Available online at www.sciencedirect.com

SCIENCE@DIRECTE Eompufer
Nefworks

www.elsevier.com/locate/comnet

EIL.SEVIER Computer Networks 50 (2006) 1675-1691

Improving aggregated channel performance
through decentralized channel monitoring *

Puneet Sharma ?, Jack Brassil °, Sung-Ju Lee **, Kang G. Shin °

& Mobile and Media Systems Lab, Hewlett—Packard Laboratories, 1501 Page Mill Road, ms1181, Palo Alto, CA 94304, United States
> Mobile and Media S 'ystems Lab, Hewlett—Packard Laboratories, Princeton, NJ 08540, United States
¢ Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States

Received 29 April 2004; received in revised form 23 February 2005; accepted 17 June 2005
Available online 24 August 2005

Responsible Editor: E. Chong

Abstract

Aggregating low-speed WAN links into a higher-speed logical link promises to improve data-transfer rates to col-
laborating communities of wireless mobile multihomed devices. Such bandwidth aggregation systems must adapt to
link dynamics as the number of links and the channel conditions vary with time due to mobility, power dissipation,
and channel interference. A monitoring architecture that accurately measures the link dynamics and promptly feeds this
information to the system is vital to realize significant bandwidth aggregation performance gains. In this paper we pres-
ent various architectural design alternatives for such a monitoring system, and evaluate them using both analysis and
simulation. We show that a properly-designed monitoring system can accurately measure and quickly respond to
changes in communication link performance while minimizing the control overhead.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Monitoring system; Bandwidth aggregation; Wireless community networks

1. Introduction face a choice between convenience and perfor-
mance. One might locate, approach, and connect

Users of wireless mobile computing devices seek- to a public wireless access point using a high-speed
ing Internet connectivity in a public setting often local area network (LAN) such as IEEE 802.11x, or

accept nearly ubiquitous but much slower access
using a wide area network (WAN) such asa 2.5G

* A preliminary version/subset of this paper was presented at

IFIP-TC6 Networking 2004, Athens, Greece, May 2004. or later-generation cellular network,' .
* Corresponding author. Tel.: +1 650 857 3894. Although networks that provide high-speed
E-mail address: sjlee@hpl.hp.com (S.-J. Lee). access to mobile users are currently under

1389-1286/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2005.06.013

mailto:sjlee@hpl.hp.com

1676 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

development (e.g., EvDO, 4 G cellular systems),
they will not be widely available soon. To meet this
need today, we have proposed an alternative, com-
plementary solution to high-speed Internet access
through collaborative resource sharing [1]. A
group of multihomed wireless, mobile computing
and communication devices in close proximity
dynamically form communities interconnected
through their compatible high-speed LAN inter-
faces; we call these ad hoc groups Mobile Collabo-
rating Communities (MC?), or simply communities.
Each community member independently uses its
WAN interface to create a communication channel
to a remote inverse multiplexing or aggregation
proxy, and optionally offers full or partial access
to this channel to other community members.
Each member volunteers to forward packets
received on its WAN link to receiver(s) on the
LAN. The set of channels connecting the partici-
pating community members to the proxy can be
logically combined with an inverse multiplexing
protocol to yield a higher-speed aggregated chan-
nel than is available from any one of the individual
members. Hence, members using the aggregated
channel enjoy higher bandwidth—and higher com-
munication performance—than any one member
alone could receive.

Striping data across multiple, parallel commu-
nication channels is a conventional communica-
tions technique wused to improve system
performance or reliability in varied but relatively
static settings [2,3]. But due to end-device hetero-
geneity, mobility, and time-varying link transmis-
sion characteristics, an aggregated wireless
channel is highly dynamic, and the challenge is
to assemble, administer, and monitor its operation
in a decentralized fashion.

In an earlier paper [1] we presented the initial
design, simulation and implementation of a collab-
orative bandwidth aggregation system that is both
practical and readily deployable. A key contribu-
tion of that work was to show that significant per-
formance gains can be realized by adapting shared
WAN link use to the specific application require-
ments of the flows sent over the aggregated chan-
nel. For a typical scenario, we demonstrated that
the packet loss rate of a CBR video stream on
an aggregated channel could be reduced by 71%

by properly assigning packets to preferred links.
But achieving these performance gains requires
the aggregation system to be continuously aware
of the communication characteristics of the
constituent links.

In this paper we show that both WAN link
communication performance as well as community
membership dynamics must be accurately moni-
tored and efficiently communicated to use an
aggregated channel effectively. We explore the
tradeoffs encountered in properly designing a
decentralized monitoring system. Using a combi-
nation of ns-based simulations [4] and theoretical
analysis we present a decentralized monitoring
architecture and protocols designed to balance
both system responsiveness and bandwidth effi-
ciency. We also show how an inverse multiplexer
should use measurements—possibly neither up-
to-date nor consistent—to make decisions about
proper channel use.

The rest of the paper is organized as follows.
Sections 2 and 3 explore the requirements and
issues associated with decentralized monitoring.
Section 4 introduces a preferred monitoring archi-
tecture capable of meeting our system goals, and
Section 5 presents simulation results exploring
how effectively our proposed architecture balances
the goals of responsiveness and bandwidth effi-
ciency. An analysis of how an inverse multiplexing
proxy should make decisions based on distributed,
late arriving and possibly inaccurate measure-
ments is presented in Section 6. Section 7 describes
how proxies that perform functions in addition to
bandwidth aggregation can greatly improve the
efficacy of aggregated channels, both with and
without the help of traffic sources and receivers.
Our conclusions are drawn in Section §.

2. Monitoring requirements and design goals
2.1. Background

Prior to discussing the requirements and design
goals of a monitoring architecture we briefly
review the design and operation of a bandwidth
aggregation system. Fig. 1 shows a system that
can be readily deployed by a network access pro-

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1677

WAN Connection GRE TUNNEL

7
INTERNET Lapt
|
!
’ TPy
PDA E‘?
/ $
Xy /_/
~ — /

\ p
Aggragation P
%; %

- Laptop

Ui,

(

Fig. 1. A bandwidth aggregation service architecture.

vider, wireless telecommunication service provider,
or a content distribution network operator. The
specific implementation we have proposed has
three principal components: a dedicated appliance
providing aggregation proxy services, a standard
LAN-based announcement and discovery protocol
for mobile host community construction and
maintenance, and standard protocol tunnels to
facilitate both communication across shared links
and packet forwarding at mobile hosts.

The dedicated aggregation proxy performs
inverse multiplexing at the application layer, intel-
ligently striping downstream packets across avail-
able links to the community. Generic routing
encapsulation (GRE) [5] tunnels create channels
between the proxy and participating MC*> mem-
bers, and support packet forwarding. This
approach requires no modification to community
members, as most operating systems (Linux, Free-
BSD, Windows, etc.) today have built-in support
for GRE tunnels. Each packet received by a mem-
ber over the tunnel is automatically decapsulated
and forwarded via the wireless LAN to the desti-
nation host. Since the destination is oblivious to
which members forwarded the data packets, no
additional data reassembly functionality is
required at the receiver. Standard announcement
and discovery protocols such as the service loca-
tion protocol (SLP) [6] are relied upon for commu-
nity and aggregated channel formation and
management. More details about these system
implementation choices and the performance of
the prototype we constructed can be found in [7].

Aggregating wireless bandwidth to mobile hosts
has also been considered by other researchers [8].

