordering of these steps over time often o5 hehaviors within the context of a handset operating
clearly reveals the malicious intent. Ttemporal pattera— environment

i.e., the precedence order of these events and resource ac-
cesses in time—is therefore key to detecting such malicious2.2 Temporal Logic of Malicious Behavior
intent. For example, consider a simple file transfer by glli

= This section describes how to specify malicious behavior
the Bluetooth OBEX system call (e.g2ObexClient::Put() i, terms of system calls and events, interposed by temporal

and related OBEX operations) in Symbian. This is often o |gical operators. The specification of malicious behav
used by applications for exchanging data such as games ang; is the first step of any behavioral detection framework.

music files among nearby handsets. On their own, any suchihough our presentation is primarily targeted to the Sym-
calls will appear to be harmless. However, when the received i, 0S, it can be extended for other mobile operating sys-
file is of type.SIS(Symbian installation fileandthat file is tems as well.

later executedand the installer process seeks to overwrite  gjyot |et us formally define a behavior signature as a finite
files in thesystemdirectory, we can say with a high degree  go¢ ot propositional variables interposed using TLCK, veher
of certainty that the handset has been infected by a virds SUC g5ch variable (when true) confirms the execution of either
as Mabir [19] or Commwarrior [20]. With subsequent mon- (i) a single or an aggregation of system calls, or (i) an éven

itoring of the files and processes touched by the above ac-g;ch a5 read/write access to a given file descriptor, dingcto
tivities, the confidence level of detection can be improved g cture or memory location. Note that wenttt keep track
further. This means that if we view the handset as a system ¢ o, system calls and events generated by all processes —

exhibiting a wide range of behaviors over time, we can clas- yqing 50 will impose unacceptable performance overhead in
sify some of the temporal manifestations of these behaviors .ot cting behavior signatures. Therefore, only thyse s
as malicious. Note that the realization of specific behavior o caiis and events that are used in the specification of mali
is dependent on how a user interacts with the handset andjq 5 pehavior are to be monitored. In fact, we find that spec-
specific infection vectors of a malware. However, tpec- ifying behavior signatures for the majority of mobile mali-

ificatiqn of tempo_ral manifgstation Qf m_aliciou; behaviors .ious programs reported to date, requires monitoring only a
can still be prescribed priori by considering their effecton 411 subset of Symbian API calls.

the handset resources gnd the opgrating env?ronment. . LetPS={p1,p2,--- , pm} U{ili € N} be a set ofnatomic

A simple representation of malicious behavior can be given, . itional variables belonging 6 malicious behavior
by orderlngthe corresponding actions usmg_avectorclﬁd:[k[ signatures. Atomic propositions can be joined together to
and applying the “and” operator to the actions. However, ¢, higher-level propositional variables in our specifica
for more complex behavior that requires complicated tempo- 5 The logical operatonsot (—) andand (1) are defined

ral relationships among actions performed by differentpro ;o sual. The temporal operators defined using past-time
cesses, simple temporal representations may not be Sum‘logic are as follows:

cient. This suggests that behavior signatures are best spec
ified using temporal logic instead of classical proposition
logic. Propositional logic supports reasoning with statats e i true at some instant before t
that evaluate to be either true or false. On the other hand, e [J; true at all instants before t

e (O true attime't



o O K true at some instant in the intenjal- ki t].

The operator<>§*k is a quantified temporal operator to .
rangek time instants over the time varialle We make the

following assumptions.
1. Time is represented by an infinite sequence of discrete
time instants.
2. A duration is given by a sequence of time instants with
initiating and terminating instants.

3. A system call or an event is instantiated at a given in-
stant but may take place over a duration.

4. The strong synchrony hypothesis [24] holds for the
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Figure 1: Symbian filesystem directories targeted by
malware (OS v8 and earlier)

handset operating system environment, i.e., the instan-

tiation of a single event at a given instant can generate — e
Receivervleltmade; mode: Bluetooth or MMS
other events synchronously. In case of synchronous type) e
events, one can still use relative order to denote rela- !
tionship among events. ]t commwasis
) InstallApp(f.files,dir) files: commwarrior exe, commrec md|
5. Higher-level events and system calls of greater com- dir: \eystom:and aubdlrectorios
plexity can be composed by temporal and logical pred- i
ications of the above atomic propositional variables. LaunchProcessfp, | p commwarior exe
) ) . . . parent) parent: Symbian inslaller
To illustrate the application of the above logic, we apply it |
to specify the behavior of a family of mobile worms known y
. . . . . . f: \systemiupdates\commw sis
as Commwarrior. Following this, we will specify behavior MakaSIS(files) | fis: commuwarrior.exe, commrec.di
signatures that are general enough to cover different fasil
of mobile worms. This generalization is a key benefit of MM ErIIn // 00:00 <t <06:59
u_sing a behayioral detection approach as opposed to pqyloa( o —
signatures, given the small memory and storage footprint of P '

. d: RANDOM a: RANDOM
these devices. ResetDevice(action) BTFindDevice(d) MMSFindAddress(a)
2.3 Example: The Commwarrior worm < v < v

The Commwarrior worm [20] targets Symbian Series 60 oBEXSenafile(fd) | & FANDONY s sonamessagetsa) | & RANDOM

phones and is capable of spreading via both Bluetooth and
MMS messages. The worm payload is transferred via a SIS
file with randomly-generated names. The payload consists
of the main executableommwarrior.exeand a boot compo-
nentcommrec.mdhat are installed undesyst em updat es, goal is to convert this graphical representation into a keeha

\ Syst em Apps and\ Syst em Recogs directories. Figure 1  ior signature using logical and temporal operators defined i
shows the organization of the Symbian filesystem. Each of Section 2.2.

