
1188 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

End-to-End Delay Bounds for Traffic Aggregates
Under Guaranteed-Rate Scheduling Algorithms

Wei Sun, Student Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract—This paper evaluates, via both analysis and sim-
ulation, the end-to-end (e2e) delay performance of aggregate
scheduling with guaranteed-rate (GR) algorithms. Deterministic
e2e delay bounds for a single aggregation are derived under the
assumption that all incoming flows at an aggregator conform
to the token bucket model. An aggregator can use any of three
types of GR scheduling algorithms: stand-alone GR, two-level
hierarchical GR, and rate-controlled two-level hierarchical GR.
E2e delay bounds are also derived for the case of multiple ag-
gregations within an aggregation region when aggregators use
the rate-controlled two-level hierarchical GR. By using the GR
scheduling algorithms for traffic aggregates, we show not only
the existence of delay bounds for each flow, but also the fact that,
under certain conditions (e.g., when the aggregate traverses a
long path after the aggregation point), the bounds are smaller
than that of per-flow scheduling. We then compare the analytic
delay bounds numerically and conduct in-depth simulation to:
1) confirm the analytic results and 2) compare the e2e delays of
aggregate and per-flow scheduling. The simulation results have
shown that aggregate scheduling is very robust and can exploit
statistical multiplexing gains. It performs better than per-flow
scheduling in most of the simulation scenarios we considered.

Overall, aggregate scheduling is shown theoretically to provide
bounded e2e delays and practically to provide excellent e2e delay
performance. Moreover, it incurs lower scheduling and state-main-
tenance overheads at routers than per-flow scheduling. All of these
salient features make aggregate scheduling very attractive for use
in Internet core networks.

Index Terms—Aggregate scheduling, end-to-end (e2e) delay
bounds, token bucket model, traffic aggregation.

I. INTRODUCTION

REAL-TIME applications, such as voice-over-IP (VoIP)
and video conferencing, require the network to provide

better Quality-of-Service (QoS) in terms of delay, jitter, and
loss rate. To provide such QoS support, several network ar-
chitectures have been proposed. The IntServ architecture [1]
supports QoS via per-flow resource reservation (e.g., RSVP)
and packet scheduling. Numerous scheduling algorithms (e.g.,
see [2] for an excellent survey) have been proposed to support
IntServ QoS, such as fairness, bounded per-flow (per-node or
e2e) delay and backlog under a certain traffic model such as
the token bucket model. Since both resource reservation and
packet scheduling are per-flow-based, and hence the routers in

Manuscript received May 26, 2003; revised October 28, 2004; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor J.-Y. Leboudec. This work
was supported in part by Samsung Electronics, Inc., and the Office of Naval
Research under Grant N00014-99-1-0465.

The authors are with the Real-Time Computing Laboratory, Depart-
ment of Electrical Engineering and Computer Science, The University of
Michigan, Ann Arbor, MI 48109-2122 USA (e-mail: wsunz@eecs.umich.edu;
kgshin@eecs.umich.edu).

Digital Object Identifier 10.1109/TNET.2005.857078

the network must keep a large number of flow states, IntServ
is not scalable for use in the core of the Internet that carries
millions of flows.

To solve the IntServ’s scalability problem, the DiffServ (DS)
architecture [3] has been proposed by classifying traffic into
a number of predefined classes, such as expedited forwarding
(EF), assured forwarding (AF), and best-effort (BE) at the
edge of each DS domain. The traffic class is identified by the
marking in the DS field of each packet. Flow information is
visible only at edge routers of a DS domain, and sophisticated
packet classification, marking, policing, and shaping operations
need only be implemented at edge routers. Within each DS do-
main, packets receive a particular per-hop forwarding behavior
at routers on their path based on the DS field in their IP headers.
In other words, flows are invisible and packet scheduling is
done based on the traffic classes, not based on individual flows.
The EF class [4] receives priority over AF and BE classes. The
DiffServ architecture is more scalable than IntServ, but FIFO
queueing—commonly used to schedule packets in each traffic
class—is not suitable for hard QoS guarantees [5].

In this paper, we consider an extension of the IntServ archi-
tecture to support traffic aggregation. This extension is made on
the premise that there are aggregation regions in the network,
which “see” only aggregated (not individual) flows. Resource
reservation and packet scheduling in an aggregation region are
done on a per-aggregate basis. An example of this is the vir-
tual paths (VPs) in ATM networks. Traffic aggregation has been
studied extensively; see [6]–[9] for resource reservation, [10]
and [11] for the admission control of aggregates, and [12] for
flow states aggregation. We will in this paper focus on the sched-
uling issues associated with traffic aggregation and evaluate the
deterministic e2e delay bounds of aggregate scheduling when
guaranteed-rate (GR) algorithms [13] are used.

Traffic aggregates discussed in this paper are similar to the
traffic trunk—which is defined as an aggregate of traffic flows
that belong to the same class—in multiprotocol label switching
(MPLS) [14]. As shown in Fig. 1, some flows enter an aggre-
gation region from ingress router and share the same path
for a number of hops inside the region. Within the region, they
are treated as a single aggregate at the routers on the path.
aggregates or “bundles” the flows by using the GR scheduling
algorithms. When the aggregate leaves , it is split back into
individual flows. Similarly, another aggregate can be set up be-
tween and . In general, a traffic aggregate can be created
and terminated at any point in the network, and it can be cre-
ated recursively. For example, at two aggregates are bundled
again into another (higher-level) aggregate which will later be
split at . The router (e.g.,) that aggregates flows (using GR
algorithms) is called an aggregator, and the router (e.g.,) that
splits the aggregate is called a deaggregator. The term “flows”

1063-6692/$20.00 © 2005 IEEE

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1189

Fig. 1. Aggregate scheduling.

(“traffic aggregates” or “aggregates”) means the entities before
(after) aggregation. We specify the aggregator and deaggregator
as part of the aggregation region, although they can differentiate
among the constituent flows of each aggregate.

The main contributions of the paper are twofold. First, by
using the GR algorithms to schedule traffic aggregates, we show
not only the existence of e2e delay bounds, but also the fact that,
in many cases, the bounds are smaller than those of per-flow
scheduling. Second, using in-depth simulation, we not only con-
firm the analytical results, but also show the advantages of ag-
gregate scheduling.

