
Differentiated BGP Update Processing for
Improved Routing Convergence

Wei Sun, Zhuoqing Morley Mao, Kang G. Shin
University of Michigan

{wsunz, zmao, kgshin}@eecs.umich.edu

Abstract— Internet routers today can be overwhelmed by a
large number of BGP updates triggered by events such as session
resets, link failures, and policy changes. Such excessive updates
can delay routing convergence, which, in turn, degrades the
performance of delay- and jitter-sensitive applications. This paper
proposes a simple and novel idea of differentiated processing
of BGP updates to reduce routers’ load and improve routing
convergence without changing the protocol semantics. Based on
a set of criteria, BGP updates are grouped into different priority
classes. Higher-priority updates are processed and propagated
sooner, while lower-priority ones, not affecting routing decisions,
can be delayed to both reduce routers’ load and improve routing
convergence. We first present a general methodology for update
classification, update processing, and priority-state inference. By
analyzing real BGP data obtained from Route Views, we show
that our update classification is feasible and beneficial. We further
propose two differentiated update processing (DUP) algorithms
and evaluate them using the SSFNet BGP simulator on several
realistic network topologies. The algorithms are shown to be
very effective for large networks, yielding 30% fewer updates
and reducing convergence time by 80%. Our scheme is simple
and light-weight with little added processing overhead. It can
be deployed incrementally, since BGP messages are not modified
and every BGP router makes routing decisions independently.

I. INTRODUCTION

Real-time, multimedia applications such as IPTV, VoIP and
Internet gaming are becoming popular. These delay- and jitter-
sensitive applications impose more stringent requirements on
the underlying Internet routing system. In light of this trend,
BGP (Border Gateway Protocol) routing issues have attracted
significant attention from both the research and operator com-
munities. A key problem associated with BGP is the excessive
number of BGP updates possibly triggered by routing changes,
such as session resets, link failures, and policy changes. For
example, a recent study of a large tier-1 ISP shows that
within just one minute, a “rich peering” router can experience
hundreds of routing updates all at once partly due to the
interaction between intra- and inter-domain routing [1].

There are several well-known schemes deployed to address
this problem, including Minimum Route Advertisement Inter-
val (MRAI), flap damping [2], Sender Side Loop Detection
(SSLD), and Withdrawal Rate Limiting (WRATE) [3]. MRAI
is a rate-limiting mechanism, enforcing a minimum inter-
update interval between two neighbors (and for a specific
destination prefix), in the hope that such a delay may help
consolidate multiple related updates into fewer updates. Flap
damping targets longer-term unstable routes, blocking routes
changing too frequently over a relatively longer time period.
Using a path-vector routing approach, BGP routers detect
routing loops by checking if its own AS number appears

in the AS path upon receiving a new route. SSLD, on the
other hand, detects routing loops before sending the route
to a neighbor BGP router. A rate-limiting mechanism, such
as MRAI, is usually applied only to announcements, but
not to withdrawals. However, some router vendors implement
WRATE by applying MRAI to withdrawals as well, even
though this is not recommended [3].

A related issue is the long convergence time caused by BGP
path exploration. The authors of [4]–[6] have shown that the
BGP convergence time is surprisingly long and depends on
the length of the longest backup path. The convergence time
is also shown to be proportional to the number of alternative
routes to a given destination [7]. The prevalence of multi-
homing in AS relationships (e.g., a customer AS peering with
multiple providers ASes) [8]–[10] increases the number of
backup routes in the Internet significantly, which, in turn,
prolongs BGP convergence. Our recent study shows that the
convergence time for one BGP Beacon [11] prefix is still
surprisingly long—more than 30 minutes.

All the existing mechanisms, including MRAI and flap
damping, are intended for all updates, except that in general,
withdrawals are not subject to the influence of MRAI. In this
paper, we introduce the concept of differentiated BGP update
processing, which classifies BGP updates and treats them
according to their importance, which determines the update
sending order and delay. We observe that BGP updates can
be divided into two classes: the first class affects the routing
decisions of the receiving routers, possibly triggering more
updates, while the second class does not affect the routing
decisions of the receiving nodes, i.e., the best routes used are
not changed. We regard the first class more important; but it is
non-trivial to determine which updates belong to which class,
since the routing decision and local policy of the receiving
nodes are not directly available. We first define a method for
classifying BGP updates. Updates in different classes will then
be processed with different priorities. We also explore ways
to process updates differently and propose two Differentiated
Update Processing (DUP) algorithms.

In summary, we propose differentiation of updates depend-
ing on whether they are used in the forwarding tables of routers
for related destination prefixes. If they are, they will more
likely be processed with higher priority. The key ideas of our
DUP algorithms are: (i) Locally inferred routing preference:
when sending updates to a neighbor, a BGP router checks if
the neighbor has sent updates for the same prefixes to itself.
If so, it sends the updates with low priority. (ii) Difference-
based route selection: when failure occurs and the best route to

2801-4244-0593-9/06/$20.00 ©2006 IEEE

a destination is withdrawn, instead of selecting the next best
available route, a BGP router first selects an interim route
that shares the shortest common sub-route with the withdrawn
route. The intuition behind the first idea is that if the neighbor
also advertises a route, it must have an alternate route. The
justification behind the second idea is that usually routes
dissimilar to the withdrawn route are more likely valid during
convergence.

The proposed scheme reduces the number of low-priority
updates and the routing convergence time, thus reducing router
(message processing, bandwidth) overhead, especially at an
overloaded router in the core with rich peering. It reduces
convergence time not only after a failure, but also during a
new route propagation. At the same time, the scheme does
not require any change to BGP protocol semantics (including
the format of BGP messages and the final best route selection),
thus facilitating incremental deployment. Moreover, it does not
compromise reachability.

The authors of [12] proposed a Routing Control Platform
(RCP), which uses a centralized routing control server to make
route selection on behalf of each BGP router within a single
AS, and distributes the routing decision to it. This RCP is to
replace IBGP (Internal BGP) and solve many problems caused
by its inefficiency. The authors showed that a prototype of such
a system can be effectively implemented on a software router.
Our scheme is simple and light-weight, and can be integrated
into the RCP platform. Also, it can be easily implemented on
software routers running XORP [13] or Zebra [14].