the drive lettersC:, D:, E: andZ:) has an identical (but sep- Note that the specification of Commwarrior behavior re-
arate) filesystem tree rooted &ystem Once the payload is  quires monitoring of a small number of processes and system
installed, the SIS file installer automatically starts thamw calls (N = 6), namely, the Symbian installer, the worm pro-
processommuwarrior.exelt then rebuilds a SIS file fromthe  cess (commwarrior.exe), two Symbian Bluetooth API calls
above files and places it asyst em updat es\ commw. si s. and the native MMS messaging application on the handset.
Commwarrior spreads via Bluetooth by contacting all de- By generalizing the behavior signatures across many fam-
vices in range and by sending a copy of itself in a round- ilies of mobile malware, we hope to ke@&pto be a small
robin manner during the time window from 08:00 to 23:59 number. To specify Commwarrior in terms of TLCK logic,
hours based on the device clock. It also spreads via MMS we first identify the sePSof atomic propositional variables:
by randomly choosing a phone number from the device’s

phonebook, and sends an MMS message eotihmw.si|s ReceiveFile(f,mode,typelReceive filef via either mode=

an “application/vnd.symbian.instaIMIME attachment so Bluetooth or mode=MMS of type SIS. When mode=MMS,
that the target device invokes the Symbian installer pnogra the MIME attachment is of typapplication/vnd.symbian.install
upon receiving the message. The daily window for replica- InstallApp(ffiles,dir) Install a SIS archive fild by extract-

tion via MMS is only from 00:00 to 06:59 hours, again based ing filesand installing them in directorglir of the handset.

on the device’s own clock. Figure 2 presents a graphical rep- The specific elements df, files anddir are as shown in
resentation of the behavior of the Commwarrior worm. Our Figure 2.

Figure 2: Behavior signature for Commwarrior worm




LaunchProcess(p,parentlaunch an applicatiop by a par- each family of malware, we generated propositional vari-
ent procesparent, which is typically the Symbian installer.  ables corresponding to its actions, identified the argument

MakeSIS(f,files)Create a SIS archive filé from files files lists for each variable and assigned TLCK operators to con-
(files are assumed to have fully-qualified path names). struct the behavior for the malware family. Then, we looked
BTFindDevice(d) Discover a random Bluetooth devick at these signatures across families of malware, and whereve
nearby. possible, extracted the most common signature elements and

OBEXSendFile(f,d) Transfer a filef (with fully-qualified recorded the Symbian API calls and applications that must
path name) to a nearby Bluetooth deviteia the OBEX be monitored to reconstruct a possible match. The result

protocol. is a database of behavior signatures for malware targeting
MMSFindAddress(a)Look up a random phone numhbem Symbian-powered devices reported to date that depends very
the device Phonebook. little on specific payload names and byte sequences, batrrath
MMSSendMessage(f,apend MMS message with attach- on the behavior sequences. We find that the malware actions
mentf to a random phone numbar can be naturally placed into three categories based on which
SetDevice(act; condition>): Perform actioract (e.g., re- layer of the handset environment the behavior manifests it-
set device) wherc condition> holds true. < condition> self. The categorization identifies three points of ingerti

is typically expressed as a set of other predicates to verify where malware detection and response agents can be placed
device time and date (see below). in the mobile operating system.

VerifyDayofMonth(date; mm: dd >): Verify if current date

is < mm:dd >, e.g., “the 14th day of any month.” (1) User Data Integrity (UDI) These actions correspond to

damaging the integrity aiserdata files on the device. Most
Next, we combine the atomic variables into 7 higher-level common user data files are address and phone books, call
signatures that correspond to the major behavioral steps ofand SMS logs, and mobile content such as video clips, songs,
the worm family. These seven signatures can be monitoredringtones, etc. These files are commonly organized in the
during run-time and out of these seven, four signatures can \ Syst em Apps directory on the handset. The actions (and,
be placed in our malicious behavior database to trigger anin turn, propositional variables defined to express them) in

alarm. In particular, bt —transfer’ and “mms—transfer’ this group, when true, confirm execution of system and API
are perfectly harmless signatures, whereaadiVate—worni,  calls that open, read/write and close these data files.
“run—worm— 1", “run—worm-— 2" and “run —worm— 3" Example Acallno [25] is a commercial tool for monitoring

can be used to warn the user, or trigger an appropriate pre-SMS text messages to and from a target phone — the tool
ventive action, e.g. quarantine the outgoing messagesidste has been recently classified as a spyware by security soft-
of sending it right away. Later, in Section 4, we show that ware vendors. Acallno forwards all incoming and outgoing
the detection of malicious behavior can be made more accu-SMS messages on the designated phone to a pre-configured
rately by training a SVM model. phone number. We define three UDI variabléspySMSTo-

o oy(bt—transfen = & (BT FindDevicéd)) A Draft(msg) RemoveEntrySMSLog(msa@)dForw_ardSMSToN-
(&1 (OBEXSendFilef,d))) umber(msg,phone numbet) represent the major tasks per-

, formed by Acallno. CopySMSToDraft(msgpopies the last
e i(mms-transfen = Oi(MMSFindAddresg)) A SMS messagmsgreceived into a new SMS message in the
(@t_(I\I/IMSSendMessagE a_))) _ Drafts folder. RemoveEntrySMSLog(msg)true when the
e O (init —worm) = ¢ (ReceiveFilémode= Bluetootl))  corresponding entry fansgis successfully deleted from the

V @1 (ReceiveFilgmode= MMS)) SMS log so that the user is not aware of the presence of
o G (activate—worm) = i (init —worm) A Acallno. ForwardSMSToNumber(msg,phone numizetiue
(&t (InstallApp) A G (LaunchProcess whenmsgis forwarded to an externghone numberThese

three variables, when interposed with appropriate tenipora
logic, represent the behavior of “SMS spying” on a device.
The UDI variable called thstallApp(f, files, dir) that we

have already used earlier for Commwarrior has the follow-

e Ot(run—worm— 1) = ¢ (activate— worm) A
(Ot (MakeSIS$A @ (VerifyDayo fMonth A
(0983 SetDevicy))

* Or(run—worm-— 2)830<>t(act|vate— worm) A ing argument values for Acallno: f [SMSCatcher.SIS], files
(©r(MakeSISA (O35 bt —transfen)) [s60calls.exe, s60system.exe, s60system1.exe, s60utlls
e Ot(run—worm-— 3) = ¢ (activate— worm) A s60sysp.mdl, s60syss.mdl] and digyst em Apps,
(@r(MakeSISA (G mms-transfen)) \ System recogs]. These four UDI actions are present in
2.4 Generalized Behavior Signatures all SMS spyware programs such as Acallno, MobiSpy and

) ) SMSSender, and the resultiggneralizedbehavior signa-
In order to create generalized signatures that are not spe+

cific to each variant of malware, we studied o2&rdistinct
families of mobile viruses and worms targeting the Sym-
bian OS, including theil. 40 variants, reported to date. For

ure can be used for their detection in place of their specific
payload signatures.



