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ABSTRACT

The interoperability of IM (Instant Messaging) and SMS (8ho

Messaging Service) networks allows users to seamlesslg uae
riety of computing devices from desktops to cellular phoasd
mobile handhelds. However, this increasing convergenseals®
attracted the attention of malicious software writers. Ha past
few years, the number of malicious codes that target masgagit-

works, primarily IM and SMS, has been increasing exponéntia

Large message volume and number of users in these netwaorks re

ders manual mitigation of malicious software nearly imjiuss
This paper proposesutomatedand proactive securitynodels to
protect messaging networks from mobile worms and virusiest, F
we present an algorithm for automated identification of thestm
vulnerable clients in the presence of a malicious attackethan
interactions among the clients. The simplicity of our apoto
enables easy integration in most client-server messagistgras.
Next, we describe a proactive containment framework thpliep
two commonly-used mechanisms—rate-limiting and quananti
to the dynamically-generated list of vulnerable clienta imessag-
ing network whenever a worm or virus attack is suspectedallyin
we evaluate the effectiveness of proactive security in laleglnet-
work using data from a large real-life SMS customer netwarid
compare it against other existing approaches. Most messagi-

works can implement our proposed framework without any majo

modification of their existing infrastructure.
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1. INTRODUCTION

The exponential growth of messaging in both home and enter-
prise environments has made it a potent vector for the spréad
malicious code [1]. Social engineering techniques are effigc-
tive in spreading malware in these networks since infected-m
sages appear to come from addresses in personal contacadst
dress and phone books. The problem is compounded furthéeby t
increasing convergence of various messaging platforms. eko
ample, users can now send IM messages from mobile phones, and
SMS messages to mobile phones via SMS gateways on the Inter-
net. Given the extremely large number of messages in puldlic |
and SMS network3,the potential for damage from rapidly propa-
gating malicious software is very high in messaging netwofikis
has not escaped the attention of malicious code writersorang
to [1], self-propagating worms represented 91% of malisioode
in large public IM networks in the second half of 2005—a numbe
that has been steadily rising. Similarly, there are now avigrg
number of malicious codes written for mobile handsets tixat e
ploit SMS/MMS to proliferate [2]. Itis clear that if a respggcan
be taken in the early stages of an epidemic in these netwtr&s,
spread can be limited to a small number of clients. Therefiee
veloping proactive securityfframeworks in mobile messaging net-
works is an important area of research. However, most mobile
network operators and messaging providers have not impitde
proactive security for the following reasons.

A key aspect of proactive security is to take stbpforea client
is compromised or at the earliest indication of a virus orwaeic-
tivity in the network. Therefore, finding vulnerable clisrib a
given malicious software is a key first step to any proactaeus
rity strategy. Note that this step must be entirely autochatethe
window of opportunity will be lost. Given the large numberdan
distributed nature of messaging networks, it is not possibplace
monitors everywhere in such networks. However, the mesgagi
server—the Short Messaging Service Center (SMSC) in case of
SMS/MMS messages, and the IM server—provides a natural way
to identify such clients as we explain later.

One may argue that the time window between detection and
proactive containment can be very small and no proactivieract
can stop a fast-spreading malicious code. For examplehiétret-
ically possible to have “Flash Worms” [3, 4] that can infeaishof
the vulnerable hosts of an enterprise within seconds. Vghité at-
tacks are possible, there has been a noticeable decreaabdions

IMore than 1000 billion SMS messages were sent in 2005, and
according to [1], the three largest IM providers—AOL, MSMda
Yahoo!—each accounted for over 1 billion IM messages sent pe
day.



agents that spread very fast via random scanning and sirfgdy ¢
corporate networks. However, there has been a steady s&chea
stealthy Trojans, and malicious agents that install adaadespam
relays, exploit enterprise applications such as datalmasers, and
host malicious websites. For example, Win32.0panki.d {6yes

as a link via the AOL IM network and when executed, it opens a
backdoor via an IRC channel. For these emerging threatxwbs-

ing group associationsvith an already-infected or suspected client
in near real time will lead to better proactive containmemd & is

an important focus of our work.

Finally, any proactive response must address the potdotial
of service and delays in the messaging network due to préempt
shutdown or policing of clients. Since it is common for anbma
detection systems to generate many false positives, ajlstiati-
ward quarantine of clients based on alerts may result inagpie
able levels of message loss and delay. Therefore, one msiginde
proactive strategies that increase the level of countesureawith
increasing alert correlation.

Most of the published studies on modeling and containment of

malicious software have focused on scanning- and emaitsor
due to their prevalence and several successful large-atialeks
on the Internet. On the contrary, there appears to be vélsypitib-
lished work on proactive security of messaging networksis
the primary motivation of our work. In this study, we woul#di
to achieve three primary goals: (i) automated compilatibthe
list of messaging clients that are vulnerable to a spreading
or worm attack, (ii) development of a group-behavior-bgsezic-
tive response framework using client interactions in a @gisg)
network, and (iii) compare the effectiveness of proactagponse
with traditional reactive mechanisms (e.g., anti-virusl$p. The
starting point of our study is observed interactions amdients
comprising the “service-behavior” topology of the meseggiet-
work. The containment itself is implemented in the fornmcbént
rate-limiting [6] (also known as “throttling”) andlient quarantine
However, instead of a straightforward application of themzha-
nisms, we build a behavioral alert-based system that pssiyedy
mounts a stronger response with increasing alerts, andshbaftk
when alert levels decrease with time.