Connection sharing that enables use of a mobile
device’s single, idle WAN connection by other
mobile devices, is studied in [9]. The goal of the
mobile grouped devices (MOPED) project [10] is
to make a user’s set of devices appear as a single
Internet-connected entity. The MOPED routing
architecture builds a multipath layer to encapsulate
packets between the home agent and user devices
by using a new lightweight encapsulation protocol
called multipath routing encapsulation (MRCAP).
High-speed Internet connectivity is achieved by
adapting the Mobile[P home agent to support
aggregation of multiple links at the network and
transport layers.

Adaptive inverse multiplexing for CDPD wire-
less networks is examined in [11]. In this scheme
packets are split into fragments of size propor-
tional to the observed throughput of component
links. Here the goal is to create variable fragments
sizes such that each fragment can be transmitted in
roughly the same amount of time. The fragment
size of each link is dynamically adjusted in propor-
tion to the link’s measured throughput. The band-
width of mobile users with multiple interfaces is
aggregated at the transport layer in pTCP (parallel
TCP) [12]. pTCP is a wrapper that interacts with a
modified TCP called TCP-virtual (TCP-v). A
TCP-v connection is established for each interface,
and pTCP manages send buffers across the TCP-v
pipes. Striping is performed by pTCP and is based
on the congestion window size of each TCP-v con-
nection. When congestion occurs on a certain pipe,
pTCP performs data reallocation to another pipe
with a larger congestion window.

The stream control transmission protocol
(SCTP) [13] also provides reliable service between
multihomed devices. Though in its current form
SCTP only uses multiple links for redundancy, it
can be easily extended to support striping and load
sharing.

Though each of the above systems takes a dif-
ferent approach to tapping other users’ communi-
cation resources, they share a common need to
perform channel monitoring in order to use shared
resources efficiently. Our objective is to design a
channel monitoring architecture that could be
used in a variety of settings, including the above
systems.

1678 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

2.2. Challenges of monitoring systems

An aggregation proxy is responsible for assign-
ing incoming traffic flows to available WAN chan-
nels. We refer to this function as flow mapping or
channel control. A proxy might also be able to
modify the incoming flows themselves (i.e., source
control). The goal of monitoring communication
dynamics is to provide a proxy’s channel and traf-
fic controllers with prompt and accurate informa-
tion on the condition and number of WAN
channels available between the proxy and the com-
munity. Only with this information can a proxy
perform intelligent channel and source control in
the face of rapid changes to the communication
channels. As we will explore in Section 6, one of
the challenges for the flow mapper is how to use
the measurement data it receives intelligently.
For instance, frequently remapping flows to chan-
nels based on transient (fluctuating) channel qual-
ity measurements would not necessarily improve
overall system performance [14].

We anticipate that both the availability and the
quality of communication channels between a
proxy and an MC? to vary with time. Community
membership will change as mobile hosts join and
leave the community, due to either end-system fail-
ures (e.g., power exhaustion) or simply moving out-
of-range of LAN communications. Wireless WAN
channel quality may change often and unpredict-
ably because of fading, interference, and location-
dependent coverage gaps. Delay and delay jitter
will change as the heterogeneous, CPU-limited
devices forwarding packets between WAN and
LAN interfaces are subject to time-varying com-
puting workloads. Hence, the parameters we expect
our monitoring system to measure include:

e Link quality: raw and available bandwidth,
delay, jitter, packet loss rate, signal strength.

o Community membership: number of available
WAN channels, participation time in system.

e Forwarding capability: delay, jitter, available
processing power.

Beyond a channel’s communication parameters,
certain associated information might also be main-
tained—but not necessarily measured—by the

monitoring system. This might include the ‘cost’
of a channel, or its expected departure time.

Though we anticipate that a community mem-
ber will be capable of explicitly announcing its
pending departure (from the community) to other
members, one of the most difficult challenges our
monitoring system faces is rapidly detecting sud-
den and wunannounced leaves. We envision a
LAN-based monitoring agent capable of tracking
membership, including announced leaves and
new members’ joins. Such an agent would likely
rely on an existing service discovery protocol,
and a new member joining the M C? would register
its identity and present available resource informa-
tion. Such a system would likely have to be supple-
mented with an active mechanism to detect leaves.
For example, the monitoring agent can periodi-
cally issue an echo request message (e.g., ping or
hello) to active members and await a reply. The
question of how often the monitoring agent should
probe the members arises immediately. Clearly,
there is a tradeoff between the probing overhead
and the freshness of membership information.
While we cannot afford to have excessive control
message overhead in membership maintenance,
we will typically assume that LAN bandwidth is
a relatively plentiful resource.

To illustrate the importance of low latency in
reporting WAN channel status to the aggregation
proxy in improving the performance of an aggre-
gated channel, we simulated an aggregation system
with three community members. Each member
offered a WAN channel with 20 kb/s bandwidth.
Each channel has a time-varying packet loss rate
(unknown to the proxy) that cycles as follows: a
loss rate of 1% for 50s, followed by a loss rate
of 5% for 50s, and then a loss rate of 10% for
50s. The cycle is repeated multiple times during
the lifetime of the session. The changes in loss rates
across the three links are synchronized such that at
any instant there is exactly one channel that has
error rate of 1%, one channel with 5% and one
channel with 10%. Thus, the total error rate is
the same throughout the experiment.

An application-aware aggregation proxy [7]
seeks to map hierarchically layer-coded [15] video
to these three available channels. The simulated
layered video consists of base layer (layer 0) and

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1679

two enhancement layers (layers 1 and 2). Each layer
is modeled as a 20 kb/s CBR stream. Using the
channel loss rate as the reliability metric, the aggre-
gation proxy maps each layer onto one of the three
channels, ideally with higher layers assigned to
increasingly less reliable channels; we referred to
this flow assignment as the layer priority striping
(LPS) algorithm in [7]. Fig. 2 shows the packet loss
rate of each layer when the reporting latency (i.e.,
feedback delay) is varied. The feedback delay is
defined as the time difference between the instant
when the channel error rate changes and the time
when the aggregation proxy remaps the flows onto
the channels based on the newly-available informa-
tion. As expected, the feedback delay decreases
aggregated channel performance; the base layer is
not transmitted over the most reliable channel dur-
ing the feedback delay period following each loss
rate transition event. In fact, when the feedback
latency is larger than 18 s, the loss rate of the base
layer exceeds that of enhancement layer 1.

In general, the change in layer /s packet loss
rate /; is proportional to the feedback delay o.
Let the duration of a session be N * T seconds
where the link loss rate changes every T seconds.
Let P(i,j, k) be the packet loss rate of the channel
during period k to which layer i has been assigned
in period j. Then, layer i’s packet loss rate can be
written as

P) * (T = 0) + P(ij = 1,j)

li
NxT
10 T T T T T T T T
TR Layer Q ---e--
R Layer1 ——
- = Layer 2 ---x--
.

8r xe 1
P .
5 O
i o
1]
1%
o
-
®
X
o
@
a

0 L L L L L L L L

0 5 10 15 20 25 30 35 40 45
Feedback Delay (sec)

Fig. 2. The effect of reporting latency on aggregation
performance.

In the above example we assumed that the aggrega-
tion proxy received correct measurements late. But
measurement errors can also cause suboptimal
mappings of application subflows to WAN chan-
nels. Hence, it is important for a monitoring system
to measure and report the channel conditions accu-
rately, and a tension exists between taking the time
required for accurate measurements and keeping
reporting latency short. In certain situations the
system will tolerate even large measurement errors
and continue to perform well. For instance, in the
above example, even substantial errors in measur-
ing link reliability would maintain the optimal
channel ordering from most to least reliable.