(2) System Data Integrity (SDIpeveral malware attempt to
damage the integrity of system configuration files and helper
application data files by overwriting the original files ireth  (3) Trojan-like Actions This category of actions are per-
Symbian system directory with corrupted versions. This is formed by a malware when it is delivered to a device via
possible for two reasons: (i) the malware files are installed either another malware (“dropper”) or an infected memory
in flash RAM drive ¢ under Symbian with the same path card. These actions attempt to compromise the integrity of
as the operating system binaries in ROM drive. The user and system data on the device (without requiring user
Symbian OS allows files inc: take precedence overfilesin  prompts) by exploiting specific OS features and by mas-
z: with the same name and pathname, and therefore, anyquerading as an otherwise useful program (“cracking”). ©nc
file with the same path can be overwritten; and (i) Symbian a malware infects a device with Trojan-like actions, it may
does not enforce basic security policies such as file permis-use UDI and SDI actions to alter the handset environment.
sions based on user and group IDs and access control listsTo date, we find that there are two types of vectors for mobile
As a result, the user, by agreeing to install an infected SIS Trojans: (i) memory cards and (ii) other malware. The mem-
file, unknowingly allows the malware to modify the hand- ory cards used in cell phones are primarily Reduced-Size
set operating environment. The SDI actions (and the propo- MultiMediaCard (RS-MMC) and micro/mini Secure Digital
sitional variables) correspond to attempts to modify caiti (SD) cards that can be secured using a password. As shown
system and application files including files required atdevi  in Figure 1, the Symbian drivee: is used for memory cards
startup. with the same \ syst emdirectory structure as of the other
Example The actions of Skulls, Doomboot (or, SingleJump), drives.
AppDisabler, and their variants can be categorized under Example The Cardblock Trojan mentioned earlier, is a
SDI. These malware overwrite and disable a wide range of cracked version of a legitimate Symbian application called
applications running under Symbian, including InfraRdte F  InstantSis. InstantSis allows a user to create a SIS archive
Manager, System Explorer, Antivirus (Simworks, F-Secure) of any installed application and copy them to another de-
and device drivers for camera, video recorders, etc. The tar vice. Cardblock appears to have the same look and feel of
get directories are, for example, InstantSis, except that when the user attempts to use the pro
\ Syst eml Apps\ | r App\ and \ System Apps\ Bt Ui\ for In- gram, it blocks the MMC memory card and deletes the sub-

delete or rename a subdirectory under Syst em

fra Red and Bluetooth control panels, respectively. Any file
with the ".APP” extension in these directories is an applica
tion that is visible in the applications menu. If any of these

directories in C:\ Syst em(SDI action). The Trojan-like ac-
tion of Cardblock is the locking of the MMC card which
it accomplishes by setting a random password to the card.

Detection of Cardblock must be done either when it is first
installed on the device or before it actually performs ite tw
tasks (MMC blocking and deleting system directories). We
define a variable calle§etPasswdtoMMC(p capture the
event that a process is attempting to set a password to the
MMC card without prompting the user.

files is overwritten with a corrupted version, the corregpon
ing application is disabled. Since there are many apptoati
directories unden Syst em Apps, our goal is to monitor only
those directories that contain critical system and apfitioca
files such as fonts, file manager, device drivers, startug, file
anti-virus, etc. We define the varialiReplaceSystemAppDi-
rectory(directory)wheredirectory is a canonical pathname
of the target directory of a SIS archigeThe variable re-
turns true wherdirectory matches against a hash table of
pre-compiled list of critical system and application dixec
ries. At this point, the installation process can be haltetil u
the user permits to go ahead with the installation.

Another serious SDI action is deletion of subdirectories
unden system One of the actions performed by the Card-
block Trojan is deletingoot data, data, install, Iibs,
mai | in C\System Theinstal I directory contains instal-
lation and uninstallation information for applicationsaky
Symbian applications log error codes in \ Syst em boot dat a
when they generate a panic. Without these directories, most
handset applications become unusable. As a general rule
no user application should be able to delete these directo-
ries. We, therefore, define a variable callRSystemDirec-
tory(directory)wheredirectory checks against a hash table
of these directories whenever a process attempts to eithe

For lack of space, we do not provide a listing of behavior
signatures organized by these three action categories. We
refer to [29] for a complete listing of these signatures for
mobile malware we have analyzed to date.

2.4.1 SDI Actions and Symbian OS V9

In order to restrict applications from accessing the entire
filesystem, Symbian has recently introducegabilitiesbe-
ginning with Symbian OS v9 [1]. A capability is an access
token that allows the token holder to access restricte@syst
resources. In previous versions of Symbian OS, all user-
level applications had read/write access to the entireyfiles
tem, including \ systemand all its subdirectories. There-
fore, malicious applications can easily overwrite or repla
critical system files in all previous versions of Symbian, in
I;:Iuding OS v8. However, in the new Symbian platform se-
curity model, access to certain functions and APIs will be
restricted by capabilities. In order to access the semsitiv
capabilities, an application must be “Symbian Signed” by

2When there are multiple target directori€&eplaceSystemAppDi-
rectory(directory)is evaluated for each entry in the target list.