The rest of the paper is organized as follows. Section II
discusses related work on BGP routing. Section III presents
the general idea of DUP and updates classification. Section IV
presents potential benefits of DUP using the Route Views
data. Based on the general framework, Section V introduces
the basic DUP algorithm. In Section VI the basic algorithm
is combined with a new route selection algorithm to further
reduce the convergence time and the number of updates.
Section VII evaluates the DUP algorithms using simulation
and compares their performance with the current BGP protocol
and other BGP improvement schemes. Finally, Section VIII
concludes.

II. RELATED WORK

It is reported in [1], [15] that the current BGP may generate
an excessive number of updates, especially when the network
is overloaded, and the convergence of BGP may take too long
to meet the requirements of real-time applications.

A. BGP Processing Overhead

The authors of [9] analyzed the rapid growth of BGP routing
tables, as a result of several factors, such as load-balancing,
the prevalence of multi-homing of small networks, and address
fragmentation. The authors of [8] pointed out that not only
is the Internet growing fast in size, it also becomes densely
meshed at the inter-AS level. All these changes increase the
BGP routing table size, thus increasing routers’ processing
overhead.

Studies have also shown that under certain (abnormal) con-
ditions, there could be an excessive number of BGP updates.

For instance, the authors of [16] studied the BGP behavior
under the Slammer worm outbreak, and showed that during
the attack, the number of BGP updates increased ten-fold,
compared to that under normal condition. For some prefixes,
the increase was by about 100 times. The authors of [15]
studied the BGP behavior under heavy load and observed
several weaknesses of the current BGP: its sensitivity to data
congestion, global propagation of small local changes, and
slow convergence. The authors of [17] observed that in the
time scale of minutes, BGP updates do not affect router’s CPU
load significantly, but in a shorter time scale of seconds, BGP
can consume up to 100% of CPU cycles. The authors of [18]
also showed that high update rates from multiple peers are
harmful, prolonging the transit times of packets.

In addition to MRAI and flap damping, BGP Graceful
Restart [19] is another mechanism deployed today that can
reduce updates, but has limited applicability as it works only
for short-lived session resets.

B. BGP Convergence Time

Using simulation, the authors of [20] demonstrated the
effectiveness of MRAI in reducing the convergence time. They
also observed that for a given topology, there exists an optimal
MRAI timer value which minimizes the convergence time.
However, the optimal value depends on the topology, so there
is no universal optimal setting for the MRAI timer applicable
for all routers and all types of routing changes.

In practice, Cisco routers use 30 and 5 seconds as the default
MRAI timers for EBGP and IBGP sessions, respectively, while
Juniper routers disable MRAI timer by default [21]. The study
above showed that disabling MRAI timer may lead to large
number of updates and long convergence time.

To reduce BGP update traffic and the associated overhead,
and to decrease network convergence time, the authors of [22]
proposed to add some consistency assertion checks to BGP
update processing. From this checking, many updates are
observed to contradict one another, and not all of them are
valid. A set of assertion rules are defined to check the validity
of updates, and block propagation of information on those
routes that violate these rules, to other BGP peers. They
have shown that by employing these rules, the number of
BGP updates can be significantly reduced, and the route
convergence time can be improved drastically.

The authors of [23], [24] extended the idea in [22] by
embedding the root cause of a failure in updates, so a
receiving node knows which candidate routes in its routing
table are invalidated by the root cause, dramatically reducing
the number of invalid routes and hence the convergence time.
However, this scheme requires modification of BGP updates
to embed the root cause information and slows deployment.

The authors of [25] proposed a different algorithm called
“Ghost Flushing.” The routes invalidated by a failure are called
“Ghosts.” For speedy removal of such invalid routes from the
network, when a route is replaced by a less preferable one,
if the route cannot be propagated because the MRAI timer
has not expired, a withdrawal is sent immediately. By sending
extra withdrawals, it is shown that invalid routes are removed
much sooner and the convergence time is greatly reduced,

281

TABLE I
COMPARISONS OF BGP-ENHANCEMENT SCHEMES

Consistency assertion Root-cause based schemes Ghost flushing Our scheme

change format of BGP messages yes yes no no
introduce extra messages no no yes no
reduce convergence time of updates for new prefixes no no no yes

B

C

D

E

F

G

A B E

C

D

F

G

(a) Network topology
A

C

B

D E

F G

E

B F G

A

C

D

(b) Forwarding-path tree for AS A (c) Forwarding-path tree for AS E

Fig. 1. Forwarding-path tree of an AS

especially when the original route is the only way to reach the
destination—no valid alternative routes exist after the failure.

Table I compares our scheme with three existing schemes
mentioned above. Our scheme does not require any modifi-
cation to the BGP protocol semantics such as BGP message
format, nor does it send extra messages. Moreover, unlike the
above schemes which mainly focus on reducing convergence
time after a failure, our scheme can also reduce convergence
time during a new route propagation.

The author of [26] discusses various schemes (at different
layers of network hierarchy) to achieve sub-second conver-
gence and maintain high routes availability. The mechanisms
capture the same differentiated processing idea as ours, but
work mainly at the intra-domain level. In contrast, our scheme
focuses on the inter-domain level.

III. GENERAL METHODOLOGY

A. Assumptions and Notations

Before delving into the details of our proposed approach, we
introduce the following widely-used assumptions. Violation of
these assumptions can be accommodated, especially in a single
network where the policy information is known.

A1. In a peer-peer AS relationship, if ASes A and B are
peers, A only sends B updates pertaining to itself and
its customers; so does B. Routing updates learned
from one peer will not be forwarded to other peers.

A2. In a customer-provider AS relationship, if A is a
customer of B, A sends B only the updates pertaining
to itself and its customers; B sends A the updates
learned from all neighboring ASes.

A3. A BGP router prefers routes learned from customer
to those learned from peers; it also prefers routes
learned from peers to those learned from providers.

For simplicity, in addition to A3, we also assume that
routing decisions are based on the AS path length by preferring
shorter paths.

The following notation is used throughout the paper. For a
given BGP update, the sending router is called sender, and
the receiving router receiver. If a router has multiple routes
to reach a given destination AS, the one currently used is
called primary route; other alternative routes are called backup
routes. To avoid confusion, the term peers is used to indicate
the two ASes with a peer-peer relationship between them,
while neighboring BGP routers/ASes are called neighbors.
B. Per-prefix Forwarding-Path Tree

Before discussing BGP update classification, we introduce
the concept of per-prefix forwarding-path tree1. When all the
BGP routers in a network reach steady state, for a given
destination prefix, at router level there is a forwarding-path
tree inside the network. The destination itself is the root of the
tree, and its immediate neighbors are the first-level children,
and so on. Directional links between different levels of nodes
are trunks of the tree. Data packets heading for this destination
prefix flow from the leaves to the root, along the trunks; while
routing updates flow in the opposite direction, from the root
to the leaves (Fig. 1). If updates are received through existing
tree trunks, then we call them “on-tree” updates; otherwise,
they are called “off-tree” updates. For each tree node, there is
only one trunk reaching it from its parent node. Note that the
tree structure is dictated by the routing in the network; when
routing changes, the tree structure changes accordingly.