In summary, our design goals for the overall
monitoring system are:

accurate measurement of link quality,

low latency in reporting changes in link quality

and community membership,

low control message overhead,

no or little software modification to the commu-

nity members,

e minimal member performance degradation due

to community participation,

scalable design to support multiple aggregation

proxies and large community memberships,

e scalable aggregation proxy capable of support-
ing a large number of communities simulta-
neously, and

e robustness to failures of members and their

channels.

3. Design choices

Designing an effective monitoring system forces
us to face a variety of issues, including:

e Architecture: at which locations in the system
should monitoring be performed? How do we
design a scalable monitoring architecture capa-
ble of supporting both large community sizes
and multiple proxies? What protocols should
be used to feed the monitored information back
to the aggregation proxy?

o Measurement: how should WAN channel com-
munication performance and community mem-

1680 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

bership dynamics be measured? Should mea-
surement rely on active or passive techniques,
or both? How do we minimize the burden of
measurement placed on community members?

e Configuration: how do we dynamically set
design parameters (e.g., proxy update interval,
measurement intervals, active membership
probing intervals) particularly as the commu-
nity size and traffic changes? At what point
should an aggregation proxy use measurement
data it receives to decide to remap flows to
available channels?

In the rest of this section we investigate design
choices related to the above questions and discuss
their strengths and weaknesses. This investigation
will lead us to present a monitoring architecture
in Section 4 which balances the many tradeoffs
we must make.

The first and most important architectural issue
we face is identifying the location of measurement
points in the system. A monitoring agent will per-
form measurements at each of these points, and
exchange information between themselves and
the aggregation proxy. These agents may reside
on one or more community members (i.e., mobile
hosts), at the aggregation proxy, or both; we will
exclude from our discussion the possibility that
any type of dedicated equipment be required for
monitoring, as that would preclude spontaneous
formation of an MC?.

3.1. Community member-based monitoring

An agent may be located at one or more com-
munity members to monitor WAN channel condi-
tion and membership dynamics. Let us consider
how such a system would operate. An arriving
host seeking to participate in a pre-existing com-
munity discovers the community using a service
discovery protocol (e.g., SLP) and registers with
the monitoring agent(s). A member seeking to
leave the community (i.e., an announced depar-
ture) broadcasts a departure notice to the commu-
nity, and is deregistered by the monitoring
agent(s). An active mechanism is used by monitor-
ing agents to detect unannounced departures; an
agent periodically probes the existence/condition

of the community members. In such a case, the
probing period is an important design parameter
and must be determined by making a tradeoff
between the probing overhead and the accuracy
of the monitored information. On a high-speed
LAN (e.g., IEEE 802.11x) the messaging overhead
is not a significant issue, but the processing load
and power consumption the agent imposes on a
community member is an important issue. This is
a particular concern if relatively few of the com-
munity members are providing monitoring ser-
vices, such as when a single member is appointed
or elected as the sole monitoring agent. The fact
that a member serving as a monitoring agent con-
sumes more power and processing than a regular
member suggests that it is beneficial to have the
agent’s role rotated or shared among members.
This also argues for power and processing avail-
ability at each node to be included in those para-
meters that are measured and maintained by
monitoring agents.

The above sketch of system operation serves to
highlight several of the advantages of deploying
monitoring agents at a community member. A
community member can quickly and easily track
membership changes. But while a member can
assess the quality of its own WAN channel to
the proxy, it has very limited visibility of the char-
acteristics of other WAN channels. Moreover, a
protocol must be established for identifying the
members to serve as agents. Clearly, relying on a
single (or even a few) monitor(s) can result in both
a performance and reliability bottleneck.

This bottleneck problem can be solved by either
replicating the monitoring agent or making every
member a monitoring agent, i.e., distributed mon-
itoring. We opt to use distributed monitoring
which works as follows. Each member broadcasts
its channel characteristics and associated informa-
tion (e.g., communication costs and its energy bal-
ance) periodically, upon detection of an event, or
when a threshold is exceeded. Each broadcast is
timestamped. Upon receiving such a broadcast
all the other members update the corresponding
entry of their copy of the community communica-
tion status database. The aggregation proxy
obtains a copy of the database in either of two
ways. First, the proxy requests a copy of the data-

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1681

base from any community member. Requests can
be sent to a randomly-selected member, or a mem-
ber identified by inspection of the most recent
database the proxy has received. For example, an
inquiry might be directed to a member with ample
advertised available processing power, residual
energy, or network bandwidth. A proxy might
issue such an inquiry periodically, or be driven
by an event such as the need to remap channels
for a newly-arriving flow. The second way that a
proxy obtains the database is simply by receiving
an update report periodically or when a monitor-
ing agent observes a significant local event (e.g.,
sudden channel failure).

Such a decentralized monitoring system is very
attractive because it clearly improves overall sys-
tem reliability and eliminates a potential band-
width bottleneck. Note that each member’s
database need not be a perfect representation of
current system state. Making each member a mon-
itoring agent provides the best overall visibility of
conditions of every channel.

3.2. Proxy-based monitoring

An alternative measurement architecture places
a single monitoring agent at the location where the
WAN channels terminate and the channel alloca-
tion is done. Depending on the link technology,
a proxy may be able to detect an indication of a
WAN channel failure rapidly. In other cases a
proxy-based monitor might be able to infer fail-
ures over longer time periods. For example, a
proxy observing a long duration flow using a
transport protocol with end-to-end feedback
(e.g., TCP) might conclude that a failure has
occurred if traffic associated with that flow trickles
to a halt. Here a proxy is using TCP as an implicit
monitor of channel characteristics. Observing mul-
tiple coincident TCP rate decreases across multiple
flows sharing a single channel would be a stronger
indication of a failure.

A proxy-based monitoring system has the great
advantage of simplicity; monitoring agents do not
have to be deployed at members, no coordination
is required, and no protocols need be defined. But
the proxy’s single vantage point provides low visi-
bility to overall system state. Indeed, when a chan-

nel failure is detected a proxy is unlikely to know
the cause, or other related effects.

3.3. Hybrid proxy- and member-based monitoring

It is clear that a combination of proxy- and
member-based monitoring can be used to capture
the most information about the current state of
the system. As we demonstrated in Fig. 2, provid-
ing the proxy with the most complete and up-to-
date measurements improve channel allocation
decisions and overall system performance. How-
ever, as the amount of measurement information
that a proxy receives increases, the proxy is faced
with ever more complicated decisions about how
to allocate channels. Section 6 illustrates this com-
plexity by providing an analysis of a proxy facing a
simple binary decision.

When supporting multiple aggregation proxies,
independent of the above described monitoring
architectures, the proxies need to communicate
with each other to exchange information of over-
lapping channels and members.

3.4. Measurement techniques

Though our monitoring system relies on the
ability to measure channel characteristics, our
focus is to identify appropriate existing measure-
ment techniques, not invent them. There are
numerous approaches to measuring and estimat-
ing link bandwidth and delay in the Internet [16].
Active probing schemes typically use pathchar
[17] to obtain link information [18]. The RTT of
each hop is measured for variable packet sizes to
calculate link bandwidth [19]. Packet pairing [20—
23] is another popular technique for estimating
link bandwidth. In this scheme, end-to-end path
capacity is obtained from the dispersion between
two packets of the same size transmitted one after
the other. A centralized approach for measuring
bandwidth and delay using tools such as SNMP
[24] and IP probes is proposed in [25].