Symbian. In case of self-certified applications, the phone Application Foolb  Food

manufacturer must recommend the application developer for
access to desired capabilities from Symbian. The three ca-
pabilities that can prevent many SDI actions currently per- a) An application invokes an exported function in DLL
formed by mobile malware awllFiles, TCB(Trusted Com-

" [ EXPORT_C Func(a,b)
{

-

puting Base) an®iskAdmin Without these capabilities, an - Foolib Foo.dll (Proxy i) orign_foo dil
application will no longer be able to access the “/sys” di- APPICRIOn ey oo o | [B70RT
rectory where most of the critical system executables and it || oo |

data are stored. For example, it requirdi=iles capability STest I | e e

to read from andlrCB capability to write to “/sys”. Most
user applications in Symbian OS v9 are allowed to access
a single directory called “/sys/bin” to install executabénd Figure 3: Proxy DLL to capture API call arguments
create a private directory called “/private/SID” for termpoy

files, where SID refers to the Secure ID of the caller appli- . . . . .
cation, assigned when the application is Symbian Signed.nately' the Symbian SDK is accompanied with a Symbian

There are also important changes in OS v9 regarding how ©5 elmulat(l)rwhlcr;llfs aV\(|nd()I\_/\{s ap?hcatl(?r;]thzzt accuratﬁly
an application is installed. The Syst em Apps” subdirec- emulates almost all functionalities of a real handset, s

tory previously used by applications for storing applioati inpur: devic/es, usefrlinterfaces and APls for servicg_s (Bkl)ue- d
information (resource files, bitmap files, helper applioafi tooth, SMS/MMS, filesystem accesses). Most Symbian-base

etc.) is no longer supported. Instead, a separate ﬁ|esystenhandset_developers, therefore, build and_test mobile eppli
path callech r esour ce\ apps” is used for storing application tions using the emulator before transfernng them to thé rea
information. By separating system and application data in hgndset. Moreover, the emulato_r |m.plem.ents. all the Sym-
different filesystems and by introducing capabilities for a bla_n APIs in the f_orm of Dynamic Lmk L|brar|_es_ (DLLs)
cessing sensitive system resources, Symbian OS v9 clearl))Nh'Ch are loaded into memory at run-time. This is the fea-

improves the security model for mobile devices and will pre- ture tr_:f‘t Vl‘ie vgere ablito(;Jtlhze t_o ?u'lg ]E)ur monlt]?r;]ng laye
vent a number of current-generation malware from damag- SPecifically, due to the dynamic load feature of the DLLs,

ing the integrity of the device. However, it may not pre- the API traces of applications running in the emulator could
vent (i) mobile worms that spread via SMS/MMS or Blue- _be collected via *”TF’“’XV DLL" shown in _Flgure 3. Th|_s
tooth and social engineering techniques, (ii) malware from is a popular technique used by many anti-virus tools written

launching DoS attacks on other phones or communicationforW”'IdQWS_they need the ability t‘_) hookinto Winsock’s
infrastructure due to other vulnerabilities. I/O functions, e.g., to analyze data being transferred betw

email clients and mail servers for virus signatures.
3. RUN-TIME CONSTRUCTION OF BEHAV- _Before delving into the details d?roxy DLL, we briefly
IOR SIGNATURES .dlscu.ss how DLLs yvork in the Windows OS. _\Nhen.a DLL
is built, each function exported by the DLL is assigned a
To build a malware detection system, the behavior sig- unique integer value known as itsdinal number DLL
natures described in Section 2 must be constructed at run<ynctions are invoked at run-time by first loading the DLL
time by monitoring the target set of system events and API |iprary into memory, then looking up this ordinal in the DLL
calls. For the early generation of mobile handsets, bujidin g find the memory address of the corresponding functions
such a monitoring layer in the OS would cause unaccept- gnd finally executing them. However, since the ordinal num-
ably high performance overhead. However, in recent years, per s difficult to use and remember, programs using func-
many embedded microprocessor vendors, especially ARM, tions in the DLL often statically link to aimport library
have implemented features that allow real-time tracing of ( |ib). The role of the import library is to define the same set
program instruction flow and data accesses. There are al-of functions as their counterparts in the DLL that are stati-
ready a number of commercial tracing and debugging tools caly linked to the corresponding executables. In each-func
for ARM cores with an Embedded Trace Macrocell (ETM) tjon, the import library simply invokes its counterpart et
unit, for resolving real-time application issues when tad p| | file based on its ordinal number. Therefore, with the
tional “halt-and-debug” methods cannot be used. In what jmport library, we can invoke functions with more meaning-
follows, we describe the implementation of the monitoring fy| (and easy to remember) function names instead of their
layer in Symbian. ordinal numbers.
L . Figure 3 shows an example of Proxy DLL that we imple-
3.1 Monitoring of API calls via Proxy DLL mented in the Symbian OS emulator to log our target API
Since Symbian is a proprietary OS and provides neither calls (e.g., func(a,b) exported by foo.dll). Figure 3(ajwsb
kernel monitoring APIs nor system-wide hooks (e.g., Win- that without the Proxy DLL, when an application makes a
dowsmessage hook® Linux netfilter hooky, intercepting function call func(a,b), the import library will load the me-
API calls is extremely difficult, if not impossible. Fortu- sponding DLL (i.e., foo.dll), search for the function adsse

b) Using Proxy DLL to log API call events
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4 Low level system everts to plqmostonat it o} pllcatl_o_n of TLCK logic to calls mad_e by different processes

i ' To efficiently represent the interactions among processes,
construct a dependency graph from logged API calls that ef-
fectively correlates different processes. This is achidwe

applying the following rules to the captured API calls.

atomic propositional variables
]
Graph Pruning SrEie
and N
. Generation
Aggregation

Selective Dependency
collection of Graph
API Traces Generation
Figure 4: Major components of the monitoring system

and invoke the correct function. The DLL is loaded at run-
time and transparently to user applications. Thus, we can
replace the original DLL files with new Proxy DLLs instru-
mented with logging functionalities without any modifica-
tion of both applications and import libraries. For instanc

in Figure 3(b), the original foo.dll is replaced with a Proxy
DLL with the same name and exported function (func(a,b)).
When the import library (foo.lib) loads the DLL with the
name foo.dll, the new Proxy DLL is loaded into the memory.
After the application makes a function call func(a,b), time i
port library invokes the exported func(a,b) in the Proxy DLL
which then loads the original DLL (origifoo.dll) into the
memory and runs the true func(a,b). Meanwhile, the Proxy
DLL logs information about these API invocation events,
including process ID, timestamp, parameters passed to the
function and its return value.

