
Sapphire: Statistical Characterization
and Model-Based Adaptation of

Networked Applications
Abhijit Bose, Mohamed El Gendy, and Kang G. Shin

Abstract—Many modern networked applications require specific levels of service quality from the underlying network. Moreover, next-

generation networked applications are expected to adapt to changes in the underlying network, services, and user interactions. While

some applications have built-in adaptivity, the adaptation itself requires specification of a system model. This paper presents Sapphire,

an experimental approach for systematic model generation for application adaptation within a target network. It employs a nearly-

automated, statistical design of experiments to characterize the relationships of both application and network-level parameters. First, it

applies the Analysis of Variance (ANOVA) method to identify the most significant parameters and their interactions that affect

performance. Next, it generates a model of application performance with respect to these parameters within the ranges of

measurements. The key benefit of the framework is the integration of several well-established concepts of statistical modeling and

distributed systems in the form of simple APIs so that existing applications can take advantage of it. We demonstrate the usefulness

and flexibility of Sapphire by generating a performance model of an audio streaming application. We show that many existing

multimedia and QoS-sensitive applications can exploit a statistical modeling approach such as Sapphire to incorporate application

adaptivity. The approach can also be used for feedback control of distributed applications, tuning network and application parameters

to achieve service levels in a target network.

Index Terms—Application-aware adaptation, measurements, statistical analysis, performance analysis.

Ç

1 INTRODUCTION

TODAY’S enterprise networks comprise a variety of access,
edge and core subnetworks with different levels of

bandwidth, delay, loss, and jitter characteristics. For
example, it is common to have a combination of wired,
satellite, and wireless segments in an enterprise network of
an organization. The degree of tolerance or sensitivity to
each of these parameters varies widely from one application
to another. Emerging applications such as home network-
ing, online gaming, intelligent appliances, factory supply-
chain networks, as well as the vast majority of multimedia
applications require certain levels of service quality from
the underlying network. Many ERP applications are
routinely accessed by both mobile users using their PDAs
or notebooks, as well as desktop clients. Service differentia-
tion is achieved by allocating different amounts of network
resources, such as link bandwidth and buffers, to different
types of traffic traversing the network’s intermediate
routers along the end-to-end (e2e) path. In our previous
work [1], we presented a characterization of per-hop QoS as
the building block of the e2e QoS perceived by users that

can be measured and monitored. However, a crucial step in
providing application-level QoS is to generate a model of
the application adaptation behavior in a given enterprise
environment. This is environment-specific because enter-
prise networks are configured with many different devices
and topologies.

This critical requirement of measuring and monitoring the
e2e performance of enterprise applications has led to many
commercial tools [2], [3]. However, most of these tools use
only well-known ports to analyze traffic between end-hosts,
and provide only basic information about application-net-
work interactions. Several studies [4], [5], [6], [7] have
addressed the problem of provisioning and mapping the
e2e QoS requirements of multimedia applications to available
network resources. For example, Nahrstedt and Smith [5]
proposed negotiation and information exchange between
applications and networks at the call/connection boundary.
The mapping is facilitated by a broker that can perform
bidirectional mapping between applications and the net-
work-level parameters. However, they assumed that the
application-specific mapping models for a given network are
available prior to invocation of the application. In fact, this is
an implicit assumption used in many proposed QoS and
application adaptation frameworks.

There are adaptation models developed for specific
classes of applications. For example, Bolot and Vega-Garcia
[8] developed mechanisms to limit the impacts of jitter and
packet loss on the clients, as well as to limit the sending rate
to the capacity of the connection. MPEGTool [9] is an
X Windows-based MPEG encoder and statistical analysis
tool that can characterize variable bit-rate MPEG video
traffic in ATM networks. In this paper, we present a

1512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

. A. Bose is with Michigan Grid Research and Infrastructure Development
(MGRID), The University of Michigan, 2356D Duderstadt Center, 2281
Bonisteel Blvd., North Campus, Ann Arbor, MI 48109.
E-mail: abose@umich.edu.

. M. El Gendy is with Cisco Systems, Inc., 170 West Tasman Dr., Bld SJ-20,
San Jose, CA 95134. E-mail: mgendy@eecs.umich.edu.

. K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received 16 Jan. 2005; revised 3 Oct. 2005; accepted 27 Dec. 2005;
published online 25 Oct. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0033-0105.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

general-purpose experimental framework called Sapphire
that provides interaction models between a given net-
worked application and the network in which it is
deployed. The key contribution of Sapphire is the integration
of several well-studied concepts in statistical modeling,
event management in distributed systems, and application
and network-layer instrumentation to provide an auto-
mated system for generating such interaction models. It
provides application developers and network engineers
with a set of APIs (Application Programming Interfaces) for
instrumenting an application, along with several kernel
modules for setting network-layer parameters. Events
corresponding to changes in the levels of target parameters
in the instrumented layers are logged by Sapphire. The
resulting traces are collected along with timestamps and
details about these events. Then, the events are correlated
with network measurements using statistical analysis,
which leads eventually to a set of models that describe
the interaction of the application and network parameters.
The models are then incorporated in the application at
runtime to adapt to the varying network conditions based
on a feedback control loop. Note that Sapphire models are
application and network-specific, i.e., they can be used for the
specific applications and the deployed network that were
used to build the models. This is due to the fact that the
performance of many applications varies considerably
between testbed and deployed network environments.
The most suitable environments for Sapphire are, therefore,
enterprise networks that allow better control and setting of
both application and network-level parameters.

Since it is not possible to provide deterministic guarantees
to networked applications, we propose an adaptation frame-
work for the application performance based on statistical
mapping. There are several challenges to overcome. Different
classes of applications have very different traffic character-
istics and require different types of networked resources. This
is true for individual participants (“clients”) of a given
application as well. Distributed applications use a variety of
network interactions—such as client-server, peer-to-peer,
and distributed multicast—that make characterization of
such applications very difficult. Sapphire probes and asso-
ciated APIs make instrumentation of these applications
relatively easy and the model-building step allows one to
automatically build interaction models for the application in a
given network. Sapphire does not depend on particular
network and switching topologies. For example, it can be
used in tightly-coupled cluster environments to generate
interaction models of messaging-passing parallel applica-
tions. Moreover, the application-level parameters in Sapphire
are completely user-defined and, therefore, interaction
models at different levels of granularity can be generated
using the framework.

The workflow of Sapphire and its components are
explained in Section 3. The core of the framework tracks
individual processes of a networked application and injects
specific events (as part of instrumentation) to control levels
of user-defined application parameters and the parameters
in the network stack during runtime. It can also set up
related network configuration parameters at the intermedi-
ate routers of the target network so that coordinated
experiments are possible. While the statistical modeling
techniques such as ANOVA and polynomial regression
used in Sapphire are well-established, the capability of
automatically generating application-network interaction
models for an application is a unique feature of the

framework and, therefore, it can be useful to a large
community of users.

The rest of this paper is organized as follows: First, in
Section 2, we provide an example of an audio streaming
application and motivate the need for model-based applica-
tion adaptation. Next, we present the Sapphire framework in
Section 3, and describe the main components and the
associated work-flow. The statistical methods used in the
framework—design of experiments, ANOVA, and regres-
sion—are briefly discussed in Section 4. We provide
experimental results in Section 5 to demonstrate the
flexibility of our framework and an example of model-
based adaptation in the context of the audio-streaming
application. Section 6 reviews related literature and, finally,
we conclude the paper in Section 7 with a discussion on
possible extensions of Sapphire.

