
410 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

On the Role and Controllability of Persistent Clients
in Traffic Aggregates

Hani Jamjoom, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract—Flash crowd events (FCEs) present a real threat to the
stability of routers and end-servers. Such events are characterized
by a large and sustained spike in client arrival rates, usually to
the point of service failure. Traditional rate-based drop policies,
such as Random Early Drop (RED), become ineffective in such sit-
uations since clients tend to be persistent, in the sense that they
make multiple retransmission attempts before aborting their con-
nection. As it is built into TCP’s congestion control, this persis-
tence is very widespread, making it a major stumbling block to
providing responsive aggregate traffic controls. This paper focuses
on analyzing and modeling the effects of client persistence on the
controllability of aggregate traffic. Based on this model, we pro-
pose a new drop strategy called persistent dropping to regulate the
arrival of SYN packets and achieves three important goals: 1) it
allows routers and end-servers to quickly converge to their con-
trol targets without sacrificing fairness; 2) it minimizes the portion
of client delay that is attributed to the applied controls; and 3) it
is both easily implementable and computationally tractable. Using
a real implementation of this controller in the Linux kernel, we
demonstrate its efficacy, up to 60% delay reduction for drop prob-
abilities less than 0.5.

Index Terms—Active queue management, aggregate traffic con-
trol, flash crowds, persistent dropping.

I. INTRODUCTION

FLASH CROWD events (FCEs) and distributed denial of
service (DDoS) attacks have received considerable atten-

tion from the mass media and the research community. They
are characterized by a large and sudden increase in demand for
both the network and end-server resources. The cause of this
overload need not be intentional nor need be originated by ma-
licious clients or applications. FCEs, unlike DDoS attacks, are
generally caused by a very large number of legitimate users all
targeting the same network or server. Their sheer traffic volume
exhausts any available network and server resources. In addi-
tion to high arrival rate, there is a second cause that is com-
monly overlooked, namely, the persistence of individual clients
accessing the server that can be responsible for increasing the
aggregate traffic in an FCE by twofold.

Manuscript received April 9, 2004; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor S. Low. This work was supported in part by the Na-
tional Science Foundation under Grant CCR-0216977. A subset of this paper
was presented at ACM SIGCOMM 2003, Karlsruhe, Germany.

H. Jamjoom is with the IBM T. J. Watson Research Center, Hawthorne, NY
10601 USA (jamjoom@us.ibm.com).

K. G. Shin is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109 USA (kgshin@eecs.
umich.edu).

Digital Object Identifier 10.1109/TNET.2006.872547

This paper focuses on the control of aggregate traffic des-
tined for web servers, which are the targets of flash crowds.
Unlike video or audio traffic, web servers are generally dom-
inated by short-lived connections. Several research efforts have
focused on the detection of, and/or protection from, FCEs and
DDoS attacks. In particular, aggregate-based congestion control
(ACC) is introduced to deal with such attacks by limiting the
(high) rate of aggregate traffic at the routers to reduce the impact
of the added load on the underlying network and end-servers
[20], [22]. We observed, however, that the reaction of the under-
lying traffic to a rate-limiting policy can, and often will, reduce
the effectiveness of the applied control. This can be better ex-
plained by decoupling aggregate traffic into two elements. The
first element describes how existing or on-going connections
react to the applied controls; the second element describes how
the arrival of new connections is affected by the applied control,
which we call the persistent behavior of client requests or client
persistence. We find that the combination of the arrival of con-
nection requests from new clients with TCP’s reaction to packet
loss—namely, retransmitting after a timeout—has an additional
effect that is not accounted for by current traffic controllers. To
improve the controllability of FCEs, we advocate the classifi-
cation of incoming connection requests (into new SYN packets
and retransmitted SYN packets) and applying specialized con-
trols to each traffic class, which is a similar concept to [32]. We
are interested in controlling the interactions between clients, the
network, and the end-server.

We propose persistent dropping (PD), an effective control
mechanism, which we prove it minimizes the client-perceived
latency and the effective aggregate traffic (includes new and re-
transmitted connection requests) while maintaining the same
control targets as regular rate-control policies. PD randomly
chooses a number of requests based on a target reduction in the
effective aggregate traffic arrival rate and systematically drops
them on every retransmission. PD is well suited for controlling
aggregate traffic as it achieves three goals: 1) it enables routers
and end-servers to quickly converge to their control targets; 2)
it minimizes the portion of client delay that is attributed to ag-
gregate control by Internet routers and end-servers while main-
taining fairness to all packets; and 3) it is both easily imple-
mentable and computationally tractable. We emphasize that PD
does not interfere with end-to-end admission-control policies
as it represents an optimization of existing queue management
techniques.

This paper is organized as follows. We first look at the per-
sistent behavior in aggregate traffic in Section II. We then pro-
pose a PD controller to deal with persistent clients in Section III
and discuss implementation issues in Section IV. In Section V,

1063-6692/$20.00 © 2006 IEEE

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 411

TABLE I
RETRANSMISSION BEHAVIOR FOR DIFFERENT OSS. THE MEASUREMENT ASSUMES DEFAULT OS CONFIGURATION. SOME PARAMETERS,

SUCH AS THE TIMEOUT BEFORE THE CONNECTION IS ABORTED, CAN BE DYNAMICALLY CONFIGURED

we experimentally evaluate some performance issues. The paper
ends with related work and concluding remarks in Sections VI
and VII, respectively.

II. PERSISTENCE IN AGGREGATE TRAFFIC

As mentioned in Section I, a more accurate representation
of aggregate traffic accounts for those requests that belong to
new clients entering the system and for those resulting from
client persistence (i.e., requests that are retransmissions of pre-
viously dropped ones). However, many factors contribute to the
persistence of clients, whereby the client keeps trying to access
the server (normally at a later time) even after server overload
or network congestion is detected. Some factors of this per-
sistence are embedded in the applications and protocols that
clients use. These are not design flaws, but are often neces-
sary to the proper operation of clients, e.g., TCP congestion
control. Other factors are due to purely human habits. In this
subsection, we investigate how the combination of TCP con-
gestion control and rate-based queue-management techniques
in routers and end-servers may raise the severity of FCEs. We
use a simple model where a client issues a single Hyper-Text
Transfer Protocol (HTTP) request using a separate TCP con-
nection. This model allows us to study a single TCP connection
in isolation and is representative of many browser implemen-
tations that issue HTTP requests in parallel to maximize their
throughput [19].

During overload, packets can get lost at different stages of
request processing and at different points between the source
and destination. Here we consider loss of packets on the path
from the client to the server. An equivalent behavior occurs on
the reverse direction; it is omitted for space consideration.

When a typical queues fills up (whether it is a router or a
server SYN backlog queue) and packets are dropped, the re-
quest can be in the connection-establishment stage or the con-
nection has already been established. In the first case, each time
a SYN packet or its corresponding response is lost, an exponen-
tially increasing retransmission timeout (RTO) is used to detect
the packet loss and the SYN packet is retransmitted. The RTO

values used by different client OSs are listed in Table I. Estab-
lished connections, in the latter case, detect and recover from
packet loss in ways that are more complex. These have been in-
vestigated by several studies, both empirically and analytically,
e.g., in [5], [26], and [27].

