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Abstract— Multi-homed mobile hosts in physical proximity
may spontaneously team up to form a community and run
high-bandwidth applications by pooling their low wireless wide-
area network (WWAN) bandwidths together for communication
with a remote application server. Utilizing their high-bandwidth
wireless local-area network (WLAN), the thus-teamed mobile
hosts can aggregate and distribute the application content among
themselves. This paper first justifies the need for such a mobile
collaborative community (MC?), or a community, to improve
user-perceived network bandwidth and utilization. Then, existing
one-to-one communication protocols like TCP are shown to suffer
significant performance degradation due to frequent out-of-order
packet deliveries. To address this TCP problem, we propose
a proxy-based inverse multiplexer, called PRISM, that enables
TCP to efficiently utilize the community members’ WWAN
connections while avoiding the performance degradation. PRISM
runs at the proxy’s network layer as a routing component and
stripes each TCP flow over multiple WWAN links by exploiting
the transport-layer feedback information. Moreover, it masks
a variety of adverse effects specific to each WWAN link via
an intelligent ACK-control mechanism. Finally, PRISM enables
TCP to respond correctly to dynamically-changing network states
through a sender-side enhancement of congestion control. PRISM
has been evaluated with experimentation on a testbed as well
ns-2-based simulation. Our experimental evaluation has shown
PRISM to improve TCP’s performance by up to 310% even with
two collaborative mobile hosts. Our in-depth simulation study
has also shown that PRISM delivers a near-optimal aggregated
bandwidth in the community, and improves network utilization
significantly.

Index Terms— Mobile collaborative community, multi-homing,
bandwidth aggregation, TCP, out-of-order packet delivery

I. INTRODUCTION

S wireless networks become omnipresent, mobile users
are gaining access to the Internet via a variety of
wireless networks. To keep pace with this trend, a mobile
host is becoming multi-homed with multiple wireless network
interfaces (e.g., GPRS, IEEE 802.11x, and Bluetooth). Based
on the network and technology diversity, several approaches
have been proposed to enhance network availability, focusing
on concurrent (or alternative) use of multiple wireless tech-
nologies available on a host [18], a mobile user [12], or a
designated mobile center [26]. Even though these approaches
improve the network availability and performance, they only
consider the use of a single individual multi-homed entity,
realizing only partial benefits from the technology diversity.
It is important to note that collaboration among multi-
homed mobile hosts significantly improves both user-perceived
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bandwidth and overall wireless network utilization. Mobile
hosts in close proximity can spontaneously form a community,
connected via a high-speed WLAN interface and sharing their
WWAN link bandwidths with other members in the com-
munity. Each member within the same community receives
a subset of contents from an Internet server and shares the
contents with the other members (content sharing). On the
other hand, one member uses the other members’ bandwidths
when it needs more bandwidth than its own WWAN link
for applications like music/video file downloading and Hi-
Definition TV live cast (bandwidth sharing).

We therefore advocate formation of a mobile collaborative
community (MC?) that is a user-initiated network model in
order to make the best of WWAN diversity. Currently, a mobile
host is forced to use a single WWAN link at a time and thus,
suffers several limitations in capacity, coverage, and hardware.
By contrast, in the mobile community, mobile users initiate
new virtual WWANSs that overcome such limitations by sharing
their WWAN interfaces. Moreover, by adopting an inverse
multiplexer [14], the community effectively aggregates and
uses its members” WWAN bandwidths by inverse-multiplexing
traffic over the shared links.

However, existing transport protocols, such as the Transmis-
sion Control Protocol (TCP), are optimized only for a single
link and waste the available bandwidth of multiple links in
the mobile community. Frequent out-of-order packet deliveries
due to the heterogeneity of multiple WWAN links generate
duplicate acknowledgments (ACKs), which, in turn, cause the
TCP sender to over-reduce his congestion window size. There
are several transport-layer approaches to aggregation of the
bandwidths of multiple wireless links, such as those in [17],
[18], [20]. However, their basic design considers aggregation
of the interfaces of only a single host or user, and requires
support from the network layer to route traffic to/from a group
of multi-homed mobile hosts. Moreover, the development
and deployment of a whole new transport protocol requires
significant efforts on both content servers and mobile clients,
and their operation incurs a high computational overhead to
resource-constrained mobile hosts.

To solve these problems, we propose a proxy-based inverse
multiplexer, called PRISM, that enables each TCP connection
to utilize the entire community’s aggregate bandwidth. As a
protocol complementary to TCP, PRISM consists of (i) an
inverse multiplexer (PRISM-IMUX) at a proxy that forwards
TCP’s data traffic through different WWANs and controls
duplicate ACK traffic, and (ii) a new congestion control mech-
anism (TCP-PRISM) at the sender that expedites loss recovery.
PRISM-IMUX stripes TCP traffic intelligently over multiple



WWAN links using up-to-date link state information such as
link weight, the number of in-flight packets, and a round trip
time on each WWAN link. Also, it masks the effects of out-
of-order delivery by identifying spurious duplicate ACKs and
re-sequencing them so that the TCP sender receives correctly-
sequenced ACKs.

The second component in PRISM, TCP-PRISM, is the
sender-side congestion control mechanism that reduces the
loss-recovery time and accurately adjusts the congestion win-
dow size of TCP by using the loss information provided
by PRISM-IMUX. It immediately dis-ambiguates real packet
losses from out-of-order deliveries through negative loss infor-
mation, and reduces the loss recovery time. Its proportional
adjustment strategy of the congestion window size further
improves link utilization by minimizing the effects of partial
network congestion on un-congested links.

We evaluate the performance of PRISM using both experi-
mentation and ns-2-based simulation. PRISM is implemented
as a Linux-based loadable module and extensively evaluated
on a testbed. Our experimental evaluation shows PRISM to
improve TCP’s performance by 208% to 310% even with
two collaborative mobile hosts with heterogeneous link delays,
loss rates and bandwidths. Moreover, our simulation study
shows that PRISM effectively reduces the need for reordering
packets and delivers a near-optimal aggregated bandwidth in
the community that consists of heterogeneous mobile hosts.

The rest of this paper is organized as follows. Section II
presents the motivation and the contributions of this work, and
Section III provides an overview of the PRISM architecture.
Sections IV-VI give detailed accounts of PRISM. Section
VII describes our implementation and experimentation experi-
ences. Section VIII evaluates the performance of PRISM using
ns-2-based simulation. Related work is discussed in Section
IX. Finally, Section X discusses a few remaining issues with
PRISM and concludes the paper.

II. MOTIVATION

We first present motivations for a mobile collaborative com-
munity. Then, we discuss basic functions for the community
to work. Finally, we identify the problem of TCP in the
community and introduce our approach to the problem.

A. Why a Mobile Community?

Wireless network services are becoming available anywhere
and anytime. 2.5G and 3G wide-area cellular networks, such
as GPRS, UMTS, and CDMA, are being deployed for more
bandwidth and wider coverage. Moreover, WLANS (e.g., IEEE
802.11x) can provide high-speed wireless network services
in small areas. At present, different wireless Internet Service
Providers (ISPs) are co-located with different network tech-
nologies or frequency channels, and end-users are equipped
with various wireless (e.g., WWAN, WLAN, and Bluetooth)
interfaces and can select the best interface/channel available
at a given place/time.

Although there exist various choices (i.e., different ISPs,
technologies, and channels) in the current wireless network
environment, they are not utilized efficiently due to the current
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Fig. 1. Target environment. The environment includes various WWAN
network services available and multi-homed mobile hosts equipped
with both WWAN and WLAN interfaces. Mobile hosts in a WLAN
range form a mobile community and collaborate to simultaneously
use multiple WWANS.

ISP-centric service model. That is, most mobile users should
use the same network, technology, or a single frequency
channel for their connectivity. As a result, they suffer from
various service limitations as described below.

L.1 Capacity limitation: Mobile users may experience a low data

rate from its own ISP while other ISP networks in the same area
are idle or under-utilized.

L.2 Coverage limitation: A user may find no service nearby from
his own ISP while the other ISPs’ services are available.

L.3 Hardware limitation: A user cannot access a new service
through his own interfaces while other nearby users can access
the service by their new interfaces.

Let us consider the following scenario to have a feel for
the above limitations. Sam is waiting at an airport for his
flight, and wants to download his favorite movies to watch
during his long flight. First, he tries to use his own WWAN
interface, but finds that it will take longer than his waiting
time for the flight (capacity limitation). Next, he decides to
use his WLAN interface. However, the nearest WLAN hot-
spot is too far away for him to return in time for the flight
(coverage limitation). Finally, he finds another access network
with high capacity, but his device does not support the access
network’s technology (hardware limitation). Therefore, Sam
will not be able to download and watch the movies. Instead,
Sam searches other nearby mobile users who are willing to
share their interfaces for certain “rewards.” He finds several
mobile hosts whose interfaces have capacity, use different
frequency channels, or support a high-rate wireless technology
like IEEE 802.16. With the help of other mobile hosts, Sam
can download movies in time, and enjoy them during his flight.

To realize a scenario like this, we construct a user-initiated
collaborative wireless network model, called a mobile collab-
orative community (MC?). As shown in Figure 1, the com-
munity is composed of multi-homed mobile hosts in physical
proximity. Community members are connected to the Internet
via different WWAN ISPs (e.g., m1, me) or different channels!

'We assume that the community is formed in such a way that its members
have mutually exclusive frequency channels to make bandwidth aggregation
practical if they subscribe to the same ISP.



of the same ISP (e.g., m3, m4), and locally communicate with
each other via WLAN interfaces in ad-hoc mode.