The key observation is that a BGP router can have many
neighbors, thus receiving many updates regarding alternative
routes to a given destination. However, for each destination
prefix, there is only one on-tree update (regarding its primary
route) from its parent node. Other updates are off-tree updates
(regarding backup routes). For example, seven ASes are con-
nected as shown in Fig. 1(a), each node representing an AS
and also a BGP router. The forwarding-path trees for ASes A
and E are illustrated in Figs. 1(b) and (c), respectively. In both
trees the D-G link is an off-tree link.

In the current BGP, children nodes on the forwarding-path
tree always know their parents, while parent nodes have no
information about their children nodes (or no such information
is used even if it is known at all). Our scheme attempts to
gather such information and use it for BGP update processing.

1Here we assume that a router always send traffic for one prefix to the same
neighbor. If this does not hold, the resulted structure would be a forwarding-
path DAG (Directional Acyclic Graph). But this does not affect the following
analysis.

282

withdrawal

new

old
on−tree

off−tree
worse

better
announcement

on−tree

off−tree

high

high

low

high

high

low

Fig. 2. BGP update classification

C. Update Classification

The BGP update classification method is shown in Fig. 2.
The updates are classified from the receiver’s point of view.
If the updates are about new destinations, which the receiver
did not know before, they belong to a high-priority class.
Otherwise, the updates are classified depending on whether
they are on-tree in the forwarding-path tree of the associated
destination prefix. We consider on-tree updates to be more
important as they affect routing decisions.

As shown in Fig. 2, when an update is a withdrawal, then if
it is on-tree, meaning that it withdraws a primary route of the
receiver, then the update has high priority; otherwise, it has low
priority since it withdraws a backup route which is not used
by the receiver. When an update is an on-tree announcement,
it implicitly replaces the primary route with a new route. Thus
the update has high priority. If the update is off-tree, it has high
priority only when it contains a better route than the primary
route; otherwise, the update has low priority—since the route
is not better than the primary route and will not be chosen.

D. Update Processing

Once updates are classified, the next question is how to
differentiate their processing based on their priority class.

1) Receiver side—priority queues: Since the update clas-
sification is done from a receiver’s perspective, the natural
way is to process BGP updates using a priority queue on the
receiver side. The advantage is that the receiver knows which
class an update belongs to, by simply checking its forwarding
table. However, to classify the updates into different priority
queues, a BGP router has to check the content of the updates
and do some pre-screening. This checking and pre-screening
in a large part is repeating the default BGP update processing,
thus incurring additional overhead. Also, this receiver-side
method alone does not directly reduce the number of updates,
as all updates are still transmitted to the receiver. Because
of this, we focus on the sender-side scheme in the following
discussion.

2) Sender side—different delays: An alternative way is to
differentiate updates at the sender, using different delay timers
(such as MRAI) for different classes of updates. There are
two basic methods with different benefits. The first method
is to process high-priority updates with default timers, while
processing the low-priority ones with longer timers. This
method can potentially reduce the number of low-priority

updates transmitted; the second method is to process the low-
priority updates with default timers, while processing the high
priority ones with shorter timers. This method can potentially
reduce the convergence time, since the high-priority updates
experience a shorter delay at each hop.

However, since update classification is done from the re-
ceiver’s perspective, the sender has no direct way to tell
whether an outgoing update will affect the receiving router’s
forwarding table (or whether the update is an on-tree update
for the receiver). Thus, the sender has to infer the class of
updates. This class inference may incur some overhead on the
sender side.

E. Update Class Inference

As mentioned above, when the sender side is involved in
differentiated update processing, it has to infer the class of
each update for the receiver. Discussed below are possible
ways to achieve correct inference.

First, a router can infer the information externally: it can
obtain the information from the data it receives from other
routers, either implicitly (e.g., monitoring the data traffic
passing through to determine if a neighbor is sending data
packets to the related destination through it) or explicitly
(e.g., letting the receivers of its updates send some feedback
messages saying if the updates are being used as their primary
routes). Note that inside a single AS, and hence for IBGP
sessions, this information can be trivially obtained since the
routing policy is consistent inside an AS.

A router can also infer the information internally, e.g., by
checking its configuration and/or routing table. For example,
when a router R has an update for a destination prefix, it
can examine if there is a route entry for the same prefix
received from a neighbor in the routing table. If there is, then
the neighbor is using a different route; otherwise, it is using
the route learned from R. However, if routers filter out some
outgoing updates based on local policies, then this method will
overestimate the number of high priority updates. On the other
hand, this scheme does not cause any reachability problem.

Since the external inference methods in general incur more
overhead and require extra memory to store the inferred data,
in the following discussion, we focus on internal (or local)
inference.

IV. EMPIRICAL DATA ANALYSIS

To examine empirically the amount of BGP updates that
can be classified as low priority, we analyze the routing
data collected by the Route Views project [27]. Each Route
Views router peers with BGP routers in many ASes to collect
BGP routing data. The data are collected in two forms: RIB
files and update files. The RIB files contain the contents
of the forwarding tables of all the BGP neighbors, and are
collected every two hours; the update files contain new updates
from the BGP neighbors every 15 minutes. By analyzing the
Routeviews data, we found that (i) excluding duplicates, a
large proportion of announcements (about 50% on average)
can be classified as low priority, and thus processed separately.
This confirms the value of our DUP scheme; (ii) a significant
portion of withdrawals are low priority as well, meaning that

283

TABLE II
PSEUDOCODE OF DUP ALGORITHM: DUP SEND()

ASP
pre

1
: AS path of the previous route for D sent to AS2;

ASP new

1 : AS path of the newly-chosen route for D;
ASP2: AS path of the route for D received from AS2;
len (): length of an AS path;
01: // AS1 sends an update for D to AS2:
02: If ASP2 = Null, Then
03: sends the update with shorter MRAI timer;
04: Else
05: If AS1 is a peer or provider of AS2, Then
06: sends the update with longer MRAI timer;
07: Else // AS1 is a customer of AS2

08: If ASP
pre

1
= NULL, Then

09: sends the update with shorter MRAI timer;
10: Else
11: If len (ASP

pre

1
) 6= len (ASP new

1) And
12: len (ASP new

1) + 2 < len (ASP2), Then
13: sends the update with shorter MRAI timer;
14: Else
15: sends the update with longer MRAI timer;

they are withdrawing backup, not primary routes. Due to the
space constraint, the details of the data analysis is omitted.
See an extended version [28] for details.