To better understand the dynamics of FCEs, we extend some
of the results in [5] that pertain to connection establishment.
We follow the same modeling assumptions in [5] and build
on its estimate of the connection-establishment latency. We
thus assume that end-points adhere to a TCP-Reno style con-
gestion control mechanism [17].1 However, to draw general
conclusions for the entire aggregate, we must also charac-
terize the arrivals of new connection requests: namely, their
arrivals follow a Poisson process. Since the corresponding in-
terarrival times are independently and identically distributed
(i.i.d.), dropping one request packet does affect the arrival of
future request packets. This matches well the observation that
clients behave independently. It, however, does not consider
the inter-dependency between requests from a single client.
This is considered in Section III. Furthermore, under a uni-
form drop policy, if we split incoming SYN requests into dif-
ferent streams, each representing SYN packets that have been
retransmitted an equal number of times, then each stream can
be approximated by a Poisson arrival process. This is a direct
consequence of the fact that the RTO is measured from the
client’s transmission time of the SYN packet and the variance
in the RTO value is very small, especially when compared to
the RTO’s time granularity [18].

For a new connection, consider the retransmission epochs of
a dropped SYN packet as , where represents
the number of times the corresponding SYN packet has been
dropped and is the maximum number of connection attempts
before aborting a connection. Let be the maximum time a
connection waits before aborting. Note that . Since
FCEs cause congestion on the path from the client to the server,
we also consider the drop probability, , in the forward direction.
Extending the results to include drops in the reverse direction is

1Other congestion control mechanisms can be assumed as long as they
use Jacobson’s algorithm to recover from SYN packet loss.

412 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

trivial and omitted for space consideration. The expected con-
nection-establishment latency can be expressed as

(1)

where is the probability that the connection times out
and is the mean round-trip time. The first term, then,
represents expected latency of successful connections, or

succeeds , which was derived in [5]. By the in-
dependence assumption, it can be easily shown that is
also the mean expected connection-establishment latency of all
requests.

Under our network model, we also derive , the effective
or aggregate arrival rate of SYN packets. This aggregate is a
collection of newly transmitted requests and retransmission of
the previously dropped ones. It is divided into multiple streams,
each representing the number of transmission attempts or trans-
mission class of the corresponding connections. We denote the
stream of initial transmission attempts by (i.e., SYN packets
on their first transmission), the stream of first retransmissions
by , and so on, up to . Then, the effective mean arrival rate

is

(2)

Notice the simple relationship between the arrival rates of the
different transmission classes. For example, the arrival rate of
the first retransmission class, , is just the arrival rate of the
initial transmissions, , times the drop probability . Based on
(2), a 50% drop will, in theory, increase the amount of SYN re-
quests by 75%.2 In fact, (2) shows that a typical rate controller
only causes connections to time out; for the rest, in-
creasing the number of retransmissions has a substantial impact
on client-perceived delay as shown in (1). We argue that this
probability, which we call the effective timeout probability (),
reflects the true impact of the control mechanism on the under-
lying traffic.3

It is worth noting that unlike router queues, when the backlog
queue at the server fills up, the server can be configured to drop
the SYN packets and send SYN cookies to the client. A SYN
cookie is simply a method for the server to avoid storing any
state for half-open connections. In this case, a challenge is sent
to the client and upon its return, the server can establish the con-
nection as if the original SYN packet were queued properly in
the backlog queue. The challenge is encoded in the TCP’s se-
quence number and, thus, does not require any client modifica-
tion. When SYN cookies are lost, the client times out and re-
transmits the request as described above. SYN caches are an
alternative method to SYN cookies, which allow the server to

2When all packets are dropped, � = (n + 1)� .
3While (2) assumes a Poisson arrival process for new client arrivals, which

is not affected by drops, in reality, a client may visit a server multiple times,
which clearly can be affected by drops and timeouts. The degree that a client’s
future visits are affected by SYN drops will depend on several factors, which
are described earlier. This paper only focuses on visits from new clients, which
is a serious issue during an FCE.

store a large number of SYN packets by simply delaying the
creation of connection data structures until the three-way hand-
shake is completed [21]. Depending on the size of the cache and
the arrival rate, SYN caches can fill up just like SYN backlog or
router queues. Table I shows the OSs that support SYN cookies
and SYN caches. Both SYN cookies and SYN caches are effec-
tive in handling a flood of SYN packets, the majority of which
are spoofed (or fake). The mechanism relies on the fact that
only a small portion of the SYN-ACKs will be replied back,
after which the TCP connection is fully established. When re-
quests originate from legitimate clients, both mechanisms can
increase the additional work on the end-server as the resulting
fully established connections (from the clients’ perspective) are
dropped due to insufficient room in the application listen queue.

III. CONTROLLABILITY OF PERSISTENT CLIENTS

Client persistence imposes an added challenge to the control-
lability of aggregate traffic. Because clients often send their re-
quests in parallel to maximize their throughput, if that dropped
request was part of a web page, the client may decide to reload
the entire page causing multiple requests in future. It is an im-
portant problem in flash crowds. If a router or end-server is oper-
ating near or at full capacity, then any slight increase in load will
trigger dropping of requests. These persistent requests, upon
their retransmission, will set off further drops, creating a vicious
cycle of drops causing future drops. A system that is trapped
into such a cycle will require a long time to recover after the
load subsides. As shown earlier, repeated dropping dramatically
increases the client-perceived latency as it may require several
timeouts before a client successfully establishes a connection.

A traffic controller that drops incoming requests must, there-
fore, deal with its retransmission in the future. To this end, we
introduce persistent dropping, a novel drop strategy that chooses
a small number of requests based on a target timeout probability
and systematically drop them on every retransmission. We show
that this drop policy minimizes the client’s expected response
time, the number of retransmissions, and the bandwidth require-
ment of the aggregate traffic. We also show that this technique
does not affect the fairness of the control policy.

A. Modeling of Persistent Clients

Because our drop strategy is based on analytical optimization,
the first step is to create accurate model of web clients. As with
any analytical approach, the model has to be simple enough to
allow for analytical tractability, yet accurate enough to reflect re-
alism. To date, many of the analyzed models have been too sim-
plistic as they assume independent client (or request) arrivals,
with or without balking. One should not confuse modeling with
characterization. The latter performs a similar analysis to what
we did in the previous section to produce different characteris-
tics (mostly using probabilistic distributions) of client behavior
under certain load conditions. In fact, several studies have em-
pirically studied the interaction between the client, network, and
end-server to characterize the dynamics of underlying traffic [2],
[10], [11]. Unfortunately, such studies often lack the clients’ re-
sponse to different control policies, which is the main ingredient
for constructing effective controllers.

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 413

Fig. 1. Persistent client model.

We are faced with the question of whether an effective traffic
controller can be built without exact knowledge of client be-
havior. We argue that an optimal controller can be realized by
approximating the internal structure of web clients. The model
of persistent clients is presented in Fig. 1; it captures the fol-
lowing four important elements.

E1: Individual clients are independent of each other, and a
client’s requests are grouped into visits. Each visit repre-
sents a client accessing a web page and its entire content.
Requests within a visit are correlated by the completion
of the initial page that contains all the embedded links.

E2: Once the main page is fetched, a batch of parallel con-
nections with probability distribution are created
to request the embedded objects with arrival distribution

. We do not specify the exact distributions for
or , but in our subsequent derivations, they are as-
sumed to be independent and have finite means. More-
over, the retransmissions of lost packets from parallel
connections are independent as long as none of the con-
nections is aborted.