B. How Does a Mobile Community Work?

For an MC? to work, it requires three basic functions:
collaboration, multiplexing, and indirection.

1) Collaboration Among Mobile Hosts: The mobile com-
munity requires users to collaborate by sharing/pooling their
communication channels. However, what are the incentives for
users to collaborate? When only one host or a small set of
members want to receive the contents at others’ expenses, will
the other members be willing to contribute their bandwidths
to enable the small set of members to achieve statistical
multiplexing gains?

A somewhat related debate is underway with regard to
“forwarding incentives” in ad hoc network routing [11], [27],
[34]. In ad hoc networks, the communication between end-
points outside of the radio transmission range relies on inter-
mediate nodes on the path to forward packets for them. Some
researchers suggest use of credit-based, or reputation-based,
schemes to stimulate cooperation [11], [22]. Game-theoretic
arguments have been used to show that collaboration on packet
forwarding among all participating nodes maximizes network
throughput [5].

Forwarding in ad hoc networks, however, is somewhat
different from the collaboration we consider here. In ad hoc
networks, nodes rely on each other to communicate amongst
themselves. In a mobile community, nodes rely on each other,
not for basic connectivity but for performance improvements.
As we will see in Section III, a node completely controls
access to its shared communication resources, and revokes
access if its communication needs are not met by the com-
munity. Ultimately, it is the ability to opt-in to achieve better
performance and the ability to opt-out when necessary, making
link sharing a viable option. Nonetheless, communities are
more likely to be formed within domains where a pre-existing
trust (or cost-sharing) relationship exists. For example, an
individual with multiple devices (e.g., cell phone, PDA, laptop)
interconnected with a personal area network can benefit from
resource sharing, as in the case of teams of people working
together.

2) Multiplexing: Given shared links, how can the mobile
community aggregate link bandwidths for a higher throughput?
An inverse-multiplexer is a popular approach that aggregates
individual links to form a virtual high-rate link [14]. For
example, an inverse multiplexer stripes the traffic from a server
over multiple wireless links of the community members, each
of which then forwards the traffic to the receiver. Finally, the
forwarded packets are merged and assembled in the receiver
at the aggregate rate.

An important issue is then where to put the inverse mul-
tiplexer. The inverse multiplexer can be placed at (1) a
performance-enhancing proxy (PEP [10]) by a network access
provider, a wireless telecommunication service provider, or a
content distribution network operator for downstream commu-
nications, and (2) one of community members for upstream
communications.

Within a proxy or a host, the multiplexer can be placed at the
network layer as a routing component with an efficient traffic
filtering function as in the Network Address Translation (NAT)
service. Or, the inverse multiplexer might run as an application
like in an overlay network. However, multiplexing inherently
requires responsive network state information, and additional
packet-processing overheads at the application layer limit the
performance of the inverse multiplexer [18].

3) Indirection: Traffic from an inverse multiplexer to com-
munity members is tunneled via Generic Routing Encapsu-
lation (GRE) [15]. The inverse multiplexer encapsulates the
traffic via GRE and routes it to the community members’
WWANS. Upon its reception, each member de-capsulates the
tunneled traffic, and forwards it to a destination via WLAN.
Since the destination is oblivious to which member forwarded
the data packets, no additional data reassembly functionality is
required at the receiver. Furthermore, because GRE tunneling
is supported by most operating systems (e.g., Linux, FreeBSD,
the Windows), no system modification of mobile hosts is
required.

C. Challenges in MC?’s Use of TCP

Our primary contribution in this paper is to enable one-fo-
many-to-one communication for a TCP connection to achieve
high-speed Internet access in an MC2. While traditional one-
to-one communication of TCP limits its bandwidth to a single
link’s capacity, in an MC2, we enable a TCP connection
to achieve the members’ aggregate bandwidth by inverse-
multiplexing its packets over all available members’ WWAN
links.

In this communication model, however, we encounter sev-
eral challenges. First, scheduling traffic over wireless links re-
quires exact link-state information, such as data rate and delay,
which varies with time and is usually expensive to obtain in
mobile environments. Second, since WWAN links suffer from
high and variable round trip times (RTTs), burstiness and out-
ages, a large number of out-of-order packet deliveries—which
occur frequently and generate spurious duplicate ACKs—
degrade TCP’s end-to-end performance significantly. Finally,
TCP’s congestion control mechanism does not fully utilize
multiple links” bandwidths because it interprets a packet loss
as the overall links’ congestion, making over-reduction of its
congestion window size. Also, frequent spurious duplicate
ACKs with positive ACKs cause the sender to delay loss
detection/recovery.

D. Improving TCP Performance in an MC?

To overcome the above challenges, we propose a proxy-
based inverse multiplexer, called PRISM, that effectively
aggregates members’ WWAN links bandwidths for a TCP
connection. Specifically, we

C.1 devise an adaptive scheduling mechanism that efficiently stripes

traffic without any link-state measurement overheads while main-
taining full links utilization (Section IV);

C.2 construct an ACK-control mechanism that effectively masks
the effects of out-of-order delivery without sacrificing end-to-end
performance (Section V); and
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PRISM architecture. PRISM consists of an inverse multiplexer at the proxy (PRISM-IMUX) and a sender-side congestion control

mechanism (TCP-PRISM). PRISM-IMUX schedules data packets over multiple WWAN links of the community members (ADAS), and
masks adverse effects from out-of-order packet deliveries (RPC). TCP-PRISM helps TCP accurately react to partial link congestion.

C.3 propose a new congestion-control mechanism that (i) is a
sender-side optimization technique and (ii) improves link utiliza-
tion by expediting loss recovery (Section VI).

The rest of this paper provides a detailed account of PRISM.
The following assumptions are made for the basic design of
PRISM and mobile community: (1) each mobile host has
multiple (especially WWAN and WLAN) interfaces that can
be used simultaneously for a single application connection;
(2) a mobile host uses PRISM mainly for downstream com-
munications? such as music/video file downloads; (3) a mobile
community is formed via an application-layer daemon as in
[30]; (4) an inverse multiplexer is located at PEPs of each
3G’s access network; (5) for each PRISM flow, a PEP owned
by the ISP that a receiver of the flow belongs to is chosen for
inverse-multiplexing traffic, and it handles prior agreements on
how to share other 3G’s access networks (e.g., access control
and pricing), as in the roaming of ATM networks; (6) inverse-
multiplexed traffic from the proxy to mobile hosts may traverse
different ISPs’ infrastructure networks, but it is mainly dictated
by bottleneck WWAN links as assumed in [13], [29]; and (7)
GRE is enabled at each mobile host as default; and (8) both
the sender and the receiver support TCP-SACK.

ITI. THE PRISM ARCHITECTURE

Figure 2 provides an architectural overview of PRISM and
its operational environment. PRISM consists of a network-
layer inverse multiplexer (PRISM-IMUX) at the proxy
and a network-assisted congestion-control mechanism (TCP-
PRISM) at the sender side. PRISM interacts with a mobile
community of multiple multi-homed mobile hosts through
multiple WWAN:Ss.

A. PRISM-IMUX

PRISM-IMUX is the routing component in a proxy that
handles both the forward (data) and backward (ACKs) traffic
of a TCP connection using up-to-date wireless links-state
information. As shown in Figure 2, PRISM-IMUX captures

2This is for easy exposition of the PRISM architecture. We will extend this
for upstream communications in Section X.

the data traffic from a sender in the proxy’s network layer,’
and determines the best WWAN link for the next hop via
the Adaptive Scheduler (ADAS). It also captures and controls
ACK packets to mask the adverse effects of striping over
multiple WWAN links via the Reverse Path Controller (RPC).
Finally, PRISM-IMUX maintains a WWAN-links-state table,
is equipped with a buffer for temporarily storing ACKs that
need to be re-sequenced, and supports GRE for indirection.
We will detail ADAS in Section IV, and RPC in Section V.

B. TCP-PRISM

TCP-PRISM is a new sender-side congestion-control mech-
anism that works with PRISM-IMUX to expedite loss recovery
and to improve network utilization. TCP-PRISM reduces the
loss recovery time via the negative ACK information shipped
by RPC at the proxy to detect a packet loss. Also, it adjusts
the congestion window size based only on the congested
link bandwidth, thus preventing waste of uncongested links’
bandwidth. This will be detailed in Section VI.

C. Mobile Community

A mobile community is formed voluntarily and incremen-
tally. When a new mobile node wants to join an existing
community, it first searches for communities nearby using
the Service Location Protocol [30]. After determining the
community of most interest to itself, the mobile joins the
community and works as either a relay node or a receiver.
The node receives packets from PRISM-IMUX via its WWAN
link, and forwards packets to the receiver, through its WLAN
interface in ad-hoc mode. Or, the node receives packets via
multiple community members’ WWAN links, and sends ACKs
to the sender through one of the WWAN links.

IV. SCHEDULING WIRELESS LINKS:ADAS
A. Overview
Scheduling TCP packets over heterogeneous wireless links

requires exact link-state information for a receiver to achieve

3Note that a magnified proxy in the figure shows only the PEP of a
receiver’s ISP (i.e., different PEPs are used by different ISPs), and direct links
between a proxy and base stations are logical links that consist of multiple
hops via different ISPs’ access networks.



the optimal aggregate bandwidth, and obtaining the informa-
tion is expensive, especially in mobile environments, due to
the fluctuating traffic rate and wireless links’ dynamics. As
shown in Figure 3, the typical TCP traffic rate fluctuates as a
result of its congestion and flow control. Similarly, the output
rate varies due to the heterogeneity of wireless links and/or
the processing power of each member device in a mobile
community. Although it is possible to measure a channel’s
condition and report it to the proxy, frequent changes in
the channel condition will incur significant report-processing
overhead and transmission-power consumption to resource-
limited mobile hosts.