Note that the delay bound problem of aggregate scheduling
was also studied by Cobb [15], [16]. By using rate-based sched-
uling algorithms and fair aggregators, he showed that the e2e
delay of an aggregate is bounded, and the bound can be smaller
than the per-flow e2e delay bound.

This paper extends the results of [16] in the following gen-
eral ways. First, the fair aggregators in [16] (both the basic
fair aggregator and greedy fair aggregator) use nonwork-con-
serving scheduling algorithms. In contrast, our definition of fair
aggregator is more general, applicable to both work-conserving
and nonwork-conserving GR scheduling algorithms. Using the
token-bucket traffic model, we derived the delay bounds under
two types of work-conserving fair aggregators: stand-alone and
hierarchical fair aggregators. Second, both the basic fair aggre-
gator and the greedy fair aggregator implicitly assume that there
is only one outgoing traffic aggregate at an output interface, and
thus Cobb’s derivation does not consider the interference from
the packets outside the aggregate. Our delay bound results are
more general: all of the three delay bounds are derived under
the assumption that there could be multiple traffic aggregates
through an output link. Third, we explicitly provide the delay
bounds using the token-bucket traffic model and establish the
relationship between a flow’s delay bound and burst sizes of it-
self and other flows sharing the same aggregate.

The remainder of the paper is organized as follows. Section II
provides the definitions of GR scheduling algorithm [17] and
LR server [18], discusses their relationship, and reviews the
delay bound results for per-flow scheduling in [17]. Section III
introduces the concept of fair aggregator and derives the delay
bound for aggregate scheduling under the token-bucket traffic
model. Two delay bounds are derived: the first for stand-alone
aggregator and the second for hierarchical aggregator, both of
which use work-conserving GR scheduling algorithms. The
hierarchical aggregator is shown to improve the delay bound.

TABLE I
SYMBOLS

Section IV improves the delay bound further by having the
aggregators use nonwork-conserving scheduling algorithms.
Section V presents numerical results, comparing the above
deterministic delay bounds with that of per-flow scheduling.
Simulation is also used to compare the delay performance of
both aggregate and per-flow scheduling, confirming the benefits
of aggregate scheduling derived from the analysis. Section VI
discusses some related work on aggregate scheduling, putting
our results in a comparative perspective. Finally, Section VII
summarizes our contributions and discusses future directions.

II. GUARANTEED-RATE SCHEDULING ALGORITHMS

Before deriving the delay bound under aggregate scheduling,
in this section we introduce the definitions of guaranteed-rate
(GR) scheduling algorithm and latency-rate (LR) server, discuss
their relationship, and review the e2e delay bound results for
per-flow scheduling. For the convenience of discussion, we first
give a list of symbols in Table I.

A. GR Scheduling Algorithms

The authors of [17] defined a class of GR scheduling algo-
rithms. The delay guarantees provided by these algorithms are
based on the guaranteed rate clock (GRC) value associated with
each packet, which is defined as follows [17].

Definition 1 (GR Clock Value): Consider a flow associated
with a guaranteed rate . Let and denote the th packet
of flow and its length, respectively. Also, let and

denote the GRC value and arrival time of packet at
router , respectively. Then, the GRC values for packets of flow

are given by

j = 0
(1)

1190 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Definition 2 (GR Scheduling Algorithm): A scheduling algo-
rithm at router is said to belong to the GR class for flow if
it guarantees that packet is transmitted by time

, where is a scheduling constant [15] that depends on the
scheduling algorithm and the router.

We will henceforth call a router equipped with the GR sched-
uling algorithm a GR server. Many scheduling algorithms are
shown in [17] to belong to the GR class. For example, both
packet-level generalized processor sharing (PGPS) [19] and vir-
tual clock (VC) [20] are GR scheduling algorithms with

, where is the maximum packet length seen by router
and is the output link capacity of .

B. LR Server

The authors of [18] also defined a class of scheduling algo-
rithms as LR servers, the definition of which is repeated below
for self containment, although some notations in the definition
are modified for consistency.

Definition 3 (LR Server): Let be the starting time of a busy
period of flow in server and the time at which the last bit
of traffic arrived during the busy period leaves the server. Then,
server is an LR server if and only if a nonnegative constant
can be found such that, at every instant in the interval

(2)

where denotes the total service provided by the server
to flow during the busy period until time . The minimum

nonnegative constant satisfying the above inequality is de-
fined as the latency of the server, denoted by .

The definition of the LR server helps establish the relation-
ship between the burst size of an output flow and that of the cor-
responding input flow at a router. Before introducing Lemma 1,
we define the token-bucket traffic model as follows: flow con-
forms to the token bucket if, for any time instant
and satisfying , its traffic volume arrived during

, satisfies

(3)

where and are the burst size and average rate of flow ,
respectively.

Lemma 1: Suppose an incoming flow to router con-
forms to the token-bucket model . If is an LR server
with parameters for flow , where is the latency at
and is the guaranteed rate for flow , respectively,
then the output traffic of flow conforms to the token-bucket
model with parameters , where .

For example, both PGPS and VC are LR servers with

[18], in which case we have

(4)

The Proof of Lemma 1 is similar to that of [18, Theorem 3],
which assumes , but the result can be easily extended
to the case of .

C. Relationship Between GR and LR Servers

From the definition of the LR server, it is easy to show that
an LR server is also a GR server.

Theorem 1: For any flow , an LR server with latency
is also a GR server with scheduling constant .

Proof: Without loss of generality, we consider only one
busy period of flow . Suppose the reserved rate for flow is

, and the busy period starts at time and ends at . From the
definition of the GRC value in (1), it is easy to see that the GRC
values of the packets in this busy period are

Suppose is the time when the th packet leaves the server,
then

From the definition of LR server, we obtain

Rearranging the terms, we obtain

(5)

The theorem is proven.
Similarly, it can be proven that a GR server is also an LR

server. For more details, see the full version of this paper [21].

D. End-to-End Delay Bound Under Per-Flow Scheduling

We now review the e2e delay bound results for per-flow
scheduling. Both Lemma 2 and Theorem 2 stated below were
proven in [17].

Lemma 2: Suppose routers and are two neighboring
GR servers on the path of flow . If both routers guarantee ser-
vice rate for flow , then

(6)

where is the maximum packet size in flow and
. Here, is the propagation delay between

and .
Lemma 2 states the relationship between the GRC values of

a packet at two neighboring GR servers. Based on this relation-
ship, the authors of [17] derived an e2e delay bound.