The framework is implemented typically at the messaging ser
vice center (i.e., SMSC in case of SMS/MMS and IM servers)
where logs of client communication are available. These ttan
be analyzed to generate a service-behavior graph for theagies)
network. It is then further processed to generate behalustears,
i.e., groups of clients whose behavior patterns are simiitir re-
spect to a set of metricsinteraction frequencyattachment and
message size distributignsumber of messagesumber of outgo-
ing connections to other clienendlist of traced contactsWhen
the number of alerts in a particular behavior cluster reseltbresh-
old, the messages belonging to that behavior cluster atedies
limited to slow down a potential malicious worm or virus. The
effect of repeated similar alerts and false positives ig kegow
a threshold during this initial containment step. When tlests
reach a second threshold, the containment algorithm appiaac-
tive quarantine, i.e., it blocks messages from suspicitiests of
these behavior clusters. This step essentially enablesethavior
clusters to enter into a group defense mode against thedipgea
malware. This combined approach of rate-limiting and co@me
with increasing response to alerts in the network providgseeful
service degradation, yet a very powerful defense as ouuatiah
will show.

This paper makes three primary contributions. First, ispras
a method for automated identification of vulnerable clientsa
messaging network. Second, it provides a practical soluiio
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improving security in these networks based on an adaptivepyr
behavior-based proactive approach. Third, it demonsttatg proac-
tive security can offer an order-of-magnitude improveniargon-
taining malicious software in messaging networks, ovesteg
“detect-and-block” approaches.

The rest of this paper is organized as follows. Section 2gmtss
motivations behind the behavior-clustering approach. tiGeS
describes how behavior clustering can find vulnerable tdiéor
proactive response. Section 4 describes the proactiveimsitiang
and quarantine algorithms, and their group-behaviordasple-
mentation. Section 5 evaluates proactive security in a agisg
network using data from a large real-life SMS customer netwo
Section 6 reviews recent literature on malware targetingsaging
networks, and malware containment. We describe future andck
make concluding remarks in Section 7.

2. MOTIVATION: FINDING VULNERABLE
CLIENTS

The most common form of proactive defensgegting there first
for example, to patch a client to protect against an existirigera-
bility, or to remove capabilities from the client, makingnbre se-
cure. However, a central problem of proactive defense istide
which clients are the most vulnerable when a malicious aygtis
identified in the network, be it an intrusion, a virus or worfthis
is fundamentally different from reactive or “detect-ariddk” de-
fense which is activated only when a client is in the procésgimg
compromised. Generating a list of vulnerable clients omaied
in near real time is, therefore, a fundamental problem tdysto
proactive defense. The more accurate the list of vulnercigats,
the faster the attack can be suppressed with less intesruatithe
users. Our motivation in studying group-behavior of cléeist to
generate this list by analyzing Charging Data Records (GIRs
and message headers that are logged at the centralizeehntbre
forward messaging servers.

Before discussing our approach, we first need a brief digmuss
of the SMS messaging system. When a mobile user sends a mes-
sage from a handset (i.e., Mobile Originated or MO) or a wabeld
gateway to another phone, the message is received by theSBase
tion System (BSS) of the service provider. The BSS then faiwa
the message to the Mobile Switching Center (MSC). Upon vecei
ing a MO message, the MSC sends the end-user informatioe to th
Visitor Location Register (VLR) of the cell and checks thessege
for any violation. It then forwards the message to the prexsd
SMSC. The SMSC stores the messages in a queue, records the
transaction in the network billing system and sends a coafion
back to the MSC. The status of the message is changed from MO
to Mobile Terminated (MT) at this point. Through a seriesteps,
the message is then forwarded by SMSC to the receiving user's
MSC. The MSC receives the subscriber information from th&VL
and finally forwards the message to the receiving handsee Th
store-and-forward nature of SMS/MMS networks makes it ipbss
to collect client interaction patterns from the time-st@ajogs. A
similar observation can be made for IM servers as well, algho
the procedure to store and forward messages is much sirivjet.

IM messages between users are mediated by the IM servemia so
networks, file-transfer request and response messageslayed
through the server, but the actual file data are transferetdden
the entities directly. This makes the task of collectingoiniation
about client interactions very easy by simply monitoring ton-
nection logs at the server.

Next, we provide the motivations for development of a group-
behavior-based proactive defense strategy. Traditionaip®int



solutions (e.g., switching off service ports on individeiénts or

at firewalls) can detect and protect against only specifiesyy at-
tacks. A more effective defense can be built by studying Hents
interact with each other in the network from periodic ingjmtof

the server logs. If clients can be grouped together basedain t
commonbehavior, it may be possible to contain a broad range of
attacks that manifest in specific behavior anomalies. Tlidibg
block of our approach is finding clusters of such common bienhav
called “behavior clusters.” Once a virus or worm activitydis-
tected at a client, members of its behavior cluster can bemptie

list of vulnerable machines since they may be the most likelg
immediate target of the malicious activity. This is ofter ttase
for topological worms that spread via IM, email, SMS and P2P
file-sharing.