E3: The expected visit completion time, , is the sum of
the time it takes to fetch the initial page and the longest
finish time of all parallel connections. Formally, consider

as the effective timeout probability, as
the probability of success, as the expected number of
parallel connections, and as the mean interarrival times
of the parallel connections. Also, consider as the
expected latency for completing a single request. Then

(3)

The second term in (3) estimates the expected delay
when the first page is fetched successfully. The term

represents the probability that at least one
of the connections times out and is the ap-
proximate overhead of launching parallel connections.
Thus, the last product term in (3) is the expected delay for
completing the parallel requests. It is derived by taking
the expectation of their maximum completion time.

E4: A client may visit multiple pages within a web server
before leaving the server. This is often referred to as
a user session. The expected session time can be esti-
mated in a manner similar to E3; it is omitted for space
consideration.

In the absence of packet loss, our model is consistent with
earlier ones (Observed Behavior in Fig. 1) where it is assumed
that a client sends a batch of closely spaced connection requests
(active period) followed by a relatively long period of user think
time (inactive period) [2]. Our distributions have similar char-
acteristics to those in [2], [9], and [11] with very different dis-
tribution parameters. Our model, however, captures the effects
of the applied control, which we use to construct our controller.

B. Persistent Dropping

Consider an Active Queue Management (AQM) technique
that drops incoming SYN packets with probability . Here, we
do not consider how other packets are treated, and is set in
accordance with the underlying AQM technique. For instance,
if packets are dropped in a router using RED, then is based
on dynamic measurements of queue length [13]. Alternatively,
consider an unmodified SYN queue at the server. Here, the drop-
tail queue at the server can be considered as a passive control
mechanism where SYN requests will be dropped whenever the
queue fills up. Averaging over any time window, the drop prob-
ability, , can be computed by simply dividing the number of
dropped SYN packets by the total number of arrivals over that
time window. We, thus, view as the percentage of packets that
must be dropped regardless of how its value is chosen. Given
a target drop probability (or equivalently an effective timeout
probability, , as described earlier), our goal is to find the op-
timal drop policy that minimizes the effective arrival rate, , and
connection-establishment latency, . We base our develop-
ment on the same network model introduced in Section II, and
still do not consider the parallelism of individual clients. This is
addressed in Section IV.

The optimality is established by first looking at the re-
transmission epochs of individual connections. As shown in
Section II, given packet-loss probability , estimates for con-
nection-establishment latency and effective arrival rate can be
derived. We use these relationships as bases to show that a drop
policy that consistently drops retransmitted requests is able to
minimize the additional latency that is caused by the applied
control as well as minimize the aggregate traffic of all incoming
requests.

Traditionally, a control policy that drops aggregate traffic
with probability does not take into account the transmission
class of individual connections. Consider here a different
mechanism that associates a drop probability with each
transmission class . In order to assign these probabilities, we
assume that incoming requests are classified into their corre-
sponding transmission classes; we will show later how this can
be achieved. Let us rewrite the aggregate arrival rate, , in (2)
using the per-class drop probabilities :

(4)

414 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

Notice here that the effective timeout probability is
. For a traditional rate control policy, all requests are

dropped with an equal probability (or), which implies
that (consistent with the results in Section II).

To minimize the expected connection-establishment latency
of clients, we start by writing the probability mass function of
the connection-establishment latency using the per-class drop
probabilities:

if

if

if

otherwise

(5)

where is the time of the th retransmission, is the time
of the initial transmission, and is the time before the con-
nection times out. Intuitively, (5) establishes the probability of
connecting successfully, for example, after seconds,
which represents the connection request being dropped during
its initial transmission with probability , then being dropped
again on the second transmission with probability , and finally
succeeding on the third transmission attempt with probability

. Notice that the minimum connection-establishment
latency is . Based on this, the expected connection-
establishment delay, , can be computed as

(6)

The optimal drop strategy must, therefore, minimize
with the constraint of having an effective timeout probability
that is equal to the one obtained by traditional policies, i.e.,

. It suffices to show that if we set and
, for , then is minimized. This can be seen by

observing that each term in (6) cancels out except for the last
term. The minimum connection-establishment latency is then

, where denotes our optimal
policy. Note that since no longer has a delay component
for successful connections, breaks the dependency between
the delay for successful connections and packet drop.

The above discussion implies that the optimal policy must de-
couple connection requests that belong to new connections (i.e.,
on their first attempt) from those that are not. Viewed another
way, this is a form of low-level admission control where a new
connection request can either be admitted into the system or de-
nied access. But denying access at the connection-establishment
level can be performed by either: 1) sending back an explicit re-
ject packet, such as an RST packet, notifying the sender to termi-
nate the initiated connection, or 2) repeatedly dropping packets
on every retransmission attempt. Unfortunately, the success of
the first approach is predicated on the sender’s cooperation. This
issue is addressed in [18].

Based on the above discussion, we introduce persistent drop-
ping (PD) as the optimal drop strategy that chooses new
requests and systematically drop them on every retransmission.
An example of PD is illustrated in Fig. 2, where it shows how

Fig. 2. Illustrative comparison between rate-based dropping and PD. We view
the outgoing link as a smaller pipe than the stream of incoming requests. We
then show how the two strategies drop incoming requests to fit them into the
pipe.

this new technique intelligently fills the outgoing link to mini-
mize packet retransmissions. With persistent dropping, the re-
sulting (or the aggregate) drop probability is substantially lower
than traditional rate-based techniques. Specifically

(7)

Table II compares the performance improvement of PD over a
traditional rate-control policy in terms of mean client-perceived
latency, average number of retransmissions, and aggregate ar-
rival rate for the same effective timeout probability. In Sec-
tion V, we also compare the variance in the latency, , of the
two schemes—they can be directly computed using (5).

C. Fairness of Persistent Dropping

Albeit counterintuitive, the fact that PD chooses certain con-
nections and consistently drop them on every retransmission
does not imply that it is unfair. In this subsection, we show that
PD has equal (or better) fairness when compared to traditional
rate-based schemes.

Here, fairness is defined as giving each incoming request
an equal probability of being accepted, given that has not
changed by the underlying controller. One, however, must be
careful when specifying what constitutes an incoming request.
Depending on whether incoming requests represent only new
SYN packets or include all SYN packets (i.e., new and retrans-
mitted ones), different types of fairness arise. To see this, con-
sider the example of two clients. Client A has set small
enough such that retransmissions are not allowed. Client B has

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 415

TABLE II
COMPARISON BETWEEN PD AND RANDOM DROPPING

set to allow for a single retransmission. Given equal treat-
ment of incoming requests, client B’s request has a higher prob-
ability of getting accepted (i.e.,) than client A’s
request (i.e.,). We, thus, distinguish between two types of
fairness. The first is the instantaneous fairness, which mea-
sures the deviation in acceptance probability looking only at
new SYN packets, ignoring any retransmissions. The second is
steady-state fairness, which measures the deviation in accep-
tance probability accounting for all packets. Given these defini-
tions of fairness, we can see that traditional rate-based schemes
are fair from the perspective of instantaneous fairness, but unfair
from the perspective of steady-state fairness (i.e., clients with
different values have different acceptance probabilities).
On the other hand, PD provides both steady-state and instanta-
neous fairness.

One can alternatively define fairness in terms of the resulting
reduction in arrival rate. We have shown that a rate-control drop
policy generally causes connections to time out
with an equal probability. This is identical (but less efficient due
to the increased delay) to PD. Under this definition, both PD and
rate-control policies yield the same fairness.