Theorem 2: If flow conforms to the token-bucket model
and all of the routers on its path are GR servers with

guaranteed rate , then the e2e delay for , is
bounded as follows:

(7)

where and is the number of hops on the
path of flow .

From Theorem 2, one can see that the delay bound is inversely
proportional to the flow’s guaranteed rate, but is proportional to
the number of hops , the size of packets, and the burst size
of the flow. With a large number of hops and large-size packets,
the delay can be substantially large. To understand the physical

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1191

meaning of (7), let us consider the fluid traffic model, where
packet size is infinitely small. Then, if we omit the propagation
delay, the delay bound in (7) can be simplified as

(8)

In other words, the delay is upper bounded by the burstiness
of the flow. The larger the burst size, the larger the delay bound.
If we assume , then the delay bound is decided by the
burst ratio (for flow) of the flow.

In the next two sections, we derive e2e delay bounds under
aggregate scheduling with GR scheduling algorithms. We show
that, if the incoming flows at aggregators conform to the token-
bucket model, the e2e delay is bounded.

Note that, by using GR scheduling algorithms, we always
assume that the guaranteed rate for a flow is greater than or
equal to its average rate, i.e., . Also, in the remainder
of this paper, we omit the propagation delay . Therefore,

.

III. WORK-CONSERVING AGGREGATOR

In this section, we use work-conserving GR scheduling
algorithms at aggregators. Two types of GR scheduling al-
gorithms are examined: stand-alone (or nonhierarchical) and
hierarchical algorithms. To derive the e2e delay bound under
aggregate scheduling, an important step is to derive the delay
at the aggregator. We need to find the relationship between the
GRC values at the aggregator and its next hop.

A. Fair Aggregator

Before deriving the delay at the aggregator, we first introduce
an important concept, which is the fair aggregator.

Definition 4 (Fair Aggregator): Let router be an aggre-
gator bundling flow and others into aggregate flow , which,
in turn, is an input to router . Then, if , i.e., the
th packet of flow corresponds to the th packet of aggregate

flow is said to be a fair aggregator if and only if is a
GR server and

(9)

where is a constant that depends on the scheduling algorithm,
the router, and other flows in the same aggregate. We call it an
aggregation constant.

The value can be considered as the fairness index
of the aggregator, e.g., an aggregator is considered fairer than
others if it has a smaller value of . For a fair aggregator,
both of its aggregation constant and scheduling constant

should be small. Also, our definition of fair aggregator is
slightly different from that in [15] and [16]. It is based on the
relationship between a packet’s GRC values at the aggregator
and its next hop.

Lemma 3: Suppose and are two neighboring GR
servers and is an aggregator. aggregates flow and other

flows into aggregate flow , which, in turn, is an input
to . Suppose incoming flow at conforms to the token-
bucket model , and the guaranteed rate
for flow at is . Let , i.e., the
th packet of flow corresponds to the th packet of aggregate

flow . If the outgoing flows at conform to the token-bucket
model , then for packet

(10)

where , which is the guaranteed rate for aggregate
flow at .

Proof: Similar to the definition of a busy period of a single
flow [18], we define a busy period of aggregate flow at router

as the maximum length of time period , such that,
at any time , the total traffic of arrived since the
beginning of the interval is . Without loss
of generality, we consider only one busy period in the proof.
Suppose the busy period starts at time when the first packet

arrives, and in that busy period time is the instant when
packet arrives at . Since , the total traffic arrival
of aggregate up to time is

(11)

Since all of the packets arrive in the same busy period of aggre-
gate , from the definition of GRC value, we have

(12)

Next, we prove that the theorem holds for both and
.

Case 1: .

Since is a GR server for flow , we have
. Therefore

Case 2: . From the definition of GRC value, for flow ,
we have

...

1192 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Adding them up, we obtain

(13)

Then, from (12) and (13), and the fact , we
obtain (after simplification)

The lemma is proven.
Next, we study the stand-alone aggregator, which uses the

stand-alone GR scheduling algorithm to bundle flows into
aggregates.

B. Delay Bound I: Stand-Alone Aggregator

Combining Lemmas 1 and 3, we obtain the following theorem
on the relationship between the GRC values at a stand-alone
aggregator and its next hop.

Theorem 3: Suppose is an LR server, and both and
are GR servers. As a stand-alone aggregator, aggregates

flow and other flows into aggregate , which, in
turn, is an input to router . Suppose incoming flow at
conforms to the token-bucket model and the guaranteed
rate for flow at router is . Let ,
i.e., the th packet of flow corresponds to the th packet of

aggregate . Then, is a fair aggregator with

. In other words,

(14)

The proof is trivial.
Now, we are ready to derive the e2e delay bound for aggregate

scheduling under the token-bucket model and the stand-alone
aggregator.

Theorem 4: Suppose flows share the same hops of GR
servers inside an aggregation region, and they are bundled into
aggregate at stand-alone aggregator and split back at .
Routers schedule packets of aggregate . If flow

conforms to the token bucket model and has the guar-
anteed rate with at and , and
has the guaranteed rate at , then,
for any flow , the e2e delay of packet , is
bounded as follows:

(15)

Proof: Let be the packet in the aggregate flow cor-
responding to in flow . From Theorem 3, we have

where . Since
are all GR servers for aggregate flow with guaranteed rate

, from Lemma 2, we have

...

Adding them all up, we obtain

Since , for packet , the departure time at is

From the definition of the GR server, the first servers
for flow can be viewed as a virtual GR server with scheduling
constant . Since is also
a GR server for flow with guaranteed rate , from Lemma 2,
we have

Therefore, the departure time of packet from is

Then, the e2e delay satisfies

(16)

From [17], for flow conforming to the token-bucket model
and with reserved rate

. Thus, the theorem is proven.

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1193

As in Section II, to further understand the physical meaning
of (15), we consider the fluid traffic model, where packet size is
infinitely small. Then, (15) can be simplified as (since in general
the term also relies on packet size and will become infinitely
small):

(17)

Note that (17) provides the lower limit of the e2e delay bound.
Comparing (8) and (17), we can see that, with aggregate sched-
uling, the delay bound of a flow is not only decided by the
burstiness of the flow itself (term), but also strongly related
to the burstiness of other flows that share the same aggregate

with it (term). Intuitively, this is easy to understand,
since a packet from flow has to wait behind not only the ear-
lier packets from the same flow, but also those from other flows
sharing the same aggregate. The result implies how aggregation
should be done—a flow should not be aggregated with other
flows with substantially larger burst ratios. This is similar to
the conclusion in [22]. This issue will be explored further in
Section V.