V. DUP: DIFFERENTIATED UPDATE PROCESSING

Based on the general discussion in Section III, we design a
Differentiated Update Processing (DUP) algorithm based on
the sender-side scheme. To reduce overhead, a sender infers
the priority of an update based on its local information. Also,
since this inference is not always accurate, all the withdrawals
are still treated the same, without any differentiation.2 The
algorithm takes the following two steps.
Step 1: it checks the AS relationship between a local AS1 and
a neighboring AS2, and infers whether AS2 is using AS1’s
route to forward traffic. For example, if AS1 and AS2 have
a peer-peer relationship, then if AS1 has no route from AS2

(meaning that AS2 has no route at all or has a route via its
provider/peer AS), the route has high priority; else, the route
has low priority. (AS2’s current route must be via its own
customer AS, which is favored over AS1’s route since AS1 is
a peer AS of AS2.)

If the AS relationship alone can not decide the priority of
AS1’s new route, it goes to Step 2 to compare the lengths of
the two routes.
Step 2: the lengths of AS1’s new route and the route from AS2

are compared. If from AS2’s point of view, the new route is
shorter than AS2’s current route, then it has high priority; else,
it has low priority.

The details of the algorithm are listed in Table II. Note
that (i) in the algorithm we assumed known AS relationship
information between a BGP router and its neighbor, which
can be easily stored in a router as a configuration parameter
or directly inferred from the configurations; (ii) the AS paths’
length comparison is made from AS2’s point of view: if at AS1

the two paths have length len (ASP new
1

) and len (ASP2), then
at AS2 the lengths become len (ASP new

1
)+1 and len (ASP2)-

1; (iii) two MRAI timers are used in the DUP algorithm (one
2In practice, withdrawals generally are not subject to the control of MRAI

timer anyway.

TABLE III
PSEUDOCODE OF SIMPLER DUP: DUP SEND()

ASP2: AS path of the route for D received from AS2;
01: // AS1 sends an update for D to AS2:
02: If ASP2 = Null, Then
03: sends the update with shorter MRAI timer;
04: Else
05: sends the update with longer MRAI timer;

more than the current BGP protocol for each BGP neighbor),
one for high-priority updates (MRAIshort) and the other
for low-priority updates (MRAIlong). If timer MRAIlong

expires, the router will send low-priority updates and reset the
timer; if timer MRAIshort expires, the router will send high-
priority updates and reset the timer. Depending on the purpose
of the algorithm, two options can be implemented. The first
option is to use the default MRAI value for MRAIshort, and a
larger value for MRAIlong . The goal is to reduce the number
of BGP updates exchanged between BGP routers, by holding
low-priority updates longer. The second option is to use the
default MRAI value for MRAIlong , and a smaller value for
MRAIshort. The goal is to shorten the convergence time of
BGP in the network, by speeding up the propagation of high-
priority updates. In this paper we focus on this second option.

A. Simpler DUP

The DUP algorithm above takes advantage of the knowledge
of AS relationship between a BGP router and its neighbor
when classifying the priority of an update. The classification
process appears complex and may not be always accurate, as
ASes do not always choose routes based on the guideline of
AS relationships.

To overcome this issue, we introduce a simpler version of
DUP without relying on the knowledge of AS relationships.
It considers one thing only: whether a neighbor has already
propagated route for the same prefix to the local AS. If the
neighbor has not already done so, the update has high priority;
otherwise, it has low priority. The details of the algorithm are
listed in Table III.

B. Priority misclassification

Since sender-side scheme is used, neither the DUP al-
gorithm nor its simpler version matches exactly the update
classification method in Fig 2. If a sending node has not
received a route from its neighbor, it means (i) the route is
for a new prefix; or (ii) the neighbor is already using the
local AS’s route; or (iii) the neighbor is using another route
without notifying the local AS. While in the first two cases the
outgoing update is on-tree, in the third case it is clearly off-
tree. Thus our algorithms may set an update’s priority higher
and send it earlier than necessary. On the other hand, if the
sending node has already received a route from the neighbor,
then the outgoing update must be off-tree. The question is
whether it is better than the neighbor’s current route from
the neighbor’s perspective. The simpler version simply set
the update as low priority, thus may delay the update longer
than the default BGP. The DUP algorithm is more accurate,
classifying the priority based on the AS relationship between

284

route for A: 5
route for B: 6

route for B: 1 6
route for A: 5

route for A: 1 5
route for B: 6

T: 5 −> 4 5 (for A)
T+5: 6 −> 4 6 (for B)
T+10: 4 5 −> 5 (for A)

Prefix B

Prefix A

Routing changes at :

PSfrag replacements AS1

AS2

AS3

AS4

AS5

AS6

AS1

(a) AS topology

Upd1

Upd2

Upd3

T+30

T Upd1

Upd2

Upd3

PSfrag replacements

AS1AS2 AS3

AS4AS5AS6AS1

T

T+5

T+15

T+30

T+35

Upd1

Upd2

Upd3

Upd3

Upd2

PSfrag replacements

AS1AS2 AS3

AS4AS5AS6AS1

(b) Update sequence under default BGP (c) Update sequence under DUP

Fig. 3. Illustration of DUP algorithm

the two neighbors and the AS path lengths of the new route
and the route from the neighbor. However, if some ASes do
not follow the guidelines of AS relationships discussed in
Section III, it may misclassify the priority also. On the other
hand, since in this case the neighbor already has a route, it
does not affect the neighbor’s connectivity. The only drawback
is that the neighbor may use a less preferred route slightly
longer. In addition, since we focus on speeding up the high
priority update while sending the low priority ones using the
default MRAI value, this is not an issue at all: low priority
updates are not delayed longer than the default MRAI.

This simpler version does not consider AS relationships, nor
does it compare AS path lengths. Thus it incurs less overhead.
From simulation studies, it works quite well. Therefore, in the
following discussion, we use the simpler version to represent
the DUP algorithm.

The following example illustrates the advantages of our
DUP algorithm.