2 MOTIVATION

The primary goal of Sapphire is to develop an integrated and
automated framework for the generation of interaction
models of an application with respect to its underlying
network. Both heuristic and statistical methods can be
applied to generate such models. We have implemented an
approach based on the design of experiments and poly-
nomial regression to generate the application-network
interaction models. To illustrate this further, let us consider
an audio streaming application using the popular Pulse
Code Modulation (PCM) encoding technique. PCM is a
digital encoding scheme for analog data and is used in
many multimedia applications such as full-motion video,
telephony, music and virtual reality. In PCM, an analog
signal is sampled at a regular frequency, called the sampling
rate (in Hz), which is typically several times the maximum
frequency of the analog waveform. The samples are
quantized in one of the predetermined levels, where the
levels are represented by a fixed number of power of 2 bits.
The output of PCM is a binary series of the original analog
signal in digital form. The parameters that determine the
quality of the audio stream are the sampling rate, number of
bytes per sample, and duration of audio per packet. An
audio streaming application consists of a PCM transmitter
(or server) that reads a set of audio files, encodes them into
PCM, and sends the streams to a set of remote clients. The
clients use a PCM decoder and play them using an audio
device. The audio traffic is sensitive to packet loss, jitter and
available bandwidth, and the background traffic in the
network may affect the playback quality. Network-level
QoS for such traffic is usually offered by the Differentiated
Services (DiffServ) [10], [11], bandwidth reservation, etc.
The traffic from different applications are assigned to
different service classes depending on the application
requirements. Most importantly, they are protected from
background (mostly best-effort) traffic in the network. The
parameters affecting the performance of the audio-stream-
ing application are PCM encoding parameters as well as
those of the DiffServ building blocks used in the construc-
tion of the network. In this example, Sapphire is used to
determine which of these parameters are the most sig-
nificant and how they are related so that an application-
network interaction model can be generated.

The audio streaming can also be performed more
efficiently by incorporating adaptivity in the server. For
example, the server may adapt to different sampling rates
and sample sizes based on feedback from the different

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1513

clients and the corresponding network configurations.
While this is desirable for any networked application, the
difficulty lies in deciding the ranges by which the
application must adapt its parameters to satisfy the e2e
QoS requirements. Sapphire provides this model in the form
of an algebraic polynomial of the most significant para-
meters. In practice, such a model can be incorporated
within an application (both server and client sessions) and
activated via periodic feedback using RTCP (RTP Control
Protocol) [12]. RTCP is based on the periodic transmission
of control packets to all participants of an application
session using the same distribution mechanism as data
packets. A typical usage of RTCP is control of adaptive
encodings in audio and video streaming applications. The
diverse requirements of real-time applications are sup-
ported in RTCP in the form of application profiles and
associated payload format specifications. We envision
Sapphire to be useful to application programmers since they
do not have to learn RTCP details. Using Sapphire,
applications can define which parameters and associated
events will be monitored during runtime, and the transport
of these parameter values and events between server and
clients can be handled by RTCP. The translation of Sapphire
parameters and events to corresponding RTCP packets can
be generated automatically via a compiler.1

One of the advantages of Sapphire is to allow hierarchical
parameters. To illustrate this, consider the problem of
compressing video data for delivery over the Internet. A
lower keyframe rate will reduce the required bandwidth,
but it will also result in a lower-quality image. At the same
time, when motion increases, one must increase the key-
frame rate and the frame rate since high-motion video clips
require additional uncompressed keyframes to be encoded
in the video file. To develop an interaction model of this
application using Sapphire, it is possible to assign a high-
level parameter describing the degree of motion (e.g.,
perceived speed of an object as computed from a video
game) that is implicitly related to the keyframe rate. When a
model is generated, it links the degree of motion parameter
directly to network bandwidth. Sapphire thus enables us to
link any network-sensitive application-level parameter
directly to network-level parameters such as bandwidth,
delay, loss, or jitter. This hierarchy also applies to
evaluation of “perceptual QoS” [13], [14] parameters that
determine the user’s perception of quality for a networked
application. Examples of user-level perceptual parameters
are image quality, video rate, video smoothness, audio
quality, etc. The corresponding application-level para-
meters are pixel resolution, frame rate, frame rate jitter,
sampling rate, and number of bits per sample, respectively.
While the subjective quality assessment based on “mean
opinion score” (MOS) is reliable, it is often time-consuming
and expensive to determine the MOS scores of a network-
sensitive application. Therefore, estimation techniques for
the subjective quality of specific applications such as VoIP
have been proposed [13] by measuring the physical
characteristics of end-hosts and networks. The authors of
[14] proposed an experimental methodology to calculate
perceptual QoS parameters based on arbitrary packet traces
and successively matching the encoded speech sample with
all possible trace fragments. In both examples, Sapphire can
be used to identify the hierarchical mapping relationships

among the user-level perceptual QoS parameters, applica-
tion-level parameters, and network-level parameters.

Finally, our framework is suitable for enterprise net-
works rather than the Internet because the design para-
meters required in the model-building process can be
controlled more tightly in the former. The role of the
network service provider (NSP) and the application service
provider (ASP) for the enterprise in this context is
important. While the service-level agreements (SLAs) with
NSPs are standard for most enterprise environments, the
SLAs for hosting applications and services are not. En-
terprises may depend on ASPs for some of their applica-
tions, while running other applications in-house. Any QoS
adaptation model for an application must be supported
with appropriate SLAs by the respective NSP and ASP (if
the application is hosted by a third party). The Sapphire-
generated adaptation models assume that the underlying
network and application-level SLAs support the ranges of
permitted adaptation.

Fig. 1 shows the steps of the framework which are
detailed in the following section.

3 THE SAPPHIRE FRAMEWORK

The Sapphire framework provides the necessary tools and
methods for instrumenting an application (server and
clients), the underlying network stack, as well as the
intermediate network elements such as routers. Then, it
uses well-established methods for experimental design and
statistical analysis to run coordinated experiments based on
the configurable instrumented parameters. The data from
these experiments are used to generate an interaction
model, which can then be used by the application in order
to systematically adapt itself to varying conditions in the
network. By design, such a framework is suitable for
“model-based adaptation.” In what follows, we elaborate
on the goals, the core components, and the workflow of the
framework.

3.1 Design Goals

In the design of Sapphire, we would like to achieve the
following goals:

. Supporting coordinated experimental analysis. To
enable efficient exploration of the parameter space,
Sapphire creates a design of experiments from user-
specified parameters by coordinating all instrumen-
ted layers with their corresponding levels for each
experiment. Such coordination among various pro-
cesses of a networked application and different
protocol stacks of an end-host is achieved via a
synchronization protocol to be described shortly.
Therefore, an application instrumented with Sapphire
can be configured in various degrees of freedom
(monitored parameters) across its multiple protocol
layers. Additionally, this configuration is coordi-
nated with the intermediate network path to provide
synchronization of network interactions. The last
step requires that enterprises have control over these
network-level parameters.

. Supporting reliable delivery of events. Since
injected application events are correlated with net-
work measurement data, Sapphire must log and

1514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

1. However, we have not implemented this in our current prototype.

deliver all events reliably. This is achieved by using
ARDP (Asynchronous Reliable Delivery Protocol)
[15]. Once a set of parameters (in any of the
instrumented layers) have been chosen, Sapphire
keeps track of any change of their levels and logs
appropriate event messages entirely transparent to
the application by using separate message channels.