A question that arises is what happens if we design a scheme
that gives retransmitted requests higher priority. That is, given
two requests, one new and one retransmitted, the traffic con-
troller would drop the new request first before dropping the
retransmitted. Intuitively, this should appear preferable since
those that have already been penalized in the past should get a
better chance of being accepted in the future. However, one has
to consider the goal of PD: controlling aggregate traffic when
incoming requests are greater than available resources. Hence,
this alternate scheme will not produce any favorable outcome.
In fact, it follows directly from our derivation that this scheme
will reduce the resulting number of accepted requests and will
increase the average connection delay. When incoming requests
are bursty, some tradeoffs can be made to maximize the ac-
ceptance rate while maintaining acceptable connection-estab-
lishment delays. We have explored this issue in [18], where
we proposed a complementary mechanism to PD to deal with
burstiness.

One possible argument against PD is that it may encourage
users to press the reload button or possibly deploy a more
aggressive TCP. However, this is the case for any rate-based
scheme. Since those requests that will time out in a rate-based
scheme will experience very long delays, they too will have
a similar incentive to be more aggressive. As we show in
Section V, PD can be configured to further reduce the effects
of aggressive users.

D. Applicability to Network of Queues

In most cases, requests must pass through multiple queues
as they traverse different links on the network before reaching
their destination. Fortunately, the above results also hold in this
scenario, namely, when requests pass through a series of queues,
each using a persistent drop policy , the client’s establishment
latency and effective arrival rates are minimized. This is illus-
trated in Fig. 3 where we assumed for simplicity that all queues
have the same drop probability . We see that for a rate-based
drop strategy, the probability of a single request succeeding on
a single attempt is , where is the number of queues
that it must pass through. In contrast, the PD policy has a
probability . To put this in perspective, if ,

, and , then the probability of a request suc-
ceeding is 0.77 and 0.99 for the uniform rate-based and the PD
policies, respectively. Using a similar development to our single
queue analysis, we can prove that is the optimal drop strategy
even when each queue uses a different drop probability.

IV. DESIGNING A PERSISTENT DROPPING QUEUE MANAGER

In the previous section, we have showed the optimality con-
ditions of an admission-like control policy that can be imple-
mented at the TCP-level protocol to minimize the portion of
the client’s delay that is due to queue management in routers
or end-servers. Implementation of our optimal drop policy in
routers and end-servers relies on the ability to: 1) detect FCEs;
2) group requests originating from the same client visit; and
3) distinguish between new and retransmitted requests. If PD is
to be deployed at servers or front-end switches, then SYN drops
can be monitored as an effective way to detect FCEs. Adaptive

416 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

Fig. 3. Probability of success in network of queues.

Packet Filters can be used for deployment of PD [29]. Unfortu-
nately, requirements 2) and 3) present design challenges, espe-
cially since we intend for our technique to operate at the packet-
level. In fact, precise implementation requires violation of the
protocol layering, similar to Layer-7 switches (e.g., Foundry,
Alteon) to satisfy requirement 1) and need per-connection state
information to satisfy requirement 2). However, one must not
forget the original environment that this is intended for: large
aggregate traffic causing an FCE. We are, thus, interested in
constructing approximate implementations that are allowed to
be less accurate than an exact implementation, but significantly
improves on existing techniques.

The basic idea is to use an “appropriate” hash function to
group requests from the same client and then, based on the map-
ping, decide to drop or allow packets to go through. The con-
troller’s logical operation is organized into two parts: classifica-
tion and policy enforcement. The classification splits incoming
requests into two streams, one representing new transmissions
for new client visits and the other representing retransmitted re-
quests. Policy enforcement then drops new connection requests
with an equal probability, , and drops retransmitted requests
with probability 1.

The selection of a suitable hash function, , is not difficult.
In fact, as we will show shortly, a simple XOR operation on the
input parameters produces the desired uniform hashing [8]. On
the other hand, we found that choice of the input parameters to
the hash function is the most critical element in our design. Un-
fortunately, without the client-side’s cooperation, packet-level
information provides limited choices in achieving the desired
classification. They are summarized as follows. We abbreviate
IP source and destination addresses and TCP source and desti-
nation ports with src_addr, dest_addr, src_port, and dest_port,
respectively.

H1: h(src_addr, dest_addr): The src_addr allows per client
classification and, with the combination of dest_addr,
allows approximate user-session classification. Unfor-
tunately, it is relatively coarse-grain classification since
clients connecting through a proxy or a NAT (Network
to Address Translation) service are treated as a single
client. In case of high aggregate traffic, this seems to
be an acceptable trade-off. It can be further improved
by storing a separate list of high-priority IP addresses
that contain preferred proxy servers (e.g., AOL, MSN).

Packets originating from these addresses can then be ex-
cluded from dropping as long as the control target is met.

H2: h(src_addr, dest_addr, src_port, dest_port): The com-
bination of the four elements allows accurate connec-
tion-level classification even through proxies and NAT
services. It, however, loses session semantics, which, as
we show, still provides a considerable performance im-
provement over traditional mechanisms.

H3: h(src_addr, dest_addr, IP options) : One alternative so-
lution is to require clients to encode their session infor-
mation using IP options. This will produce the most ac-
curate classification. It is, however, impractical as it re-
quires client stack modification as well as high router
overhead to process IP options. We will not investigate
this alternative any further.

Since this classification must be performed at very high
speeds, the hash function must be simple, yet still provide
uniform hashing. We observe that the uniqueness of the source
IP address, and when combined with the TCP port information,
the probability of collision is minimized. We used a simple
XOR operation to perform the required mapping:

(8)

where is an appropriately selected prime number that we
use to randomize the hashing function (to be described shortly)
and is the range of the hash function. We performed a simple
simulation, where IP addresses are randomly chosen and long
runs of consecutive port numbers are used (since consecutive
port numbers are commonly used by the underlying OS when
multiple connections are issued). The distribution was almost
uniform as we hoped and expected.4

We came up with two schemes to perform the desired clas-
sification: one is a stateless implementation and another stores
a small per-connection state. We assume here that a preferred
proxy list described in H1 is handled using a separate lookup
operation.

4Unfortunately, we are unable to use publicly available logs because they al-
ways anonymized, making logged IP will be uniformly distributed, which de-
feats the point of using an access log. We have used private logs from the Univer-
sity of Michigan’s Electrical Engineering and Computer Science Department.
These logs were small and highly localized. Even then, the results seemed con-
sistent.

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 417

Fig. 4. Stateless and state-based implementation of persistent drop controller.

A. Stateless Persistent Dropping (SLPD)

Upon arrival of a new connection, the hash in H1 or H2 is
computed and normalized to a number within the range [0, 1].
A threshold value, represented by the effective timeout proba-
bility, , is used to drop those packets that have a hash value less
than and allow the rest to pass through (Fig. 4). Depending
on whether H1 or H2 is used, client- or connection-level per-
sistent dropping can be achieved, respectively. The absence of
state makes this scheme very simple to implement and fast to
execute. However, this scheme can be unfair as it discriminates
against a fixed set of clients. To mitigate this problem we use
the term in (8) to periodically change the function’s map-
ping, hence its dependence on [3]. The time interval between
changes should be on the order of several minutes to minimize
the error introduced by changing the set of dropped packets.

B. State-Based Persistent Dropping (SBPD)

Especially when connection-level control is desired (H2),
storing a small (soft) state for each connection can further
improve the accuracy of the classification. A hash table is used
here to store the time at which a new request is dropped. Upon
its retransmission, the controller is able to look up the request’s
initial drop time, and based on the age of the retransmission,
determine the transmission class. Using hash tables is an ef-
ficient way to compactly organize the request’s information
such that its storage and retrieval are very efficient. The hash
function described in H2 can be used to map the set of possible
request headers into a much smaller number of table indices.