Passive measurement schemes such as SPAND
[26] do not use any probing messages and instead
rely on observing traffic generated by the applica-
tions. In wireless networks radio signal-to-noise
ratio (SNR) can be used to estimate hop-by-hop

1682 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

wireless link bandwidth [27]. SNR information can
often be provided by a wireless network interface
card (e.g., IEEE 802.11x card). A network service
architecture that collects wireless channel condi-
tions and provides them to the applications is pro-
posed in [28].

4. Monitoring system for MC*

We now describe a distributed monitoring
architecture designed to meet the various system
requirements and goals introduced earlier. The
proposed architecture is decentralized; every com-
munity member participates in monitoring. Each
member has a monitoring agent which joins a
well-known multicast group G, for exchanging
community status information. Each monitoring
agent broadcasts a local report R, addressed to
G, on the LAN. Each local report contains infor-
mation about the current state of the member and
its offered WAN link(s). An illustrative format of a
local report is shown below:

struct member_state {

unsigned int member id;

double battery_power;

double cpu_load;

/% One or more of the link state

records */

struct link state {
unsigned int 1link id;
unsigned int timestamp;

double bandwidth_estimate;
double loss_estimate;
double forwarding delay;
double lifetime;

double signal strength;

}
}

The ¢/ of the local reports is set to 1 to restrict
its scope to the LAN. Upon receiving a local
report from member m;, each member updates
the information about member m; in its locally-
maintained community status database. In
steady-state each member has up-to-date informa-
tion about all community members. Each member

issues a single packet containing the local report
once every local reporting interval 7;. Though local
report traffic grows linearly with the number of
community members, this is not a concern for
the following reasons. First, LAN bandwidth is
plentiful, and report sizes are small.! Messaging
overhead will be limited, and actions described
below will help avoid redundant information
exchange.

The collective information about the commu-
nity members is sent to the inverse multiplexing
proxy in proxy reports R,. The community reports
its current state to the proxy once every proxy
reporting interval /,,. Instead of electing a particu-
lar member to send proxy reports, every member
shares the responsibility. Each member sets a sup-
pression timer for duration of I, + J, where d is a
uniform random variable on [0, S4]. Upon expira-
tion of its suppression timer, member m,; sends
R, to the proxy via its local WAN link, and also
multicasts the same report to the community on
group Gp,. Upon receipt of the multicast proxy
report the members other than m; cancel their sup-
pression timers and report transmissions. At the
same time, each member reschedules timers to
send a proxy report for the next interval. Since
R, has the latest information about all the mem-
bers, newly-arriving members that have incom-
plete information about the community obtain
complete system information quickly. Maintaining
a distributed database is also advantageous for
other reasons. Decentralization alleviates the
potential problem of a control traffic bottleneck
by spreading the traffic over multiple WAN links.
Sharing responsibilities does not put an undue
burden on any one node, provides fault-tolerance,
and system reliability remains high even in a chal-
lenging ‘high turnover’ environment where mem-
bers are arriving and departing at very high
rates. A soft-state approach is used for maintain-
ing member information in the monitoring dat-
abases. If the state is not periodically refreshed it
is purged from the database. This approach also
serves to purge the database of records of members
who departed silently.

! Report sizes can be even smaller when schemes such as delta
encoding [29] are used.

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1683

The system designer should configure the mon-
itoring system to achieve high system responsive-
ness while limiting report traffic. Note that the
maximum time between a state change and the
proxy’s knowledge of it is bounded by 1, + I, + Sq.
Increasing the reporting intervals /,, and I; reduces
both messaging traffic and responsiveness. Prop-
erly configuring these timers is challenging, as the
optimal values depend upon community member-
ship dynamics, the time-varying communication
characteristics of WAN links, and the require-
ments and dynamics of the flows sent over the
aggregated channel.

Where possible we opted to use passive methods
for measuring channel characteristics. For exam-
ple, it is reasonable to assume that each member
has access to and monitors physical layer informa-
tion such as the SNR of its wireless links. In some
cases this information can also be used to estimate
link quality parameters such as loss rate and band-
width that are advertised in the local reports.

5. Simulation experiments

To explore the challenging problems associated
with monitoring system configuration we turned
to an ns-2 based simulation [4]. To begin we set
the value of both reporting intervals /; and I, to
1s. Fig. 3 shows the number of reports sent to
the proxy in each proxy reporting interval 1,. As
desired, the number of reports per reporting inter-
val stays close to 1 even as the number of commu-
nity members increases. The suppression algorithm
is only slightly less effective in preventing multiple
reports per interval in large communities (i.e., occa-
sionally two reports are sent in one interval). If nec-
essary, the number of instances of multiple reports
can be reduced further by increasing the value for
parameter Sg which controls the spread of the sup-
pression timers. Fig. 3 also plots the average num-
ber of proxy reports per interval sent by each
member (R,/I, per member) with error bars show-
ing the maximum and the minimum. As the com-
munity size increases the number of reports sent
by each member declines as the reporting task is
distributed across all community members. Note
that the variability of the reports issued from mem-

T T T T T T T

Feedback Reports ---=--
0.8 Reports per Member ——

Number of Reports per Interval
o
o

o

n L ! I

0 5 10 15 20 25 30 35 40
Number of Community Members

Fig. 3. The number of proxy reports issued per member per
reporting interval [, and the average number of reports
received by the proxy per reporting interval I,,.

ber to member is very little; the reporting task is
fairly equally split between all the members.

Though in our simulations all the members par-
ticipated equally in the reporting process, in prac-
tice members will have differing capabilities (e.g.,
remaining battery life, compute power), so the sys-
tem should permit different levels of participation
by different members. Only members with suffi-
cient memory and WAN bandwidth need to collect
the information from the other members and share
the load of informing the proxy. Biased suppres-
sion timers are one means of achieving this type
of load balancing; more capable members can sim-
ply set shorter suppression timers (smaller value of
Sq)-

We also studied how the feedback latency varies
with different settings of the reporting interval I,.
For this study, we generated a sequence of 100
events, each representing a change in the link state
(such as bandwidth or loss rate) of a particular
member. A member was chosen randomly from a
10-member community for each event. A change
event occurs every 10 s period at a random time
picked from a uniform distribution on [0, 10]. The
average feedback latency for this sequence of 100
events is shown in Fig. 4 with the error bars show-
ing the maximum and the minimum. As expected,
the average feedback latency increases as I,
increases. We also observe that the maximum feed-
back latency is bounded by the reporting interval

1684 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

IS
T
L

(]
T
L

Feedback Delay (sec)
N

/

-
T
L

1 2 3 4 5
Report Interval (sec)

Fig. 4. The effect of reporting interval I, on feedback latency.

I,,. Although the feedback latency is low for small
values of I,,, the amount of reporting traffic is large.
This tradeoff between reporting overhead and
reporting latency can have a significant effect on
overall system performance because the WAN
bandwidth between the agent and the proxy is rel-
atively scarce, and the channel carries both data
and control traffic. The reporting interval can be
increased without greatly affecting the feedback
latency by generating reports that are triggered
by a significant event, e.g., a member departure, a
measured channel characteristic exceeding a cer-
tain threshold. Different application requirements
also need to be considered when evaluating this
tradeoff between overhead and latency.