From (15), we can see that the delay bound is affected by
the latency of the scheduling algorithm at the aggregator. To
get a smaller bound, we should use a low-latency scheduling
algorithm. For example, with PGPS and VC
at the aggregator , the e2e delay is bounded as follows:

(18)

Finally, comparing (7) and (15), we note that, depending on
the burst ratios of the constituent flows and the maximum packet
size in the aggregate, the delay bound under aggregate sched-
uling can be smaller than that under per-flow scheduling. We
will compare the delay bounds numerically later in Section V.

In the next subsection, we further decrease the delay bound
by using hierarchical GR scheduling algorithms at aggregators.

C. Delay Bound II: Hierarchical Aggregator

So far, the stand-alone GR scheduling algorithms have been
used at aggregators. Thus, when computing the burstiness of an
outgoing aggregate at aggregators, the burst size of each con-
stituent flow in the aggregate was computed separately and then
summed up. In this subsection, we use hierarchical GR algo-
rithms at aggregators to improve the delay bound, as shown in
Fig. 2. First, the flows that end up in the same aggregate are
grouped together at the lower level schedulers. Then, the aggre-
gates are scheduled at the upper level scheduler. This way, we
can reduce the burstiness of the outgoing aggregate and the ag-
gregation constant at aggregators, thus reducing the e2e delay.

How does a hierarchical scheduler reduce the burstiness of
the outgoing aggregates? Fig. 3 shows the intuition behind it.
Suppose there are 20 flows coming into one aggregator, and all
of them have the same reserved rate. The first ten flows belong
to one aggregate flow , and the last ten belong to another ag-
gregate flow . Suppose 20 packets of identical size arrive at
the idle aggregator at exactly the same time, one from each flow.

Fig. 2. Hierarchical scheduling.

Fig. 3. Benefits of hierarchical scheduling.

Then, with a stand-alone scheduler, the 20 packets will be sched-
uled in a random order. Thus, it is possible that all ten packets
of are scheduled before all of the packets of aggregate flow

. Therefore, the output of the aggregator will look like: ten
packets of aggregate come out first, and then ten packets of
aggregate . For the next router which is handling aggregates,
the burstiness of both and is very high. In contrast, with
hierarchical scheduler, the upper level scheduler will make sure
the packets from and are scheduled alternately, making
the traffic in both aggregate flows smoother.

The hierarchical scheduling algorithms under consideration
are two-level hierarchical packet fair queueing (H-PFQ) al-
gorithms [23]. From [23, Theorem 2], it is easy to prove that
H-PFQ also belongs to the GR class. For details of the proof,
see the full version of this paper [21].

Now, we derive the burstiness of the outgoing traffic at aggre-
gators. For any flow , we derive —the total outgoing
burst size of all of the other flows sharing the same aggregate
with . In this derivation, we make use of the corresponding
fluid generalized processor sharing (GPS) server of a packet fair
queueing (PFQ) server. Let be the ser-
vice received by flow at the PFQ server (the corresponding
GPS fluid server) during , and define and as

(19)

(20)

Intuitively, and define the maximum difference between
the amount of services flow gets from the corresponding GPS
server and the PFQ server in any time interval.

1194 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Theorem 5: Suppose is an aggregator with a two-level
H-PFQ scheduler and aggregates flow and other
flows into aggregate . Also, suppose flow at

conforms to the token-bucket model and has guar-
anteed rate . Then, we have

(21)

The details of the proof can be found in [21].
To get a small burst size, we should use PFQ with small
and , especially small . From [24, Theorem 1],

(worst-case fair weighted fair queueing) yields and
a very small for flow at server with
capacity . Therefore, if H-WF Q is used by the aggregator,
the burst size becomes

(22)

Corollary 1: Using the H-WF Q algorithm at the aggregator,
and under the same condition of Theorem 4, the e2e delay is
bounded by

(23)

The proof is similar to that of Theorem 4; for details, see the
full version of this paper [21].

In general, the bound in (23) is smaller than that in (18), espe-
cially when the number of flows is large. However, as can
be seen, the bound in (23) is still affected by the average burst
ratio of other flows in the same aggregate.

D. Multiple Aggregations in a Region

The derivation of the two delay bounds (using work-con-
serving aggregators) in this section relies on the fact that the in-
coming traffic conforms to the token-bucket model with known
parameters. Inside an aggregation region, the traffic pattern (the
burst size in particular) will be distorted and become unpre-
dictable. If more aggregations are done inside an aggregation
region, this change of traffic pattern makes the derivation of
delay bounds very difficult, if not impossible. In fact, we de-
rived the two delay bounds assuming that aggregation is done
only once in each aggregation region. To use our method to de-
rive e2e delay bounds in the case of multiple aggregations in a
region, the traffic has to be reshaped before every aggregator to
make it follow the token-bucket model. The shaping incurs an
extra delay, which is not considered here, though.

IV. NONWORK-CONSERVING AGGREGATOR

In the previous section, work-conserving scheduling algo-
rithms were used by aggregators, and the derivation of the delay

bounds required knowing the incoming traffic pattern at the ag-
gregator. This requirement limits the ability of multiple aggre-
gations within a region, since the traffic pattern inside the region
is difficult to predict. The authors of [25] proved that reshaping
a flow inside the network will not change its e2e delay bound.
However, their proof was done for a single flow, and it is not
clear if reshaping an aggregate flow will change the e2e delay
bound of a constituent flow of the aggregate. We conjecture that
the delay bound will be affected.

Cobb [16] overcame this difficulty by using nonwork-con-
serving scheduling algorithms at aggregators. As stated in [26]
and [27], nonwork-conserving scheduling algorithms have the
following features: 1) the burstiness of traffic can be controlled;
2) the sum of the per-hop bounds can tightly bound the e2e
delay and jitter; and 3) since the nonwork-conserving scheduler
shapes the traffic at each hop, it is easy to bound the performance
of heterogeneous networks. Both the basic fair aggregator and
greedy fair aggregator in [16] use nonwork-conserving sched-
uling algorithms at aggregators to shape the outgoing traffic ag-
gregate. This way, very few packets in the same aggregate queue
up at later hops, which, in turn, makes the queueing delays in
those hops very small. However, the implicit assumption in [16]
is that there is only one output aggregate from each aggregator,
which is not generally the case. In this section, we extend the
result in [16] by allowing multiple outgoing aggregates from
an aggregator and derive the e2e delay bound under the token
bucket traffic model.