. Statistical modeling. The goal of providing deter-
ministic QoS guarantees to networked applications
is extremely difficult and, therefore, Sapphire chooses
a statistical modeling approach. The outcome of
Sapphire experiments is a set of statistical models of
the given application in the deployed target net-
work. Two well-established statistical methods,
ANOVA and multiple polynomial regression, are
integral to the framework and will be presented
shortly.

. Lightweight APIs. The instrumentation of an appli-
cation using Sapphire is meant to be straightforward
—only a small set of functions are needed to
initialize, synchronize and perform a set of experi-
ments. Hence, the overall processing and commu-
nication overheads are low. Complexities such as
synchronization and coordination among multiple
processes (e.g., clients) of an application during a
Sapphire experiment are handled by the framework
transparent to the application sessions and the user.

3.2 Workflow of Sapphire

As shown in Fig. 1, Sapphire works in two phases. First, the
training or the modeling phase which involves instrument-
ing both the application and the underlying network to be
able to inject events and control parameters as dictated by
the design of experiments. A factorial design of experi-
ments is conducted to investigate the interactions among
the different parameters affecting the performance of the
application with respect to the underlying network. The
first statistical analysis method used is called ANOVA,
which extracts the most significant factors affecting
performance as described in Section 4. Based on these
significant factors, regression-based modeling is performed
to relate the user-specified application parameters to the
parameters of the network. In the second phase, the models
extracted are used in adapting the application performance
according to measurements from the network as well as e2e

measurement from the application parameters themselves
in the feedback loop as shown in Fig. 1.

3.3 Components of Sapphire

Fig. 2 illustrates the main components of the framework.
Each component in Sapphire essentially builds an abstrac-
tion for a particular capability, and the components
communicate with each other via messages. Such an
approach allows us to incorporate new measurement
methods and introduce new hardware (network nodes,
devices, end-hosts) without changing the overall frame-
work. Each of these components is detailed next.

3.3.1 Application Instrumentation and Application-Level

Trace Collection

The heterogeneity of application-level objects and para-
meters requires a flexible approach for runtime application-
level parameter configuration, measurement and collection.
The simplest mechanism is needed when most of the
configurable parameters are available in the command-line
interface (CLI) or via a runtime configuration file for the
application. In this case, there is no need to instrument the
application—Sapphire simply generates timestamped events
corresponding to the set of configuration parameters for
each experiment so that they can be correlated with the
corresponding network-level traces during the analysis
step. One can also instrument the message channels
between all the processes of the application, e.g., the socket
API in the kernel. This enables a suitably-instrumented end-
host to collect information about the application-level data
that are exchanged between the instrumented end-hosts.

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1515

Fig. 1. Workflow of Sapphire.

Fig. 2. Components of Sapphire.

The latter approach is, of course, coarse-grained. The
synchronization among the end-hosts is achieved by a
group management protocol. In fact, a combination of CLI
and message channel monitoring may be sufficient for most
applications without ever instrumenting the application
itself. The most extensive mechanism is an explicit
instrumentation of the application to insert events. Any
change in the level of a factor is encapsulated in an event
and captured by Sapphire. The basic mechanism for
instrumenting an application is a Sapphire probe. Probes
are used for both active and passive monitoring of
parameters of a networked application. An active Sapphire
probe can set the level of a parameter during runtime,
thereby affecting the performance of the application. On the
other hand, a passive Sapphire probe simply monitors the
levels of parameters of instrumented protocol layers and
generates appropriate event messages.

3.3.2 Sapphire Probe

A Sapphire probe, shown in Fig. 3, provides four
functionalities:

1. synchronizing the instrumented process with other
processes of the networked application at the
beginning of an experiment,

2. registering a set of user-defined parameters to be
monitored and modified during the experiment,

3. providing a logical ordering of all events (changes in
levels of monitored parameters) via Lamport’s
vector clocks [16], and

4. forwarding events to other probes and the core
agents, as necessary.

Although not implemented in our current version, a Sapphire
probe can also be inserted in protocol layers other than the
application itself. For example, probes can be used to control
various parameters of the transport layer (e.g., TCP send and
receive buffer sizes, MTUs, and number of parallel streams)
to study the interaction of an application with respect to
changes in transport-layer settings in the end-hosts. This
flexibility in Sapphire makes it a general-purpose character-
ization approach across many application domains.

3.3.3 APIs

Table 1 lists the primary APIs available for application
instrumentation. An application can define and manipulate
events at a lower level by calling methods available in the
Sapphire core (Table 2).2 The event monitoring and applica-
tion-level APIs are designed to be general-purpose. For

example, we have instrumented a network stack and the PCM
audio streaming application for the results presented in
Section 5. As mentioned earlier, users are free to include any
application-level parameter during the model-generation
phase. The parameters can also be hierarchical in case of
complex networked applications that use multiple compo-
nents and services.

3.3.4 Event Management

The events of a networked application can be broadly
classified as internal and external events. The internal events
are generated within a process and do not interfere with other
processes. In Sapphire, one can set internal events as fine-
grained as tracking changes to individual variables, as well as
higher-level objects such as functional blocks and state
changes. For applications that require large-scale computa-
tions or network resources, it is becoming more acceptable to
introduce such instrumentation for performance analysis and
monitoring as long as the measurement overhead is a small
fraction of the overall resource usage. During Sapphire
initialization, an event structure is created for each class of
variables and each event class is assigned an event_type.
Associated with each class of events, there is an event
sequence string, or event_seq. The event sequence strings
identify events within a class of similar events. The individual
fields in the event_seq string are defined as follows: (Ipaddr:
PortNum) are the IP address and port number for the
originating process, respectively. The PID is the process
identification number—it is included to accommodate multi-
ple processes on a single device or end-host. TSTamp is a
globally-ordered timestamp using vector clocks, and the field
Dir is a string denoting a location of the event data. Therefore,
an event_seq object is represented as the tuple: ((Ipaddr:Port-
Num), PID, TSTamp, Dir). The event definition format
containing event_type and event_seq uniquely identifies any
event in a given process group. The event notification
messages are delivered using these two items only. The
values of the event objects themselves are cached locally on
the originating end-host/device and are not exchanged. This
approach has two advantages: 1) the format of the event
messages to be exchanged is fixed no matter how large or
small the actual event objects are, and 2) by having a fixed
format, one can always bound the amount of network
resources to be used by the core agents. Further, having a
fixed format for event notification and message ordering
makes Sapphire general-purpose since it can be used irrespec-
tive of the type of messages and events generated by different
applications. As an example, consider two entirely different
classes of applications: distributed simulation of molecular
structures and video-conferencing. The first application (a
class of scientific computing) is typically a collection of
processes that are highly CPU-intensive, with occasional
message passing to exchange large volumes of data. In
contrast, the second application (a class of multimedia
applications) requires soft real-time guarantees and frequent
exchange of audio and video packets via the H.323 protocol.
Both classes of applications can be instrumented using the
same set of APIs in Sapphire—the only difference is how
probes interpret and set different parameters and objects in
the respective application. Hybrid applications such as
virtual scientific collaboratories may incorporate both classes
of applications. Using our framework, the events from
different applications (running as different sets of processes)
may have different event_types and event_seqs and, therefore,
do not require any changes to the underlying core libraries.