Example 1: As shown in Fig. 3, both AS2 and AS3 are
connected to AS1. Prefix A is located in AS5; prefix B is
located in AS6. Suppose to reach destination A, AS2 uses
AS1’s path, while AS3 does not; to reach destination B, AS3

uses AS1’s path, while AS2 does not. Now suppose AS1 first
changes its path to A at time T, then changes its path to B
at T+5, and changes its path to A again at T+10. Under the
current BGP, AS1 uses one MRAI timer for each neighbor.
It sends update for the first change (Upd1) to both AS2 and
AS3 at T, and sends updates for the second and third changes
(Upd2 and Upd3) to both AS2 and AS3 at T+30 (after the
MRAI timers expire). Under the DUP algorithm, in contrast,
AS1 uses two MRAI timers for each neighbors. It sends Upd1

to only AS2 at T: since AS3 is not using AS1’s route, the
update to AS3 has low priority and thus is delayed; then for
the same reason, at T+5 (not T+30: since AS1 does not send
Upd1 to AS3 at T, the MRAI timer for high-priority update
is not reset then) it sends Upd2 to AS3 only. At T+10, Upd3

replaces Upd1, so Upd3 is sent to AS2 at T+15 after the MRAI
timer for high-priority update expires. Upd3 is sent to AS2 at

The primary route is withdrawn or replaced
by a less preferred route; Timer starts

The interim route is withdrawn
or replaced by a less preferred
route; Timer restarts

Timer expires

Default BGP

Transient State;

Diff Algorithm

Stable State;

Fig. 4. Transition diagram between Stable and Transient states

T+30 after the MRAI timer for low-priority update expires,
and Upd2 is sent to AS3 at T+35 after the MRAI timer for
low-priority update expires. Therefore, the DUP algorithm not
only sends important updates (Upd2 to AS3 and Upd3 to AS2)
sooner, it also reduces the number of updates: under DUP, only
five updates are sent. Since Upd2 (Upd1) is not used by AS2

(AS3), its delay does not affect routing decision.

VI. DUP+: ENHANCED DUP
Note that in the above discussion, we assumed that all

the updates contain valid routes. While this assumption holds
during the propagation of new routes, it does not hold in
case of a network component failure which may invalidate
some existing candidate routes, and these invalid routes may
propagate through the network during the transient period after
the failure. This propagation of invalid routes caused by BGP
path exploration is the main culprit for the extraordinarily
long convergence time after a failure, unnecessarily triggering
excessive routing changes at the same time.

Also, since invalid routes are propagated, the actual best
route after a failure may not be shorter than some invalid routes
being sent/received earlier; picking shorter routes only as the
high-priority ones (as in the Step 2 of the DUP algorithm) is
suboptimal. The update classification needs to be improved.
Ideally we can distinguish valid routes from invalid ones, so
that valid routes can receive higher priority than invalid routes,
thus speeding up the convergence.

A. Difference-Based Route Selection

To reduce the convergence time and the number of updates
exchanged after a network failure, we propose a new route-
selection algorithm that selects a new route based on the
difference between the candidate routes and the original (with-
drawn) route: when the original route is withdrawn or replaced
by a less preferred route (e.g., due to a network failure), the
selected route is the shortest one with the maximum difference
from the original route, which is not necessarily the best of
the remaining routes.

As shown in Fig. 4, we define transient and stable states
for a prefix. After an original route is withdrawn or replaced
by a less preferred route (usually resulting from a network
failure), the router enters the transient state. In this state, the
routing decision process for the prefix does not select the best
remaining route; instead, it selects an interim route with the
minimum similarity to the original route—the one that shares

285

TABLE IV
PSEUDOCODE OF DIFF ALGORITHM

ASP : AS path of route R;
P : destination prefix of route R;
ASPlcs: susceptible AS path segment;
lcs (asp1, asp2): longest common subsequence of two AS paths;
01: // Route R is withdrawn or replaced by a less preferred route :
02: If P is in default stable state, Then
03: ASPlcs = ASP ;
04: start the timer tp;
05: Else
06: ASPlcs = lcs (ASPlcs, ASP);
07: restart the timer tp;
08: select the shortest route sharing the minimum LCS with ASPlcs.

the shortest common AS path segment with the original one.
Then, the AS path of the original route is stored as susceptible
AS path segment, since the failure occurred to this path. At the
same time, a timer is started to indicate how long the router
has stayed in the transient state. When the timer expires, the
router switches from the transient state to the stable state, and
the best route is recomputed using the default BGP route-
selection algorithm. However, if the existing interim route is
withdrawn or replaced again during the transient state, (i) the
timer is restarted, and (ii) the existing interim route is used to
update the susceptible AS path segment. This new algorithm
used during the transient state is called Diff .

The details of the Diff algorithm are given in Table IV.
Currently, the length of the timer (tp in the code) is set to 1.5
times the MRAI timer value. The idea is to set it long enough
to catch consecutive updates from a single BGP neighbor.
Also, during the same transient state, if the interim route is
withdrawn or replaced by a less preferred route, the LCS
(longest common subsequence) of the interim route and the
susceptible AS path segment is computed (recursively) to get
the new susceptible path segment, which has the effect of
narrowing down the location of the failure. A variable ASPlcs

is used to store the susceptible AS path segment.
The intuition behind Diff is that during the transient state,

the routes are not stable and many invalid routes are propa-
gated. These invalid routes are closer and more similar to the
original routes; potential valid routes are more different from
the original routes. Thus, during the transient state, we select
an interim route which is more likely to be valid. Although
this route is not necessarily the best remaining route, as long
as it is valid, it guarantees the reachability of the destination.
The propagation of this valid route also helps other routers
to converge to a valid route faster. After the transient state
is exited, most (if not all) of the invalid routes are removed
from the routing table, and a new best route can be selected.
Therefore, the Diff algorithm skips invalid backup routes and
selects the shortest one with the largest difference from the
original route, which is more likely to be a valid route.
This significantly shortens the path exploration process and
generates fewer routing updates.

Suppose the original route is {AS1 . . . ASk ASk+1 . . .
ASm}, and a failure occurs between ASk and ASk+1. Then,
all the invalid routes after the failure contain the path segment
{ASk ASk+1 . . . ASm}. By using difference-based route se-

.

.

Null

Current Timer

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

PSfrag replacements

T imer1

T imer2

T imer3

T imer
k

P refix11 P refix12 P refix13 P refix14

P refix31 P refix32 P refix33 P refix34

P refix
k1 P refix

k2 P refix
k3 P refix

k4

Fig. 5. The global timer structure

lection, the new algorithm potentially chooses a valid route
faster, favoring routes that do not contain that path segment.
On the other hand, a route containing segment {ASk ASk+1

. . . ASm} is not necessarily an invalid route, since there could
be multiple peering sessions between ASk and ASk+1.