A. Delay Bound III: Nonwork-Conserving Aggregator

First, we define a new type of fair aggregator—rate-con-
trolled fair aggregator.

Definition 5 (Rate-Controlled Fair Aggregator): Server is
said to be a rate-controlled fair aggregator if: 1) it is a two-
level hierarchical GR scheduler; 2) each lower-level scheduler
handles the flows belonging to one aggregate with capacity ,
which is the sum of the guaranteed rates for all the constituent
flows of the aggregate; and 3) the upper level is the scheduler
for all the aggregates.

Note that the hierarchical scheduling algorithm defined here
is different from the one used in Section III-C: it is nonwork-
conserving, and the lower level consists of constant-rate servers.
A packet at the lower level scheduler will not be sent to the upper
level scheduler if the capacity of that scheduler does not permit
it, even when the upper level scheduler is idle. In contrast, in
the ordinary H-PFQ, the lower level schedulers are variable-rate
servers [23]. Since the lower level schedulers are constant-rate
servers, we will regard the lower level schedulers and the upper
level scheduler as two virtual hops.

Lemma 4: Suppose server is a rate-controlled fair aggre-
gator, with one of the lower level schedulers serving in-
coming flows (flow is one of them). The output of is the
aggregate . is the upper level scheduler dealing with all of
the aggregates. Suppose, at , that these flows have guar-
anteed rates and at the guaranteed rate for

is . Let the th packet of correspond to the
th packet of flow (i.e.,). Then, we have

(24)

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1195

where is the scheduling constant at (with capacity
).

Proof: Without loss of generality, we consider only one
busy period of aggregate at . Since the lower level server

is rate-controlled with capacity , the start times of the
transmission of two consecutive packets (and) in the

busy period are separated by an interval of . Also, since
and are two virtual nodes, the virtual link capacity between
them is infinite, i.e., . Thus, the transmission time of a
packet is infinitely small. Thus, we have

.
(25)

Next, we prove that for all

(26)

We prove this by induction on .
Base Case: . Since it is the first packet of the busy

period, we have

Induction Hypothesis: Suppose (26) holds for .
Induction Step: . From the definition of GRC value,

we have

However, from (25) and the induction hypothesis step, we know

Also, since is a GR server, by definition we have

Since and thus , from (26) we obtain

From Lemma 4, one can easily see that the rate-controlled fair
aggregator is a fair aggregator. Next, we derive the e2e delay
bound and show that, by using nonwork-conserving scheduling
algorithms at aggregators, the e2e delay bound of aggregate
scheduling can be decreased.

Theorem 6: Suppose flow traverses hops of GR servers
, and is a rate-controlled fair aggregator,

which bundles and other flows into aggregate flow .
is the deaggregator for . Suppose flow has a guaranteed

rate at and , and the guaranteed rate for
aggregate at is . Then, for
packet , the e2e delay satisfies

(27)

The proof is similar to that of Theorem 4. See [21] for a de-
tailed proof.

Corollary 2: If flow conforms to the token-bucket model
and , the e2e delay result of Theorem 6 be-

comes

(28)

Note that, thanks to the rate-control mechanism at aggrega-
tors, the e2e bound does not depend on the burstiness of other
flows in the same aggregate. Thus, the bound is smaller than
those of the work-conserving cases. If scheduling algorithms,
such as PGPS, VC, and WF Q, are used at the rate-controlled
fair aggregator , we have . Then, (27) and (28)
can be simplified as

(29)

and

(30)

respectively.
Moreover, the derivation of the bound in (27) does not require

the knowledge of the traffic pattern of incoming flows. This en-
ables us to derive the delay bound for the case of multiple aggre-
gations. For simplicity, in the following discussion, we use the
term to represent . Also, we assume that
scheduling algorithms such as PGPS, VC, and WF Q are used
at the rate-controlled fair aggregators. Thus, the delay bound for
single aggregation is in the form of (29).

B. Multiple Aggregations

Theorem 7: Suppose flow traverses hops of GR servers.
Any hop can be an aggregator and all of the aggregators are
rate-controlled fair aggregators. For each aggregator, there is a
corresponding deaggregator at a later hop. Then, the e2e delay
for packet , satisfies

(31)

where is the number of aggregators along the path, is the
aggregate flow that contains flow at is the maximum

packet size in aggregate flow , is the guaranteed rate for
at is the th aggregate along the path that contains

flow , and and are the maximum packet size in the
aggregate and its guaranteed rate, respectively.

See [21] for a detailed proof. Note that there are a total of
terms related to packet size in the above delay

bound. They can be understood as follows: the terms

in correspond to the delays at all of the hops (except
the first hop). In addition, for each aggregation with guaranteed

rate , there is a term as overhead. Compared to the delay

1196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Fig. 4. Comparison of deterministic delay bounds.

bound for per-flow scheduling in (7), (31) has more terms
due to aggregation. However, since the guaranteed rates for ag-
gregate flows are much higher at the routers in the aggregation
region, the total delay bound in (31) can be smaller than that in
(7). Moreover, if there is only one aggregate , and
and are the aggregator and deaggregator, respectively, (31)
becomes just (29).

V. EVALUATION

In this section, we first use some sample data to numerically
calculate the deterministic delay bounds derived so far and com-
pare them with that of per-flow scheduling. Then, we perform
extensive simulations to compare the e2e delays of aggregate
and per-flow scheduling.

First, the deterministic bounds were compared using the data
[5, Table I]: B, Kb/s, and Mb/s.
All packets were of the same size, 100 B, and ten identical flows
made up an e2e aggregate. To see the effect of the number of
hops, we varied from 3 to 10. As shown in Fig. 4, all of
the bounds increase linearly with the number of hops, but those
for aggregate scheduling increase much more slowly. When the
number of hops is large, the delay bounds of aggregate sched-
uling are smaller than that of per-flow scheduling. The per-flow
bound is computed from (7), the aggregate bounds I, II, and III
are computed from (18), (23), and (30), respectively, and the

limits I and II are computed from and , re-

spectively, which are independent of the number of hops.
From this example, one can see that, if the degree of bursti-

ness of the flows is not very high, the delay bounds of aggre-
gate scheduling can be smaller than that of per-flow scheduling.
In addition, it shows that hierarchical aggregator and rate-con-
trolled hierarchical aggregator can provide even smaller delay
bounds. Moreover, hop count plays a significant role in the delay
bound under per-flow scheduling. In contrast, it makes much
less impact on the delay bounds of aggregate scheduling. The re-
sult shows that aggregation is more advantageous if the number
of hops is large, which is similar to the conclusion in [28].