1516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Fig. 3. Components of a generic Sapphire probe.

2. Security issues of modifying parameters across multiple protocol
layers by the application are not addressed here, but will be investigated in
the future.

Fig. 2 shows a schematic of the Sapphire core components. An
end-host (E) is instrumented for individual applications
(processes) as well as for the network stack. A client process
in the end-host coordinates all the local probes of E and
performs all necessary synchronization withthe Sapphire core.
The core of the framework ðMÞ is a collection of several agents:
An overall Controller Agent performs global coordination
among all end-hosts, processes, and probes during the
experiment. At the beginning of an experiment session, it
reads in an experiment scenario file which contains runtime
levels of the parameters being studied. An application defines
a set of events of interest that are monitored for the runtime of
the experiment. For portability, the event definitions can be
exported out of the application using a markup language such
as XML [17]. The core loads a runtime module to register these
event definitions so that an appropriate data structure can be
set up for them. An application-level event is generated by
callingsa_generate_event() (see Table 1) and by passing
an appropriate event structure to it.

3.3.5 Synchronization of Instrumented Sapphire Clients

The controller agent assigns a timestamp to an event based
on the notion of vector clocks [16] to denote causality. In the
original vector clock scheme, all event massages are tagged
with a timestamp of size n, the number of processes in the

instrumented application, to maintain the notion of vector
time. Obviously, when n is large, the amount of timestamp
data that has to be attached with each event message may
become unacceptably large. To avoid this situation, we
adopt the scheme proposed in [18], which reduces to a
single scalar value instead of a vector of n elements. The
core services include two additional agents: the Host
Controller Agent performs end-host synchronization and
correct installation of parameters at the beginning of an
experiment session, whereas the Network Device Controller
Agent is responsible for communication to network-level
agents (see below) so that correct network-level (e.g., the
network stack of the end-hosts) parameters are installed in
the network under study. One of the functionalities of the
core agents is to initialize a group of instrumented clients on
behalf of the application. The initialization is performed
using a three-phase protocol as shown in Fig. 4. First, clients
C1, C2, and C3 send requests for joining the core service. The
server replies by sending acknowledgment messages along
with the relative rank of each client (currently based on the
arrival time of the initial request) in the process group.
When either a new request has been received at the core or a
preset time period has expired, the server sends one final
message (start) to each of the clients indicating that a new
experiment with its specified level of parameters is about to

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1517

TABLE 1
The Programming Interfaces for Application Instrumentation and Event Definition

TABLE 2
Primary Functionalities of the Sapphire Core Agents

start. At this point, control is returned to the application for
normal execution.

3.3.6 Network Instrumentation

Sapphire also includes a set of agents for configuring
individual nodes of a network. These agents have also
been used in our previous work in [1]. This is necessary for
correct handling of the network-level parameters in the
overall design of experiments. Note that such adminis-
trative access to individual nodes (i.e., routers, switches,
etc.) of a network is not always possible. In such a case, an
emulation for the target network can always be created in
conjunction with instrumented application processes.

. Remote Agents. These are a set of distributed agents
placed in the network, typically one at each
intermediate router, and are controlled by a Network
Device Controller Agent (below) which executes and
keep track of the experiment steps. The Controller
Agent sends periodic messages to the remote agents
residing on the remote network elements according
to the scenario of each experiment. It reads in a
scenario file that defines the network configuration
parameters (factors) and their values (levels).

. Network Device Controller Agent. It is a domain-level
agent, responsible for configuring the traffic condi-
tioning elements in a given network domain. It
receives information from the Controller Agent in
the core about each scenario to be performed for a set
of experiments and sends messages to each of the
routers under its administrative control with instruc-
tions for the set of traffic controls (router configura-
tion) parameters to be installed for this scenario. These
parameters are often the configuration parameters for
setting up appropriate queueing disciplines, buffer
sizes, traffic classes, and filters.

. Network Configuration Agents. These agents are
placed on the individual routers in the network that
participate in the experiments. They perform the
actual configuration of the traffic control blocks on
each router and are, therefore, device-dependent.

4 DESIGN OF EXPERIMENTS AND STATISTICAL

MODELING

Central to the model-building step are two statistical
methods, namely, ANOVA and regression analysis. A
detailed description of these methods can be found in
[19], [20]. ANOVA partitions the variances (i.e., sums of
squared deviations from the overall mean) among the
factors and their interactions. From the percentages of
variations, we can identify the most important factors. The
factors with small or negligible contributions to the total

variation of the output can be removed from the model.
This process essentially eliminates the large number of
parameters that the user may choose during the model-
building step.

For any three factors (i.e., k ¼ 3) denoted as A, B, and C
with levels a, b, and c, and with r repetitions of each
experiment, the response variable y can be written as a
linear combination of the main effects and their interactions:

yijkl ¼ �þ�iþ�jþ�kþ�ABij þ �ACik þ �BCjk þ �ABCijk þ eijkl
i ¼ 1; . . . ; a; j ¼ 1; . . . ; b; k ¼ 1; . . . ; c; l ¼ 1; . . . ; r;

ð1Þ

where yijkl = response in the lth repetition of experiment
with factors A, B, and C at levels i, j, and k, respectively.
� = mean response = �y....
�i = effect of factor A at level i ¼ �yi... � �.
�yi... = average response at the ith level of A over all levels

of other factors and repetitions.
�j = effect of factor B at level j ¼ �y:j... � �.
�ABij = effect of the interaction between A and B at levels

i and j ¼ �yij... � �i � �j � �.
�ABCijk = effect of the interaction between A, B, and C at

levels i, j, and k = �yijk:��ABij��BCjk��ACik��i��j��k��.
eijkl = error in the lth repetition at levels i, j, andkand so on.

Squaring both sides of the model in (1), and summing over all
values of responses (cross-product terms cancel out), we get:

X

ijkl

y2
ijkl ¼ abcr�2 þ bcr

X

i

�2
i þ acr

X

j

�2
j þ abr

X

k

�2k

þ cr
X

ij

�2
ij þ br

X

ik

�2
ik þ ar

X

jk

�2
jk

þ r
X

ijk

�2
ijk þ

X

ijkl

e2
ijkl;

which can be written as:

SSY ¼ SS0þ SSAþ SSBþ SSC þ SSABþ SSAC
þ SSBC þ SSABC þ SSE:

The total variation of y, denoted as the sum of square total
or SST , is then:

SST ¼
X

ijkl

ðyijkl � �Þ2 ¼ SSY � SS0:

The error in the kth repetition is eijkl ¼ yijkl � �yijk, and the
sum of squared errors (SSE) is equal to:

SSE ¼
X

ijk

e2
ijkl ¼ SST � SSA� SSB� SSC � SSAB

� SSAC � SSBC � SSABC:

The percentages of variation can be calculated as 100� ðSSASSTÞ
for the effect of factor A, 100� ðSSABSST Þ for the interaction
between A and B, and so on. From these percentages of
variations, we can identify the most important factors. The
factors with small or negligible contributions to the total
variation of the output can be removed from the model. Using
ANOVA also allows us to calculate the mean square error
(MSE) and compare it with the mean square of the effect of
each factor to determine the significance of these effects
against the experimental errors. This is called the F-test in

1518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Fig. 4. Synchronization of instrumented Sapphire clients.