ADAS is a new packet-scheduling algorithm that is adaptive
to dynamic input/output rates, and that incurs the least cost
in obtaining link-state information. ADAS maintains up-to-
date link-state information—which is obtained by RPC (to
be discussed in Section V) without incurring any reporting
overhead to mobile nodes—and adaptively schedules packets
over the best available links using the state information. Also,
it uses packets’ expected arrival times over each link not only
to reduce out-of-order packet deliveries, but also to increase
the end-to-end throughput. Finally, ADAS adaptively reacts to
the congestion of a link via a TCP’s AIMD-like traffic control
mechanism.

B. Algorithm

ADAS consists of three scheduling rules and a dynamic
link-weight adjustment mechanism. Algorithm 1 describes
ADAS’s scheduling rules. Rule.l is to give retransmissions
priority in scheduling packets on a WWAN link. Under Rule.2,
ADAS chooses the link with the most available bandwidth by
using a normalized NIP (see below). Under Rule.3, if there
are more than two links with the same NIP, then ADAS picks
the link that has the smallest expected arrival time (hRTT).

1) Normalized Number of In-flight Packets (NIP): NIP
enables ADAS to utilize multiple links fairly so as to maximize
aggregate bandwidth. NIP; is derived from the Weighted
Round Robin (WRR) scheduling for its fairness. WRR divides
the time into rounds, in each of which packets are assigned
to a link based on its proportional bandwidth (or weight), and
thus, all links are utilized fairly. Likewise, ADAS uses the link
weight for link utilization, thus achieving long-term fairness
as WRR does.

However, ADAS uses a different definition for fair link
utilization: while WRR keeps track of how many packets have
been scheduled so far on each outgoing link, ADAS considers
how many packets are currently in-flight on the link given its
link-weight. Because existing static scheduling algorithms like
WRR assume accurate link-state information, using only the
link weight in scheduling packets over wireless links cannot
capture and adapt to network dynamics. Hence, in addition
to the link weight, ADAS exploits the actual NIP, which
automatically reflects unexpected delay or loss of a link in
order to determine the best available link. Therefore, we define
and use NIP = V]\Iﬂl , where NN, is the NIP over ¢;, and W;
(link weight) is the ratio of the link bandwidth to the least
common denominator/factor of all links’ bandwidths. INV; can

Algorithm 1 ADAS _Scheduling (Packet)

1: if Packet is a retransmission then

2: // Rule.l: retransmit lost packets over a fast link
3 lnest 18 the link with minimum ARTT in S

4: else

5 Snewt = {l;: links with minimum NIP; from S}
6:  if [Spext| == 1 then

7 // Rule.2: use NIP;

8: Inext 18 the link (in S) with minimum NIP;

9: else

10: // Rule.3: use an expected time of arrival and NIP;
11: lnest 1S the link with minimum ARTT in Syeazt
122 end if

13: end if

14: Update N;, NIP; for lyeqt, and S
15: return l,cq:

hRTT; RTT from a proxy to a receiver over WWAN;
N; Number of in-flight packets (NIP) on ¢;

lnext WWAN link which a packet is scheduled to
NIP; Normalized N; with respect to link weight

S A set of community members” WWAN links
A set of links with the minimum NIP

Snewt

be derived from scheduled packets’ information and ACK-
control information without incurring any additional cost, and
W; is given when member i joins the mobile community.

Let’s consider Case A in Figure 3 to see the effectiveness of
using NIP. The ratio of the weight of link ¢; to that of link /5
is assumed to be 1:2. ADAS schedules the third packet (p3) on
{5 because when p3 arrives at the proxy, ADAS knows from
an ACK packet (as) that po has left /5, so /o still has more
available bandwidth than ¢;. In case of WRR, it assigns ps
to {1 because the quantum of ¢, has already exhausted by p;
and p, wasting available bandwidth of /5.

2) Expected Arrival Time (hRTT): ADAS uses expected
arrival time (RTT/2 or hRT'T) along with NIP to further
improve the overall link utilization and minimize the need
for packet reordering. When more than one link (S) have the
same lowest NIP, ADAS selects the link that has the smallest
expected arrival time in that subset of links (Rule.3). Due
to a WWAN link’s varying transmission delay or forwarding
nodes’ random processing delay, links with a similar utilization
might experience different short-term rates or delay fluctu-
ations which might not be immediately reflected into NIP.
Using hRTT ensures that ADAS transmits packets on the
fastest link in a greedy fashion, thus not only increasing the
overall short-term link utilization, but also reducing out-of-
order packet deliveries at the receiver.

One might question why we do not use only hRT'T or
only NIP without flooring (i.e., I]/IV/% ). Using only ARTT in-
creases short-term link utilization and avoids fluctuating links.
However, its long-term performance is limited by the capacity
of the link that has the smallest RTT but low bandwidth
because of frequent packet drops at a bottleneck queue. On the
other hand, using only NIP contributes to adaptation to long-
term fair link utilization, but it is not responsive to random
short-term delays, reducing average link utilization. We will
compare the performance of these two variants with that of
ADAS in Section VIII-C.2.
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Let’s consider Case B in Figure 3 to illustrate the effec-
tiveness of using hRT'T along with NIP. Until p;, ADAS has
packets scheduled on each link with the same sequence as
WRR does. However, at t1, hRTT of ¢5 increases and when
pg is to be scheduled, the expected arrival time of pg via
{5 becomes longer than that via ¢;. Besides, since the NIP
values of both links are same, ADAS schedules pg on ¢;. If
the packet is scheduled on ¢5 as WRR does, then pg might
arrive later than pg, and ¢; could waste its bandwidth until the
transmission of pg begins.

3) Dynamic Link-Weight Adjustment: ADAS adapts to
each link’s congestion without separate links-state probing
or congestion-notification messages from the network by dy-
namically adjusting the congested link’s weight. ADAS uses
the loss information obtained by RPC (to be explained in
the next section), and adjusts the link weight to approximate
its instantaneous bandwidth by adopting the TCP’s Additive
Increase and Multiplicative Decrease (AIMD) strategy [16].
If the link experiences congestion, ADAS cuts the congested
link’s weight by half. Subsequently, the link’s NIP; becomes
larger, and no new packets are assigned to the link until it
recovers from the congestion. This link weight is increased
additively each time an ACK arrives on that link, without
exceeding the original weight. Specifically,

(i) When a packet loss on link i, ¢;, is detected by RPC, the link’s
original weight; is stored as W;. Then, weight; is reduced to
weldhti (or weight; = 1 if LM < 1);

(ii) When a new data packet traversed Z is acknowledged by the
receiver, weight; is incremented by ———— each time correspond-
ing ACK arrives, without exceeding WZ, and

(iii) Whenever weight; is updated, the NIP of ¢; is recalculated and
used to immediately reflect link-state information into the packet
scheduling.

Case C in Figure 3 depicts ADAS’s reaction to both delay
fluctuations and packet losses. When pg is scheduled at tg, ¢;
experiences increased hRT'T. However, ADAS schedules pg
on /1 based on NIP to maintain maximum network utilization
even though it might cause packet reordering. On the other
hand, right before scheduling p1;, ADAS detects and identifies
the loss of pg on /5. It adaptively reduces the /5’s weight using
the link-weight adjustment algorithm, and assigns pi; to ¢;
based on the newly-computed NIP.

C. Complexity

The main computational complexity of ADAS comes from
the sorting of links to find the best link. Since ADAS uses an
ordered list, it requires O(logn) time complexity where n is
the number of available links. Usually, n is less than 10, so
its overhead is not significant. ADAS requires constant space
complexity. ADAS maintains a link-state table as shown in
Figure 2. It independently stores per-link information which
includes only four variables (i.e., NIP;, hRT'T;, W; and N;).

V. HANDLING SPURIOUS DUPLICATE ACKS:RPC
A. Overview

Even though ADAS tries to minimize the need for packet
reordering, data packets are sometimes scheduled out-of-
sequence intentionally to fully utilize networks (e.g., Case C
in Figure 3). Moreover, due to the delay fluctuations resulting
from the aggressive local retransmission mechanism of 3G
networks or a community member’s processing delay, there
could be unexpected out-of-order packets. In both cases, a
receiver blindly generates duplicate ACKs, which we call
‘spurious’ duplicate ACKs, as a false sign of link congestion,
and these ACKs, unless handled properly, significantly degrade
TCP performance.

The Reverse Path Controller (RPC) is an intelligent ACK-
control mechanism that hides the adverse effects of out-of-
order packet deliveries to the receiver. RPC exploits TCP’s
control information which is carried by ACKs, to determine
the meanings of duplicate ACKs and correct them, if nec-
essary. Moreover, along with a scheduling history, RPC also
infers the link condition such as its packet loss, delay, and rate.
Finally, because RPC maintains each link’s state information
(including loss and instantaneous capacity), it provides such
information to the sender’s congestion-control mechanism so
as to prevent one pipe from stalling other uncongested pipes,
thus enhancing network utilization.

B. Algorithm

RPC consists of three ACK-controlling mechanisms: ACK
identification, ACK re-sequencing, and loss detection. RPC
first determines the meaning of an arrived ACK. Then, it
decides whether this ACK needs to be re-sequenced or not.
Finally, it differentiates duplicate ACKs caused by real packet



losses from spurious duplicate ACKs, and detects any packet
loss.