The basic operation of SBPD is split into two stages (Fig. 4).
The first stage consults the table to see if the request is a new or
a retransmitted one. A table entry stores the time of the first drop
time. Therefore, any incoming request that is mapped to a used
entry is systematically marked as “retransmission” for a
second window from the initial drop time. The window length is
chosen based on the timeout value among most OS implemen-
tations. If the entry is empty or has an expired time-stamp, the
request is marked as “new.” The second stage of SBPD decides
the control policy. Obviously, a request that is marked as “re-
transmission” is dropped. However, one that is marked as “new”
is dropped with probability and the hash table is appropriately
updated.

Besides the hash function, there are two components that are
important for an effective implementation of SBPD: the size of

hash table, and the information stored in each entry. The size
of hash table, , determines the probability of collision be-
tween two requests. Recall that a collision occurs when two re-
quests hash into the same entry. For a uniform hash function,
the expected number of collisions at each table entry is ,
where is the number of possible request keys. To minimize
the lookup and storage overheads, we do not store requests that
are hashed into an occupied table entry (e.g., using chaining or
open addressing). Consequently, should be designed to re-
duce the probability of collision; it depends on the expected ar-
rival rate, , and the connection timeout period, . The
maximum (expected) values for these two parameters then dic-
tate the worst-case scenario for which should be provisioned.
Assuming that our hash function is truly uniform, at most re-
quests may need to be dropped (and stored) per second.5 But
requests must be tracked for at least , so the table size is
computed as

(9)

where is an over-design factor that further reduces the
probability of collisions; our experimental results have indicated
that is adequate. For example, if we want to implement
predictive drop that can accommodate the following specifica-
tion: reqs/s, and s, then
entries.

For individual table entries, we identify three criteria for en-
coding each entry in our hash table. First, the time or equiv-
alently the age of a dropped request must be stored to iden-
tify its corresponding transmission class. Second, hashing colli-
sions must be detected upon their occurrence, to maintain accu-
rate classification of incoming requests. Third, the size of each
entry must be limited (e.g., to 8 bits) to minimize memory re-
quirements. To meet these requirements, we observe that almost
all requests will time out within five retransmission attempts
(), including the initial transmission (Table I). This im-
plies that the reference time counter should cover a range of
45 seconds to properly classify all transmissions in that range.
Since retransmissions are on the order of multiple seconds, a
two-second resolution is sufficient; it also accounts for the slight

5In fact, even if we are designing for small p� values, we cannot reduce the
per-second size requirement to p � . If we do, then the hash table will be fully
occupied and the probability of collision will be close to 1.

418 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

Fig. 5. Example of request classification based on the time reference and transmit counters. (a) Initial drop. (b) Retransmission drop. (c) Collision detected
without time overlap. (d) Collision detected with time overlap. (e) Packet does not get retransmitted and drop counter remains the same. (f) Collision
detected and new transmission overwrites old one.

variations in transmission times.6 With this in mind, only 5 bits
are required to encode the reference time counter, which covers
a range of 0 to seconds. To detect collisions,
we use three bits to account for the number of transmission
attempts.

The basic process of classifying incoming requests are ex-
emplified in Fig. 5. Let be the arrival time of a new con-
nection request that was dropped and hashed into a hash table
entry. Assume that the hash entry was initially unoccupied.
Logically, our time reference is a circular counter, and thus,
can be represented by a time dial in Fig. 5(a). All time values
on the dial represent time ranges with respect to , where
the “X” in the figure marks arrival (and also drop) time of
this connection request and the shaded boxes indicate the time
periods for its expected retransmissions within a two-second
range (). Because this is the first transmission,
the transmission counter is cleared. Consider now ,
the arrival time of the request’s retransmission [Fig. 5(b)].
Since it will arrive during the first shaded box, it will be classi-
fied as a retransmission of the original request; the transmission
counter is incremented accordingly. This will repeat until the
connection times out.

Classification conflicts may arise when multiple requests are
hashed to the same entry. Consider a second request arriving

6As we will show, those TCP implementations that do not have the same
timeout sequence, will not be discriminated against since they will be classified
as “collision decidable.”

during a nonshaded period [Fig. 5(c)]. We call this a “decidable
collision” since—with high probability—this request does not
correspond to the original one. On the other hand, if a second
request arrives during a shaded period [Fig. 5(d)] and the trans-
mission counter has already been incremented to reflect that a
retransmission has been seen in this period, then this request can
correspond to the actual retransmission or some new transmis-
sion; we, thus, classify it as an “undecidable collision.”

When a collision is detected, a proper action must be taken
to maintain proper (future) classification. As mentioned earlier,
there are two types of collisions: decidable and undecidable.
All undecidable collisions are classified as a retransmission and
dropped, because an arriving request during a shaded area will
either correspond to the original request or to a new request,
and such requests are indistinguishable from each other. Fortu-
nately, new requests that are inappropriately dropped will be re-
transmitted during a nonshaded area, which are then classified as
decidable collisions. When a decidable collision is detected, we
interpret it as new transmission. Two possibilities exist in this
case. First, upon arrival during a nonshaded area, if the trans-
mission counter was not incremented during the most recent
shaded area [Fig. 5(e)] or if the counter equals 4 (i.e., its max-
imum value), then this means that the original request has either
aborted the connection attempt or timed out. The entry can then
be updated to reflect the new request [Fig. 5(f)]. Second, upon
arrival during a nonshaded area, if the transmission counter was
appropriately incremented during the most recent shaded area,

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 419

then we are almost certain that the request is a new transmission,
but cannot be stored in the entry. We, thus, let it pass through
the filter. In general, because of the low collision probability, let-
ting “decidable collisions” pass through will not affect the target
drop probability or the corresponding delay.

When the hash table is used beyond its design range, the
above classification technique can yield too many errors. To
protect against such erroneous behavior, we use dynamic
monitoring to detect and take corrective actions. Basically, the
real drop probability is measured on-line by counting the total
number of arrivals and dropped requests. If the measured drop
probability is dramatically different from the aggregate drop
probability in (7), then a uniform drop probability is used with

for all incoming requests. This is a fall-back behavior,
which is used only in extreme cases.

Finally, periodic maintenance of the hash table entries is re-
quired. This is equivalent to garbage collection where old en-
tries are cleared before the reference timer roles around. During
this process, all hash entries are examined for expired values as
follows. If the transmission counter does not correspond to the
appropriate transmission class at the time of the maintenance
[similar to the case in Fig. 5(e)], then that entry is cleared.7

Only once every 16 seconds all entries must be checked. This
requirement can be verified by observing that at least once for
every time the counters role over (64 seconds) we need to check
during the “dead zone” (Fig. 5) of every entry if it has expired.
Note that if longer inter-maintenance periods are required, then
more bits are needed to encode the reference timer to increase
the length of the “dead zone.”

C. Linux Implementation

We implemented working prototypes of SLPD and SBPD in
Linux (Kernel 2.4) as filter extensions to iptables, Linux’s
firewalling architecture [23]. Using iptables, our implemen-
tation can be configured as part of the routing path, when our
Linux box is configured as a router, or as a front-end, when it is
configured as a regular server.8 In iptables, packets are fil-
tered based on user-defined rules. Typically, a rule may include
IP and TCP header information such as source or destination ad-
dresses/networks, ToS bits, SYN or RST flags, or TCP source or
destination ports. A target function is also associated with each
rule; it specifies what should be done to packets that match the
corresponding rule. Typical targets include ACCEPT to accept
the packet and DROP to drop the packet. Therefore, when an
incoming packet matches a rule, the associated target function
is invoked. For example, one can define a rule that matches all
packets with the SYN flag set (indicating a new connection re-
quest) with a target of DROP. This would effectively block any
connection attempt to the protected machine.