ANOVA and usually leads to the same conclusion if we
compare the percentage of variations of the factors with those
of errors. The linear model used in ANOVA is based on the
following assumptions [19]: 1) the effects of the input factors
and the errors are additive, 2) errors are identical and
independent, normally-distributed random variables, and
3) errors have a constant standard deviation. Therefore, an
important step after the ANOVA analysis is to validate the
model by inspecting the results. This can be done using
several “visual tests”: 1) the scatter plot of the residuals
(errors) versus the predicted response should not demon-
strate any trend and 2) the normal quantile-quantile (Q-Q)
plot of residuals should be approximately linear (after
removing the outliers). The ANOVA method itself does not
make any assumption about the nature of relationship
between the input factors and the response variables [20].
However, in some cases where the residual errors are non-
i.i.d., one can use the family of “mixed models” and
bootstrapping [21] instead of the straightforward application
of ANOVA. This can be easily accommodated in the software
framework of Sapphire.

Once the most significant factors have been identified,
we use regression models [20] to capture possible relation-
ships between each output response variable and the most
significant input factors. Basically, we use a variant of the
multiple linear regression model called the polynomial
regression for this purpose. The justification for this is that
any continuous function can be expanded into piecewise
polynomials given enough number of terms. We use a
number of simple transformations [19] such as inverse,
logarithmic, and square root, to capture nonlinearity in
these relationships and convert them into linear ones.
However, more complex transformations [19], [20] can be
used for complex models. We choose the transformation
that best satisfies the visual tests, minimizes the error
percentage in ANOVA, and maximizes the coefficient of
determination ðR2Þ in the regression model. For a stable and
statistically valid application of the regression model, the
confidence intervals must be smaller than the respective
parameter values. To check the accuracy of the model, we
divide the collected experimental data into training and
verification sets and make sure that most of the parameters
in the verification set are within 95 percent confidence
interval of the values estimated from the training data sets.
These results are presented in Section 5.

4.1 Factors and Factor Levels

The choice of factors depends entirely on the type of
characterization, type of application, and network nodes
being used for an experiment. Additionally, choosing levels
of such parameters requires either knowledge of the traffic
control components of the node or the use of vendor-
supplied specifications. In our experiments, we used
network routers based on the open-source Linux operating
system and, therefore, we were able to access all the
configuration parameters as well as their implementation
details. The Linux traffic control module provides a flexible
way to realize various traffic differentiation schemes with
the help of a number of queueing disciplines and traffic
conditioning modules. However, other network hardware
can also be instrumented via serial access. The choice of
application-level parameters depends entirely on the type
of application under study. An example of a PCM audio

streaming application is provided in Section 5 in which we
study the effect of parameters such as frame size, PCM
sampling rate, bits/sample, drop probability, and inter-
packet jitter. It is also possible to define a set of higher-level
application parameters such as throughput (an effective
share of network bandwidth), latency (e2e delay), frame
delay variation, reliability (frame loss, atomicity of opera-
tions), etc., for a particular service such as VoIP and, then,
relate these to protocol-specific parameters (e.g., ITU and
ETSI GSM speech codecs). For VoIP, one should also
consider the number of simultaneous sessions as well as
echo/round-trip delay levels. Similarly, the codec para-
meters of MPEG-2 (HDTV), H.323, can be related to the
above high-level parameters for digital video transmission.
We expect that such application-specific parameters that
affect the e2e performance of an application are known
before an approach such as Sapphire can be used.

An important issue is the choice of the levels for the
factors in designing a set of experiments, which covers the
entire range of the expected performance of an application.
In some cases, intuition can reveal the relationships
between the factors and the response variables. For
example, if the configured service rate of the forwarding
engines along the path is higher than the total input traffic
rate, the output throughput converges to the input rate. On
the other hand, if one considers delay, it is not obvious
a priori as to how it will be affected by the relative
difference between the input and configured rates. Our
approach provides a generic solution for this issue, in which
polynomial models are derived to represent such complex
relationships. It may not be possible to cover all possible
ranges and various modes of operation in this manner.
However, the experiments should capture the expected
ranges of operation for the application traffic running on a
given network.

4.2 Factorial Design

A full factorial design utilizes every possible combination of all
the factors [19] at all levels. If we have k factors, with the
ith factor having ni levels, and each experiment is repeated r
times, then the total number of experiments to perform will beQk

i¼1 ni � r. One of the drawbacks of the full factorial analysis
is, therefore, the large state space of the factors. To reduce the
number and the execution time of experiments, we can use a
combination of factor clustering and iterative experimental
design techniques. In factor clustering, the input and config-
uration parameters having similar effect on the output are
grouped together. This is similar to [22] in which the authors
clustered 10 congestion and flow control algorithms in TCP
Vegas into three groups, according to the three phases of the
TCP protocol. We used this iterative design technique to
investigate three distinct types of network provisioning for
per-hop QoS [1]. Nevertheless, even with both experiment-
reduction techniques used, the number of experiments can
still be large and therefore, an automated approach such as
the one used in Sapphire is very useful.

5 EXPERIMENTAL RESULTS AND VALIDATION

As an example of generating interaction models via
Sapphire, we present experimental results for an audio
streaming application. Note that there are many other
potential applications that can be instrumented with

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1519

Sapphire, most notably, video streaming and other multi-
media applications. We chose audio streaming as an
example application due to its simplicity and small number
of encoding parameters affecting its performance. Once we
derive a model from the experiments, the resulting model is
incorporated back in the application so that the server can
adapt its streaming parameters (using this model) in
response to varying traffic in the network. This is an
example of using Sapphire for generating a model that can
then be incorporated in a feedback loop. Through this set of
experiments, we demonstrate the flexibility of the frame-
work and the potential of using Sapphire to introduce
model-based adaptivity to other networked applications.

Fig. 5 shows the network testbed used for our experi-
ments. We use three routers, R1, R2, and R3, as the QoS-
enabled network path for the audio application traffic. The
routers support two classes of traffic: premium application
(high priority) traffic and best-effort background (lower
priority) traffic. The application traffic is always generated
from host H and ends at the same host in a ring topology.
Hosts T1 through T3 are used to generate the background
(best-effort) traffic, that shares the links with the application
premium traffic. The router S installs different traffic
control configurations according to the experimental sce-
nario. One can envision two different operating modes for
this network configuration with respect to the premium
input traffic: The network can be overprovisioned (OP) or
underprovisioned (UP). In the OP mode, the total premium
input traffic rate is less than its allocated rate, whereas, for
the UP mode, it is larger than the allocated rate. We vary the
background traffic parameters along with those for PCM
encoding to generate the interaction model.

5.1 Model Generation for the PCM Audio Streaming
Application

To generate the model, we instrument both the server and
client processes of the PCM audio streaming application
with Sapphire probes (see Fig. 5) so that specific application
parameters can be monitored and configured as part of the
design of experiments step. We also introduce a back-
ground traffic from hosts T1, T2, and T3 to determine the
sensitivity of the audio traffic to other traffic in the network.