1) ACK Identification: In order to determine the meaning
of ACKs, this mechanism identifies the sequence number of a
data packet that actually arrives at the receiver and causes an
ACK to be generated. Assuming that the receiver supports
the TCP-SACK mechanism, RPC traces the meta-state of
the receiver buffer through SACK blocks and a cumulative
ACK number, and finds the latest updated sequence number
of the receiver buffer via the newly-arrived ACK. Because
TCP-SACK conveys information of up to three data blocks
when there are holes in the receiver buffer, and its first block*
contains the sequence number of the recently-arrived data
packet [23], RPC can infer the state of the receiver’s buffer as
follows.

A.1 SACK block matching: If an ACK delivers SACK information,

RPC simply matches the SACK block(s) with the meta-state buffer

and finds sequence number(s) that is newly covered by this SACK
block.

A.2 Cumulative ACK number scanning: If an ACK sequence num-
ber is greater than the meta-buffer’s cumulative sequence number,
RPC scans a region between the two numbers, and finds the
sequence number(s) that has not been covered before.

Figure 4 shows a series of snapshots that describe the
two schemes of identifying a sequence number. For example,
snapshots I, II, and IV show the SACK block matching
scheme. Snapshots III and V illustrate how cumulative ACK
numbers are scanned. Each snapshot contains the circular
buffer representing the meta-state of the receiver buffer.

2) ACK Re-sequencing: After identifying the meaning of
ACKs, RPC determines whether to release this ACK to the
sender, or to hold it for re-sequencing as follows. If the
identified sequence number proceeds towards a new unACKed
sequence number, RPC starts releasing ACKs-on-hold includ-
ing the one just arrived (e.g., snapshots III and V).

If arrived ACK packets are duplicates, then RPC re-
sequences them in two different ways. First, if there is not
any congested link, then RPC holds the ACK packet in the
slot of the wrapped-around sequence number in the circular
ACK buffer. Since RPC knows the meaning of each ACK,
it corrects the cumulative ACK sequence number with the
identified number of the ACK packet and stores it in the buffer
(e.g., snapshots I, II, and IV).

Second, if there exists congested link(s), RPC releases
ACKs-on-hold in their original form because duplicate ACKs
have really resulted from packet loss(es), and because released
duplicate ACKs can help the sender calculate the number of
packets that have left the network.

3) Loss Detection: The remaining questions on the ACK
re-sequencing mechanism are how to detect packet losses
from congestion, and how to differentiate out-of-order packet
arrivals from real packet losses. Assuming that packets sched-
uled on a link are delivered to the receiver in order, RPC
detects packet losses if there are holes that are not sequentially
acknowledged in a list of scheduled packets on the link.
Snapshot VI shows an example of loss detection of RPC.
Since packets 26, 28 were sent back-to-back via link 1, RPC

41t could be the second block when a DSACK option is used [33].
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Fig. 4. Snapshots for ACK identification and loss detection mech-

anism in RPC. RPC determines the meaning of each ACK through
SACK blocks (Snapshot I, II, and IV) or cumulative ACK numbers
(Snapshot III, V). Also, it detects packet losses using the identified
sequence numbers and scheduling history (Snapshot VI).

determines, from the arrival of ACK 28, that packet 26 is
lost. This is different from the loss detection mechanism of
TCP whose duplicate ACKs’ threshold is 3. However, a more
sensitive reaction on each link is desirable since it helps
all connections avoid disrupting one another. Moreover, any
threshold can be set based on the network characteristics.
Packet losses can also be attributed to wire-line congestion.
RPC detects such wire-line packet losses from an ACK packet
whose corresponding sequence number in the circular ACK
buffer is neither scheduled nor ACKed (called No Data).

As shown in the above example, the loss-detection mech-
anism and its accuracy depend on the information of ACK
identification and scheduling history. Given the accurately-
identified ACK sequence numbers, finding a hole in each link
just requires one more comparison and is a clear indication of
packet losses. On the other hand, the loss-detection mechanism
may raise false alarms if there are more than three consecutive
ACK losses, because ACK identification cannot fully construct
the meta-state due to the limited number of SACK blocks
carried by ACKs. However, three consecutive losses of small-
sized ACKs rarely happen—throughout all of our evaluation,
we have not observed it—and by using cumulative ACK
number scanning, ACK identification can also complete the
meta-state of the receiver’s buffer and can quickly recover
from a false alarm.

C. Complexity

RPC’s complexity strongly depends on the number of
duplicate ACKs. When there are no duplicate ACKs, RPC
does not incur any overhead except for updating link-state



variables (NIP;, N;). However, if there are duplicate ACKs
resulting from either out-of-order delivery or packet losses,
then RPC needs time to figure out the ACK’s sequence number
and space to re-sequence ACKs. First, for computational
complexity, ACK identification mainly consumes computation
resources, and its sequence comparison incurs the computa-
tional overhead which is linear in the number of duplicate
ACKs. However, this overhead can be minimized using an
optimization technique, such as a hash function and a bit-
operation, whose time complexity is constant.

In the worst case of space complexity, RPC may have to
store all ACKs of a flow for ACK re-sequencing. Since the
number of ACKs is limited by the number of outstanding
packets in the network, ZUXEIT x )0 is the maximum
required ACK re-sequencing buffer size. For example, assum-
ing that aggregated bandwidth (BW) and average RT'T are
5 Mbps and 120 ms, respectively, and a maximum segment
size (M SS) is 1.5 KB and the size of ACK (Sack) is 60
bytes, the maximum space requirement is 3 KB. Note that
even though the space complexity is linear in the number of
flows, it can support a large number of PRISM flows (hence
scalable). For instance, only a 60 MB footprint is necessary
to support 20,000 simultaneous PRISM flows which deliver a
100 Gbps bandwidth.

VI. EXPEDITING PACKET LOSS RECOVERY:TCP-PRISM
A. Overview

Along with ACK re-sequencing and loss detection, fast
recovery from packet loss(es) and appropriate congestion
control are critical to the overall TCP performance. Although
many end-host congestion-control mechanisms, such as Reno,
New-Reno and SACK, have been proposed for a single path
congestion control, they are not optimized for multiple paths
due mainly to the following two reasons. First, TCP’s positive
ACK mechanism (e.g., SACK block) consumes more time to
detect/recover packet loss or out-of-order delivery from mul-
tiple and heterogeneous paths, resulting in frequent timeouts.
Second, they over-reduce the window size upon congestion of
one of multiple paths, reducing the overall link utilization.

In addition to the end-host approaches, there are other
approaches to control congestion/channel-related loss at a
base station or a proxy via local retransmission [8] or split-
connection [7]. Local retransmission using another copy of
each packet at the base station can handle channel-related
losses, but it cannot effectively handle partial link congestion
due to over-reduction of the window size at the end-host.
Besides, it needs to store a copy of each data packet, causing
a scalability problem. On the other hand, the split-connection
scheme can handle both congestion and packet loss, but it
violates TCP’s end-to-end semantics [18] and requires an
entirely new transport protocol at both the proxy and mobile
hosts to support the use of multiple links.

To effectively recover from packet losses while fully uti-
lizing multiple links, PRISM takes an end-host congestion-
control approach and removes the limitations of existing
solutions with the following mechanisms. The first mechanism
provides exact loss/congestion information in a negative form

OUTOFLOSS

Update loss count

Check full recovery Partial recovery

LOSSDETECT Duplicate ACKs LOSS
Send loss info. Release hold ACK
Update link states Pass all ACKs

Partial ACK

Full ACK

NORMAL
Hold/Release ACK
Compute hRTT

Loss Detection

Another loss

Fig. 5. State machine of RPC. Boxes with capital letters indicate
states of RPC, and boxes with small letters list operations in each
state.

to the TCP sender. The second is a sender-side congestion
control mechanism (TCP-PRISM), which understands negative
ACK information from networks and expedites loss recovery
upon congestion of a link in one of multiple paths. Finally,
TCP-PRISM is a simplified version of TCP-SACK, so it is
easy to implement and deploy with other congestion-control
mechanisms.

B. Algorithm

This algorithm is invoked by RPC and the sender-side
TCP when there is a packet loss(es). On detection of any
packet loss, RPC ships loss information on ACKSs. Using
this delivered information at the sender, its congestion-control
mechanism quickly reacts to packet losses.

1) Delivery of Loss Information: Figure 5 shows the state
machine of RPC that describes loss information delivery in
each state. In NORMAL and OUTOFLOSS states, RPC only
updates state variables as described in Section V. In LOSS-
DETECT state, RPC sends the loss information to the sender,
and switches to LOSS state. RPC in LOSS state releases all
duplicate ACKs until all losses are recovered.

RPC provides loss information to the sender that includes:
(i) which data packet is lost, (ii) which channel is congested
to adjust the congestion window size, and (iii) how many
packets have left the network. Once a packet loss is detected,
RPC sends the lost packet’s sequence number to the sender
in the form of negative ACK. In addition, RPC ships the
congested link’s bandwidth information that is computed as
the proportion (p) of congested link’s bandwidth over total
bandwidth (i.e., p =1 — %, where ¢ is the congested
channel ID, B; the bandwidth of channel j, and n the total
number of active channels). Finally, after sending the loss
information, RPC begins releasing ACKs-on-hold, if any, so
that the sender can calculate the exact in-flight packet number,
inflate the congestion window size, and send more data packets
via other uncongested links.