The architecture of iptables is designed to be easily ex-
tensible where the target function can be written as a sepa-
rate kernel module and is free to implement any packet en-
forcement behavior. We defined two new targets in iptables
called SLPD_Filt and SBPD_Filt that are kernel modules.

7We set all the bits in the transmission counter to indicate that the corre-
sponding hash table entry is unused.

8To be more precise, iptables is built on top of netfilters, which
allows packets to be intercepted at various points in the IP stack.

These targets have a configurable effective timeout probability,
, and hash function, H1 or H2, that can be altered at runtime.

Their implementation follows the exact description in this sec-
tion. To activate either filter, we define a new rule that matches
any packet with the SYN flag set and associate either module
as its target. This way, new connection requests are dropped ac-
cording to our optimal drop policy. As mentioned above, our
implementation dynamically monitors the real drop probability.
If the number does not match the expected value, incoming re-
quests are dropped with probability .

V. EVALUATION

To evaluate and demonstrate the efficacy of PD, we equipped
a Linux server machine with working implementations of
the SLPD and SBPD controllers (Section IV-C) as well as a
rate-based drop (RBD) controller. The latter mimics traditional
mechanisms where it uniformly drops all incoming requests
with probability and is used as the baseline for comparison
[23]. Our main goal is to subject these controllers to realistic
load conditions so that the results we obtain may be applicable
to real-world deployment scenarios. We also want to avoid
any unnecessary complexity without sacrificing accuracy. The
three controllers are compared by studying their effects on the
performance of clients during a synthesized FCE, which is
emulated by generating high client arrival rates to a web server.
In each scenario, we also compare the measured results with
the predicted ones from our analytic models.

A. Experimental Setup

We employ a simple setup where the server machine (a
2.24-GHz Pentium 4 with 1 GB of RDRAM) runs Apache 1.3
to receive HTTP requests through a high-speed FastEthernet
link. Clients on the other side are generated using Eve, a scalable
highly optimized client emulator. Eve follows the same design
principles provided by SPECWeb99 [7] and Surge [2], widely
used tools to evaluate the performance of Web servers. The
primary difference between Eve and the two load generators
lies in the Eve’s ability to sustain extremely high arrival rates
regardless of the progress of on-going requests, which is critical
to the accuracy of emulating an FCE. This is similar to httperf
[25], but Eve has a more accurate client model. SPECWeb99,
on the other hand, sends a fixed maximum number of requests;
once the maximum is reached, a new request is sent only after
the completion of a previous one.

Each of our emulated clients was based on the model de-
scribed in Section III-A, where the distributions for the number
of parallel connections and their inter-arrival times were based
on our estimates for IE 6.0 [19]. Furthermore, we used IP
aliasing to provide each client with a unique IP address, which
is necessary for the H1 hashing metric. The arrival of clients
(not their requests) followed a Poisson process with mean , a
traditionally accepted model. Furthermore, each client behaved
independently from other clients and, on average, issued six (in-
dependent) parallel requests. Up to four (500-MHz Pentium III
with 512 MB of SDRAM) machines were used to generate the
desired client arrivals. Finally, an intermediate Linux machine
was used as a router to implement one of the three controllers.

420 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

Fig. 6. Request delay comparison. (left) Delay for � = 60 clients/s and T = 20 s. (center) Delay for � = 80 clients/s and T = 40 s. (right) Mean
and variance for the delay of successful requests (same configuration as left).

To eliminate external effects from our measurements, we ob-
serve that the client-perceived delay when connecting to a web
server is the total wait time before a request completes and is
the summation of three mostly independent components: con-
nection-establishment latency (), propagation delay, and ser-
vice delay. As mentioned earlier, PD only affects the connec-
tion-establishment latency. Thus, by keeping the other two com-
ponents constant, we are able to obtain an unbiased view of
the performance of PD. We take two measures to minimize the
variation in the other two components. First, we made sure that
the client-to-server network path is bottleneck-free. Second, we
over-provisioned the server to handle all incoming requests, and
all requests issue the same document (e.g., index.html). There-
fore, if a request passes through the controller, it successfully
completes the HTTP request and has a similar service time to
the other requests. Finally, because we need to conduct a large
number of experiments to cover the wide range of variable pa-
rameters, we limit each run to 5 minutes. Each experiment was
repeated until the 95% confidence interval was less than 5%
(roughly 25–30 times).

Our focus in this section is to evaluate the efficacy of PD
at the request level and user-visit level based on the H1 and
H2 metrics in Section IV, respectively, and to compare state-
less and state-based implementations, SLPD and SBPD, respec-
tively. Since PD is intended as a low-level control mechanism
(and due to space considerations), we provide a limited discus-
sion regarding higher level semantics such as user-sessions. As
previously noted, PD is not intended to replace high-level ad-
mission control mechanisms, but to improve the control of ag-
gregate traffic in routers, especially during overload.

B. Connection-Level Measurements

We now focus on characterizing client-perceived delay for
rate-based and persistent dropping (both SLPD and SBPD). In
our comparisons, we assume that both stateless and state-based
PD controllers are using the connection-level hashing metric
H2; they are denoted as SLPD-TCP and SBPD-TCP, respec-
tively. In each experiment, we vary the effective timeout prob-
ability, , and compare the three drop policies (SLPD, SBPD,
and RBD) against each other and against their analytically de-
rived counterparts. Due to space limitation, we only present two
configurations of source traffic. They are meant to confirm the

efficacy of our new drop policy. We have performed an exten-
sive evaluation while varying the various parameters over wide
ranges. In all cases, our results were consistent with those pre-
sented here.

Two metrics are of particular interest to us: 1) the mean re-
quest delay, which is computed by averaging the elapsed time
before a request is completed or timed out, and 2) the mean and
variance of successful-request delay, which is similar to the first
metric but only looks at successful requests; it also looks at the
variance of the delay. Fig. 6 (left) and (center) shows the bene-
fits of using PD. In the center plot, for example, clients experi-
encing an effective timeout probability of 0.1 had about a 50%
reduction in their mean request delay (due to the reduction in
the mean connection-establishment latency) when SLPD-TCP
or SBPD-TCP, instead of RBD, is used. This is a dramatic re-
duction as it implies that a traffic controller that uses RBD to
uniformly drop incoming requests with a probability of 0.56
achieves an effective timeout probability of 0.1 and produces
100% longer connection-establishment delays than the one that
uses PD (SLPD-TCP or SBPD-TCP).9 In Fig. 6 (right) we
plotted the delay and variance for successful connections only.
The figure shows the main benefit of PD, namely, decoupling the
effects of the control policy on the delay of successful requests.
The greatest impact can be seen on the variance of successful re-
quests since PD produces one of two outcomes: 1) immediately
allows a connection to pass through or 2) consistently drop it.
We also observed that PD reduced the variability of the under-
lying aggregate traffic.

Fig. 6 shows that SLPD-TCP achieves similar performance
to SBPD-TCP. The real difference between the two schemes is
fairness, which is not reflected in our performance metrics. In
SLPD-TCP, packets are dropped based on their header informa-
tion and the only randomness in the scheme is introduced by the
prime multiplier, , in (8). On the other hand, SBPD-TCP
has a built-in randomness in every packet it chooses to consis-
tently drop. This, in our opinion, produces better fairness from
the client’s viewpoint.