Since we are not interested in logging every API call, the
monitoring system was customized to log only those func-
tions that can be exploited by mobile malware. In particular
only functions that constitute the atomic proposition vari
ables described in Section 2 were entered in the Proxy DLL
so that they can be logged. The number of function calls to
be monitored may increase in future as new malware fam-
ilies emerge. However, the logging overhead is relatively
low (600 microseconds) and acceptable. For microproces-
sors that allow real-time tracing, this overhead is exptiie
be minimal.

The rest of this section describes a two-stage mapping
technique that we have used to construct the behavior sig-
natures from the captured API calls. Figure 4 presents a
schematic diagram of how low-level system events and API
calls are first mapped to a sequence of atomic propositional
variables (see Section 2.2), and then by graph pruning and
aggregation, a set of behavior signatures. These two stages
are elaborated next.

Intra-process rule: API calls that are invoked by the same

process IDs are directly connected in the graph accord-
ing to their temporal order. For example, in Figure 5,
we represent the dependency graphs for two processes
that generate two atomic propositional variables,
MakeSIS(f,filesand OBEXSendFile(f,dyespectively.

The dependency graph for Process 2 (a set of API calls
for sending files via Bluetooth) is an example of intra-
process temporal ordering. Because all the functions
had been called by a single process, they are connected
with directed arrows indicating their temporal order.
The result of this temporal ordering is the atomic propo-
sitional variableOBEXSendFile(caribe.sis,djecom-

ing true.

Inter-process rule: Since malware behavior signatures of-

ten involve multiple processes, we define two inter-
process rules.

1. Process-process relationshiprhere a process cre-
ates another process by forking and cloning within
the context of a single application. In this case,
the API calls become a new branch in the forked
or cloned process.

2. Process-file relationshipvhere a process creates,
modifies or changes the attributes of a fdladthe
same file is read by another process. Establish-
ing a chain of events fromrocess-file accese-
lationships is similar to the concept of backtrack-
ing [16], which identifies potential sequences of
activities that occurred during an intrusion. We
use a similar procedure to construct calling-process
dependency relationships. Figure 5 shows an ex-
ample of the inter-process dependency rule, where
Process 1, createsigackages some files into a
SIS archive file (caribe.sis), and subsequekthg;
cess 2reads the file and sends it via Bluetooth.
The result of this step is the construction of a larger
signatureMakeSl| $caribesis ..) A
OBE X SendFilgcaribesis ..).

3.2 Stage I: Generation of Dependency Graph 3.3 Stage Il: Graph Pruning and Aggregation

Using the Proxy DLL, our monitoring agent logs a se- Since every process has its own call-chain graph and may
guence of API calls invoked by all processes running in the be connected to other processes via dependency links, the
system. The next step is to correlate these API calls using th graph for system-wide process interactions could be very
TLCK logic described in Section 2.2, and build the behavior large. Note that propositional variables created from the
signatures (see Section 2). Note that the monitoring layer monitoring log should be automatically assigned an expira-
captures system-wide events and therefore API calls fromtion time so that one can discard as many unnecessary de-
different processes are intermingled with each other in the pendency graph elements as possible. A simple expiration
log. However, constructing behavior signatures requipes a  policy is to destroy the call-chain graph of a process up®n it
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open(‘cilsystem\apps\ ™ \foy oS caribe.sis...)

caribelcaribe.app”, ")

open (“c:\system\apps\
caribelfio.mdr, *r)

T=open(“cisystemiappst
caribe\caribe .sis ", “w")

\_/
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State Diagram for Bluetooth discovering other devices
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Figure 5: Dependency graphs for constructing atomic
propositional variables
termination. However, this has an undesirable consequenceF.
because it will not allow building a future inter-process de
pendency graph with propositional variables generated by
another process or application. This “information lossfica is, therefore, constructed as a jig-saw puzzle by confirming
be exploited by a mobile malware by waiting for some time a set of atomic propositional variables along its statesiran
after each of its steps and avoiding detection by not letting tion graph until a terminal state is reached. This process of
its behavior signature to be completely built! To avoid such applying TLCK operators in the state diagram is shown in
a scenario while still keeping memory requirements reason- Figure 6 for the behavior signatundDevice It shows two
able for generating behavior signatures, we implemented th parallel branches used to discover Bluetooth devices gearb
following rules in the monitoring layer. depending on which protocol is invoked by the application.
The dependency graph and propositional variables gener-State transitions along a branch are invoked by specific Sym-
ated from API calls made by a process are discarded (uponbian API calls.
its termination) if and only if: The outcome of the two stages is a behavior signature that
is to be classified either malicious or harmless by the detec-
tion system.