Next, extensive simulations were conducted to compare the
actual delay performance of aggregate and per-flow scheduling.
The objective of our simulation is twofold: 1) compare the de-
terministic delay bounds with the worst case delay from the
simulation and see how tight/loose the deterministic bounds are
and 2) compare the worst case delays of aggregate and per-flow

Fig. 5. Simulation topology.

scheduling. We intended to find conditions under which aggre-
gate scheduling outperforms per-flow scheduling in terms of e2e
delay.

A. Simulation Setup

In the simulation, we used the [29] simulator and the
topology in Fig. 5. In this topology, a number of “tagged” flows
enter the network at the ingress node and traverse all of the
other nodes until they reach the egress node . The “tagged”
flows are those of interest to our study; their e2e delays were
checked at the egress node. In order to simulate interference
by cross traffic, external traffic was injected at every node on
the path. The cross traffic at each node shared the path with the
tagged traffic for only one hop before exiting the network at the
next hop. For backbone links, we set the bandwidth to 160 Mb/s
and the propagation delay to 2 ms, respectively, while for in-
coming and outgoing links, we set the bandwidth to 10 Mb/s
and the propagation delay to 10 ms. The total number of tagged
flows was fixed at 128, which was divided into multiple aggre-
gates in the aggregate scheduling cases.

The tagged flows were generated by using a modified CBR
model with varying packet and burst sizes. Each incoming
tagged flow was shaped by a token bucket. The cross traffic
was generated by using the Pareto ON/OFF distribution [30],
which can simulate long-range dependencies and is known to
be suitable for a large volume of traffic.

The version of weighted fair queueing (WFQ) was used
as the GR scheduler at each backbone node for both per-flow
and aggregate scheduling. For aggregate scheduling, two ver-
sions of aggregator were used: work-conserving stand-alone ag-
gregator and nonwork-conserving rate-controlled (RC) aggre-
gator. To support the nonwork-conserving aggregator, a version
of rate-controlled fair queueing was implemented.

To run simulations under different scenarios, we varied sev-
eral parameters, including the rate of the tagged flows and the
number of flows in each aggregate. All of the parameters are
summarized in Table II. The main performance metric is the
worst case e2e delay. For each scenario, 36 independent runs
were conducted. All of the results were plotted with the 95%
confidence interval [31].

B. Simulation Results

1) Typical Result: Fig. 6 shows a typical result of e2e de-
lays under three different scheduling algorithms: per-flow FQ,
aggregate FQ (which uses the stand-alone work-conserving ag-
gregator), and FIFO queueing. The e2e delay under aggregate
FQ is found to be most stable. Aggregate FQ yields not only
the smallest worst case delay but also very small delay varia-
tion. In contrast, per-flow FQ yields larger worst case delays and
delay variations; the delay under FIFO has the largest fluctuation
and the worst performance. The above results were obtained by
using: burst size 10 000 B; packet size 1000 B; tagged flow rate

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1197

TABLE II
PARAMETERS AND THEIR VALUES IN AN ANOVA TEST

Fig. 6. End-to-end delay comparison.

32 Kb/s; hop count ; the number of flows in the aggre-
gate ; and link utilization 55%. With these values, we
can compute the deterministic bounds from (7) and (18). The
bounds turn out to be 6 s for per-flow FQ and 5.53 s for aggre-
gate FQ. Both of the bounds are much larger than the worst case
delay found from the simulation, implying that they are rather
pessimistic.

2) Homogeneous Case: To find the main factors that affect
the delay performance of both aggregate and per-flow sched-
uling, we first used homogeneous flows in each aggregate. We
used the factorial design method [31] to evaluate the con-
tribution of different parameters. Eight parameters were
used, each with two different values. Each scenario was run 36
times . The parameters and their values are summa-
rized in Table II.

After collecting data, we used the statistical tool ANalysis Of
VAriance (ANOVA) [31] to analyze the significance of each pa-
rameter. Our focus was on the value , where is
the worst case delay under aggregate (per-flow) scheduling. The
intention was to find which parameters affect most the relative
delay performance between aggregate and per-flow scheduling.
The second parameter—packet size of cross traffic—turned out
to have little effect on value . This is easy to explain, since,
from the delay bounds in (7), (18), and (30), the packet size of
cross traffic shows up only in the term , which is usually
negligible since is very large. Therefore, we fixed its value
at 1500 B in all of the following simulations.

To illustrate the effects of the factors on the e2e delay, we
ran multiple sets of simulation. For each set of simulation, we
varied only one parameter with all of the others fixed. All of the
default values of the parameters are summarized in Table III;
the simulation results are summarized in Fig. 7. In Figs. 7 and
8, as well as in the following discussion, “aggregate FQ” stands
for aggregate scheduling using stand-alone fair queueing; “RC
aggregate FQ” stands for aggregate scheduling using rate-con-
trolled (RC) fair queueing.

Let us compare the performance of per-flow and aggregate
FQ first. In Fig. 7(a), as the burst size of the flows increases,
the worst case delay under per-flow FQ increases significantly
faster than that under aggregate FQ. Surprisingly, the delays of
aggregate FQ do not increase as fast as expected. This behavior
can be attributed to the multiplexing gain of aggregate sched-
uling. In other words, although all flows become burstier, the
probability that all flows reach their peaks (of load) at the same
time is very low. Instead, the peaks and valleys are more likely
to be evened out.

In Fig. 7(b), as the flow rate increases, the worst case delay
under per-flow FQ decreases faster than that under aggregate
FQ. Thus, aggregate FQ is shown to be more advantageous
for lower rate flows. In Fig. 7(c) and (d), as the packet size
(hop count) increases, the delay under per-flow FQ increases
faster than that under aggregate FQ. Therefore, aggregate FQ is
more advantageous when the packet size (hop count) is large. In
Fig. 7(e), as network link utilization increases, the delay under
per-flow FQ increases dramatically faster than that under ag-
gregate FQ, showing that when the network utilization is high,
aggregate FQ becomes more advantageous. In Fig. 7(f), as the
number of flows in an aggregate increases, the e2e delay under
aggregate FQ decreases, while that under per-flow FQ remains
unchanged. Aggregate FQ is shown to be more advantageous
when the number of flows aggregated gets larger. However, as
the number increases, the pace of increase becomes smaller
since the margin of multiplexing gain decreases.