Note that the Diff algorithm uses two criteria to select an
interim route: maximum difference (which is equivalent to
shortest LCS) and shortest AS path length: it chooses the
route that shares the shortest LCS with the original route first.
If multiple routes share the same shortest LCS, then the one
with the shortest AS path will be chosen. In addition, the LCS
algorithm here is different from the classic LCS algorithm in
that the resulting common subsequence must start from the
origin of the AS paths and must contain contiguous ASes. For
example, given two routes, {AS4 AS3 AS2 AS1} and {AS3

AS4 AS2 AS1}, both originating from AS1, according to our
algorithm, their LCS is {AS2 AS1}, not {AS3 AS2 AS1} or
{AS4 AS2 AS1}. Our algorithm compares the AS numbers
at the corresponding locations only, starting from the original
AS.3 Thus the computation complexity is linear with respect
to the lengths of the AS paths.

Since Diff only changes how a route is selected, all the
other mechanisms of the default BGP still remain, including
loop detection. Therefore, the routers will converge under Diff
if they do under the default BGP.

1) Global timer scheme: In the discussion above, we as-
sume that each prefix has a separate timer. We call it individual
timer scheme. Although each timer is created on demand—
only when a prefix is affected by changes in the network, and
it is deleted whenever the routes for the prefix converge, the
scheme may still incur significant overhead in practice when
a failure affects a large number of prefixes.

To reduce the overhead incurred by the timers, we design a
new global timer scheme that deploys a fixed number of global
timers for all the prefixes. As shown in Fig. 5, the scheme
works as follows: when a BGP router starts, it automatically
starts K timers. The expiration time of the timers are set as
T
K

, 2 T
K

, 3 T
K

, ..., (K − 1) T
K

, and T , respectively, where T is
the full length of an expiration period. The gap between two
neighboring timers’ expiration time is T

K
. There is a pointer

locating the current timer, which is always the one with the
longest expiration time. For each timer, there is also a queue
associated with it. Whenever a prefix is affected by a change in

3If prepending is used by the two routes, redundant AS numbers must be
removed from their AS paths before the comparison.

286

TABLE V
PSEUDOCODE OF DUP+ ALGORITHM: SENDER SIDE

ASP new

1 : AS path of the newly-chosen route for prefix D;
ASP2: AS path of the route for D received from AS2;
ASPlcs: susceptible AS path segment;
lcs (asp1, asp2): longest common subsequence of two AS paths;
01: // AS1 sends an update for D to AS2:
02: If the prefix is in stable state, Then
03: call DUP Send();
04: Else
05: If ASP2 = Null, Then
06: sends the update with shorter MRAI timer;
07: Else
08: If lcs (ASP new

1 , ASPlcs) < lcs (ASP2, ASPlcs), Then
09: sends the update with shorter MRAI timer;
10: Else
11: sends the update with longer MRAI timer;

the network, it is put in the queue associated with the current
timer until the timer expires.

When a timer expires, (i) if its queue is not empty, all
prefixes in the queue go through the route recomputation
process to select the best routes, after which they are removed
from the queue; (ii) the timer is reset with length T ; (iii) the
current timer pointer points to this newly reset timer.

Since the current timer is updated whenever a timer expires,
its expiration time is always about T time away (more accu-
rately, the time value is between (K−1)T

K
and T). Also, a prefix

is always put in the queue of the current timer. Therefore, for
each prefix, its timer will expire in t, where (K−1)T

K
≤ t ≤ T .

Instead of a timer for each prefix, only a small number
(K) of timers are maintained here, which are shared by all
the prefixes. The larger K is, the more closely the scheme
simulates the individual timer scheme. Since T equals 1.5
times of the MRAI timer value (as discussed above), we set
K as 9. Thus T

K
is one sixth of the MRAI timer value.

From simulation tests, the two timer schemes work almost
identically.

B. DUP+

Combining Diff with DUP, we can send potentially invalid
routes using a longer MRAI timer while sending valid route
using a shorter MRAI timer. This new algorithm is called
DUP+, which is an extension of DUP. Under DUP+, the
algorithm determines whether a prefix is in stable or transient
state: if it is in stable state, the DUP algorithm will be
executed; if it is in transient state, it will compare LCS values
instead to determine the priority of an update. The details of
the sender-side DUP+ algorithm are given in Tables V. Note
that DUP+ is a superset of DUP. In line 3 of Table V, the
corresponding code for DUP is called.

1) overhead: DUP+ introduces some extra overhead in
terms of state maintenance and processing load. In Diff algo-
rithm, once a prefix is in transient state, it needs to maintain
its susceptible AS path segment. This consumes 2L bytes of
memory for each path segment, where L is the length of the
AS path segment and is generally a single digit. On the other
hand, these states are required only for the prefixes that are
affected by failures, not for every prefix. By studying Route
Views data, we found that typically an AS makes routing

TABLE VI
PARAMETERS AND THEIR DEFAULT VALUES

Parameters Values

Link delay 0.01-0.1 (sec)
MRAIlong (for low priority) 30 (sec)
MRAIshort (for high priority) 15 (sec)
MIN PROC TIME 0.01 (sec)
MAX PROC TIME 0.5, 0.1 (sec)
Number of advertisers 3
Length of timer tp (used by Diff algorithm) 1.5 * MRAIlong

Number of global timers 9

changes for less than 1000 prefixes during a 15-minute period.
Thus the total required memory space is less than 2000L bytes.
By using the global timer scheme, Diff also needs to maintain
an array of global timers and their associated prefix queues;
but the number of timers and their queues is a small fixed
number. In addition, DUP+ maintains an extra MRAI timer
for each neighbor.

DUP+ also incurs extra processing overhead. The LCS
computation in Diff only occurs during failures, and its com-
plexity is O(n), where n is the length of the longest common
subsequence of the two AS paths. All the other functions are
just simple modification of existing BGP, which contain only
a few dozen lines of code. Thus the extra overhead is small.

VII. EVALUATION

To demonstrate the benefits of the DUP+ algorithm,4 we
evaluate it using SSFNet’s BGP simulator [29], a Java-based
simulator widely used for studying BGP performance (e.g.,
[20], [22], [24]).

A. Simulation Design

We studied two scenarios: new route propagation and link
failure. The performance metrics used are valid network
convergence time, average valid convergence time, and the
number of updates exchanged.