4. BEHAVIOR CLASSIFICATION

The behavior signatures for the complete life-cycle of a
malware, such as those developed in Section 2, are placed
in a malicious behavior database for run-time classificatio
3. It didn’t create or modify any directory in the list of  of signatures constructed via the two-stage mapping tech-

directories maintained in a hash table of critical user nique described above. However, if we wait until the com-

and system directories (see Section 2.4); and plete behavior signature of a malware is constructed by the
monitoring layer, it may be too late to prevent the malware
from inflicting some damage to the handset. In order to ac-
tivate early response mechanisms, our malicious behavior
Since the dependency graphs can grow over time, we aggre-database must also contain partial signatures that haggna hi
gate each API call sequence (e.g., Process 1 and Process 2 iprobability of manifesting as malicious behavior. These pa
Figure 5) as early as possible to reduce the size of the dveral tial signatures (e.ght-transfer sms-transfeandinit_worm
storage. in Section 2.3) are directly constructed from the complete

Finally, To construct a behavior signature by composing life-cycle malware signatures in the database. However, th
TLCK operators over the propositional variables, we use a introduces the problem of false-positives, i.e., partigha-
state transition graph for each behavior signature, wheze t  tures that may also represent the behavior of legitimate ap-
transition of each state is triggered by the invocation af on plications running on the handset, but may be falsely classi
or more atomic propositional variables. The advantage of fied as malicious. Therefore, we need a mechanism to sepa-
encoding each atomic variable into a state transition graphrate the partial (orincomplete) malicious behavior signas
is that the monitoring system can easily validate the végiab from similar signatures of legitimate applications.
from operations performed in Stage I. A behavior signature  We use a learning method for classifying these partial be-

1. The process didn’t have inter-process dependency re-
lationships with any other process (i.e., it is indepen-
dent);

2. Its graph doesnartially match with any behavioral
signature that has inter-process dependencies;

4. It is a helper process that takes input from a process
and returns data to the main process.



havior signatures from the training data of both normal and is mapping of the vectors from their original input space

malicious applications. In this paper, we focus on the hinar © to a higher-dimensional dot-product spaEe,called the

classification problem where the goal is to generate a func- feature space This mapping is represented &s: © — F.

tion that can classify the input behavior signatures asfgelo  The mapping functions are chosen such that the similarity

ing to either malicious (+1) or not (-1). In what follows, we measure is preserved as a dot produdtin

describe a particular machine learning approach c&lepgh .

port Vector MachinegSVMs)that we implemented for the k(x,X) = K(x,X)) := (®(x).®(x)) (4)

binary classification problem of partial behavior signatur There are many choices for the mapping functions in the
) feature space, such as polynomials, radial basis functions

4.1 Support Vector Machines multi-layer perceptron, splines and Fourier series, legdd

SVMs, based on the pioneering work of Vapnik [30] and different learning algorithms. We refer to [17] for an ex-
Joachim [31] on statistical learning theory, have been suc- planation of requirements and properties of kernel-induce
cessfully applied to a large number of classification prob- mapping functions. We found the Gaussian radial basis func-
lems, such as intrusion detection, gene expression asalysi tions an effective choice for our classification problem:
and machine diagnostics. SVMs address the problems of I — X]|2
overfitting and capacity control associated with the clsi K(x,X)) = exp(— 552 ) (5)
learning machines such as neural networks. Traditional neu _— 0.
ral networks suffer from generalization, resulting in mtsde W'_th these _def|n|t|ons, the_ two ba_S'C StePS of SVC can be
that can overfit the training data. For a given learning task Wrtten as: (i) map the training data into a higher-dimensaio
with a finite training set, the learning machine must strike a [€ature space vi®, and (ii) construct a hyperplane in fea-
balance between the accuracy obtained on the given trainingture space F that separates the two classes with maximum

set and theapacityof the machine which measures its abil- margin. Note that there are many _Iinear classifier_s t_hat can
ity to learn future unknown data without error. A machine separate the two classes but there is amlgthat maximizes

with either high or low capacity may result in falsely clas- the distance between the closest data points of each class

sifying new observations. The flexible generalizationigbil ~ 2nd the hyperplane itself. The solution to this linear hyper
of SVMs makes the approach suitable for real-world appli- plane is obtained by solving a distance optimization pnwble

cations with a limited amount of training data. Here we refer 9iven below. The resultis a classifier that will work well on
to solving classification problems using SVMs @spport previously-unseen examples leading to good generalizatio
Vector ClassificatioSVC) Although the separating hyperplane in F is linear, it yields

a nonlinear decision boundary in the original input sp@ce
The properties of the kernel functidf allow computation

of the separating hyperplane without explicitly mapping th
vectors in the feature space. The equation of the optimal
separating hyperplane in the feature space to determine the
class of a new observationis given by:

Let (x1,¥1), -, (Xm,Ym) denotem observations (or the
training set) of behavior signatures Each behavior sig-
naturex; is of dimensiond corresponding to the number
of propositional variables, ang = +1 is the correspond-
ing class label (i.e., malicious or non-malicious) ass@jne
to each observation We denote the space of input signa-
tures (i.e.,xj’'s) as®. Given this training data, we want to m
be able togeneralizeto new observations, i.e., given a new y=f(x) =sgn (Zlyi ai . (P(x). ®(xi)) + b)
observatiorx € ©, we would like to predict the correspond- =
ingy € {£1}. To do this, we need a functiok(x,X), that m
can measure similarity (i.e., a real-valued scalar disgnc =sgn (Zl yidti - K (X, Xi) + b) - (6)
between data pointsandX in ©: =

The Lagrange multipliers;’s are found by solving the fol-
k:@x0—0 (1) lowing optimization problem:
(X,X) — K(X,X). (2) m m

. 1
maximize Wa) =% aj— aiajyiyj K(X, X 7
The functionk is called akerneland is most often repre- ximize Wa) ; ' 2i,12:1 ey Keoxi) - (7)

1
sented as a canonical dot product. For example, given two

behavior vectors andx of dimension d, the kernélcan be  Subject to the following constraints:

represented as 0;>0,i=12--- m (8)
m
k(x.X) = =L 1 (%)i. (). 3) Zlcxiyi =0, 9)

The dot-product representation of kernels allows geomet- !
rical interpretation of the behavior signatures in termarof wherex;'s denote the training data of the behavior vectors.
gles, lengths and their distances. In fact, the dot product Note that only those data that have non-zmroontribute to
represents the cosine of the angle between veegtanrsd x the hyperplane equation. These are terrBagport Vectors
when their lengths are normalized to 1. A key step in SVM (SVs). If the data points are linearly separable, all the SVs
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will lie on the margin and therefore, the number of SVs will
be small. As a result, the hyperplane will be determined by
a small subset of the training set. The other points in the
training set will have no effect on the hyperplane. With an
appropriate choice of kern&l, one can transform a linearly
non-separable training set into one that is linearly sdgara

in the feature set and apply the above equations as shown.