Table 3 lists the interaction model factors and their
levels. The factor aj is an application-level parameter in the
PCM server that can selectively introduce per-packet jitter
based on feedback received from the clients about the
quality of the audio traffic. The factors as, ab, and ams are

related to the PCM encoding technique and refer to
sampling rate (Hz), number of bits per sample, and number
of milliseconds of audio per packet, respectively. The first
two parameters provide the range and quality of audio
content, e.g., CD-quality audio requires encoding at
44.1 KHz and 16 bits for levels. The MPEG layer 3 encoding
(MP3) requires even a larger number of bits (128 bits) per
sample. As shown in Table 3, the audio quality is varied
from telephony (8KHz/8bit) to CD-quality (44KHz/32bit
stereo). Intuitively, both the sampling rate and the number
of bits per sample affect the bandwidth requirement of an
audio application—we verify this as well as model the
relationship as part of the model generation step. The rest of
the factors are for the background traffic from hosts T1, T2,
and T3. The allocated rate for the application traffic is
3.33 Mbits/sec.

Table 4 shows the percentage variations of the effects

due to the factors and their interactions. As expected, the

measured bandwidth of the application depends entirely on

the sampling rate ðasÞ and the number of bits per sample

ðabÞ. Since the network is over-provisioned, the response

variables (Throughput or BW, Delay, and Jitter3) are not

affected by the background traffic in the same aggregate.4

The delay is entirely dependent on the size of the audio

packets, as given by the parameter ams. For a given

sampling rate and quantization level, the size of the PCM-

encoded packets is linearly proportional to the milliseconds

of audio encoded in them, and therefore, the experimental

results for delay are valid. The characterization for jitter,

however, shows strong first-order interactions between

application-induced jitter ðajÞ and ams. The error analysis

and scatter plots for the response variables confirm the

linearity of the ANOVA model (e.g., see Figs. 6 and 7 for

jitter). We also confirmed that the errors are normally-

distributed. There is no trend in the residual versus

predicted response scatter plot. Moreover, the errors are

normal since the normal Q-Q plot is mostly linear. The tests

for throughput and the delay show linearity as well.
Next, we calculate the polynomial regression models for

the response variables in terms of the most significant

factors as follows.

1520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Fig. 5. Multiple-hop testbed for PCM audio application.

TABLE 3
Factors for PCM Audio Streaming Experiment

3. Jitter is calculated J ¼ J þ ðjDði� 1; iÞj � JÞ=16, where Dði� 1; iÞ is
delay variation between packets i and ði� 1Þ.

4. There is a small effect of the background traffic packet size on delay as
can be expected, but it is less than 2 percent and, hence, omitted in the table.

BW ¼ 18386:51� 31173:72ab � 1:24as þ 12:04abas

þ 10877:14abab � 1:20asa
2
b � 1554:36a3

b

þ 0:1542asa
3
b ;

Delay ¼ �0:0002þ 0:0010ams;

Jitter ¼ 0:35� 0:0036ams þ 0:2aj � 0:0077amsaj

þ 0:03a2
j � 0:0001amsa

2
j :

ð2Þ

The surface plots for BW and jitter corresponding to this

model, along with their 95 percent confidence intervals, are

shown in Figs. 8 and 9. Note that confidence intervals are

intimately tied to sample size. The larger the sample size,

the narrower the confidence interval. Therefore, one should

have a reasonable operating range of the factors to sample

from while developing the interaction model.
Next, we extend the testbed to study the effect of

multiple hops as well as multiple background traffic

sources on the audio streaming traffic. The testbed allows

the number of hops ðnhopÞ to be varied from 1 to 3 as an

additional factor. Due to lack of space, we only show the

results of the ANOVA analysis in Table 5. The regression
models for bandwidth, delay, and jitter for multiple hops

include the previously significant factors as well as a
number of higher-order interactions with a maximum

polynomial degree of 4. It is important to observe that
bandwidth is independent of the number of hops (as can be

expected), but depends on sampling rate, bits per sample,

and the background traffic characteristics. However, both
delay and jitter are now affected by the number of hops, as

well as packet sizes.

5.2 Model-Based Adaptation of PCM Audio
Streaming Application

We now use these models as an example of providing
application-level adaptation. We modify the audio stream-
ing application to include server-side adaptation based on
periodic sampling of the response variables and the
introduction of a feedback loop between the server and
the client. For simplicity, we only adapt the sampling rate
ðasÞ and the audio per packet ðamsÞ parameters while
keeping the other parameters fixed. In general, one chooses
a set of parameters to be adapted based on the percentage
variations in the ANOVA table. There are a number of
approaches a server can adapt based on periodic feedback.
Our primary goal in this section is to demonstrate the
usefulness of the Sapphire-generated models in identifying

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1521

TABLE 4
Anova Results for PCM Audio Experiment

Fig. 6. Residuals versus predicted response for jitter.

Fig. 7. Normal Q-Q plot for jitter residuals.

Fig. 8. PCM bandwidth model and 95 percent confidence interval.

Fig. 9. PCM jitter model and 95 percent confidence interval.

the most significant parameters and in providing the

interaction model. Once the models are available, one can

develop efficient adaptation frameworks for an application

depending on the levels of QoS guarantees needed. The

following are two simple mechanisms for the PCM audio

adaptation that were easy for us to set up in the testbed

environment. For other application domains such as video-

on-demand or video-streaming, more sophisticated ap-

proaches are available in the literature.

. Greedy approach. In this approach, the sender
transmits longer audio content per packet (twice
the previous size) as long as the delay is below a
given threshold. When the delay threshold is
reached, the sender decreases ams to half the
previous value and starts the process again. Simi-
larly, for bandwidth, it increases the sampling rate
until a threshold (set by a specified rate for the audio
traffic) is reached, at which point the sender throttles
itself. It is obvious that the Greedy approach, by
design, will be oscillatory in terms of delays

experienced by the application and, therefore, may
not be practical in real-life deployments.

. Baseline approach. In this approach, the average delay
is held constant while increasing the bandwidth
slowly up to the specified limit for the application,
provided there is enough bandwidth available in the
network path. This approach enables more stable
adaptation since the bandwidth changes are gradual.

Figs. 10 and 11 show measured values of bandwidth and
delay for these two approaches, respectively. Note that, for
each value of bandwidth and delay, the corresponding values
of the application parameters, as and ams, are calculated from
the models that were generated during the model-generation
phase of Sapphire. These computed values for the sampling
rate and audio per packet are shown in Figs. 12 and 13,
respectively, during a typical audio streaming session. By
comparing the two approaches, the Baseline adaptation
appears to be a smoother process than the Greedy approach.
As mentioned above, this is to be expected since the baseline
adaptation slowly increases the bandwidth while maintain-
ing a constant e2e delay for the audio traffic. Many other

1522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

TABLE 5
ANOVA Results for PCM Audio Streaming over Multiple Hops

Fig. 10. Bandwidth response by adapting the sampling rate ðasÞ.

Fig. 11. Delay response by adapting the audio per packet (amsÞ.

Fig. 12. Adaptation of sampling rate ðasÞ.

Fig. 13. Adaptation of audio per packet ðamsÞ.

adaptation models can be developed depending on the type
of application traffic and user interactions in the given
network.

We provide this section on model-based adaptation as an
example of taking an existing application, instrumenting it
with Sapphire probes, generating an interaction model, and,
finally, using this model in the application itself to provide
adaptation. This flexibility of nearly-automated model
generation for existing networked applications is a key
feature of our work.