9One can argue that drop probabilities of larger than 10% can dramatically
affect the throughput of established connections, thus questioning the usefulness
of PD. However, bandwidth is commonly not the primary reason of the drops
during an FCE, but rather the server’s processing capacity. In such situations,
the SYN packets are being dropped because the listen queue is full; established
TCP connections are not affected. Simple filtering rules can distinguish between
the two types of traffic.

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 421

Fig. 7. User-visit behavior. In all cases, � = 60 clients/s and T = 20 s. (left) Mean successful visit delay (a point with zero value implies that no visit was
successful). (center) Probability of successful visit. (right) Effective arrival rate.

We also verified the accuracy of our analytical models. We
observe larger, but tolerable, errors in our estimates for smaller
values of . However, as increases, dominates the
computation of and thus, improves the accuracy of our
prediction. Based on the presented results, our model still ac-
curately predicts the expected delay even though incoming re-
quests are highly dependent. This phenomenon seems counter-
intuitive, but is explained by the strict enforcement of the effec-
tive timeout probability. Specifically, regardless of the instan-
taneous arrival rate, a fixed percentage of requests is dropped.
Looking back at how the expected delay, , was derived
(Section II), one can observe that once the ’s are held con-
stant, the delay value becomes independent of the arrival rate.
In fact, this type of policy enforcement is implemented by most
AQM techniques where a constant drop probability is enforced
based on the average (not instantaneous) length of the under-
lying queues [13]. Furthermore, the effects of dependent traffic
are apparent in other metrics, such as mean user-visit delay and
probability of a successful visit (to be discussed shortly).

C. User-Visit Behavior

While the mean request delay provides a good indication of
the performance of the underlying drop policy, it does not give
a complete picture. Looking at the performance metrics that
are associated with user visits and the corresponding aggregate
traffic better reflects what a typical client experiences in real
systems. They also show the effects of dependent traffic more
clearly than looking at individual requests by themselves. In
the context of user visits, we use three metrics to compare the
performance of the drop polices: 1) the mean successful visit
delay, which measures the cumulative time for a successful visit
as described in (3), excluding the aborted visits; 2) the proba-
bility of a successful visit, which reflects the sensitivity of de-
pendent traffic to packet drops; and 3) the effective arrival rate,
which looks at the change in arrival rate as the drop probability
is varied.

Fig. 7 (left) and (center) plots the expected delay and success
probability for the various drop policies. They also show the
performance of a stateless PD that uses a client-level hashing
metric (H1), referred to as SLPD-IP. Our analytical predictions
for the expected user-visit delay were consistent with the mea-
sured values and omitted to reduce graph clutter. The figure
clearly shows the advantage of PD, especially on the mean visit
delay due to its additive nature [eq. (3)]. We note that while the

delay seems to be decreasing as , it is only an arti-
fact from having user visits with fewer parallel connections that
are actually succeeding. Eventually, all visits are aborted by the
client and are represented by a zero-valued point in the figure.

Fig. 7 (center) shows how user visits are sensitive to con-
nection-level and random dropping policies since a visit is
successful only if none of its requests times out. This sen-
sitivity is reduced when client-level dropping (SLPD-IP) is
performed, which is apparent in the linear relationship between
success probability and the effective timeout probability. In
effect, SLPD-IP is performing a form of low-level admission
control, which maximizes the performance of the controller.
Unfortunately, SLPD-IP has the least fairness among our PD
implementations as it targets entire clients. As mentioned ear-
lier, unless care was taken to deal with NAT and proxy servers,
SLPD-IP may unintentionally block a large number of clients.

Fig. 7 (right) shows how the aggregate traffic changes among
the different policies. Two important points should be observed.
First, because the source traffic model is highly dependent, the
aggregate traffic, , decreases as the effective timeout proba-
bility, , is increased. Our analytical model assumed indepen-
dent traffic sources and is, thus, not suited for predicting in
this case. Second, for any given , we can see the dramatic
improvement in using any of the PD policies compared to a
rate-based drop policy. From that perspective, our estimate for

highlights the relative (not absolute) improvement in using
PD over a rate-based drop policy.

D. Limitations of the Study

There are still three specific limitations to our study that are
worth mentioning. First, we have not discussed how a traffic
controller would adjust based on the measured arrival rates
or router queue lengths. We believe that PD can be easily
integrated into existing AQM techniques, which already have
built-in adaptation mechanisms [6], [13], [29]. Because PD
reduces the variability of aggregate traffic, it will improve the
stability and responsiveness of such mechanisms. Second, we
have assumed that clients have unique IP addresses. This pro-
vided SLPD-IP with a clear advantage over the other schemes
as it mimicked application-level admission control policies.
For this reason, we believe that its performance numbers
are overstated, but it still performs well when controlling
large aggregate traffic as classification errors can be better
tolerated. Finally, while our technique seems less effective in

422 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006

controlling or defending against DDoS attacks, it is indeed not
more vulnerable than traditional rate-based techniques. The
vulnerability of our scheme is only apparent in the choice of
the hash function. This can be easily overcome by using more
secure hash functions that an adversary cannot exploit. All that
a DDoS attack can do is to increase the amount of traffic, which
may force the controller to use a larger value. This is not
different from traditional control mechanisms.

VI. RELATED WORK

Several recent studies have focused on characterizing ag-
gregate traffic during FCEs [20], [22]. Looking at the broader
scope, earlier studies can be categorized into empirical charac-
terization or analytical modeling of TCP traffic. Measurement
studies such as [1], [10], [11], [24], [28], and [31], to name a
few, have investigated the impact of TCP congestion control on
the behavior of underlying traffic (e.g., throughput, variance,
self-similarity). On the other side of the spectrum, the authors
of [5], [15], [16], [26], [27], and [30] presented analytical char-
acterizations of the throughput of TCP’s congestion control as
a function of RTT and packet loss probability. Our proposed
client model can be viewed as a direct extension to earlier ones,
however, with the focus on the interaction between active traffic
controls and the aggregate behavior of incoming requests. We
have taken a bottom-up approach which investigates both the
influence of low-level network protocols as well as high-level
application mechanism on the behavior (or persistence) of
clients.

In general, our analysis is based on a different model of client
behavior where we introduced the concept of persistent clients
to capture the dynamics of client retransmissions. Our main
objective is similar to queue-management solutions such as
Class-Based Queueing (CBQ) [14], Active Queue Management
(AQM) [4], [6], [13], and Explicit Congestion Notification
(ECN) [12] all of which aim to improve the performance of the
underlying network. Our work complements these solutions by
specifying the exact mechanism for minimizing connection-es-
tablishment latency in the presence of active packet dropping
by routers or end-servers.

VII. CONCLUSION

We characterized the dynamics of persistent clients in ag-
gregate traffic. In particular, we showed that client persistence,
which is due mostly to TCP’s congestion control, has a direct
effect on the stability and effectiveness of traffic control mecha-
nisms. To deal with client persistence, we introduced persistent
dropping and showed that minimizes the average connection es-
tablishment delay as well as the effective arrival rate whenever
the volume of incoming request exceeds the server’s or router’s
capacity. We presented two working implementations of persis-
tent dropping based on hash functions that can be deployed in
routers or end-servers.