The effects of flow rate, packet size, and hop count can be
easily explained by the deterministic bounds. Since GR sched-
uling algorithms are rate-based, the delay of a flow is coupled
with its reserved rate. Although aggregate scheduling has the
same problem as per-flow scheduling, the reserved rate for an
aggregate is much larger than that of a single flow ,
so the problem is not as severe as in per-flow scheduling. As
for packet size, according to (7) and (18), the delay bounds are
proportional to the maximum packet size in a flow (aggregate).
With aggregation, however, is much larger than . Thus,
the delay bound increases much faster under per-flow sched-
uling. The same holds true for hop count. The effect of link uti-
lization is also related to the coupling problem of GR sched-
uling. When the link utilization becomes higher, there is less
spare bandwidth left. Therefore, the rate for a flow (aggregate) is
decreased to its reserved rate. Since is much larger than ,
aggregate scheduling has less increase in delay. Finally, since
per-flow scheduling is independent of the number of flows in an
aggregate , its delay should not change with . For aggre-
gate scheduling, from (18), two terms are related to the number

of flows : and . Since only iden-
tical flows are considered, the first term does not vary with the
number of flows. However, increases proportionally to .

1198 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Fig. 7. Comparison of aggregate and per-flow scheduling. (a) Burst size. (b) Flow rate. (c) Packet size. (d) Hop count. (e) Link utilization. (f) Number of flows
in each aggregate.

Fig. 8. Aggregation of heterogeneous flows. (a) Larger burst size. (b) Smaller flow rate. (c) Larger packet size.

TABLE III
DEFAULT PARAMETER VALUES

Thus, the second term decreases slightly, and the total e2e delay
decreases.

Now, consider the results for RC aggregate FQ. In all of the
scenarios, the worst-case delays under RC aggregate FQ follow
the same trend as those under aggregate FQ. However, since the
default link utilization is only 25%, RC aggregate FQ performs
worse than aggregate FQ does; in most cases, its performance is
even worse than that of per-flow FQ. This is mainly because RC
aggregate FQ is nonwork-conserving and does not take advan-
tage of spare bandwidth. On the other hand, as Fig. 7(e) shows,
when the link utilization becomes higher, RC aggregate FQ still

performs better than per-flow FQ does, and the difference be-
tween RC aggregate FQ and aggregate FQ becomes smaller.

We also ran simulations by varying the burstiness of cross
traffic. As the burstiness of cross traffic increases, the worst-case
delay for per-flow scheduling increases faster than those under
the two aggregate FQ cases, showing that aggregate scheduling
is more robust to the burstiness of cross traffic than per-flow
scheduling.

3) Heterogeneous Case: After studying the effects of dif-
ferent parameters by using homogeneous flows in a traffic ag-
gregate, we mixed heterogeneous flows (in terms of packet size,
flow rate, and burst ratio) into an aggregate to determine the type
of flows suitable for aggregation. In our simulation, 16 flows
were aggregated: 15 of them were identical flows and only one
flow was different from the rest. We measured the worst case
delay of this flow while varying the parameters of other flows.

Fig. 8(a) shows the result when the small-burst flow (with
relative burst size 1) is aggregated with larger burst flows. As
the burst size of the other flows increases, the worst case delay
under aggregate FQ increases quickly. As expected, mixing a
flow with other larger burst flows will hurt its delay perfor-
mance. Note that the performance of RC aggregate FQ is very
stable since the aggregator controls the burstiness of the output
aggregate.

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1199

TABLE IV
PARAMETERS OF THE VIDEO TRACES

Fig. 9. Delay results for video traces.

Fig. 8(b) plots the result when a high-rate flow (with rate
128 Kb/s) is aggregated with low-rate flows. As the rate of
other flows gets smaller, the delay under both aggregate FQ
and RC aggregate FQ increases and that under aggregate
FQ increases faster and eventually becomes larger than that
under per-flow FQ. From (18), one can see that as the rates
of other flows decrease, decreases, and thus, all three

terms— and —increase, so
the total delay increases. Due to the rate control at the aggre-
gator, the delay increase under RC aggregate FQ is slower.

Fig. 8(c) shows the result when a small-packet flow (with de-
fault size 100 B) is aggregated with large-packet flows. When
the packet size of other flows becomes larger, the delay perfor-
mance of is shown to suffer, resulting in an even larger delay
than that under per-flow FQ and RC aggregate FQ. This is be-
cause when aggregated with large-packet flows, a small packet
has to wait behind other large packets in the same aggregate.
This implies that flows of similar packet size should be aggre-
gated together.

For the purpose of comparison, we also mixed a flow with
other flows with smaller burst size, larger flow rate, and smaller
packet size. The results show little or marginal change on the
worst case delay of aggregate scheduling. Similarly, the results
can be explained with the delay bound in (18) and (30).

4) Case Study With MPEG Traces: To further compare the
delay performance of aggregate FQ and per-flow FQ, we also
used real MPEG-4 traces [32] in the simulation. Two video
traces were used: high-rate “Soccer” and low-rate “Silence of
the Lambs.” The parameters of these two traces are shown in
Table IV. They have very different burstiness, packet rate, and
packet rate variation. With the same simulation setup as before,
we mixed eight tagged flows driven by the “Soccer” trace and
eight other tagged flows driven by the “Silence of the Lambs”
trace into an aggregate. The results are summarized in Fig. 9,
which shows that, for flows driven by both traces, aggregate FQ

provides smaller maximum e2e delays; also, the improvement
is much larger for burstier flows driven by the “Silence of the
Lambs” trace.

VI. RELATED WORK AND DISCUSSIONS

Aggregate scheduling has been studied extensively in the
literature. In [33] and [34], the authors proposed some grouping
techniques to optimize the implementation of fair queueing.
Certain flows (with similar throughput parameters) are grouped
together. For example, the scheme in [34] is confined to ATM
networks, in which the routers support only a fixed number of
rates, and all of the flows of the same rate are placed into a
single group. It takes advantage of the fact that all of the cells
have the same size and all of the flows in the same group have
the same rate, thus simplifying the sorting of flows. However,
it still uses per-flow-based scheduling. Although these two
algorithms are sometimes called aggregate scheduling, they
are different from the aggregate scheduling considered here,
because the core routers still recognize each individual flow.
They are just efficient implementations of per-flow-based fair
queueing.