6. Design and analysis of measurement-based
decision algorithms

The aggregation proxy receives reports from
community-based monitoring agents and must
decide on a preferred assignment of arriving pack-
ets to available links. Such an assignment might,
for example, rely on an ordering of links according
to measurements of reliability (i.e., packet loss),
delay, or throughput. In this section we consider
the proper design of the proxy’s decision algo-
rithm. In general, we seek an algorithm capable
of responding rapidly to changes in link communi-
cation performance, while avoiding the potentially
costly overhead associated with unnecessarily
frequent reassignments.

Some care must be taken in designing an algo-
rithm that uses link measurements. Measurement
accuracy can be heavily dependent on the under-
lying measurement techniques themselves. The
system we seek must be capable of responding
effectively to both relatively slowly-varying link
communication performance characteristics, as
well as sudden, unexpected link failures. In gen-
eral, while better measurement accuracy can be
achieved by both longer measurement intervals
and sophisticated measurement techniques, the
former can reduce overall system responsiveness
and the latter can increase overall system costs or
overhead.

Suppose we use measurements of WAN packet
loss as an example; we expect communication links
of mobile, wireless devices to exhibit time-varying
packet loss behavior. This variability can easily
lead to frequent, and possibly unnecessary,
changes in a proxy’s hypothesized ordering of links
by reliability. Indeed, a poorly-designed allocation
algorithm might cause a proxy to hypothesize a
different ordering in nearly every measurement
interval. We will next show how common this
problem is—even for links with stationary loss
processes and relatively little variability. We will
then introduce approaches to the design of a
proxy’s decision algorithm to avoid such undesired
oscillations.

Suppose that for each of M links L;:i=1,
2,...,M we measure the packet loss rate during
consecutive, non-overlapping intervals of duration
T seconds and model each link’s loss rate as a
sequence of continuous-valued random variables
x{(1), 1.e., x{t),x{t + T),x{t +2T),... As an illus-
tration we will assume that the loss rate on each
link is independent from interval to interval and
is time-homogeneous, i.e., x{7) = Xx;.

Suppose that in each measurement interval we
order the links according to their measured loss
rate (in that interval only) from the least reliable
to the most reliable. What is the likelihood that
we will see a different ordering from one interval
to the next? If the joint probability density

Se(x1,x2,...,x3) of the M random variables mea-

suring the packet loss in each interval is known
then we can write the probability of any specific
ordering, e.g.,

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1685

1 x| Xpr-1
Pr[x1>x2,...>xM]=/ /
x1=0 Jx,=0 xy =0

f;g(.X], Ce 7.X'/w)d)(f] e dM.
(1)

In general, of course, we do not know the joint
probability density /. However in some cases it is
reasonable to assume that the losses will be inde-
pendent from link to link, such as when the com-
munication links are provided by different
operators, or if the physical link technologies are
dissimilar. We could then write the joint density as

.f:?(xlaxb oo 7xM) = H.f:\f, (X) (2)

Let us begin with what might be a common, albeit
worst case. Suppose that each link’s loss rate is
well modeled by a uniform random variable on
(Lh)y with 0 <I<h<1or

LI <x<h,

Sulx) = filx) = {h/

0 elsewhere.

3)

That is, each link’s loss rate is independent and
identically distributed; no link is more reliable
than any other. If we substitute Eqgs. (3) and (2)
into Eq. (1) and integrate we can find the probabil-
ity that the link measurements indicate any arbi-
trary ordering by loss rate is simply

Pr[x1>xZ--->xM]:M, 4)
which, as we expect, equals the multiplicative in-
verse of the number of permutations of M links.

This simple result tells us that for a system with
as few as M =4 links with statistically identical
loss characteristics the probability is 1 — (i.e.,
greater than 95%) that from one interval to the
next the measurements will indicate a different
ordering of link reliability. Note that this is the
case independent of the variability of measure-
ments on the links. Clearly we seek to avoid
designing a system that reallocates links in nearly
every measurement interval, and indeed, in this
case the system would be doing so by switching
between links which would yield no long term
advantage.

The difficulty in correctly identifying the most
reliable links occurs even when the link loss rates
are dissimilar; even when a clear ordering of reli-
ability is known, measurements can frequently
indicate a different ordering. For example, suppose
that we have a system of four links that are known
to have independent uniform densities
foX), fl(x + A),f(x +24),f(x + 34), each density
successively translated by a constant amount A4.
That is, the average loss rate of link 7 is 4 higher
than link i — 1. Though the reliability ordering of
the four links is clear, it is still the case that our
measurements will frequently steer us wrong.
Substituting these densities into Eq. (1) and evalu-
ating can tell us the probability that we fail to
guess the correct ordering in each measurement
interval. Fig. 5 shows how frequently we guess
wrong as we increase the value of the shift 4.

One means of avoiding oscillation in a measure-
ment-based channel allocation system is to intro-
duce both memory of previous measurements as
well as hysteresis in the proxy’s decision algorithm.
As a simple illustration, suppose we have a system
with two links which our proxy seeks to order
according to their measured reliability, while limit-
ing potentially frequent and costly switching
between the two links. Let m, € {0,1} correspond
to the link measured as most reliable in time inter-
val ¢, and let state /, € {0, 1} correspond to the link
the proxy’s decision algorithm has selected as the
most reliable at time ¢ (based on measurements

0.045

0.035 1

o

o

@
T
I

0.025 1

0.02 b

0.015 1

1.0 - P[X; > X, > X3 > X,]

0.01 b

0.005 - 1

0 L L L L L L L I
0 5 10 15 20 25 30 35 40 45 50

(% packet loss rate)

Fig. 5. The probability that link ordering changes from one
measurement interval to the next as the shift 4 increases.

1686 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

in both the current and past intervals). Suppose
the proxy selects the most reliable link by using
the measurements it has received in each of the last
N measurement intervals as follows:

e If in state 0 a proxy will decide to switch to state
1 if N — D of the last N measurements indicate
that state 1 is more reliable.

e Ifin state 1 a proxy will decide to switch to state
0 if N — D of the last N measurements indicate
that state 0 is more reliable.

The constant D, 0 <D <N, is a parameter
whose value determines the thresholds at which
the proxy decides to switch the link it sees as most
reliable. We can model the two link system as
shown in Fig. 6, where state {k,/} indicates that
k of the last N measurements indicated that link
1 was most reliable, and the system is in state /
(i.e., the proxy has decided that link / is more reli-
able). We may write the state transition probabili-

Fig. 6. A chain modeling a two link (state) system with N = 10
and D =3.

ties as follows. Suppose the probability that link 1
is measured as most reliable in each interval is p.
Then the transition from state {k,/} to {k+ 1,/}
requires that link 1 was measured as most reliable
in the current interval and that link 0 was mea-
sured as most reliable A intervals ago, conditioned
on the event that link 0 was identified as most reli-
able in k of the N — 1 intervening intervals. We
write this probability as

a(k) 2 Prl{k + 1, 1}|{k, 1}] (5)
o (N;l)pk(l _p)N—k—l . .