Persistent dropping can be considered as a low-level admis-
sion control policy. No application-level support is required
for the correct operation of persistent dropping. In particular,
when connection-level classification (H2) is performed, per-
sistent dropping does not violate any end-to-end semantics
and, at the same time, achieve the same control targets as the

traditional rate-based control. Furthermore, the improvement
in the connection-establishment latency does not interfere with
higher level admission control mechanisms. On the other hand,
client-level classification (H1) does violate the end-to-end ar-
gument, and it is presented here to show the full potential of an
intelligent dropping mechanism in routers. One can argue that
connection-level controls should be avoided in routers and left
to the end-servers. We addressed this exact issue by showing
that in some high-congestion cases, such as FCEs, routers are
forced to drop new connection requests. Our technique achieves
quick convergence to the control targets with minimal intrusion
on successful connections.

REFERENCES

[1] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R.
Katz, “TCP behavior of a busy Internet server: analysis and improve-
ments,” in Proc. IEEE INFOCOM, Mar. 1998, pp. 252–262.

[2] P. Barford and M. Crovella, “Generating representative web work-
loads for network and server performance evaluation,” in Proc.
Performance’98/ACM Sigmetrics’98, May 1998, pp. 151–160.

[3] N. L. Biggs, Discrete Mathematics. New York: Oxford Univ. Press,
1989.

[4] B. Braden et al., “Recommendations on queue management and con-
gestion avoidance in the Internet,” RFC 2309, 1998.

[5] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in
Proc. IEEE INFOCOM, 2000, pp. 1742–1751.

[6] W. C. Feng, D. Kandlur, D. Saha, and K. G. Shin, “The BLUE active
queue management algorithms,” IEEE/ACM Trans. Netw., vol. 10, no.
4, pp. 67–85, Sep. 2002.

[7] S. D. Committee, SPECweb Tech. Rep., Apr. 1999. [Online]. Avail-
able: http://www.specbench.org/osg/web/

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: The MIT Press, 1990.

[9] A. Feldmann, Characteristics of TCP Connection Arrivals, ser.
Self-Similar Network Traffic and Performance Evaluation. New
York: Wiley, 2000, ch. 15, pp. 367–399.

[10] A. Feldmann, A. Gilbert, W. Willinger, and T. Kurtz, “The changing
nature of network traffic: scaling phenomena,” ACM Comput. Commun.
Rev., vol. 28, no. 2, pp. 5–29, Apr. 1998.

[11] A. Feldmann, A. C. Gilbert, P. Haung, and W. Willinger, “Dynamics
of IP traffic: a study of the role of variability and impact of control,” in
Proc. ACM SIGCOMM, 1999, pp. 301–313.

[12] S. Floyd, “TCP and explicit congestion notification,” ACM Comput.
Commun. Rev., vol. 24, no. 5, pp. 10–23, 1994.

[13] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp.
397–417, Aug. 1993.

[14] ——, “Link-sharing and resource management models for packet net-
works,” IEEE/ACM Trans. Netw., vol. 3, no. 4, pp. 365–386, Aug. 1995.

[15] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proc. ACM SIGCOMM,
Aug. 2000, pp. 43–56.

[16] C. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theo-
retic analysis of RED,” in Proc. IEEE INFOCOM, 2001, vol. 3, pp.
1510–1519.

[17] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-
COMM, Aug. 1988, pp. 314–329.

[18] H. Jamjoom, P. Pillai, and K. G. Shin, “Resynchronization and control-
lability of bursty service requests,” IEEE/ACM Trans. Netw., vol. 12,
no. 4, pp. 582–594, Aug. 2004.

[19] H. Jamjoom and K. G. Shin, “Persistent dropping: an efficient control
of traffic aggregates,” in Proc. ACM SIGCOMM, Karlsruhe, Germany,
Aug. 2003, pp. 287–298.

[20] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and de-
nial of service attacks: characterization and implications for CDNs and
web sites,” in Proc. 11th Int. World Wide Web Conf., Honolulu, HI, May
2002, pp. 252–262.

[21] J. Lemon, “Resisting SYN flood DoS attacks with a SYN cache,” pre-
sented at the BSDCon 2002, San Francisco, CA, Feb. 2002.

[22] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 62–73,
Jul. 2002.

[23] F. Marie, Netfilter Extensions HOWTO. [Online]. Available: http://
www.netfilter.org.

JAMJOOM AND SHIN: ON THE ROLE AND CONTROLLABILITY OF PERSISTENT CLIENTS IN TRAFFIC AGGREGATES 423

[24] R. Morris and D. Lin, “Variance of aggregated web traffic,” in Proc.
IEEE INFOCOM, 2000, vol. 1, pp. 360–366.

[25] D. Mosberger and T. Jin, “httperf: a tool for measuring web server
performance,” Perform. Eval. Rev., vol. 26, no. 3, pp. 31–37, Dec. 1998.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” in Proc.
ACM SIGCOMM, 1998, pp. 303–314.

[27] J. Pahdye and S. Floyd, “On inferring TCP behavior,” in Proc. 2001
Conf. Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2001, pp. 287–298.

[28] V. Paxon, “End-to-end Internet packet dynamics,” in Proc. ACM SIG-
COMM, 1997, pp. 139–152.

[29] J. Reumann, H. Jamjoom, and K. Shin, “Adaptive packet filters,” in
Proc. IEEE GLOBECOM, Nov. 2001, pp. 2331–2335.

[30] S. Sahu, P. Nain, C. Diot, V. Firoiu, and D. F. Towsley, “On achievable
service differentiation with token bucket marking for TCP,” in Proc.
Measurement and Modeling of Computer Systems, 2000, pp. 23–33.

[31] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level analysis
and modeling of network traffic,” in Proc. ACM SIGCOMM Internet
Measurment Workshop, Nov. 2001, pp. 99–103.

[32] H. Zhang and D. Ferrari, “Rate-controlled static priority queueing,” in
Proc. IEEE INFOCOM, San Francisco, CA, 1993, pp. 227–236.

Hani Jamjoom (M’04) received the B.S. degree in
computer engineering from Rose-Hulman Institute
of Technology, Terre Haute, IN, the M.Eng. degree
in electrical engineering from Cornell University.
Ithaca, NY, and the Ph.D. degree in computer science
from the University of Michigan, Ann Arbor, where
he worked mainly on QoS architectures and the
integration of controls in networks and operating
systems to manage Internet services during overload
scenarios.

He is a Research Staff Member at IBM T. J.
Watson Research Center, Hawthorne, NY. His current research focuses on
management of large distributed infrastructures, including integration, problem
determination, and automation.

Dr. Jamjoom has been a member of the ACM since 2004.

Kang G. Shin (S’75–M’78–SM’83–F’92) received
the B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and the
M.S. and Ph.D degrees in electrical engineering from
Cornell University, Ithaca, NY, in 1976 and 1978, re-
spectively.

He is the Kevin and Nancy O’Connor Professor
of Computer Science and Founding Director of the
Real-Time Computing Laboratory in the Department
of Electrical Engineering and Computer Science at
the University of Michigan, Ann Arbor. His current

research focuses on QoS-sensitive networking and computing as well as on em-
bedded real-time OS, middleware and applications. He has authored or coau-
thored around 600 technical papers and numerous book chapters and supervised
the completion of 46 Ph.D. theses.

Dr. Shin has received numerous awards including the 1987 IEEE
TRANSACTIONS ON AUTOMATIC CONTROL Outstanding Paper Award, the
2003 IEEE Communications Society William R. Bennett Prize Paper Award,
and the 2003 IEEE Real-Time TC Technical Achievement Award. He has been
a Fellow of the ACM since 2002.