Figure 1: (a) Clustering of common behavior, (b) Microscopt
view

We motivate the usefulness of behavior clusters with a ®rapi
ample. We collected messages from a small departmentabrietw
of 200 unique hosts, and constructed a service-behaviotdgp
based on open client and server port bindings among the (fogts
ure 1(a)). Figure 1(b) shows the service-behavior graph mall
subset of nodes at a given time—the actual number of nodds (50
including nodes external to the network) and edges (230jcare
large to display in both figures. We show a 4-color clusteoifig
this subset of nodes. The arrows in Figure 1(b) indicate trexd
tionality of messages as inferred from the traces. The neithsut
any arrows denote bidirectional messages. To generatéusters,
we considered a simple metric of number of neighbors, and-min
mized the overlap among the four clusters. Note that node$110
and 16 form a disjoint group from the rest of the nodes and have
interactions with the rest of the network, other than theieiinal
dependencies. These nodes can be grouped into a singlddrehav
cluster (denoted in white circles). Upon detection of a oialis
software on any one of these three hosts, one can proactjualy
antine the other two nodes without affecting messagingerother
clusters. On the other hand, if one quarantines the clusitér w
nodes (denoted in black circles) completely from the reti@het-
work, the total cost of quarantine will be the sum of messaes
changed along overlapping edgss, €413, €7,13,€1315, andes 14.
Note that the three clusters form a logical partition of tkeéork.
Each cluster provides a list of vulnerable clients any tinwient
inside the cluster raises an intrusion or malware alert. We g
more formal treatment of the behavior clustering and paniihg
problem in Section 3.2.

3. FINDING VULNERABILITY BY ASSO-
CIATION

We mentioned in Section 2 that the first step in applying any
proactive mechanism is to find a set of vulnerable clientseiarn
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Figure 2: Generating behavior clusters from message logs

real time, i.e., as soon as an attack is detected. In thifoseete
propose an approach calleehavior clusteringo generate this list.
The underlying principle of behavior clustering is to findnera-
bility by association. It assumes that the vulnerabilitger of a
clientis increased sharply if it has comecontactwith an infected
client in recent past. Bgontact we mean messages exchanged be-
tween the two clients, e.g., a text or multimedia messagectiién
a client is infected by the way of such communication with @&n i
fected client depends on whether it shares the same vulhigtab
Therefore, our goal is to develop an automated procedurkise ¢
ter clients into behavior groups based on their messagittgrpa
and application/protocol stacks installed on them. Theaogthis
section describes the steps necessary to generate thstsgiu
Figure 2 shows the three steps necessary for automatedibehav
clustering: (i) calculation dbehavior vectorand service-behavior
graph, (ii) short-term forecasting of behavior vectorgj éi) gen-
eration of behavior clusters by partitioning the serviesdwior
graph. These steps are repeated periodically dependingown h
often the behavior vectors change among clients, and tltomeat
is a set of closely-related behavior clusters for the netvloat can
be used to find vulnerable clients upon detection of an attack

3.1 Step I: Behavior Vectors

We define a “behavior vector” as a collection of features abou
any client in the messaging network. The behavior vectarptisl
asBy(t) at any clienu at timet, is calculated from two sources: ver-
sion information (‘physical’ feature) and messaging logsnipo-
ral’ features). Most malware spread by taking advantagenof
exploits in software and protocol stacks. Therefore, aruiate
snapshot of how clients are configured across a network is ver
useful to determine which clients are vulnerable to a spneatia-
licious software. Enterprise networks typically instalhfiguration
management databases (CMDBSs) [8] that contain detailsecdph
plications (email, P2P, IM, SMS) and software stack (OSynek)
on each host. Queries to CMDBs can therefore yield the physi-
cal feature of the behavior vector at a host. We collectidelgote
the physical feature space @s This feature space can be parti-
tioned to find clusters of similar configurations. Then, wéar a
virus or worm is discovered targeting a specific applicatieent or
software exploit, one can readily find the most vulnerablestelrs
where a proactive action is needed. In public IM or SMS nelaior
it is not possible to access client OS and application stafrk-i
mation. However, most messaging clients transmit cliensiga
information and a few additional details about the clientiem-
ment (e.g., Windows or UNIX) during the connection setupisTh
information can be extracted from the server logs wheresacte
enterprise-level CMDBs is not possible.

The second component of a behavior vector is calculated by an
alyzing messages exchanged among the clients, and therifisr
a temporal feature. The generic parameters that we havesimpl
mented are: CDF (cumulative density function) of neighlnber-
actions (m) (“how often a client exchanges messages with another
client”), number of outgoing connections to unique user (B
(“importance of a client”), and mean and maximum of message
inter-arrival times tnean tmaxm-



In summary, the vulnerability index of a client in the mesegg
network depends on its physical and temporal features) short,
its behavior vector The components of the behavior vector at a
clientu at timet are given as:
Bu(t) = [{@c}, {Nm, Ng,tmean tmaxm}]-
This vector is updated whenever their values change bastbos
placed on the server.

3.2 Step Il: Service-Behavior Graphs

While behavior vectors represent client-level observetias logged
by the server, they do not describe interactions among taetsl
This is captured by creating a service-behavior graph femtt-
work. We represent the service interactions witttirected graph
G(Vy,Eq), in which Vy is the set of vertices (i.e., unique partici-
pants or client IP addresses) in the network &gdis the set of
edges. G(Vy, Eq) is generated by applying the following simple
rules.

R1. A pair of verticequ,v) € Vy are assigneddirected edge @ €
Eq if and only if there exists a non-zero contribution to their
respective behavior vectors \ég,.

R2. IP addresses that are external to the networks are labeted wi

an additional flag. The edges belonging to these hosts rep-
resent “outside” connections to the network and therefore,

Figure 3: Behavior clustering of an IM network (k = 4)
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should be quarantined during an attack. Examples are http £i +Ui = 1.

links embedded in messages.