P s 7Y ©
:p(l—%); k=0,1,....N. (7)

The equations for the remaining transition proba-
bilities are found similarly, and are as follows:

b(k) = Prl{k — 1, 1}|{k, I}] (8)
u-)<§), k=0,1,...,N, 9)
c(k) = Pr[{k, 1}|{k, 1}] (10)

—a-n(1-3) +r(y): (1)

Fig. 6 depicts the model of a system with a mem-
ory of N=10 previous measurement intervals
and D = 3. Table 1 shows the steady-state proba-
bilities for this system for the case where it is
equally likely that measurements reveal one link
as more reliable than the other in each interval.
The two state system changes state every

a(N—D—1)-p[N =D —1,0+ b(D+1)
pID+1,1] (12)

Table 1
State probabilities for the two state system of Fig. 6 with
p=0.5

[0,0]= 0.000977 P4, 11=0.061523
P[1,0]= 0.009766 P[5, 1]=0.123047
P[2,0]= 0.043945 pl6,1]=0.143555
P[3,0]=0.117187 P7,1]=0.117188
P[4,0]=0.143555 I8, 1]=0.043945
P[5,0]=0.123047 219, 1]=0.009766
P[6,0]=0.061523 p[10,1]= 0.000977

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1687

measurement intervals. For the case of the system
with N =10, D =3, and p = 0.5, this average per-
iod equals 20.317 measurement intervals, indicat-
ing far less frequent switching than if the
decision algorithm did not employ both memory
and hysteresis. For a given measurement reporting
period 7, the algorithm designer can set values of
the measurement memory capacity N and the tran-
sition threshold D and use Eq. (12) to balance sys-
tem responsiveness with an acceptable switching
frequency.

7. Optimizing performance using joint channel
and traffic control

Up to this point we have focused attention on
how an aggregation proxy uses feedback about
WAN channel characteristics to perform channel
selection. To the extent that a proxy is aware of
each flow’s application requirements link assign-
ments can be made that maximize the utility of
those assignments. For example, a proxy might
assign the base layer of a layered video stream to
a reliable channel, and the enhancement layer to
a less reliable channel.

In this section we consider how a proxy can
optimize channel selection for adaptable flows.
Adaptable flows have traffic characteristics (e.g.,
bandwidth) that a proxy can either directly modify
or cause the traffic source to modify. Given an
adaptable flow, a proxy cannot only select WAN
links most appropriate for the flow, but also mod-
ify the flow to more closely match the characteris-
tics of those available links. Multiple description
video is one example of such traffic; a proxy can
choose to match the stream to limited available
bandwidth by dropping as many components as
necessary. Done properly, a receiver will perceive
higher quality of service if the bandwidth is
reduced to the available channel capacity. Discard-
ing the forward error correction (FEC) informa-
tion associated with a stream is a second example
of an ‘end-system-blind’ traffic adaptation that a
proxy can perform without the cooperation of
either the traffic source or receiver.

In general, however, the number of such blind
adaptations that an aggregation proxy can enforce

is rather limited. But a more intelligent proxy—one
that provides integrated traffic management ser-
vices in addition to channel aggregation—can
potentially do more. An intelligent multifunction
proxy can communicate WAN channel information
back to a source capable of adapting its traffic. At
the transport level, this information could simply
be a congestion notification (e.g., an ICMP source
quench). This type of feedback could be particu-
larly valuable in cases where the proxy has received
information from WAN endpoints of a pending
event, such as the anticipated departure of a com-
munity member (and its associated WAN channel).

More sophisticated multifunction proxies can
also be envisioned, such as one that could perform
both channel aggregation and RTSP [30] proxy
services. For a media-on-demand session, such a
proxy could issue RTSP commands to renegotiate
transport parameters for a session in progress. In
other examples, a multifunction proxy could trans-
code a video stream to match channel bandwidth
[31], or supplement a media stream with an associ-
ated FEC stream specifically fashioned to over-
come the WAN link packet loss characteristics
known to the proxy.

For most data traffic, TCP’s end-to-end conges-
tion control mechanism is adequate for adapting
sources to aggregated channels. But the mismatch
between separately designed adaptable traffic
sources and aggregated channels can be best dem-
onstrated by examining the behavior of streaming
media over TCP. The overwhelming amount of
media traffic streamed today on the public Internet
is sent over TCP—or more specifically HTTP. We
next explore why this adaptable traffic class often
performs poorly on aggregated channels, and sug-
gest that a multifunction aggregation proxy can
serve as a remedy.

Stored audio and video available on demand
from a media server is frequently encoded at multi-
ple bit-rates to support rate adaptation for trans-
mission over either congested or low bandwidth
links. For example, Real Network’s Surestream
technology [32] supports multiple bit-rate encod-
ing and midstream rate adaptation in the face of
network congestion. However, the number of per-
missible rates is typically few, and the granularity
of rate adjustments is often large; we refer to this

1688 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

as coarse-grain rate control. As an example, music
might be encoded as MPEG-2 layer III audio at
the set of rates of 128, 96 and 64 kb/s. A media ser-
ver will typically begin transmitting a stream at the
highest available rate, and reduce the rate until the
detected frequency of packet loss indicated by
receiver feedback is acceptably small.

Sharing network resources with data applica-
tions encourages media applications to use either
TCP-friendly rate control mechanisms [33,34], or
TCP itself. But TCP’s aggressive probing for avail-
able bandwidth is poorly suited to a multirate
source’s ability to make only large, discrete rate
adjustments. Further, a media application has no
effective means of communicating its bandwidth
needs to TCP, while the transport layer provides
little help to the application seeking a large rate
increase. In fact, an attempt to increase rate in
the face of insufficient available bandwidth can
result in lower perceived service quality than no
attempt at all.

Media servers can and do switch between com-
ponents of multiple bit-rate encoded content in
response to the reception feedback received from
the client. But our experience with media servers
suggests that while they effectively reduce rates in
the face of congestion, few if any increase rate
upon the return of sufficient bandwidth. Hence,
bandwidth added in mid-session via WAN channel
aggregation fails to be captured to augment the
quality of media delivered to receivers.

Why do media servers opt not to increase rate
when additional bandwidth capacity becomes
available? The first reason is that they are typically
unaware of the available bandwidth. That is, with-
out taking additional action to either measure or
capture available bandwidth, they receive no expli-
cit indication of bandwidth availability. A second
reason is the recognition by application developers
that frequent changes to media quality level—even
for the better—are perceived as disruptive by view-
ers and listeners. A third reason is that it is not
obvious when and how to best re-establish the
higher rate. An application can attempt to either
actively probe for available bandwidth (perhaps
out-of-band using ‘dummy data’) or blindly
attempt to grab available bandwidth by just begin-
ning to send data at the desired higher rate.

But because of the typically large separation in
encoding rates, simply sending data at the higher
rate will result in packet loss if insufficient band-
width is available to support that higher rate. Such
packet loss can adversely affect quality as it causes
TCP’s reduction of the congestion window that
results in playout buffer starvation and playout
pauses. The unfortunate result can be that the
attempt to acquire more bandwidth can result in
service disruption at the client, who might have
realized better quality had the media server merely
stayed put at the lower bandwidth.

How can a multifunction proxy help with effi-
cient coarse grain rate increases by a media server?
Let us assume that the aggregated channel repre-
sents the bandwidth bottleneck in the end-to-end
connection. A multifunction proxy can receive
measurements from the monitoring system and
inform the media source when additional band-
width becomes available. The traffic source would
respond to the receipt of this information by choos-
ing to switch to a higher rate transmission. The
advantage of such an approach is that a media
source would risk increasing its rate only at those
times when it is highly likely that it will be able to
reach and sustain a higher rate. An additional ben-
efit of this approach is that the multifunction proxy
can implement a sharing policy to divide available
bandwidth between multiple streams. For example,
a proxy might inform lower rate media sources of
available bandwidth prior to higher rate sources
in an attempt to share bandwidth fairly.