2) Congestion-Control Mechanism: TCP-PRISM makes
two major enhancements of existing congestion-control mech-
anisms. First, it reduces the fast retransmit time given partial
link’s congestion by using the loss information delivered from
the proxy. TCP-PRISM just extracts lost packets’ sequence
numbers from the information and retransmits the correspond-
ing data packets immediately. It does not wait for more
duplicate ACKs, nor does retransmit all packets which are
ambiguously believed to have been lost.

Second, it makes fast recovery accurately react to conges-
tion, and thus, improves network utilization. TCP-PRISM re-



duces the congestion window size only by the proportion (p)—
we call this adjustment Additive Increase and Proportional
Decrease (AIPD). This adjusted window size allows the sender
to transmit more data via uncongested links. If there are other
congested links, TCP-PRISM performs the same procedure
as the above. Other than the above two enhancements, TCP-
PRISM works exactly the same way as the standard TCP-
SACK.

C. Complexity

The complexity of TCP-PRISM is lower than that of the
standard TCP-SACK thanks to the loss information available
from RPC. TCP-SACK’s scoreboard mechanism maintains
positive ACK information based on a SACK block(s) from
a receiver and then identifies lost segments by comparing it
with a sender’s outstanding packet list. Thus, TCP-SACK has
to keep ACK information in the scoreboard until it receives
full ACKs. Even though the size of the scoreboard is bounded
by the number of in-flight packets, in the worst case, it
has to repeatedly search its scoreboard to find lost segments
upon receiving a SACK block(s). By contrast, TCP-PRISM
simplifies the scoreboard mechanism by using negative loss
information shipped by RPC, thus saving spatial (storage
of positive ACKs) and computational (comparison of SACK
blocks) costs in TCP-SACK.

VII. IMPLEMENTATION

We have implemented, and experimented with, PRISM.
This section first presents our implementation details of each
PRISM component. Then, it describes our testbed setup and
presents the experimental results.

A. Implementation Details

1) PRISM-IMUX: PRISM-IMUX is implemented as a load-
able kernel module in the network layer using Netfilter [1].
Netfilter provides a hook for packet filtering at the network
layer, and hence allows users to dynamically register or un-
register packet filters. That is, PRISM-IMUX is implemented
as a filter with a back-end agent which includes ADAS and
RPC.

Within the network layer, there are three places
to register the PRISM-IMUX filter: at entrance,
NF_IP_PRE_ROUTING; in the middle, NFIP_LOCAL.OUT;
and at exit, NFIP_POST_ROUTING. The filter is registered
at the layer’s exit because such a placement minimizes the
number of functions that PRISM-IMUX should incorporate,
and also avoids the need for system modification. When
PRISM-IMUX transmits multiple packets from its buffer,
it can make a direct call to an interface function of the
link layer, so it need not go through all the remaining
network-layer functions.

Finally, the filter agent may sometimes need to store pack-
ets, and thus, stop the remaining packet-processing chain
in the network layer. There are two options (NF_DROP and
NF_STOLEN) from Netfilter to silently store a packet, and
PRISM-IMUX uses NF_.STOLEN as it does not incur any
overhead, such as the buffer copying required in NF_DROP.

2) TCP-PRISM: We implemented TCP-PRISM in a Linux
kernel-2.4’s TCP protocol stack, and installed it in a server.
As stated in Section VI, we have implemented a simplified
scorebard mechanism as an extension of TCP-SACK, while
preserving the original TCP-SACK. Specifically, TCP-SACK
maintains sack-tag information in the scoreboard, which is
initially cleared, and becomes “SACKED” when the corre-
sponding sack information arrives. Based on the information
of an un-sacked packet, TCP-SACK decides on packet loss.
We modified this sack-tag mechanism so that the exact loss
information provided by PRISM-IMUX is reflected imme-
diately into the scoreboard, bypassing mechanisms for the
scoreboard maintenance and the packet loss decision. TCP-
PRISM is enabled through a socket option, and the normal
TCP-SACK is performed if this option is disabled.

B. Testbed Setup

To evaluate our PRISM implementation, we have built a
testbed that is composed of an Internet infrastructure, and
a mobile community as shown in Figure 6. For the Internet
infrastructure, we use one server (Pentium-1V 1.64 GHz CPU
with 512 MB memory), one proxy, one WWAN emulator (both
are a Pentium-III 865 MHz CPU with 256 MB memory),
and one Ethernet switch. TCP-PRISM and PRISM-IMUX
are installed on the server and the proxy, respectively. The
emulator has NISTnet [2] to emulate WWAN networks of
each member. The Ethernet switch works as a WWAN access
point and splits traffic from the emulator to each community
member. The server, the proxy, the emulator, and the switch
are connected in a row via 100 Mbps Ethernet cables between
adjacent components.

For the mobile community, we use three Dell latitude
laptops (Pentium-IIT 865 MHz CPU with 256 MB memory)
which have both built-in Ethernet interfaces (Realtek) and
IEEE 802.11b (Orinoco) interfaces. Each Ethernet interface is
connected to Ethernet switch’s 100 Mbps cables and is used
as a WWAN link. An ad-hoc mode WLAN interface is used
for communication within the community.

All machines in the testbed use Redhat 9.0, and an ftp
application between the server and a receiver is used to
measure end-to-end throughput by transferring a 14 MB file.

Ethemet NIC —<
(100 Mbps) /-

100 Mbps Ethernet Cable

WWAN Emulator Switch
with NISTnet \ =

Server with
TCP-PRISM

Proxy with
PRISM-IMUX

— /a1

) Internet infrastructure " N o= /

Mobile Community- ,\‘*!\\{lf{?bﬁi‘,}f’d
Fig. 6. Testbed setup. The testbed is composed of Internet infras-
tructure (a server, a proxy, a WWAN emulator and a switch) and
mobile community (three laptops). Note that even though we show
direct links between components in wired netwtorks to simplify our

testbed, the links could consist of multi-hop links.
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Experimental results. We ran PRISM on our testbed and compared its performance with that of vanilla-TCP. Figure 7(a) shows

PRISM'’s robustness to delay disparity among the links aggregated. Figure 7(b) also shows PRISM’s robustness to loss disparity. Finally,
Figure 7(c) shows PRISM’s effectiveness in aggregating heterogeneous members’ WWAN links.

C. Experimental Results

We present three experimental results, demonstrating
PRISM’s TCP performance improvement in the presence of
delay disparity, loss-rate disparity, and links heterogeneity.

1) Effects of delay disparity: We evaluated the robustness
of PRISM’s performance to WWAN links’ delay disparities.
We use two community members that have different WWAN
link bandwidths (1800, 600 Kbps) but initially have the same
link delay, 500ms (average delay from the UMTS trace with
the packet size of 1.4 KB) 3. While increasing the delay
of the second member’s link up to 1000 ms in increments
of 50 ms, we measure the end-to-end throughput. For a
better comparison, we also run vanilla-TCP with and without
SACK.®

PRISM effectively masks the effects of WWAN links’ delay
disparities by using the re-sequencing mechanism and provides
an aggregated bandwidth. As shown in Figure 7(a), PRISM
achieves a throughput equal to 95% of the total aggregate
links capacity when the delay disparity is less than 400 ms.
Beyond that point, it shows a little degradation because of
deep-buffering for increasing duplicate ACKs. Vanilla-TCP
suffers a significant performance degradation due to spuri-
ous duplicate ACKs. Furthermore, vanilla-TCP with SACK
performs worse than that without SACK because the detailed
SACK information delivered to the sender causes a significant
number of false retransmissions.

2) Effects of loss-rate disparity: We measured the robust-
ness of PRISM’s performance to the WWAN links’ loss-rate
disparities. In a community of two members (with WWAN link
bandwidths of 1080 and 360 Kbps), we fix the link delay of
both members at 300 ms (average delay from the UMTS trace
with 1KB packet size) and measure the end-to-end throughput
while varying the loss rate from 0.001% to 1% of the second
member (1% is a typical maximum loss rate of WWAN links
[18]).

PRISM’s fast-recovery mechanism indeed expedites loss
recovery and increases link utilization even at a high loss
rate. As shown in Figure 7(b), PRISM provides throughput

SWe use the on-line source of [26].

%Note that vanilla-TCP refers to TCP implementation in Linux kernel-
2.4.20. Vanilla-TCP with (without) SACK means the use of the original TCP
implementation with a SACK (NewReno) option.

equal to 94% of the aggregated links’ capacity when loss rates
are less than 0.8%. At the point of 0.8% or higher, PRISM’s
throughput decreases because the achievable link throughput
also degrades due to frequent packet losses. Vanilla-TCP,
however, experiences a severer performance degradation. Even
though it shows a relatively good performance (i.e., 90%) at
a low loss rate, vanilla-TCP’s performance degrades as the
loss rate increases due to the long loss-recovery time for one
congested link and blockage of the uncongested link.

3) Effects of link heterogeneity: We evaluated PRISM’s per-
formance gain even in the case of heterogeneous community
members. We construct a mobile community that consists of
three members, all having different WWAN link characteristics
(i.e., bandwidth, delay, and loss rate) as follows: member 1
(M1) has a reliable but slow link (360 Kbps, 300 ms, 0%);
member 2 (M2) has a fast but unreliable link (1080 Kbps,
100 ms, 0.6%); and member 3 (M3) has a faster link (1800
Kbps, 100 ms, 0%) than others, but its bandwidth difference
from M1’s is large (5 times). Initially, M1 and M2 collaborate
until 40 seconds, but encounter different delays and loss rates.
Then, M2 leaves the community (at 40s). At 60s, M3 joins the
community and collaborates with M1, but they have a large
bandwidth disparity.