3.3 Step lll. Short-term Forecasting of Behav-
ior Vectors

Since behavior vectors of clients change frequently in moes-
saging networks, logs collected at different time inteswvahy indi-
cate different behavioral patterns. Therefore, the serlehavior
graph, generated at fixed time intervals, may differ fromatieial
behavioral patterns of the network when the list of vuln&raba-
chines need to be generated. Therefore, a proactive acsaulon
a straightforward application of behavior vectors comgutethe
last analysis period may not be the most effective. Sincaweh
vectors have a strong temporal component, we apply a stont-t
forecasting algorithm to the parameters such that a piedican
be made from the observed values in recent past. This isntlyrre
achieved by applying the standard exponential smoothingepr
dure [9].

3.4 Step IV. Behavior Clustering

The final step is to group the vertices@{Vy,Eq) into a num-
ber of clusters based on their behavior vectors, wheretslierthe
same cluster are similar in terms of their physical and tewadgat-
terns. There are a number of techniques for classificatidrchrs-
tering in the literature. We adopt a hierarchical graphifianing
approach as presented below, although other approachesstan
be used.

The partitioning problem can be formulated as a multi-c@mst,
connected and bounddgway graph partitioning problem as fol-
lows. Givenan undirected graph of service interactioB$Vy, Eq)
with scalar edge weightse : Eq — N, each vertex € V4 having

ann-dimensional behavior vect@\(,n) of sizen (Swev, 9\<,') =10
fori=1,2,---,n), and anintegeb € {2,3,---, ||V4||}, partitionVy
into k clustersV}, V2, -+ VX, such that

e Gj = (V},E})) induced inG by thei-th cluster is connected;
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Note that the number of clusteds, is not provided as input to
the above problem, and therefore, must be evaluated as the nu
ber of distinct behavior clusters in the graph. As an exanople
Steps |-V, Figure 3 shows the partitioning of an IM netwoflki60
clients (i.e., unigue IP addresses) into four behaviortehggk = 4)
based on traces we collected from a large enterprise netWirdk
IM users of this network used three public-messaging poitee
Yahoo Messenger (YMSG), MSN Messenger (MSNMS) and AIM—
to communicate with each other. Therefapefor a host consisted
of one or more elements ¢fiYyMSG, MSNMS, AIM}, depending
on which IM protocols were used from that host. The rest obine
havior vector parameters were calculated directly fromtthees.
This approach to behavior clustering offers several benefien a
proactive response is taken in the network.

(1) Connectedness among the vertices within a clustbis prop-
erty guarantees that any two vertices within a cluster bseclto
each other in terms of their features and connectivity thatices
in another cluster. This is important for localizing messawithin
a cluster while other clusters are proactively containedhat di-
rect peer-to-peer file transfers between clients are alaegiable.
(2) Minimization of service-edge cosfEhe cost of the cut (called
“edge-cut”) determines the quality of the clusters, andthisre-
fore, the primary partitioning objective. There are manggible
choices for the partitioning objective function. For thetaanment
problem, we minimize the sum of the weights of the edges that
span multiple clusters. The goal is to minimize the numbenes-
sages exchanged between different clusters. Then, angtpma
quarantine or rate-limiting of a cluster will cause minimatssage
interruption to other clusters.

(3) Satisfaction of vertex constraints within the cluste®he k-
way partitioning algorithm takes into account the relativeights
of the vertices as well as those of the corresponding edgbks. T
constraints as shown in Eq. (1) can be used to balance thiquest
in terms of the vertex constraints, e.g., for including thents’ ge-
ographic domains.

An important deployment question is how often the serviebavior
graph should be updated. We can applyttiggered updateson-
cept implemented in many intrusion detection systems, &rdDS [10].



Using triggered updates, the service-behavior graph iatepidvhen-
ever (i) new vertices and edges are added (or subtracted)rto (
from) the last computed graph, and (ii) the parameters diéhav-

ior vectors change by a certain threshold over previousegallihis

is part of our ongoing work in which we are studying logs octiel
from a real-world messaging server to understand the teshpsr
pects of service-behavior graphs.

The overall complexity of the partitioning phase G| Eq||),
and therefore, is determined by the size of messaging nktwor
G. In reality, this step is extremely fast. For example, timaeti
required to generate behavior clusters for a service-behgraph
with Vg = 9269 hosts anfly = 9836 edges ranges from 0.04 second
(2 clusters) to 0.16 second (32 clusters) on a dual-CPU @G
AMD Opteron 240 platform.

4. PROACTIVE CONTAINMENT METHODS

In this section, we explain the basic rate-limiting and quar
tine mechanisms that serve as the building blocks of ourgproa
tive response framework. While scan detection-based rdetfid,
12] protect an enterprise from incoming infections, rateifig and
quarantine seek to contain outbound infected messagese Tineth-
ods can be applied on both individual as well as a group ofidie
When these are applied on a group of clients as in the caseadpr
tive defense, the first step is to obtain a list of vulneratiients
most relevant to the generated alerts. We assume thatghisah
be obtained on-demand via the behavior clustering alguritle-
scribed in Section 3.