First, we define valid convergence time, based on which the
other two definitions follow:

Definition 1 (Valid convergence time): The valid conver-
gence time of a router is the length of the time interval (te,
tc], where te is the time when the origin router sends out the
first update messages, and tc is the time instant after which the
router always has valid routes (through which the destination
is reachable).
Note that a router may switch from one valid route to another
after its valid convergence time being reached.

Definition 2 (Valid network convergence time): The valid
network convergence time is the length of the time interval
(te, tnc], where te is the time the origin router sends out the
first update messages, and tnc is the time instant after which
all the routers in the network always have valid routes.
The valid network convergence time is in fact the worst valid
convergence time among all the nodes.

Definition 3 (Average valid convergence time): The aver-
age valid convergence time is the average over the valid
convergence times of all the nodes in the network.

4Since DUP+ is a superset of DUP, we used only DUP+ in the evaluation.

287

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

co
nv

er
ge

nc
e

tim
e

(s
)

network size

Default BGP
Default BGP15
DUP+
DUP+60

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

av
er

ag
e

co
nv

er
ge

nc
e

tim
e

(s
)

network size

Default BGP
Default BGP15
DUP+
DUP+60

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 u

pd
at

es

network size

Default BGP
Default BGP15
DUP+
DUP+60

(a) Valid network convergence time (b) Average valid convergence time (c) Number of updates

Fig. 6. Performance comparison between default BGP and DUP+: new route propagation

Compared to the commonly-used definition for convergence
time [20], the valid (network) convergence time more accu-
rately captures the reachability of a node (the network) to the
destination and the impact of routing changes on application
traffic. Similar definitions have also been proposed, such as
next-hop convergence time [25] and data-plane convergence
time [30]. Compared to them, the valid convergence time is
easier to measure.

Table VI describes the simulation parameters and their
default values. The link delay was randomly set between 0.01s
and 0.1s. In the SSFNet simulator, the CPU processing delay
for each packet is simulated to be a random value between
two thresholds—MIN PROC TIME and MAX PROC TIME.
They were set to 0.01s and 0.5s, respectively. (We also
used 0.1s for MAX PROC TIME and found that the relative
performance of DUP+ is very similar). For simplicity, we
always set MRAIshort to be half of MRAIlong .

To test some realistic network topologies, we used the multi-
AS topology generating package from SSFNet [31], which
contains seven different topologies based on the Internet BGP
routing table. The number of nodes contained in the topologies
ranges from 29 to 830. For each topology, we chose N nodes
as advertisers, which announce their own IP prefixes to the
network. Among all the nodes in each topology, we only chose
those with a small number of neighboring nodes (less than or
equal to four) in the simulation, meaning that they are more
likely to be at the edge of the network. The default value of
N is 3. For each simulation scenario, we randomly picked six
instances of advertisers; for each of them, we conducted six
independent runs with different random seeds. Therefore, there
are 36 runs for each scenario. The results are summarized as
the average value of the 36 runs, and are presented using 95%
confidence interval.

B. Results

1) New route propagation: We first tested the case that new
routes are propagated, and compared DUP+ with the default
BGP. To study the interactions among routing changes, the
three advertisers started at different times with a delay of a
few seconds between them. We focused on the performance
of the last advertiser; the other two were considered as the
generators of cross traffic.

As shown in Fig. 6, the DUP+ algorithm yields very short
valid network convergence time and average valid convergence

time—only 40% or less of those for default BGP. At the
same time, the number of updates is also smaller, saving
about 30% of updates. This clearly shows the benefits of
DUP+. For comparison, we also ran default BGP with MRAI
timer of 15 seconds (called “default BGP15”), and DUP+
with MRAI timer of 30 (60) seconds for high (low) priority
updates (called “DUP+60”). As the results show, DUP+60 still
outperforms default BGP, and its average convergence time
is even shorter than “default BGP15”. The clearly shows the
benefits of differentiated processing.

2) Link failure: We also evaluated the DUP+ algorithm
under the link failure scenario, and compared it with the
default BGP, Ghost Flushing, and Root-Cause based scheme.
In addition to the default MRAI value of 30 seconds, we also
used the value of 15 seconds for the default BGP (called
“default BGP15”) and Root Cause (called “Root Cause15”)
to see how well they perform with a shorter MRAI. For each
topology, we randomly picked a node with a small number
of peers as a test node. The test node first advertised some
network prefixes to all its neighbors. For a given prefix, it
advertised different AS path lengths to different neighbors by
prepending. After the network initially converged, we broke
the link between the test node and one of its neighbors, and
observed how the algorithms perform. As in the new route
propagation case, two additional nodes started advertising their
prefixes shortly before the failure, injecting cross traffic.

As shown in Fig. 7, DUP+ has shorter valid network/average
convergence time than not only both Ghost Flushing and
default BGP (as much as 80%), but also Root Cause, which
is a little surprising. The reason is that although Root Cause
selects only valid route after failure by removing invalid route
very fast, it propagates valid route the same way the default
BGP does; in contrast, DUP+ propagates valid route with a
shorter timer, which overcomes that fact that it is slower in
selecting valid route. By using a shorter MRAI value of 15
seconds, we can see that “Root Cause15” indeed performs the
best, but DUP+ is very close to it.

Under DUP+ the number of updates is very small as well.
Again the number is very close to that for Root Cause.
Although Ghost Flushing has shorter convergence time than
the default BGP, the number of updates under it is surprisingly
large. By checking the simulation data, we found that most of
the updates are the extra withdrawals triggered by mechanisms
of the Ghost Flushing algorithm.

288

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900

co
nv

er
ge

nc
e

tim
e

(s
)

network size

Default BGP
Default BGP15
DUP+
Ghost Flushing
Root Cause
Root Cause15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900

av
er

ag
e

co
nv

er
ge

nc
e

tim
e

(s
)

network size

Default BGP
Default BGP15
DUP+
Ghost Flushing
Root Cause
Root Cause15

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 u

pd
at

es

network size

Default BGP
Default BGP15
DUP+
Ghost Flushing
Root Cause
Root Cause15

(a) Valid network convergence time (b) Average valid convergence time (c) Number of updates

Fig. 7. Performance comparison between default BGP, DUP+, Ghost Flushing and Root Cause: failure case

In addition to the above three performance metrics, we also
examined the number of routing changes under each algorithm
and found the DUP+ algorithm to incur 50% fewer routing
changes than the default BGP and Ghost Flushing, leading
to more stable routes. In contrast, it is not as good as Root
Cause since it is not as efficient in selecting valid routes; but
the difference is rather small.