6 RELATED WORK

There has been a renewed interest in the area of application
adaptation and control, especially based on feedback from
runtime middleware [23], [24]. While classical control-
theoretic approaches are increasingly being applied to
control performance of Web-based services, multimedia
applications currently use a variety of ad hoc methods to
adapt to changing network and server-side conditions.
Sapphire provides a robust model for such adaptation. The
design goals of Sapphire are closely related to the adaptation
framework developed by Chang and Karamcheti [25] for
automatic configuration and runtime adaptation of dis-
tributed applications. The authors of [25] present two novel
components: a tunability interface for providing alternate
configurations of runtime application parameters and a
virtual execution environment emulating application ex-
ecution under diverse resource availability. The specifica-
tion for application tunability requires development of an
application interaction model (called application profiles).
The authors use the virtual execution environment running
on top of a static distributed system to emulate a wide range
of resource availability scenarios and, thus, generate the
application profiles. Our framework achieves this as part of
the ANOVA analysis. Note that the most important
parameters for a networked application in [25] need to be
known a priori for the tunability interface, whereas, in
Sapphire, these are identified as part of the profiling step.

The USA (User Service Assistant) system [26] is a QoS
management framework that provides assistance in nego-
tiating the required levels of services, provided these are
known for an application. It does not estimate the resource
requirements and only provides information about the
session quality to enable users make informed decisions. By
design, such a framework requires the users to know the
application-network interaction model. Abdelzaher [27]
presented the automated profiling subsystem approach
that can estimate application resource requirements by
applying recursive least-squares and adapt the application
transparently to the resouce capacity of the underlying
platform. The key aspect of this study is profiling server-
side applications, such as Web servers. In [28], the authors
describe the design and implementation of ControlWare, a
middleware QoS-control architecture based on well-estab-
lished linear feedback control theory. The framework is best
suited for server applications and a system model for the
server is assumed to be available to the controller.

The BRISK application instrumentation system [29] is
targeted for distributed real-time systems. The system writes
all records to a shared memory in the network. The
information is then sent to an instrumentation manager for a
graphical display of all events. The main limitation of this
system is the use of a global clock—while BRISK employs
some degree of global clock synchronization, global clocks are

inherently problematic due to their inability to accurately
reconstruct a global state. Taylor et al. describe the Prophesy
system [30], which also provides internal application instru-
mentation. An interesting aspect of Prophesy is that the user
can automatically instrument via a set of tools provided in
Prophesy. However, this system is not designed to study
application-level protocols since it was developed for exam-
ining the performance of a specific algorithm. Nonetheless,
the idea of automatic instrumentation is attractive for large-
scale distributed applications. The authors of [31] present
compiler techniques and code extensions in which the
compiler attempts to predict performance for an application
using a task graph approach. Gunter et al. [32] describe the
NetLogger system for the collection of events from instru-
mented applications. However, NetLogger shares the same
problem as BRISK, in that it also requires a global clock.
Another problem is that no attempt is made in NetLogger to
provide any clock synchronization in the presence of skewed
clocks and, therefore, the system is useful primarily for event
logging. The Emulab [33] testbed allows coordinated experi-
ments with distributed and emulated resources, and it may be
possible to use the framework for performance characteriza-
tion with suitable instrumentation. In IQ-RUDP, described by
He andSchwan [34], the transport-layer itself is instrumented,
and by using various coordination measures, the application
and transport protocols adapt their own behaviors. The
approach assumes that an a priori model of the application at
various performance levels is available. Malan and Jahanian
[35] present Windmill, a passive network protocol perfor-
mancemeasurement tool.Windmill allows the reconstruction
of application-level network protocols and the underlying
protocol layers’ events. The idea of probing multiple protocol
layers in Sapphire is similar to network-layer probing in
Windmill, but there are important differences between the
two. In Sapphire, one can perform coordinated experiments at
both application and network layers and develop fine-
grained statistical models of application performance. With
support for both active and passive probing, Sapphire is used
as a framework for application adaptation similar to IQ-
RUDP. Sapphire also borrows ideas from large-scale event
correlation techniques. The goal of event correlation is to
relate events back to their probable cause. The authors of [36]
describe a system called InCharge that can be used to isolate
and handle network faults in near real time. The system
attempts to automatically reconfigure itself in response to a
dynamic network topology. It divides the network into
domains, each managed by a domain manager. Fault injection
systems are often used to test the implementation of
distributed protocols, and as such, can also be used to test
the effectiveness of event correlation. Dawson and Jahanian
[37]describe Orchestra, aportable fault injection environment
that attempts to minimize intrusiveness on target protocols.
However, the fine-grained performance of any application-
level protocol cannot be understood without explicit instru-
mentation. Chandra et al. [38] describe Loki, a state-based
fault injection system capable of injecting faults with only a
partial view of the global state of a distributed system.

7 CONCLUSION

We have presented Sapphire, a framework for the generation
of application-network interaction models within a given
networked environment. The framework constructs statisti-
cal models of application performance in the target network
environment by performing a set of designed experiments
and by identifying the parameters that have the most

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1523

significant effect on the performance. The design of Sapphire
allows emulation of the target network so that alternative
configurations of network-level parameters can be analyzed
before deploying QoS-sensitive services. As an example, we
have used Sapphire successfully to characterize and model an
audio-streaming application. The resulting model can be
incorporated, as we have presented, in the application to
enable adaptation with respect to changes in the most
important parameters affecting its performance. Sapphire
can be used in a number of contexts such as feedback control
of application-level parameters in response to changing
network conditions, and tuning application and network-
level parameters to meet service-level guarantees. The
Sapphire core and probes presented in this paper can be
extended to more complex systems, such as applications
deployed in an enterprise network to characterize their
behavior under different resource-provisioning scenarios.
More sophisticated statistical methods such as iterative
system identification and control can also be incorporated
to generate robust adaptation models.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
valuable suggestions and improvements to the paper.

REFERENCES

[1] M. El-Gendy, A. Bose, H. Wang, and K.G. Shin, “Statistical
Characterization of Per-Node QoS,” Proc. 11th IEEE Int’l Workshop
Quality of Service (IWQoS), June 2003.

[2] Fidelia NetVigil Version 3.5, http://www.fidelia.com, 2006.
[3] “Mercury Interactive Topaz Application Performance Manage-

ment,” http://www.mercuryinteractive.com, 2006.
[4] L.A. DaSilva, “QoS Mapping Along the Protocol Stack—Discus-

sion and Preliminary Results,” Proc. IEEE Int’l Conf. Comm. (ICC),
June 2000.

[5] K. Nahrstedt and J.M. Smith, “An Application-Driven Approach
to Networked Multimedia Systems,” Proc. 18th Ann. Conf. Local
Area Computer Networks, pp. 361-368, 1993.

[6] J. Huard and A. Lazar, “On QoS Mapping in Multimedia
Networks,” Proc. 21st IEEE Int’l Computer Software and Application
Conf. (COMPSAC), 1997.

[7] B.H. Liu, P. Ray, and S. Jha, “Mapping Distributed Application
SLA to Network QoS Parameters,” Proc. 10th IEEE Int’l Conf.
Telecomm. (ICT), 2003.

[8] J. Bolot and A. Vega-Garcia, “Control Mechanisms for Packet
Audio in the Internet,” Proc. INFOCOM, pp. 232-239, 1996.

[9] T. Urabe, H. Afzal, G. Ho, P. Pancha, and M. El Zarki,
“MPEGTool: An X-Window-Based MPEG Encoder and Statistics
Tool,” Proc. ACM Multimedia Conf., pp. 259-266, 1993.

[10] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang, and W. Weiss,
“An Architecture for Differentiated Services,” RFC 2475, IETF,
Dec. 1998.