While the above example illustrates how a multi-
function proxy can potentially improve end-to-end
performance by jointly controlling channel selec-
tion and the carried traffic, the ability to achieve
these performance gains rests heavily on our ability
to craft an accurate and robust link monitoring
system.

8. Conclusion

We have designed and evaluated the perfor-
mance of a decentralized channel monitoring sys-
tem to support wireless bandwidth aggregation.
An architecture that fairly distributes the burden
of monitoring among community members can

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1689

be made highly robust and responsive while limit-
ing control message overhead. The monitoring
architecture we have proposed in this paper is
independent of the specific implementation of link
aggregation, and can be used to support other
aggregation and channel sharing systems [9-11].

Aggregating low-speed links to form a higher-
speed logical link appears deceptively simple in
principle. But as the communication characteris-
tics of the underlying links grow increasingly erra-
tic—as is the case in the challenging mobile setting
we consider—potential performance improve-
ments can vanish quickly.

Perhaps the simplest demonstration of this is the
case of dividing a TCP flow across two links. Sup-
pose that one link is extremely reliable, but the sec-
ond rapidly fluctuates between functioning and
failing. Then, lower throughput can easily result
by aggressively trying to use both links rather than
simply settling for the throughput that can be real-
ized with the reliable link. Hence a monitoring sys-
tem that can accurately track communication link
behavior and promptly inform a channel aggrega-
tor is crucial to achieving real performance gains
in a practical bandwidth aggregation system.

References

[1] P. Sharma, S.-J. Lee, J. Brassil, K.G. Shin, Handheld
routers: intelligent bandwidth aggregation for mobile
collaborating communities, in: Proceedings of IEEE
BROADNETS, San Jose, CA, 2004, pp. 537-547.

[2] P.M. Chen, EK. Lee, G.A. Gibson, R.H. Katz, D.A.
Patterson, RAID: high-performance, reliable secondary
storage, ACM Computing Surveys 26 (2) (1994) 145-185.

[3] C.B.S. Traw, J.M. Smith, Striping within the network
subsystem, IEEE Network 9 (4) (1995) 22-32.

[4] ns-2, the network simulator. Available from: <http://
www.isi.edu/nsnam/ns>.

[5] D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina,
Generic routing encapsulation (GRE), RFC 2784, IETF,
March 2000.

[6] E. Guttman, C. Perkins, J. Veizades, M. Day, Service
Location Protocol, version 2, RFC 2608, IETF, June 1999.

[7] P. Sharma, S.-J. Lee, J. Brassil, K.G. Shin. Handheld
routers: Intelligent Bandwidth aggregation for mobile
collaborating communities, Technical Report HPL-2003-
37R1, HP Laboratories, May 2003. Available from:
<http://www.hpl.hp.com/techreports/2003/
HPL-2003-37R1.html>.

[8] D.S. Phatak, T. Goff, A novel mechanism for data
streaming across multiple IP links for improving through-
put and reliability in mobile environments, in: Proceedings
of IEEE INFOCOM, New York, NY, 2002, pp. 773-781.

[9] M. Papadopouli, H. Schulzrinne. Connection sharing in an
ad hoc wireless network among collaborative hosts, in:
Proceedings of NOSSDAYV, Florham Park, NJ, 1999, pp.
169-185.

[10] C. Carter, R. Kravets, User device cooperating to support
resource aggregation, in: Proceedings of IEEE WMSCA,
Callicoon, NY, 2002, pp. 59-69.

[11] A.C. Snoeren. Adaptive inverse multiplexing for wide area
wireless networks, in: Proceedings of IEEE GLOBECOM,
Rio de Janeiro, Brazil, 1999, pp. 1665-1672.

[12] H.-Y. Hsieh, R. Sivakumar, A transport layer approach
for achieving aggregate bandwidth on mutli-homed mobile
hosts, in: Proceedings of ACM MobiCom, Atlanta, GA,
2002, pp. 83-94.

[13] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
V. Paxson, Stream Control Transmission Protocol, RFC
2960, IETF, October 2000.

[14] M. Kim, B. Noble, Mobile network estimation, in:
Proceedings of ACM MobiCom, Rome, Italy, 2001, pp.
298-309.

[15] S. McCanne, M. Vetterli, Joint source/channel coding for
multicast packet video, in: Proceedings of IEEE ICIP,
Washington, DC, 1995, pp. 25-28.

[16] R.S. Prasad, M. Murray, C. Dovrolis, K. Claffy, Band-
width estimation: metrics, measurement techniques, and
tools, IEEE Network 17 (6) (2003) 27-35.

[17] Pathchar. Available from: <http://www.caida.org/
tools/utilities/others/pathchar>.

[18] A.B. Downey, Using pathchar to estimate Internet link
characteristics, in: Proceedings of ACM SIGCOMM,
Cambridge, MA, 1999, pp. 241-250.

[19] K. Lai, M. Baker, Measuring link bandwidths using a
deterministic model of packet delay, in: Proceedings of
ACM SIGCOMM, Stockholm, Sweden, 2000, pp. 283—
294.

[20] J.-C. Bolot, End-to-end packet delay and loss behavior in
the Internet, in: Proceedings of ACM SIGCOMM, San
Francisco, CA, 1993, pp. 289-298.

[21] C. Dovrolis, P. Ramanathan, D. Moore, What do packet
dispersion techniques measure? in: Proceedings of IEEE
INFOCOM, Anchorage, AK, 2001, pp. 905-914.

[22] K. Lai, M. Baker, Measuring bandwidth, in: Proceedings
of IEEE INFOCOM, New York, NY, 1999, pp. 235-245.

[23] V. Paxson, End-to-end Internet packet dynamics, IEEE/
ACM Transactions on Networking 7 (3) (1999) 277-292.

[24]J. Case, M. Fedor, M. Schoffstall, J. Davin, A simple
network management protocol (SNMP), RFC 1157, IETF,
May 1990.

[25] Y. Breitbart, C.-Y. Chan, M. Garofalakis, R. Rastogi, A.
Silberschatz, Efficiently monitoring bandwidth and latency
in IP networks, in: Proceedings of IEEE INFOCOM,
Anchorage, AK, 2001, pp. 933-942.

http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns
http://www.hpl.hp.com/techreports/2003/HPL-2003-37R1.html
http://www.hpl.hp.com/techreports/2003/HPL-2003-37R1.html
http://www.caida.org/tools/utilities/others/pathchar
http://www.caida.org/tools/utilities/others/pathchar

1690 P. Sharma et al. | Computer Networks 50 (2006) 1675-1691

[26] M. Stemm, R. Katz, S. Seshan, A network measurement
architecture for adaptive applications, in: Proceedings of
IEEE INFOCOM, Tel Aviv, Israel, 2000, pp. 285-294.

[27] J. Zhang, L. Cheng, 1. Marsic, Models for non-intrusive
estimation of wireless link bandwidth, in: Proceedings of
PWC, Venice, Italy, 2003.

[28] B.-J. Kim, A network service providing wireless channel
information for adaptive mobile applications: proposal, in:
Proceedings of IEEE ICC, Helsinki, Finland, 2001, pp.
1345-1351.

[29] J. Ziv, A. Lempel, Compression of individual sequences via
variable-rate coding, IEEE Transactions on Information
Theory 24 (5) (1978) 530-536.

[30] H. Schulzrinne, A. Rao, R. Lanphier, Real Time Streaming
Protocol (RTSP), RFC 2326, IETF, April 1998.