4.1 Rate-limiting

The rate-limiting (also known as “virus throttling”[6, 134]) is
a general class of response techniques that seek to linsptiead
of a worm or virus once it is detected on a host. For example,
it has been applied to contain IM worms in [13]. It is based on
the observation that normal or acceptable behavior of matgy-l
net protocols such as TCP/IP, email and IM differs signifilyan
from the corresponding worm-like behavior. Most users oaigm
SMS and IM interact with a slowly-varying subset of othernsse
as compared to malicious codes that attempt to send messages
all contacts in a victim’s address book or buddy list. Theiol
virus throttling algorithm proposed by Williamson [6] litsithe
rate of outgoing connections to new machines that a hostlés ab
to make in a given time interval. Figure 4 explains the baate-r
limiting mechanism. Aworking setof specified lengthi(= 4 in
Figure 4) is maintained for each user that keeps traak &fcent
addresses that the user has interacted with. When the tesepis
to send a message to a new contact, the recipient's addtgss (“
in Figure 4) is compared with those in the working set. If thle a
dress is in the working set, the message is allowed to passghr
Otherwise, the message is placed ometay queudor sending at
a later time. At periodic intervals, the delay queue message
processed as follows: the destination address of the messdige
head of the queue is added to the working set replacing the old
est address in the working set (using a least-recently use®d
algorithm). Then, all messages in the delay queue destoeitid
newly-admitted address are removed from the queue andostbma t
recipient address. When the length of the delay queue exaeed
pre-determined threshold, all new contact attempts fragrctient
can be blocked, e.g., by reducing the size of the working et t

Request
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n=4
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Queue

Queue
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Detector
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Lo 0o e L e
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Figure 4: Virus throttling algorithm by Williamson [11]
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can be implemented easily for email, IM, SMS and central22g
file-sharing (e.g., Napster). The most important advantdgate-
limiting is its ability to enforce containment in a gentle nmer, as
opposed to quarantine which results in complete shut-ddwieo
client. Therefore, rate-limiting mechanisms are gengiéferred

by enterprise networks over quarantine. We should notesiat
eral variants of rate-limiting have been proposed to daszeRtly,
Wong et al. [14] have presented an excellent empirical study of
these schemes as well as a new DNS-based rate-limitingthlgor
for general worm containment.

For our implementation of proactive rate-limiting, we cads
implement the Williamson'’s throttling algorithm as the tzager-
client rate-limiting mechanism, with an important diffape. We
implement rate-limiting only for messaging services, aod the
other ports on the host. This prevents the excessive delays a
blockage of all legitimate applications on the host in cakaro
infection, as reported in [14]. Note that the messaging worap-
agation doesn't result in large volumes of failed connextior data
in the network. But, the rate at which an infected client semés-
sages to other clients in the network may deviate signifigéirtm
its normal sending rate. This can be detected efficientlyhay t
Williamson'’s virus throttling algorithm although the alighm is
prone to high false positive rates when a client has beewtide
We deal with this problem by applying a group-behavior-blese-
proach that effectively reduces the false positive rates.

4.2 Quarantine

In contrast with rate-limiting, quarantine-based syst@mevent
a suspicious or infected client from sending or receivingsages.
This can be implemented at the messaging server so that any co
nection attempt by the user on an infected client is refuBedent
industry initiatives such as Network Admission Control (G15]
and Network VirusWall [16] are intended to enforce estdigisse-
curity policies to endpoint devices as they enter a proteots-
work. The Cisco NAC allows non-compliant devices to be dénie
access and placed in a quarantined local network, or giwrnaed
access to resources. However, such systems are in verysesghs
of development for SMS/MMS networks.

In our implementation of quarantine, we simply reduce tlze si
of the working set to zero in the rate-limiting module on &otiand
let the delay queue grow without triggering any new malisieaft-
ware alert. This is enforceadlfter an alert has already been issued

zero, and the user may be asked to validate the messages in thérom the client and a malicious activity has been detectellis T

qgueue. The rate-limiting mechanism is implemented at tieese
since it initiates or processes all requests made by thetsli€ur-
ther, when implemented at the server, users are not able difymo
the rate-limiting configuration parameters. Thereforte-taniting
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effectively quarantines the client from sending any morssages.
Next, we propose a proactive group behavior containmenB@®G

algorithm that combines the basic rate-limiting and quénamech-

anisms described above with behavior clusters to developacp
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Figure 5: Proactive rate-limiting and quarantine for a behavior
cluster

tive response scheme at the messaging server.

4.3 Proactive Group Behavior Containment

Figure 5 presents the steps of the PGBC algorithm as imple-
mented in the server. When an anomaly is detected at a ¢lient
e.g., by monitoring its delay queue length (or via a malwatec
tion agent running at the server), the algorithm incremarasent
alertlevel §;) by a vaIueB}‘ that depends on the severity of the alert.
The PGBC algorithm suppresses alerts for a periotgefay sec-

onds before allowing a single alq}}f for clienti in the algorithm.
The purpose of the hold-off countelyeay, is similar to the back-
off counter described in [17]: it prevents a single cliemttttiiggers
a stream of alerts from forcing the entire messaging netwmén-
ter into a proactive defense mode. When the alert level oreatcl
violates a pre-determined threshold value (iﬁé.is reached), the
server activates a rate-limiting for messages sent by taetcl.e.,
the size of its working set is reduced and outgoing messagss f
the client are queued at the server. A separate processmEuse
the alert level at every time step until it reaches zero, atkpoint,
the rate-limiting is stopped for messages sent by the client

The messaging server generates behavior clusters at jgared
tervals from the messages exchanged among the clients), tingin
clustering algorithm described in Section 3. Whenever ant al
level B}‘ is generated for a client, the algorithm updates the total
alert level of the corresponding behavior cluster. When the be-
havior cluster alert level reaches a threshold vafig) (the server
activates a rate-limiting on the most vulnerable clienthefoehav-
ior cluster, namely, the nodes that have exchanged meseathes
the infected client. This listis computed via a sgersectiorof the
client in the behavior cluster and the working sets of thedtéd
client at current and previous time steps. This step of therdahm
also enforces a quarantine of all messages from the infetitt
(i.e., itis no longer rate-limited but is blocked from megisg). A
separate process decrements a backoff titggfrom the value of
T assigned at the beginning of the group defense mode, argi-tran
tions the behavior cluster from the proactive defense med& to
the normal mode when either (i) there are no more alert messag
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Agent-Based Malicious Code Simulation

or (ii) t, becomes 0.