The parameteb (also called the “bias”) can be calculated
from:
b Ls
2i;o(.yI [K(Xi,Xr) + K(Xi, Xs)] (10)

wherex; andxs are any SVs from each class satisfymgos >
0 andy; = -1 ys=1.

In practice, a separating hyperplane may not always be
computed due to high overlap of the two classes in the in-
put behavior vectors. There are modified formulations of

the optimization problem, e.g., with slack variables ané
margin classifier§1 7], resulting in well-generalizing classi-

fiers in this case. We have not explored this in the present

study.
5. EVALUATION AND RESULTS

5.1 Methodology

Signatures
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Table 1: Distribution of unique behavior signatures by
length (number of propositional variables)

that are captured by the monitoring layer. Depending on the
time window over which these behavior signatures are cre-
ated from the monitoring logs, we obtain partial signatures
of various predicate lengths. Next, we filter all repeated si
natures (from the same branch and same set of input vari-
ables), and collect only the unique signatures generabeda fr
the above runs to create a training dataset and a test dataset
that are subsequently used for our evaluation. We generate
several training and test datasets by repeating the above pr
cedure in the emulator so that expected averages of classifi-
cation accuracy, false positive and false negative ratebea
calculated. Table 1 shows the distribution of unique behav-
ior signatures in one of our training sets with different rum

We evaluate the proposed behavioral detection framework bers of atomic propositional variables (*signature lerigth

as follows. First, we wrote several applications for the Sym The training set consists of a total of 302 malicious signa-
bian OS that emulated known Symbian worms: Cabir, Mabir, tures (labeled as +1) and 634 legitimate signatures (ldbele
Lasco, Commwarrior and a generic worm that spreads by as -1). Next, we use the training data to calculate the SVM
sending messages via MMS and Bluetooth. For each mal-model parameters (see Section 4.1), and classify each-signa
ware, we faithfully reproduced the infection state machine ture in the test data using this model to determine the SVM

in particular, the API calls and system events that these mal
ware invoke in the Symbian OS. We also included variants
of each malware based on our reviews of the malware fam-
ily published by various anti-virus vendors. For example,
we included 32 variations of Cabir in our implementation,
from the descriptions available as part of F-Secure [2]wiru
descriptions. For most malware, this involved adding dif-
ferent variations in application lifetime, number and abj

classification accuracy.

5.2 Accuracy of SVM Classification

To evaluate the effectiveness of the kernel function, we
first vary the size of the training set to determine its effact
the classification error.

Table 2 shows the classification accuracy, number of false
positives and false negatives for a test data size of 90%ueniq

of messages sent to other devices, file type and attachmensignatures and different training data sizes. We found that

sizes, different installation directories for the worm fumad,
etc. We also built three legitimate applications that stiare
several common partial behavior signatures with the worms.
These are Bluetooth OBEX file transfer, MMS client, and
the MakeSISutility in Symbian. The latter creates a SIS
archive file from a given list of files and directory names.
It is also one of the applications that are typically invoked
by Commwarrior and other worms to create a payload on
the victim host.

These eight (5 worms and 3 legitimate) applications con-
tain many execution branches corresponding to different be

SVC almost never falsely classifies a legitimate applicatio
signature to be malicious. On the other hand, for small train
ing data sizes, the number of false negatives (malicious sig
natures classified as legitimate) is high. However, as the
training data size is increased, the classification acgurac
creases quickly, reaching near 100% detection of malicious
signatures. In our experiments with other training and test
dataset sizes, we observed very similar behavior of the clas
sification system.

Table 3 shows the number of Support Vectors (SVs) for
each training set. The SVs indicate the size of the SVM

havior signatures that can be captured by the monitoring model that must be included in the monitoring layer for clas-
layer. To execute all possible API calls of these various sifying the run-time behavior signatures. Since a training
branches, we run these applications in the emulator manydata size of 150 is sufficient for the five worms we studied,
times so that most branches are executed at least once. Eachn average, about 50 SVs are included in the SVM model
run of an application results in a set of behavior signatures for run-time detection. Each SV corresponds to a signature
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Training Set| Accuracy | False Positives False Negatives Table 4. The results show that the combination of TLCK-
Size % (total count) (total count) . . e L.
55 51 ) 16 based signature generation and SVC classification method-
47 979 1 18 ology detect unknown worms even when the training data
56 97.5 0 22 sets are relatively small. This is especially true for makva
;‘2‘ gg-j 8 1;‘ that are similar in behavior to each other, e.g., Lasco and
139 995 o y Cabir. We plan to explore this further as part of our future
142 99.2 0 7 work so that the size of the malicious signature database can
153 99.6 0 3 remain small as new strains of malware targeting handsets
256 100 0 0 are discovered.
356 99.7 0 2
462 100 0 0 Training Set Testing Set Overall
547 99.8 0 1 Cabir | Mabir | CW [ Lasco
?22 gl%g 8 (1) Cabir 100 | 17 35 | 725 56
258 998 0 T Mabir 100 | 100 | 51 | 27 69.5
: CW 100 | 305 | 100 | 69.5 75
S . . Lasco 645 | 175 | 385 100 | 551
Tf';lble 2: SVM classification accuracy of partial behavior TN o0 T 100 | a3 = =
signatures Cabir CW 100 | 45 | 100 | 100 | 86.3
Training Set| Support Vectors| Cabir Lasco 100 27 50.5| 100 69.4
22 21 Mabir CW 100 | 100 | 100 | 100 100
47 22 Mabir Lasco 100 | 100 | 100 | 100 100
56 20 CW Lasco 100 | 345 | 100 | 100 | 86.3
74 34 Cabir Mabir CW | 100 | 100 | 100 | 765 | 94.1
92 29 Cabir Mabir Lasco| 100 | 100 | 100 | 100 | 100
122 30 Cabir CW Lasco | 100 | 99.5 | 100 | 100 | 99.9
142 51 Mabir CW Lasco | 100 | 100 | 100 | 100 | 100
153 38
ggg gg Table 4: Detection accuracy SA)) for unknown worms
s = 5.4 Overhead of Proxy DLL
547 95 The major overhead of our monitoring system comes from
g;g 182 replacing the original DLLs with a Proxy DLL that enables
58 186 real-time logging of API call sequences. To estimate the
overhead imposed by Proxy DLL, we measure the execu-
Table 3: Number of Support Vectors (SVs) for different tion time of functions before and after they are wrapped by
training data sizes Proxy DLL. Some of the typical function calls are: establish