In summary, not only does DUP+ outperform the default
BGP and Ghost Flushing, its performance exceeds or comes
close to that of the Root-Cause based scheme as well. This
shows that the performance of the current BGP can be sig-
nificantly improved using our scheme without changing BGP
message format required by Root-Cause based approaches.

VIII. CONCLUDING REMARKS

In this paper, we presented a simple and novel way of
differentiating BGP updates based on their impact on inferred
routing decisions of the receiver. It is shown to make sig-
nificant improvements in both reducing the routers’ overhead
of processing an excessive number of BGP updates, as well
as reducing routing convergence time. The proposed scheme
is simple to implement, requires no modification of BGP
protocol semantics, and can be deployed incrementally.

So far, we have mainly focused on EBGP (External BGP)
sessions (for BGP neighbors belonging to different ASes).
Inside a large AS, there are also many IBGP (Internal BGP)
sessions. However, the default MRAI timer for IBGP is only
5 seconds, much shorter than that for EBGP. In addition,
all the IBGP routers in the same AS are either directly
peering with each other, or peering through route-reflectors.
Therefore, routing delay inside an AS is generally shorter than
that between ASes. Thus, our scheme does not modify the
processing of updates between IBGP nodes.

REFERENCES

[1] R. Teixeira, A. Shaikh, T. Griffin, et al., “Dynamics of hot-potato routing
in IP networks,” in Proc. of ACM SIGMETRICS’04, June 2004.

[2] C. Villamizar, R. Chandra, and R. Govindan, “BGP Route Flap Damp-
ing,” RFC 2439, Nov. 1998.

[3] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC
1771, Mar. 1995.

[4] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
in Proc. of ACM SIGCOMM’97, Sept. 1997, pp. 115–126.

[5] C. Labovitz, A. Ahuja, A. Bose, et al., “Delayed Internet routing
convergence,” in Proc. of ACM SIGCOMM’00, Aug. 2000.

[6] C. Labovitz, A. Ahuja, R. Wattenhofer, et al., “The impact of Internet
policy and topology on delayed routing convergence,” in Proc. of IEEE
INFOCOM’01, Apr. 2001, pp. 537–546.

[7] B. J. Premore, “An analysis of convergence properties of the Border
Gateway Protocol using discrete event simulation,” Ph.D. dissertation,
Dartmouth College, Technical Report TR2003-452, May 2003.

[8] G. Huston, “Analyzing the Internet BGP routing table,” The Internet
Protocol Journal, vol. 4, no. 1, pp. 2–15, Mar. 2001.

[9] T. Bu, L. Gao, and D. Towsley, “On characterizing BGP routing table
growth,” in Proc. of IEEE Global Internet Symposium’02, Nov. 2002.

[10] A. Akella, B. Maggs, S. Seshan, et al., “A measurement-based analysis
of multihoming,” in Proc. of ACM SIGCOMM’03, Aug. 2003.

[11] Z. M. Mao, R. Bush, T. G. Griffin, et al., “BGP beacons,” in Proc. of
Internet Measurement Conference (IMC)’03, Oct. 2003.

[12] M. Caesar, D. Caldwell, N. Feamster, et al., “Design and implementation
of a routing control platform,” in Proc. of NSDI’05, May 2005.

[13] M. Handley, E. Kohler, A. Ghosh, et al., “Designing extensible IP router
software,” in Proc. of NSDI’05, May 2005.

[14] “GNU Zebra.” http://www.zebra.org/
[15] L. Wang, X. Zhao, D. Pei, et al., “Observation and analysis of BGP

behavior under stress,” in Proc. of IMW’02, Nov. 2002, pp. 217–229.
[16] M. Lad, X. Zhao, B. Zhang, et al., “Analysis of BGP update surge during

slammer worm attack,” in IWDC’03, Dec. 2003.
[17] S. Agarwal, C.-N. Chuah, S. Bhattacharrya, et al., “The impact of BGP

dynamics on router CPU utilization,” in Proc. of PAM’04, Apr. 2004.
[18] A. Feldmann, H. Kong, O. Maennel, et al., “Measuring BGP pass-

through times,” in Proc. of PAM’04, Apr. 2004.
[19] S. R. Sangli, Y. Rekhter, R. Fernando, et al., “Graceful restart mecha-

nism for BGP,” draft-ietf-idr-restart-10.txt, June 2004.
[20] T. G. Griffin and B. J. Premore, “An experimental analysis of BGP

convergence time,” in Proc. of IEEE ICNP’01, Nov. 2001, pp. 53–61.
[21] “Juniper’s MRAI.” https://www.juniper.net/techpubs/software/junos

/junos57/swconfig57-routing/html/bgp-summary32.html
[22] D. Pei, X. Zhao, L. Wang, et al., “Improving BGP convergence through

consistency assertions,” in Proc. of IEEE INFOCOM’02, June 2002.
[23] D. Pei, M. Azuma, N. Nguyen, et al., “BGP-RCN: Improving BGP

convergence through root cause notification,” Computer Science Depart-
ment, UCLA, Tech. Rep. TR-030047, Oct. 2003.

[24] J. Chandrashekar, Z. Duan, Z.-L. Zhang, et al., “Limiting path explo-
ration in BGP,” in Proc. of IEEE INFOCOM’05, Mar. 2005.

[25] A. Bremler-Barr, Y. Afek, and S. Schwarz, “Improved BGP convergence
via ghost flushing,” in Proc. of IEEE INFOCOM’03, Apr. 2003.

[26] R. White, “High availability in routing,” The Internet Protocol Journal,
vol. 7, no. 1, pp. 2–14, Mar. 2004.

[27] “University of Oregon Route Views Project.” http://www.routeviews.org/
[28] W. Sun, Z. M. Mao, and K. G. Shin, “Differentiated BGP update

processing for improved routing convergence,” Univ. of Michigan, May
2006. http://www.eecs.umich.edu/˜wsunz/publications/bgp-dup-tr06.pdf

[29] “Scalable Simulation Framework (SSF).” http://www.ssfnet.org/
[30] F. Hao and P. Koppol, “An Internet scale simulation setup for BGP,”

ACM Computer Communication Review, vol. 33, no. 3, July 2003.
[31] B. J. Premore, “Multi-AS topologies from BGP routing tables.”

http://www.ssfnet.org/Exchange/gallery/asgraph/index.html

289