Note that PGBC gradually slows down outgoing messages from
a group of clients and brings them back to the normal mode when
no alerts are received for a period of time. This is in comtvéth
the traditional detect-and-block schemes that cause sucdhdss-
sage loss and delay in the network.

5. EVALUATION OF PROACTIVE DEFENSE
IN AN SMS NETWORK

5.1 Agent-Based Malware Modeling

In this section, we briefly discuss an agent-based malwace mo
eling (AMM) framework that we have developed to investigate
licious software propagation in a variety of wired and wess net-
works. We refer to [18] for a detailed description of AMM antd i
various capabilities. In AMM, we model a mobile network ak ¢
lection of autonomous decision-making entities caligents The
agents represent clients within the network such as PDAbjleno
phones, service centers(e.g., SMS Center) and gatewaysasén
of agents representing mobile devices, the connectiviagngbs as
users roam about the physical space of the network. The lsebav
of the agents are specified by a set of services running on them
example, an agent may consist of client applications forileznal
SMS/MMS messaging, whereas the SMSC agent may consist of a
store-and-forward server only. Thus, there are two typeésmmilo-
gies in our simulation environment. Tpaysicatonnectivity is de-
termined by the physical network infrastructure, movenadrihe
agents, location of access points and base stations, veitbetag-
ical connectivity is determined by the messages exchanged among
the agents.

Figure 6 shows a high-level flowchart of AMM. The first step
is to prepare the following input parameters: i(ijjection-model
parameterdfor the target service (SMS for the present study), (ii)
topologyof service interactions among the agents (i.e., SMS mes-
saging patterns among the users), (@dationof base stations, (iv)
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Figure 7: Overall performance of PGBC and WRL

mobility modelsfor agents that are mobile, (mfection and repli-
cation state maching.e., attack vector) of the malicious software,
(vi) detection modehnd (vii) an attack response modelVe have
implemented PGBC, Williamson’s rate-limiting (WRL) ancace
tive (i.e., detect-and-block) responses to compare thfscta/e-
ness. At each timestep, the coordinates of mobile agentspare
dated based on their mobility models resulting in new cotiviec
graphs. Next, each agent exchanges messages with othés agen
cording to the SMS service model—the probability of any @fsth
messages being infected is calculated from the serviestioh
model. The time steps are repeated over a user-specifiedemumb
of trials so that the results can be averaged over thess.tridle
simulator is general enough to experiment with differegbathms
for malware detection and containment.

5.2 SMS Messaging Logs

The topology of a messaging network can be extracted from
CDRs collected from a real-world cellular network, and te&er
vant parameters are then input to AMM. To the best of our knowl
edge, there does not exist any malware propagation modaj usi
SMS/MMSservices in a cellular network. A recent study [18] o
SMS usage characterization collected call data recordS&fitraces
over a three-week period from a large cellular carrier withil-
lion mobile users. The data allowed us to reconstruct agtali
SMS messaging network with the following parameters: ngssa
sending rates, message receiving rates, cumulative yesit-
tions (CDF) of user-to-user message size (B) and messageeser
times at the SMSC, and the SMS service topology. The original
data involved a very large number of messages (over 59 millio
and users (over 10 million). Therefore, we scaled the data to
small number of users (2000), while still preserving thedelkar-
acteristics of the original data sets. Further informatarour re-
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1) and we averaged the results of 20 runs for each parameter to
compute the expected number of infectioBg] (t)), clients with
WRL, E(RL(t)), and clients under quarantieg€Q(t)), at each time
stept. We report these numbers as a percentage of the total number
of clients in the messaging network.

5.3.1 Overall Performance

Figure 7 shows the overall performance of WRL and PGBC
against the SMS worm during the first 500 seconds of its prapag
tion. For comparison, we also show the epidemic in a netwatti w
no defense, i.e., an entirely unprotected network. Noteithtoe
unprotected network, nearly 40% of the clients are alreafdycted,
indicating very fast propagation in a highly-connectedotogy
such as an SMS network. The PGBC algorithm performs an order-

duction process and SMS malware propagation can be found in aof-magnitude E(I(t)) = 2%) better than WRLE(I (t)) = 21%).

companion paper [2]. In the present study, we focus on the pro
posed proactive defense strategy.