a session with the local Bluetooth service database, displa
a message in the screen, SMS messaging library calls and
allocate new objects. The average overhead is shown in Ta-
ble 5. To measure the overhead, each function is executed
10,000 times and we divide the overall time taken by 10,000
5.3 Generality of Behavior Signatures to get the overhead of an individual function call. The over-
head of Proxy DLL is, on average, 600 microseconds. We
conjecture that this is primarily due to the disk access-over
head, since each time a function being monitored is called,
fhe monitoring system updates the log file. Since we only

in the training dataset and therefore, the number of signa-
tures needed for classification for 100’s of variants of ¢hes
five worms is relatively small.

A major benefit of behavioral detection is its capability of
detecting new malware based on existing malicious behav-
ior signatures in cases where the new malware shares som

OI the Ibegav_lor cz[f thebeX|sgr:jg tmatl_vvare S|tgnaturesc.j Itnd;:ase selectively monitor a small subset of all the APIs, this ever
ot payload signature-based detection systems, updates MuS,q,q js acceptably low for practical deployment. In future,
be made to the database to detect the new malware. In orde(Ne plan to implement the monitoring layer using ARM’s na-

to eva!uatg the generahza_\tl.on effectiveness of our !T[H]E:I . tive APIs for real-time tracing so that the overhead can be
behavior signatures, we divide the four worms (Cabir, Mabir reduced

Lafco, arﬁhCofmTwarnor“f(CW)) Into twc: groupls ' Tg(_a St'ﬁ Overall, we find that the behavior signature-based detec-
natures of the irs grpup( nown worms ) aré placed N e i, js highly effective for mobile malware discovered to
malicious behavior signature database including thetigdar _date. Our proposed framework can be easily integrated in

§|gn§tures. These worms are used to train the SVM CIass"most mobile OS platforms, without any modification of the
fication model. The worms in the second group (“unknown

worms”) are then executed in the emulator — their signa-

tures are captured in the monitoring layer and comprise the Session Display | Object | Average

test dataset. The resulting detection rates for differem-c Establishment] Message| Creation
. . . . 564.2us 670us | 625.8us | 608.5us

binations of known and unknown worms are summarized in

Table 5: Overhead of Proxy DLL invocation
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operating environment. Further, the behavioral deteatfon ~ Agency). The authors of [36] describe Adaptive Model Gen-
fers a better alternative to signature-based detectiort@ue eration (AMG), a real-time architecture for implementing
the small number of behaviors that are sufficient to repriesen data mining-based intrusion detection systems. The AMG
many families of malware. uses SVMs as one specific type of model generation algo-
6. RELATED LITERATURE rithms for unsupervised anomaly detection. Methods for

i o unsupervised SVM [37] can be easily implemented in our
The most relevant to our work are analysis of mobile ViruSeS . mework, eliminating the need for labeled training data.
and worms [9, 32, 33], behavior-based worm detection [11,

34], backtracking [16] and Support Vectors for intrusion de 7. CONCLUDING REMARKS
tection [35, 36]. Many well-known mobile viruses and worms,  We have presented a novel detection framework for emerg-
including some of the malware mentioned in this paper, have ing viruses, worms and Trojans that increasingly target mo-
been analyzed in [9] and [33]. There have also been recentbile handsets (smart phones, PDAs and similar devices). Our
studies to model propagation of such malware in cellular framework begins with extracting key behavior signaturfes o
and adhoc (e.g., in Bluetooth piconets) networks. For exam-such malware by applying TLCK logic on a set of atomic
ple, the authors of [32] proposed an analytical model called steps that these malware attempt to perform on a target host.
probabilistic queuing for modeling malware propagation in We have generated a malicious behavior signature database
an ad-hoc Bluetooth environment. Although the focus of based on a comprehensive review of mobile malware re-
our study is primarily handset-based detection, analysis a ported to date. Since behavior signatures are fewer anteshor
propagation modeling of mobile viruses and worms help us than traditional payload signatures, the database is compa
devise appropriate behavior signatures and response mechasnough to be placed on a handset. Further, a behavior sig-
nisms. nature describes behavior for an entire family of malware
The pioneering work by Elli®t al. [11] was the first to  including its variants. This eliminates frequent updatifg
present a novel approach for automatic detection of Inter- the behavior signature database as new variants appear. We
net worms using their behavioral signatures. These signa-have implemented a monitoring layer in Symbian for run-
tures were generated from worm behaviors manifested in time construction of behavior signatures from low-levell AP
network traffic, e.g., during transfer of infected payloads calls and system events. In order to identify malicious be-
to other hosts, tree-like propagation and reconnaissamte a havior from partial signatures, we have used SVM to train a
changing a server into a client. Our approach is fundamen- classifier based on training data we obtained from the mon-
tally different from [11] since it is extremely difficult toem- itoring layer. Our results indicate that behavioral detect
erate behavior signatures from network traffic in a cellular not only results in very high detection rates (over 96%) but
network due to their closed nature. The Primary Responsemay also detect new worms and viruses if they display any
from Sana Security [34] is another host-based behavioral ap behavioral pattern already in the database.
proach that monitors desktop applications and employs mul-
tiple behavioral heuristics (e.g., writing to Windows Reg- 8. REFERENCES
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