PRISM achieves the aggregated bandwidth of all WWAN
links even in case of heterogeneous link characteristics. Figure
7(c) shows the sequence number progression of a sender’s
transport layer for both PRISM and vanilla-TCP. As shown
in the figure, PRISM can achieve 310% throughput compared
to vanilla-TCP in the presence of both loss-rate and delay
disparities (from Os to 40s) thanks to its fast loss-recovery
mechanism (see the magnified graph in Figure 7(c)). Further-
more, PRISM yields a 208% performance improvement over
vanilla-TCP in case of a large bandwidth disparity (ranging
from 60s to 90s) using its effective scheduling mechanism
and ACK re-sequencing mechanism.

VIII. PERFORMANCE EVALUATION

We also evaluated PRISM via in-depth simulation for di-
verse environments. We first describe our simulation models
and then evaluate PRISM with respect to bandwidth aggrega-
tion, packet reordering, network utilization, and fairness.
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A. Simulation Models

We use ns-2 [3] for our simulation study. The network
topology in Figure 8 is used for all simulation runs and
consists of Internet, WWAN and WLAN networks. First, the
Internet is composed of fixed servers (sender S;), Internet
routers, a performance enhancing proxy (PEP), and other hosts
(Hostg,g) for generating background traffic. The bandwidth
between each host and its edge router is 20 Mbps, and the
bandwidth between Internet routers is 10 Mbps. Next, for
WWANSs, we use the Universal Mobile Telecommunication
System (UMTS) ns-2 extension [6]. B; is a WWAN access
network that is connected to a couple of WWAN access points.
Then, for WLANSs, we use the IEEE 802.11b implementation
in ns-2, and add the NOAH [32] routing protocol to simulate
peer-to-peer communications among community members.
Finally, for each community member m, including a receiver,
we use an extended ns-2 mobile node with multiple wireless
interfaces.

Given the above topology, we implemented TCP-PRISM at
the sender’s transport layer and PRISM-IMUX at the proxy’s
network layer as explained in Section III. For indirection
between the proxy and each mobile node, we used encapsula-
tion/decapsulation modules in ns-2. Finally, we implemented
a simple service location protocol [30] for bootstrapping the
mobile community and for initiating the PRISM flow at mobile
nodes.

We used the following parameter settings throughout the
simulation. First, we use TCP-SACK as a receiver’s transport
protocol as it is. Second, we use UDP flows with a packet size
of 1000 bytes as background traffic. Finally, we run an FTP
application(s) for 150-500 seconds and average the results of
10 runs unless specified otherwise.

B. Achieving Bandwidth Aggregation

We measured PRISM’s aggregated bandwidth gain while
increasing the number of WWAN links. The bandwidth of each
link is randomly chosen from the range [400Kbps, 2.4Mbps].
We first run an FTP session between a server (S7) and a
receiver (R1) for 300 seconds under PRISM, and then run
the same experiment without the proxy (‘No Proxy’). For a
better comparison, we also run the same experiment under a
weighted-round-robin (WRR) striping agent without the ACK-
control mechanism.

PRISM achieves bandwidth aggregation (i.e., summing the
bandwidths of all links), and its performance scales well with
various community sizes. Figure 9 plots PRISM’s bandwidth
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aggregation gain, and confirms the performance gain and
scalability with up to five community members’. By contrast,
using the WRR striping agent, TCP performance degrades
to the one that is worse than a single community member’s
throughput due to frequent out-of-order packet deliveries. Note
that the “Ideal” case is defined as the sum of vanilla-TCP
throughputs achieved via all WWAN links.

C. Minimizing Need for Packet Reordering

ADAS minimizes out-of-order packet deliveries by using
link utilization and RTT. We show its effectiveness in the
presence of bandwidth disparity and rate/delay fluctuations.

1) Bandwidth disparity: We evaluated how much ADAS
reduces the need for packet reordering in the presence of
disparity of WWAN links’ bandwidths. We use three com-
munity members whose links bandwidth difference (say, d%)
increases from O to 70%, and measure the achieved aggregate
throughput. We initialize the WWAN bandwidth of all mem-
bers to 1.4 Mbps and then increase one member’s bandwidth
by d% of 1.4 Mbps and decrease the bandwidth of one of the
remaining members by the same percentage. We disable RPC
to isolate the performance benefit of ADAS, and run PRISM
with other existing scheduling algorithms as well as ADAS.

ADAS reduces the number of packets delivered out-of-
order by sensing bandwidth disparity, and achieves an up-to-
280% improvement of link utilization over other scheduling
algorithms (especially, random). Figure 10 shows the per-
formance gain by reducing the need for packet reordering
under various scheduling algorithms. The = axis represents the
bandwidth disparity, and the y axis is the achieved throughput
which is normalized by the ideal total bandwidth of WWAN
links. Although the maximum ratio is below a half of the
ideal bandwidth due to the absence of RPC, the figure shows
that the throughput under ADAS improves as the bandwidth
disparity increases by selectively using high-bandwidth links,
i.e., ADAS reduces the number of out-of-order deliveries.

On the other hand, since other scheduling algorithms, such
as WRR, RR and Random, blindly assign packets to all
available links without any regard to their bandwidth disparity,
their performance is degraded by a significant number of out-
of-order deliveries that result from the use of low-bandwidth
links.

2) Rate/delay fluctuations in WWAN links: We also evalu-
ated ADAS’s adaptivity to rate/delay fluctuations by examining
the end-to-end throughput given dynamically-changing back-
ground traffic. For a system with three community members
(whose WWAN bandwidths are 600, 900 and 1200 Kbps,
respectively), we run one PRISM flow and two ON/OFF
background traffic flows (one via the first member’s WWAN
link with 400 Kbps, and the other via the third member’s
WWAN link with 800 Kbps). We use a burst-time of ON/OFF
traffic as the parameter of rate/delay fluctuations with a Pareto
distribution and a one-second idle-time. In this experiment, we
enable RPC to show the overall performance improvement.

"Note that we limit the maximum community size to 5 since the IEEE
802.11b provides up to 6 Mbps in terms of end-to-end throughput.
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ADAS adapts to the rate/delay fluctuations of WWAN
links and reduces the need for packet reordering. As we will
see in Section VIII-D.2, the thus-reduced number of out-of-
order packet deliveries improves the end-to-end throughput, so
we measured the throughput achieved by several scheduling
algorithms while increasing the rate/delay fluctuations. As
shown in Figure 11, ADAS outperforms the other scheduling
algorithms by 12-47% and achieves 97.1% of the ideal per-
formance in the presence of maximum background traffic. The
“ideal” case is the sum of vanilla-TCP’s throughputs achieved
via all WWAN links with the same background traffic.

On the other hand, WRR performs worse than random
scheduling in the presence of large fluctuations. hRTT-
only scheduling performs worse (1.48 Mbps) than the others
because the fast (i.e., small RTT) but low-bandwidth link
limits the overall performance by dropping many packets. The
NIP-only scheduling algorithm performs similarly to ADAS
in a stable link state. However, as the rate/delay fluctuates
more, the NIP-only scheduling becomes less responsive to
short-term fluctuations than ADAS which adapts itself to
the fluctuations by using RTT, thus achieving only 88% of
ADAS’s throughput.

3) Congestion over a path from a proxy to base stations:
Although we have focused on characteristics of WWAN links
(assumed to be a bottleneck), we also evaluate the effectiveness
of PRISM over intermittent congestion in a path from a proxy
to base stations. We use the same community settings as
the previous experiment, and run UDP flows with a Pareto
distribution to generate congestion over paths from a proxy to
every base station as shown in Figure 8. As we increase the
level of congestion by adjusting a burst time and a peak rate
of the distribution, we measure the throughput of a PRISM
flow. We also measure throughputs of PRISM with NIP and
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WRR for the same scenario.

Figure 12 plots ratios of PRISM’s achieved throughput to
the “ideal” throughput, and demonstrates its effectiveness even
in different levels of congestion. First, when the burst time
(BT) is small (e.g., 1s-ON/10s-OFF), PRISM achieves 96.1%
of the ideal throughput on average thanks to its adaptive
weight adjustment and fast recovery. On the other hand, as
the burst time increases (10s-ON), PRISM experiences slight
performance degradation (e.g., 91.3%) due to the increased
number of simultaneous packet drops. Next, when a bandwidth
congestion level, which is defined as the percentage of WWAN
link’s bandwidth by which background traffic congests, rises,
PRISM shows a slight performance degradation, but it still
performs better than the other scheduling algorithms as shown
in line points in Figure 12. Nonetheless, NIP-/WRR-based
approaches show performance similar to ADAS thanks to fast
loss recovery in RPC.

D. Maximizing Network Utilization

We show how much each component of PRISM contributes
to the improvement of network utilization. We first show
RPC’s gain through ACK controls, and then show ADAS’s
contribution by reducing traffic burstiness.

1) Performance gain by RPC: We evaluated the RPC’s im-
provement of network utilization under the same setting as in
the bandwidth-disparity experiment, and compared three cases:
PRISM without RPC, PRISM with only ACK re-sequencing
(partial RPC), and PRISM with full RPC (including loss
detection and fast loss recovery).

By effectively handling spurious duplicate ACKs, RPC
maximizes network utilization which, in turn, enables PRISM
to achieve a close-to-ideal aggregate bandwidth. Figure 13
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plots the performance gain by RPC. PRISM with the full
RPC indeed achieves maximum network utilization even in the
presence of large bandwidth disparities. By contrast, PRISM’s
performance without RPC is shown to be less than 50% of
the ideal bandwidth. PRISM with a partial RPC makes, on
average, only a 50% performance improvement since it should
depend only on timeouts for packet-loss recovery.