5.3 Performance of PGBC

In what follows, we evaluate and compare three differentied
strategies, Williamson’s rate-limiting (WRL), reactivies(, detect-
and-block) and PGBC, against a malicious code that spreads f
one client to another using the address book contacts fonraho
already-infected cliert.We used a working set of 5 for WRL and a
delay queue threshold of 20 to indicate a malicious codefite.
All simulations started with only 1 initial infection (i.el (0) =

2We will denote this as the “SMS worm” for the rest of this senti
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Given this excellent performance, we now explore the eftéct
various PGBC parameters on its performance. Figure 8 shuavs t
percentage of clients that are rate-limité&(RL(t))) using WRL,
proactively-containedg(P(t))) in PGBC and infectedE(I (t))) in
case of an unprotected network. PGBC results in a larger auofb
clients participating in proactive group defense, roud$o more
than WRL allows—this is one of the reasons why PGBC keeps the
infection level so small in the network. However, when ptoac
group defense is applied, the affected messages are deédgyaed
amount equal to the PGBC backoff tim&r,

5.3.2 Effect of PGBC Backoff Timar,
The PGBC backoff timerT) determines how long a behavior
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cluster should remain in the proactive defense mode oncasit h
been activated (i.e., its alert lev@l, has reached the threshddg)).
Figure 9 shows the percentage infections for different emlof

T = 30, 60 and 90 seconds. To eliminate the effect of other pa-
rameters, all the results are ¢ = B, = 8 and a throttle rater)

for 30 seconds. ltis clear from Figure 9 that a longer grodpruse
timer results in a smaller number of infections. Howeveis tias

a delaying effect on the messages in the SMS network sineetsli
undergoing proactive rate-limiting will have to wait untile ex-

piration of T seconds before sending messages again. Note that

T = 60 seconds or a minute results in approximately 7% of infec-
tions compared to a longer timer (2%). Since the overallctibas
are still much lower than that of an unprotected network at we
as a network with WRL, we recommend usifig= 60 seconds—a
delay of 1 minute in sending/receiving SMS messages is neaso
able during an attack. Figure 10 shows the percentage offirea
client nodes for different values af. The growth of proactive
clients in the group defense mode is nearly identical fotrake
values, meaning that the decision to chodsghould be guided by
the maximum level of infections that can be tolerated by ttes-m
saging service provider. For example, critical messagetgorks
may decide to choose a higher valu€Toto keepl (t) very small.

5.3.3 Effect of Alert Levelgy

The alerts B¢ or “L” in Figures 11 and 12) are generated for indi-
vidual clients when their delay queues reach a thresholdatidg
the presence of a worm. However, the hold-off countgfeky)
makes sure that repetitive alerts from the same client isecun
tive periods are suppressed so that one client node canmet &
behavior cluster to enter the PGBC mode. The choicBypte-
termines how frequently a behavior cluster enters PGBCngbge
alerts sent from its constituent clients. Figure 11 presém re-
sults for different alert levelBy equal to 24 and 8. The rest of the
parameters are: threshold alert lefig] = 8, backoff timerT = 60
seconds and throttle timer= 60 seconds. We also plot the same
results for a different throttle timer af= 20 seconds in Figure 12.
The results indicate that client alert leveg'6) are sensitive to the
throttle timer, especially at low alert levels. Based on experi-
mental results, we recommend sett{ig= 4, i.e., two new alerts
force the behavior cluster enter into PGBC mode.

5wl —— [=2,1=60s.r=60s
=2 I — L=4,T=60s,r=60s
1 ~mmen | =8, T=60s,r=60s
g 12

c

il

g 10 +

E

o) 8

[e2]

8

g 6r

IS

g8 at

(]

[=2]

s 2t

g

< 9

0 50 100 150 200 250 300 350 400 450 500
Time (seconds)

Figure 11: Number of infections for different PGBC alert levels
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Figure 12: Number of infections for different PGBC alert levels
(T =60sr = 20s)

be quarantined as soon as its delay queue reaches the threshp
all incoming/outgoing messages are blocked. The probleth wi
this approach is that by the time the infection is detectesiytorm
may have already spread to other clients via previously st
sages. Figure 13 compares the reactive approach with tfevetit
combinations of PGBC parameters. The reactive approaciises
in over 12% of the total clients being infected within 500 s,
whereas either of the two PGBC configurations allows onlg les
than half that amount. This clearly demonstrates the need fo
group-behavior-based defense strategy in messaging riestian
isolated quarantine of clients.

5.3.5 Effect of False Positives

We define the false positive rate as the percentage of clients
that were misidentified as malicious by the detection meishan
Since PGBC applies proactive rate-limiting to some of thents
in the same behavior cluster as the false-positive clieméscal-
culate two quantities: percentage of false-positive tli€denoted
by E(F(t))) and percentage of clients that were proactively rate-
limited (denoted by (P(t)))due toE(F(t)). Figure 14 plot& (P(t))
andE(F(t)) for different PGBC backoff timer values. From our
results, we found thaE(F(t)) was limited to 6% of the clients,
andE(P(t)) to 12% of the clients in most cases. This means that

5.3.4 Comparison of Reactive vs. PGBC Approachesapproximately 12% of the clients experienced a delay inivece

Next, we compare the traditional reactive (“detect-anatkl)
defense adopted by most anti-virus solution providers withore
efficient approach such as PGBC. In reactive defense, & clian
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ing messages during the outbreak of the malicious code. iThis
very promising, given that PGBC also limited the spread ef th
epidemic to only 2-5% of the total number of clients. Figufe 1
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plots E(P(t)) for different values of PGBC alert levels. The data
for various parameters do not show a correlation, confirntiirag
the false-positive rates depend for the most part on thectiete
mechanism and not on the containment strategy. Overall, PGB
is found to perform very well against the SMS worm. Our result
indicate that a key benefit of PGBC is that one can maintainalsm
throttle timer for per-client rate-limiting with an appnoate choice

of PGBC parametersT( Bx andpin). Therefore, the SMS users
do not experience a large delay in receiving messages damiiagr
tack. One aspect of PGBC that needs further study is how toseho
among the different tunable parameters for a given mesgamgit:
work.