[31] E. Amir, S. McCanne, H. Zhang, An application level
video gateway, in: Proceedings of ACM Multimedia’95,
San Francisco, CA, 1995, pp. 255-265.

[32] Real Networks. Available from: <http://www.
realnetworks.com/products/producer/features.
html>.

[33] W. Tan, A. Zakhor, Real-time Internet video using error
resilient scalable compression and TCP-friendly rate con-
trol, IEEE Transactions Multimedia 1 (2) (1999) 172-186.

[34] The TCP-friendly web site. Available from: <http://
www.psc.edu/networking/tcp friendly.html>.

Puneet Sharma received a Ph.D. in
Computer Science from the University
of Southern California, Los Angeles in
1998. Prior to that he earned a B.Tech.
in Computer Science and Engineering
from the Indian Institute of Technol-
ogy, Delhi. Currently, he is a Senior
Research Scientist at Hewlett-Packard
Laboratories, Palo Alto, California. At
HP labs he conducts research in Wire-
less and Mobile Networking, Overlay
Network Services, Network Measurement and Monitoring.
Email: puneet@hpl.hp.com.

Jack Brassil received the B.S. degree
from the Polytechnic Institute of New
York in 1981, the M.Eng. degree from
Cornell University in 1982, and the
Ph.D. degree from the University of
California, San Diego, in 1991, all in
electrical engineering.

He has been with Hewlett-Packard
Laboratories since 1999. He currently
is a Research Scientist and Program
Manager in Princeton, NJ. Prior to
that he managed a research team in Palo Alto, CA, investi-
gating Internet streaming media, information hiding, and
communication networks and protocols. Before joining HP he

held multiple research positions at Bell Laboratories in Murray
Hill and Holmdel, NJ. He is a Senior Member of the IEEE and
a member of the IEEE Communications Society. Email:
jtb@hpl.hp.com.

Sung-Ju Lee is a research scientist at
the Mobile and Media Systems Lab
(MMSL) of HP Labs. He received his
Ph.D. in Computer Science from the
University of California, Los Angeles.
He published nearly 50 papers in the
field of computer networks. He is cur-
rently an associate-editor-in-chief for
ACM SIGMOBILE’s Mobile Com-
puting and Communications Review
(MC2R) and serves on the editorial
board of Elsevier Science’s Ad Hoc Networks Journal. He was a
co-guest editor of the Wireless Communications and Mobile
Computing’s special issue on Mobile Ad Hoc Networking, was
a co-TPC chair for the first IEEE conference on Sensor and Ad
Hoc Communications and Networks (SECON 2004), was a co-
TPC chair for the first ACM workshop on Wireless Mobile
Applications and Services on WLAN Hotspots (WMASH
2003; held in conjunction with MobiCom 2003), serves as a
technical program committee and organizing committee mem-
ber of various prestigious networking related conferences. He is
also a steering committee member of IEEE SECON and ACM
WMASH. He is a member of ACM, ACM SIGMOBILE,
ACM SIGCOMM, IEEE, IEEE Communications Society, and
IEEE Computer Society. His research interests include com-
puter networks, mobile networking and computing, wireless
LANSs, ad hoc and mesh networks, overlay networks, media
over networks, and large-scale service infrastructure networks.
Email: sjlee@hpl.hp.com.

Kang G. Shin is the Kevin and Nancy
O’Connor Professor of Computer Sci-
ence and Founding Director of the Real-
Time Computing Laboratory in the
Department of Electrical Engineering
and Computer Science, The University
of Michigan, Ann Arbor, Michigan.

His current research focuses on QoS-
sensitive networking and computing as
well as on embedded real-time OS,
middleware and applications, all with
emphasis on timeliness and dependability. He has supervised the
completion of 53 Ph.D. theses, and authored/coauthored around
600 technical papers and numerous book chapters in the areas of
distributed real-time computing and control, computer network-
ing, fault-tolerant computing, and intelligent manufacturing. He
has co-authored (jointly with C.M. Krishna) a textbook “Real-
Time Systems,” McGraw Hill, 1997.

He has received a number of best paper awards, including the
IEEE Communications Society William R. Bennett Prize Paper

http://www.realnetworks.com/products/producer/features.html
http://www.realnetworks.com/products/producer/features.html
http://www.realnetworks.com/products/producer/features.html
http://www.psc.edu/networking/tcp_friendly.html
http://www.psc.edu/networking/tcp_friendly.html

P. Sharma et al. | Computer Networks 50 (2006) 1675-1691 1691

Award in 2003, the Best Paper Award from the IWQoS in 2003,
and an Outstanding IEEE Transactions of Automatic Control
Paper Award in 1987. He has also coauthored papers with his
students which received the Best Student Paper Awards from the
1996 IEEE Real-Time Technology and Application Symposium,
and the 2000 UNSENIX Technical Conference. He has also
received several institutional awards, including the Research
Excellence Award in 1989, Outstanding Achievement Award in
1999, Service Excellence Award in 2000, Distinguished Faculty
Achievement Award in 2001, and Stephen Attwood Award in
2004 from The University of Michigan; a Distinguished Alumni
Award of the College of Engineering, Seoul National University in
2002; and 2003 IEEE RTC Technical Achievement Award.

He received the B.S. degree in Electronics Engineering from
Seoul National University, Seoul, Korea in 1970, and both the
M.S. and Ph.D degrees in Electrical Engineering from Cornell
University, Ithaca, New York in 1976 and 1978, respectively.
From 1978 to 1982 he was on the faculty of Rensselaer Polytechnic
Institute, Troy, New York. He has held visiting positions at the US
Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department of Electrical
Engineering and Computer Science at UC Berkeley, and Inter-
national Computer Science Institute, Berkeley, CA, IBM T.J.

Watson Research Center, Software Engineering Institute at Car-
negie Mellon University, and HP Research Laboratories. He also
chaired the Computer Science and Engineering Division, EECS
Department, The University of Michigan for three years begin-
ning January 1991.

He is Fellow of IEEE and ACM, and member of the Korean
Academy of Engineering, is serving as the General Chair for the
3rd ACM/USENIX International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys’05), was the General
Chair of the 2000 IEEE Real-Time Technology and Applications
Symposium, the Program Chair of the 1986 IEEE Real-Time
Systems Symposium (RTSS), the General Chair of the 1987
RTSS, the Guest Editor of the 1987 August special issue of IEEE
Transactions on Computers on Real-Time Systems, a Program Co-
Chair for the 1992 International Conference on Parallel Processing,
and served numerous technical program committees. He also
chaired the IEEE Technical Committee on Real-Time Systems
during 1991-1993, was a Distinguished Visitor of the Computer
Society of the IEEE, an Editor of IEEE Transactions on Parallel
and Distributed Computing, and an Area Editor of Interna-
tional Journal of Time-Critical Computing Systems, Computer
Networks, and ACM Transactions on Embedded Systems. Email:
kgshin@eecs.umich.edu.

	Improving aggregated channel performance through decentralized channel monitoring
	Introduction
	Monitoring requirements and design goals
	Background
	Challenges of monitoring systems

	Design choices
	Community member-based monitoring
	Proxy-based monitoring
	Hybrid proxy- and member-based monitoring
	Measurement techniques

	Monitoring system for MC2
	Simulation experiments
	Design and analysis of measurement-based decision algorithms
	Optimizing performance using joint channel�and traffic control
	Conclusion
	References