2) Minimizing traffic burstiness: We evaluated ADAS’s
improvement of network utilization by measuring the degree
of traffic burstiness that depends on the scheduling mechanism.
We use four community members (whose WWAN bandwidths
are 620, 720, 720, and 860 Kbps), and measure the size of re-
sequencing buffer in PRISM-IMUX while running a PRISM
flow under ADAS. We run PRISM with WRR for comparison.

ADAS reduces traffic burstiness by minimizing out-of-
order deliveries, thus improving the overall network utilization.
Figure 14 shows the progression of the re-sequencing buffer
size which is defined as the distance between left and highest
of the re-sequencing buffer. The average buffer size required
by ADAS in the lower figure is 1.5 times less than that by
WRR, meaning that ADAS generates less out-of-order packet
deliveries than WRR. Also, the ADAS’s smaller buffer size
requirement implies less bursty traffic because PRISM-IMUX
releases only a small number of stored ACKs to the sender.
Our experimental results show that the throughput (2.9 Mbps)
for less bursty traffic (scheduled by ADAS) improves by up
to 16% over that (2.5 Mbps) for bursty traffic (scheduled by
WRR).

E. Maintaining Bandwidth Usage Fairness

We show that PRISM maintains bandwidth fairness with
other traffic and among PRISM flows. We study the effects
of introducing PRISM on other vanilla-TCP performance and
also the fairness among multiple PRISM flows.

1) Co-existence with TCP: We examined the fairness of
PRISM with vanilla-TCP for the network topology in Figure
8. We introduce multiple independent TCP flows between
Hosts; and Hostg;, and PRISM flows between S; and M;
(the total number of flows including TCP and PRISM is fixed
at 20), and compare per-flow throughput and its covariance.
Note that each community member uses only its own WWAN

link, and each flow competes with other PRISM and TCP flows
on a shared bottleneck link (10 Mbps, 30 ms) in the Internet.

PRISM traffic co-exists well with (and hence, is friendly
to) vanilla-TCP traffic without starvation or preemption on
a shared link of the Internet. Whenever there is a shared
bottleneck on a wired link, TCP-PRISM works exactly in the
same way as the vanilla TCP (3 duplicate ACKs and halving
the congestion window), and thus, is friendly to the vanilla
TCP. Figure 15(a) shows per-flow throughput, and Figure
15(b)® shows the covariance of throughput as the number
of PRISM flows increases. While per-flow throughput and
its covariance fluctuate for the first 5 seconds due to the
TCP’s slow start, they quickly converge to their average values,
demonstrating PRISM’s fairness with vanilla-TCP.

2) Fair-share among multiple PRISM flows: We also evalu-
ated the fairness among multiple PRISM flows where multiple
receivers in a community initiate their own “aggregated” con-
nection. We use four community members (whose bandwidths
are 600, 900, 1200, and 1500 Kbps), and run three PRISM
flows (from Si, Se, and S5 to R;, Rs, and Rj, respectively).
Three PRISM-IMUX agents are invoked for each flow, and
share four WWAN links.

PRISM preserves the end-side flow control, and its schedul-
ing mechanism supports fairness among multiple PRISM
flows. Figure 15(c) shows the progression of each sender’s
congestion window (CW) size. The three flows’ CWs fluctuate
with average sizes of 19.5, 18.4 and 21.8, and standard
deviations of 4.6, 4.4 and 5.9, respectively.

IX. RELATED WORK
A. Bandwidth aggregation in mobile hosts

Bandwidth aggregation in multi-homed mobile hosts is con-
sidered by several researchers. pTCP [18] is a new transport-
layer protocol that is a wrapper around a slightly-modified
version of TCP (called TCP-v). pTCP manages the send buffer
across all the TCP-v connections and decouples loss discovery
from congestion control, performs intelligent striping of data
across the TCP-v connections, and does data reallocation

$Note that we reverse time progression for clarity. Also, we sample data
once every second for the period of first 10 seconds and then once every 5
seconds.



to handle variances in the bandwidth-delay product of the
individual connections. R2CP [17] is also a transport-layer
protocol that is a receiver-centric transport protocol that ef-
fectively addresses the wireless last-hop problem such as
seamless handoff and server migration as well as bandwidth
aggregation.

MOPED [12] is a framework to enable group mobility
such that a user’s set of personal devices appear as a single
mobile entity connected to the Internet. MOPED provides
the lightweight routing architecture (called MRCAP) that
supports multipaths between the home agent and a receiver
(network-layer approach), and also includes a new transport-
layer protocol to aggregate the bandwidths of multiple links
(transport-layer approach).

All of these approaches are efficiently enhancing mobile
hosts to get better and more bandwidth. However, in PRISM,
we extend bandwidth aggregation of multiple links from a
single host to multiple collaborating mobile hosts.

B. Packet reordering

Packet reordering is a major problem in multi-path routing
environments. DSACK [33] is a detection mechanism of spuri-
ous retransmissions on packet reordering for TCP. In DSACK,
a sender receives spurious retransmission information from a
receiver and reacts to it by restoring its congestion window to
its value prior to the spurious retransmission.

TCP-Door [31] is another scheme for improving TCP in
a MANET environment, which uses an additional sequence
number, called TCP packet sequence number, to detect out-
of-order packets by counting every data packet including re-
transmissions. Upon detecting out-of-order packets, the sender
either temporarily disables congestion control or restores the
state prior to entering the congestion avoidance if it is in
the congestion-avoidance phase. These approaches address
occasional out-of-order packet arrivals. However, they are
reactive (as opposed to proactive) to out-of-order packets,
and thus, channel bandwidths can be wasted on spurious
retransmissions. This problem becomes severer when there are
persistent out-of-order arrivals.

TCP-PR [9] addresses this problem using a timeout as
an indication of packet loss instead of duplicate ACKs. It
maintains ‘to-be-acked’ with timestamps, and detects packet
loss if the current time ¢ exceeds the packet’s timestamp in the
list plus an estimated maximum possible RTT. However, TCP-
PR may still suffer from false timeouts that result from large
RTT fluctuations. TCP-PR may increase maximum timestamps
to reduce false timeouts, but it also requires a large buffer size
to accommodate outstanding packets during such a long time.

C. Scheduling disciplines

Scheduling packets across multiple links is a well-known
problem for which several solutions have been proposed.
First, the round-robin (RR) scheduling guarantees long-term
fairness, and is of low complexity. Surplus RR [4] adopts
the weighted RR mechanism with a virtual buffer which
resequences out-of-order packets. This approach is simple to
implement, and provides long-term fairness among the links.
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However, like other RR mechanisms, it causes burstiness, and
significant packet reordering may require a large resequencing
buffer.

Second, the fair queueing attempts to approximate the
Generalized Process Sharing (GPS) to achieve fairness and
bounded delay, and there are several well-known solutions
such as PGPS, WFQ, WF?Q. However, these approaches
assume that the exact bandwidths of each input and output
link are known.

Third, a hybrid approach takes advantage of both RR and
fair queueing. The stratified RR [25] classifies links into
several groups based on their aggregate weight, and uses
both earliest-deadline-first and RR. This algorithm removes
the complexity of the timestamp approach. However, they also
assume that the service rate and weight are fixed, and it is
not desirable to change class whenever the link bandwidths
change, especially in a mobile environment.

Finally, a wireless fair queueing approach addresses bursty
errors and location-dependent losses. The authors of [24]
evaluated various instances of wireless fair queueing and
presented a unified architecture. Even though all of the in-
stances work well in a wireless environment, they selectively
require differentiated services (e.g., lagging and leading), a
compensation model for fairness, and channel monitoring and
prediction mechanisms. All these requirements need close
interactions with base stations, incurring significant message
exchange (with a proxy) and processing overheads.

X. DISCUSSION AND CONCLUSION

We first discuss a few issues associated with PRISM that
have not been covered in this paper. Then, we make concluding
remarks.

A. Discussion

PRISM can easily support upstream (from a mobile host to
a server) traffic by placing PRISM-IMUX at a mobile node in
the community. One mobile member in the community can
work as the proxy and inverse-multiplex traffic over other
community members. It might incur overheads to mobile hosts,
but, as shown in Sections IV, V, and VI, the computational
complexity of PRISM increases only on a log-scale, and its
spatial complexity is also reasonable (3KB). Most of all, fast
transmissions at an aggregate high data rate via members’
collaboration contribute to the savings of a base power of
mobile hosts. For example, let’s assume Bob needs to upload
a 10 MB file from his laptop, and Alice nearby Bob is reading
an article in her laptop. If Bob uses own WWAN card (600
Kbps), the uploading takes 134 seconds, consuming 1,275 J
(= (1.29 watt (WWAN) + 8.23 watt (system power)) x 134 )
of energy (based on measurements in [21], [28]). On the other
hand, by using Alice’s WWAN (600 Kbps) together, Bob can
not only reduce uploading time to 67 s, but also reduce its
energy consumption to 731 J (= (1.29 + 1.4 (WLAN) + 8.23)
x 67 s). Finally, he will pay for Alice’s bandwidth-related
energy cost of 180 J (= (1.29 + 1.4) x 67 s) plus a premium
for sharing a base power.