6. RELATED WORK

The most relevant to the present study are malicious codgs th

target messaging networks, intrusion detection systentsasiGrIDS
[10], behavior-based worm detection [20] and Primary Raspo
from Sana Security [21]. Due to space limitation, we refdf.{@2,
2] for a description of malicious codes targeting IM and SMBIS
networks. The above references also detail specific vubiliias
and social engineering techniques these malicious cogésatly
exploit.

For Spyware and “zero-day” attacks, the conventional sigea
based anti-virus tools may result in high false negatives,attacks
that cannot be detected. The behavioral approaches [21ar20]
more suitable to detect these types of attacks due to ctiorelaf
behaviors among running processes and application-speaiés.
Moreover, upon detection of an attack at a given client, abiehal
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host-based intrusion prevention system (HIPS) may be ahie-t
termine which services were targeted. Since it is cruciabtatain
these attacks at the earliest, PGBC can proactively rati¢dlients
in the same behavior-cluster identified by the detectiotesyso
that these clients can be checked for updated HIPS and iansi-v
rules. For both known vulnerabilities and zero-day attaties pri-
mary role of proactive defense is to slow down the infected-me
sages while the quarantined clients can be patched. Therawh
[23] recently presented a “Community of Interest” (COI) egach
for discovering host profiles within an enterprise netwankl ¢hen
applying rate-limiting to those that show worm-like betwavi

GrIDS [10]is a hierarchical intrusion detection system$)Bhat
aggregates host and network information as activity grappee-
senting the causal structure of network activity. GrlDSamiges
the hierarchy in terms of departments within an organiratithe
edges represent network traffic and attributes betweenepartd
ments. Each department collects information from its chddes
and passes summary information to its parent. GrIDS uses-mul
ple rule sets to determine how graphs are built and alertsrgésd.

In contrast, the hierarchy in PGBC is based on messagingrpait
not the physical network infrastructure. The rule sets fenag-
ating service-behavior graphs are very simple to implensarte
they can be derived from server logs. Elisal. [20] presented a
novel approach to automatic detection of worms using behnali
signatures. These signatures are generated from temparahar-
acteristic patterns of worm behaviors in network traffig, eduring
transfer of infected payloads to other hosts, tree-likgppgation
and reconnaissance and changing a server into a clientougth
not considered, the behavioral signatures can be the lmasisidr-
antining individual clients or groups of clients in theirsaitact com-
munications network (ACN). The Primary Response from Sana S
curity is another host-based behavioral approach thattorsmun-
ning applications and employs multiple behavioral heiadste.g.,
writing to registry, calls to keylogging procedures, preedijack-
ing, etc.) to identify a malicious application. It also ceates
actions of multiple running applications to decide whetagrap-
plication is Spyware. The current detection mechanism iBEG
monitors the length of delay queues to identify worm-likdnde
ior. However, any of the above detection mechanisms can be im
plemented in PGBC, resulting in more robust and reliableatitn
of messaging worms.

The “Firewall Network System” described in [24] places fire-
walls on physical segments of an enterprise network. Thediis
specify access policies to allow only pre-defined servicgiests.
This approach requires accurate specification of all seméquests



and firewall access rules for the entire enterprise netwkik. “dy-

namic quarantine” method in [25] is based on a preemptive-qua

antine approach that quarantines a host whenever its lmehavi
considered suspicious by blocking traffic on the suspicioois.
The authors of [26] discuss the possibility of deployingoawated
responses to malicious code, e.g., by proactively mappiadpocal
network traffic components and topology usinmaplike tools.
Upon receipt of an alert with concrete information aboutuhder-
lying vulnerability, the corresponding traffic may be bledkbefore

it can reach other parts of the network. The basic premiseiof o
approach is similar but based on a systematic study of megsag
patterns among the clients.

7. CONCLUDING REMARKS

We have presented a novel framework calRactive Group

Behavior Containmer(PGBC) to contain malicious software spread-
ing in messaging networks such as IM and SMS/MMS. The expo-

nential growth of malicious software targeting these neksan
recent years requires development of proactive securfiyoaghes
such as PGBC. Since all the information needed to build PGBC c
be obtained from server logs, it can be easily deployed imestad-
forward networks such as SMS/MMS and server-initiated nelte/
such as IM. The primary component of PGBC are service-behavi
graphs generated from client messaging patterns and loelthvs-
ters that partition the service-behavior graph into chssoé similar
behavior. PGBC uses a combination of message rate-limtiry
quarantine with increasing reaction to alerts in the nekwbr our
evaluation results for an SMS network, PGBC is found to beisgv
orders-of-magnitude more effective than traditional deés such
as “detect-and-block’and individual client rate-limiginFrom our
simulation results, it is evident that proactive defenseisto slow-
ing down malicious codes during the early stages of its sjinga
This is critical because there is only a small time windownalzen
the time an infection is detected and the time the cumulative

fections reach an epidemic threshold. PGBC makes most ®f thi

time window by proactively quarantining and rate-limitimglner-
able clients in the network. There are several aspects ofP(BE&t
are part of our ongoing study. The time scale at which a servic

behavior graph should be updated for a given messaging rletwo [19]

needs further investigation. The scalability of PGBC topMerge
messaging networks, perhaps with millions of clients, istgebe
investigated. Finally, the effect of false negatives (iiefected
clients that were not detected by the detection mechanisrayer-
all infection rates should be studied as well.
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