[11] K. Nichols, V. Jacobson, and L. Zhang, “A Two-Bit Differentiated
Services Architecture for the Internet,” RFC 2638, IETF, July 1999.

[12] Schulzrinne, Casner, Frederick, Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” IETF RFC 3550, Network
Working Group, 2003.

[13] N. Kitawaki, “Perceptual QoS Assessment Methodologies for
Coded Speech in Networks,” Proc. IEEE Workshop Speech Coding,
2002.

[14] F. Hammer, P. Reichl, and T. Ziegler, “Where Packet Traces Meet
Speech Samples: An Instrumental Approach to Perceptual QoS
Evaluation of VOIP,” Proc. 12th IEEE Int’l Workshop Quality of
Service (IWQOS), pp. 273-280, 2004.

[15] B.C. Neuman and S.S. Augart, “Prospero: A Base for Building
Information Infrastructure, ” Proc. Int’l Networking Conf. Internet
Soc. (INET ’93), 1993.

[16] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, 1978.

[17] Extensible Markup Language (XML), http://www.w3.org/
XML/, 2006.

[18] R. Schwarz and F. Mattern, “Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail,” Dis-
tributed Computing, vol. 7, no. 3, pp. 149-174, 1994.

[19] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc., 1991.

[20] J. Neter, W. Wasserman, and M. Kutner, Applied Linear Statistical
Models: Regression, Analysis of Variance, and Experimental Designs.
R.D. Irwin, Inc., 1985.

[21] R.Y. Liu, “Bootstrap Procedures under Some Non-i.i.d. Models,”
Annals of Statistics, vol. 16, 1998.

[22] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas Revisited,”
Proc. IEEE INFOCOM ’00, Mar. 2000.

[23] B. Li and K. Nahrstedt, “A Control-Based Middleware Framework
for Quality of Service Adaptations,” IEEE J. Selected Areas in
Comm., Sept. 1999.

[24] L. Abeni and G. Buttazzo, “Hierarchical QoS Management for
Time Sensitive Applications,” Proc. IEEE Real-Time Technology and
Applications Symp., 2001.

[25] F. Chang and V. Karamcheti, “Automatic Configuration and Run-
Time Adaptation of Distributed Applications,” Proc. Ninth IEEE
Int’l Symp. High Performance Distributed Computing (HPDC), 2000.

[26] B. Landfeldt, A. Seneviratne, and C. Diot, “User Service Assistant:
An End-to-End Reactive QoS Architecture,” Proc. Sixth IEEE Int’l
Workshop Quality of Service (IWQoS), May 1998.

[27] T.F. Abdelzaher, “An Automated Profiling Subsystem for QoS-
Aware Services,” Proc. IEEE Real Time Technology and Applications
Symp., pp. 208-217, 2000.

[28] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic, “Controlware: A
Middleware Architecture for Feedback Control of Software
Performance,” July 2002.

[29] M.W. Mutka, A. Bakic, and D.T. Rover, “BRISK: A Portable and
Flexible Distributed Instrumentation System,” Proc. 13th Int’l
Parallel Processing Symp., 1999.

[30] V. Taylor, X. Wu, and R. Stevens, “Design and Implementation of
Prophesy Automatic Instrumentation and Data Entry System,”
Proc. 13th IASTED Int’l Conf. Parallel and Distributed Computing and
Systems (PDCS ’01), 2001.

[31] V. Adve, V.V. Lam, and B. Ensink, “Language and Compiler
Support for Adaptive Distributed Applications,” Proc. ACM
SIGPLAN Workshop Languages, Compilers, and Tools for Embedded
Systems, 2001.

[32] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer,
“Dynamic Monitoring of High-Performance Distributed Applica-
tions,” Proc. 11th IEEE Int’l Symp. High Performance Distributed
Computing (ISHPDC), 2002.

[33] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar, “An Integrated
Experimental Environment for Distributed Systems and Net-
works,” Proc. Fifth Symp. Operating Systems Design and Implementa-
tion, pp. 255-270, Dec. 2002.

[34] Q. He and K. Schwan, “IQ-RUDP: Coordinating Application
Adaptation with Network Transport,” Proc. 11th IEEE Int’l Symp.
High Performance Distributed Computing, 2002.

[35] G.R. Malan and F. Jahanian, “An Extensible Probe Architecture for
Network Protocol Performance Measurement,” Proc. ACM SIG-
COMM, 1998.

[36] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High
Speed and Robust Event Correlation,” IEEE Comm. Magazine,
vol. 34, 1996.

[37] S. Dawson and F. Jahanian, “Probing and Fault Injection of
Protocol Implementations,” Proc. Int’l Conf. Distributed Computer
Systems, May 1995.

[38] R. Chandra, R.M. Lefever, M. Cukier, and W.H. Sanders, “Loki: A
State-Driven Fault Injector for Distributed Systems,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN), 2000.

1524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 12, DECEMBER 2006

Abhijit Bose (M’03) is a PhD candidate in
computer science and engineering at The
University of Michigan, Ann Arbor. He is a
research scientist and associate director of
Michigan Grid Research and Infrastructure
Development at the University of Michigan,
Ann Arbor. His research interests are network
security, distributed resource scheduling and
computational modeling of biological processes.
He has published more than 20 technical papers

in international journals and conference proceedings. His research is
funded by the US National Science Foundation (NSF), the University of
Michigan, and industry. He is a recipient of the best paper award (2003,
IEEE IWQoS), a TI Fellowship (1995), and a National Merit Scholarship
(1984-1986).

Mohamed El Gendy (S’94-M’03) received the
BSc degree in electrical engineering and the
MSc degree in computer engineering from Cairo
University, Egypt, in 1995 and 1998, respec-
tively. He received the PhD degree from the
Department of Electrical Engineering and Com-
puter Science at the University of Michigan, Ann
Arbor, in September 2005. He has been working
at Cisco Systems, San Jose, California, in the
7600 router group since October 2005. While at

the University of Michigan, he worked on QoS modeling and control for
real-time applications over the Internet and his thesis described several
ways of realizing a model-based QoS control framework. His research
interests are computer networks, operating systems, network QoS, real-
time systems, and distributed systems. Dr. El Gendy is a winner of the
best student paper award from the International Workshop on Quality of
Service (IWQoS) in 2003 and the best master thesis award from Cairo
University in 1999.

Kang G. Shin (S’75-M’78-SM’83-F’92) received
the BS degree in electronics engineering from
Seoul National University, Seoul, Korea, in
1970, and the MS and PhD degrees in electrical
engineering from Cornell University, Ithaca, New
York, in 1976 and 1978, respectively. He is the
Kevin and Nancy O’Connor Professor of Com-
puter Science and the founding director of the
Real-Time Computing Laboratory in the Depart-
ment of Electrical Engineering and Computer

Science, University of Michigan, Ann Arbor. He has supervised the
completion of 55 PhD theses and authored or coauthored approximately
630 technical papers. His current research focuses on QoS-sensitive
networking and computing, as well as on embedded real-time OS,
middleware, and applications, all with an emphasis on timeliness and
dependability. Dr. Shin is a fellow of the ACM and a member of the
Korean Academy of Engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BOSE ET AL.: SAPPHIRE: STATISTICAL CHARACTERIZATION AND MODEL-BASED ADAPTATION OF NETWORKED APPLICATIONS 1525

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