We also consider two different security-related issues: (i)
what if the packet header is encrypted? and (ii) what if
a community member behaves maliciously? Since PRISM
exploits TCP information, it is critical for PRISM to extract
the header information from each packet. As was done in
[27], if we consider the proxy as a trusted party and let it
hold the secret key for each connection, then the proxy can
extract the header information from encrypted packets. This
mechanism also helps prevent members’ malicious behaviors
from tampering with, or extracting data from, a packet. The
other approach to the members’ malicious behavior problem
is to have a reputation and punishment system as in [11] to
discourage such behaviors.

B. Concluding Remarks

In this paper, we first motivated the need for a mobile collab-
orative community: it improves the user-perceived bandwidth
as well as the utilization of diverse wireless links. Then, we
addressed the challenges in achieving bandwidth aggregation
for a TCP connection in the community. Striping a TCP
flow over multiple wireless WAN links requires significant
scheduling efforts due to heterogeneous and dynamic wireless
links, creates the need for frequent packet reordering due
to out-of-order packet deliveries, and causes network under-
utilization due to the blind reaction of the TCP’s congestion-
control mechanism. To remedy these problems, we proposed
a proxy-based inverse multiplexer, called PRISM, that effec-
tively stripes a TCP connection over multiple WWAN links at
the proxy’s network layer, masking adverse effects of out-of-
order packet deliveries by exploiting the transport-layer infor-
mation from ACKs. PRISM also includes a new congestion-
control mechanism that helps TCP accurately respond to
the heterogeneous network conditions identified by PRISM.
Through experimental evaluation on a testbed and in-depth
simulations, PRISM is shown to opportunistically minimize
the need for packet reordering, effectively achieve the optimal
aggregate bandwidth, and significantly improve wireless links
utilization.

ACKNOWLEDGMENT

The work reported in this paper was supported in part by the
AFSOR under Grant No. F49620-00-1-0327 and by the NSF under
Grant No. CNS-0519498. This is an extended version of the paper
[19] that appeared in ACM/USENIX MobiSys 2005.

REFERENCES

[1] Netfilter. http://www.netfilter.org.

[2] Nist net. http://snad.ncsl.nist.gov/nistnet.

[3] ns-2 network simulator. http://www.isi.edu/nsnam/ns.

[4] H. Adiseshu, G. Parulkar, and G. Varghese. A reliable and scalable
striping protocol. In Proceedings of the ACM SigComm, Stanford, CA,
Aug. 1996.

[5] L. Anderegg and S. Eidenbenz. Ad hoc-VCG: A truthful and cost-
efficient routing protocol for mobile ad hoc networks with selfish agents.
In In Proceedings of MobiCom, San Diego, CA, Sept. 2003.

[6] A. Baiocchi and F. Vacirca. End-to-end evaluation of WWW and file
transfer performance for UMTS-TDD. In Proceedings of the IEEE
GlobeCom, Taipei, Nov. 2002.

[7]1 A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for mobile hosts.
In Proceedings of the 15th ICDCS, May 1995.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

15

H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving TCP/IP
performance over wireless networks. In Proceedings of the ACM
MobiCom, Nov. 1995.

S. Bohacek, J. P. Hespanh, J. Lee, C. Lim, and K. Obraczka. TCP-
PR: TCP for persistent packet reordering. In Proceedings of the 23rd
ICDCS, Rhode Island, May 2003.

J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Perfor-
mance enhancing proxies intended to mitigate link-related degradations.
Internet Request for Comments 3135 (rfc3135.txt), June 2001.

S. Buchegger and J.-Y. L. Boudec. Performance analysis of the
CONFIDANT protocol:cooperation of nodes. In Proceedings of the
ACM MobiHoc, Lausanne, Switzerland, June 2002.

C. Carter and R. Kravets. User device cooperating to support resource
aggregation. In Proceedings of the 4th IEEE WMCSA, Callicoon, NY,
June 2002.

M. C. Chan and R. Ramjee. TCP/IP performance over 3G wireless links
with rate and delay variation. In Proceedings of the ACM MobiCom,
Atlanta, GA, Sept. 2002.

J. Duncanson. Inverse multiplexing. I[EEE Communications Magazine,
32(4), Apr. 1994.

D. Farinacci, S. Hanks, D. Meyer, and P. Traina. Generic routing en-
capsulation (GRE). Internet Request for Comments 2784 (rfc2784.txt),
Mar. 2000.

S. Floyd. Congestion control principles. Internet Request for Comments
2914 (rfc2914.txt), Sept. 2000.

H. Hsieh, K. Kim, Y. Zhu, and R. Sivakumar. A reciver-centric transport
protocol for mobile hosts with heterogeneous wireless interfaces. In
Proceedings of the ACM MobiCom, San Diego, CA, Sept. 2003.

H. Hsieh and R. Sivakumar. A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts. In Proceedings of
the ACM MobiCom, Atlanta, GA, Sept. 2002.

K. Kim and K. G. Shin. Improving TCP performance over wireless
networks with collaborative multi-homed mobile hosts. In Proceedings
of the ACM/USENIX MobiSys, Seattle, WA, June 2005.

L. Magalhaes and R. Kravets. MMTP:multimedia multiplexing transport
protocol. In Proceedings of SigComm-LA, San Jose, Costa Rica, Apr.
2001.

A. Mahesri and V. Vardhan. Power consumption breakdown on a
modern laptop. In Proceedings of the IEEE International Symposium
on Microarchitecture, Portland, OR, Dec. 2004.

S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior
in mobile ad hoc networks. In Proceedings of the ACM MobiCom,
Boston, MA, Aug. 2000.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selec-
tive acknowledgement options. Internet Request for Comments 2018
(rfc2018.txt), Oct. 1996.

T. Nandagopal, S. Lu, and V. Bharghavan. A unified architecture for the
design and evaluation of wireless fair queueing algorithms. In Mobile
Computing and Networking, 1999.

S. Ramabhadran and J. Pasquale. Stratified round robin: A low
complexity packet scheduler with bandwidth fairness and bounded delay.
In Proceedings of the ACM SigComm, Karlsruhe, Germany, Aug. 2003.
P. Rodriguez, R. Chakravorty, J. Chesterfield, and I. Pratt. MAR: A
commuter router infrastructure for the mobile internet. In Proceedings
of the ACM MobiSys, Boston, MA, June 2004.

N. B. Salem, L. Buttyan, J.-P. Hubaux, and M. Jakobsson. A charging
and rewarding scheme for packet forwarding in multi-hop cellular
networks. In Proceedings of the IEEE/ACM MobiHoc, Annapolis, MD,
June 2003.

E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: An event driven
energy saving strategy for battery operated devices. In Proceedings of
the ACM MobiCom, Atlanta, GA, Sept. 2002.

P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan. WTCP:
A reliable transport protocol for wireless wide-area networks. In
Proceedings of the ACM MobiCom, Aug. 1999.

J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service location
protocol. Internet Request for Comments 2165 (rfc2165.txt), June 1997.
F. Wang and Y. Zhang. Improving TCP performance over mobile ad-hoc
networks with out-of-order detection and response. In Proceedings of
the ACM MobiHoc, Lausanne, Switzerland, June 2002.

J. Widmer. Network simulations for a mobile network architecture.
http://www.icsi.berkeley.edu/widmer/mnav/ns-extension.

M. Zhang, B. Karp, and S. Floyd. Improving TCP’s performance
under reordering with DSACK. Technical report, International Computer
Science Institute, Technical Report ICSI TR-02-006, July 2002.



[34] S. Zhong, J. Chen, and Y. Yang. Sprite: A simple, cheat-proof, credit-
based system for mobile ad-hoc networks. In Proceedings of the IEEE
InfoCom, San Francisco, CA, Apr. 2003.

Kyu-Han Kim received the BS from the Depart-
ment of Computer Science and Engineering at Ko-
rea University, Seoul, Korea in 2000 and the MS
from the College of Computing at Georgia Institute
of Technology, Atlanta, GA in 2003. Since 2003,
he has been pursuing Ph.D degree in the Real-
Time Computing Laboratory at the Department of
Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, Michigan. His
researh interests include quality of service support in
wireless networks and distributed systems—wireless
mesh networks, mobile ad-hoc networks, and cognitive radios. He is a
recipient of government scholarship from the ministry of information and
communication, Republic of Korea.

Kang G. Shin is the Kevin and Nancy O’Connor
Professor of Computer Science and Founding Direc-
tor of the Real-Time Computing Laboratory in the
Department of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor,

networking and computing as well as on embedded
real-time OS, middleware and applications, all with
I 5 emphasis on timeliness and dependability. He has
e o supervised the completion of 56 PhD theses, and
authored/coauthored more than 650 technical papers (more than 230 of
which are in archival journals) and numerous book chapters in the areas
of distributed real-time computing and control, computer networking, fault-
tolerant computing, and intelligent manufacturing. He has co-authored (jointly
with C. M. Krishna) a textbook “Real-Time Systems,” McGraw Hill, 1997.
He has received a number of best paper awards, including the IEEE
Communications Society William R. Bennett Prize Paper Award in 2003 and
an Outstanding IEEE Transactions of Automatic Control Paper Award in 1987.
He has also received several institutional awards, including Distinguished
Faculty Achievement Award in 2001, and Stephen Attwood Award in 2004
from The University of Michigan; a Distinguished Alumni Award of the
College of Engineering, Seoul National University in 2002; 2003 IEEE RTC
Technical Achievement Award; and 2006 Ho-Am Prize in Engineering. He
is Fellow of IEEE and ACM, and member of the Korean Academy of
Engineering.

Michigan.
His current research focuses on QoS-sensitive
|

16