The authors of [35] studied QoS guarantees under aggrega-
tion (e2e aggregation was called grouping). Similar to our study,
fair queueing is used to handle aggregates at core routers (or
in aggregation regions). Based on some given e2e delay re-
quirement, they derived the bandwidth and buffer requirements
by using the IETF guaranteed service (GS) traffic specification
(TSpec) and demonstrated the advantages of aggregating flows
of equal or similar delay requirements. By contrast, we derived
the e2e delay bound under a given bandwidth guarantee without
considering any buffer requirement.

Although the main focus of [22] is QoS routing, it discussed
flow aggregation by defining the notion of “burst ratio.” For
flows conforming to the token-bucket model, the burst ratio
is the ratio of the burst size to the average rate or . The
authors suggested aggregation of flows of same or similar burst
ratio, since flows with the same burst ratio can be merged and
divided without changing the burst ratio of the resulting flows.
This conclusion is the same as ours in the work-conserving case
in Section IV. The authors of [22] analyzed e2e delay for a fluid
traffic model, without considering any nonfluid traffic model.
In contrast, our delay bound analysis is based on packet traffic
model.

Cobb’s work [15], [16] is closest to ours. He studied the
delay bound problem of aggregate scheduling by using rate-
based scheduling algorithms. The core routers treat each ag-
gregate as a single flow and handle all the aggregates by using
rate-based fair queueing. He defined a class of fair aggregator
and showed that, by using such a fair aggregator, the e2e delay
is bounded. Such an aggregator can be used to aggregate the
traffic recursively, and the e2e delay bound still exists. He also
proposed two types of fair aggregators, called the basic fair ag-
gregator and greedy fair aggregator. By using such aggrega-
tors, he showed that the e2e delay bound can be even smaller
than the per-flow e2e delay bound. Our work is more general.
In Section III, we showed that the delay bounds exist even for
work-conserving aggregators. In Section IV, we extended the
result in [16] by allowing multiple aggregates going out of the
same link of an aggregator and derived the e2e delay bound
under the token bucket traffic model.

1200 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

A. Diffserv and Aggregate GR Scheduling

The main difference between DiffServ and the proposed ag-
gregate GR scheduling architecture is the way packets in the
same class are scheduled. Although it is not specified in the
DiffServ standard documents, FIFO queueing is usually used
for packet scheduling within each class, thus resulting in coarse-
grained control of delay performance.

In the context of DiffServ, the authors of [5] studied the worst
case delay bound of FIFO queueing, showing its unsatisfactory
performance. For a certain class of traffic, such as EF, the e2e
delay bound exists only if the network utilization of that class
is sufficiently low. In such a case, the delay bound is a func-
tion of the utilization of any link in the network, the maximum
hop count of any flow, and the shaping parameters at the net-
work ingress nodes. However, if the utilization is high, the e2e
delay could be unbounded. The main reason for this unbounded
delay is that the e2e delay experienced by a packet under FIFO
queueing is severely affected by the cross traffic. The authors
showed that, for real-time traffic such as voice, achieving an ac-
ceptable delay bound under FIFO queueing requires the network
utilization of such traffic to be rather low.

In aggregate GR scheduling architecture, the definition of
traffic aggregates is more flexible and finer grained than the Diff-
Serv traffic classes. Traffic within the same DiffServ class can be
further grouped into multiple different aggregate flows that are
differentiated in aggregation regions by using the fair queueing
algorithms of IntServ. Moreover, at aggregators, flows are bun-
dled into aggregates by more intelligent scheduling schemes,
instead of FIFO queueing.

B. Advantages and Disadvantages of Traffic Aggregation

With traffic aggregation, the core routers need to maintain
fewer states, making packet classification and scheduling sim-
pler. Flow aggregation is also beneficial to the flows with low
bandwidth requirements, because, under GR scheduling algo-
rithms—which couples bandwidth and delay—the flows with
low bandwidth requirements will suffer long delays; however,
aggregation usually alleviates this problem. More importantly,
as shown earlier, aggregate-based GR scheduling can provide
guaranteed QoS, such as the e2e delay bound.

However, aggregation also comes with its own disadvantages:
the flows in the same aggregate cannot isolate from, and pro-
tect against, other flows. Therefore, the QoS guarantee of a flow
will be affected by others in the same aggregate, and all of the
flows within an aggregate will receive roughly the same ser-
vice. Due to the lack of isolation within an aggregate, bursty
flows can “steal” the bandwidth from well-behaving flows and
unduly degrade their QoS. This problem can become worse in
multiservice networks [28]. However, as pointed out in [22], the
problem can be controlled if flows are selectively aggregated,
i.e., only those flows that have some common characteristics are
aggregated (which is similar to our conclusion; see the results
in Section III). Moreover, “fair” aggregation can also alleviate
this problem. In this paper, we have shown this feature by using
GR scheduling algorithms to aggregate flows.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first derived deterministic delay bounds for
aggregates under the assumption that the incoming traffic at
each aggregator conforms to the token-bucket model and GR
scheduling algorithms are used in each aggregation region. We
considered three types of GR scheduling algorithms at an aggre-
gator: stand-alone, two-level hierarchical, and rate-controlled
two-level hierarchical GR algorithms. The delay bounds are
shown to depend on several factors, such as the scheduling con-
stant at each hop and the latency at the aggregator. We should,
therefore, use the scheduling algorithms with a small scheduling
constant at each hop and those with small latency at aggregators.
Among all of the rate-based scheduling algorithms, PGPS, VC,
and WF Q have the smallest scheduling constant and latency.
The delay bounds also indicate that it is beneficial to aggre-
gate flows with similar burst ratios. Aggregate scheduling pro-
vides better e2e delay bounds when a large number of hops use
aggregate scheduling, because the overhead at the aggregators
will be offset by the larger guaranteed rate for an aggregate. If
the number of hops is small, the aggregation overhead becomes
“relatively” significant.

We also showed by simulation that aggregate scheduling is
robust. By exploiting multiplexing gains, it can provide better
worst case delay performances than per-flow scheduling, as long
as those flows aggregated together are not very diverse in terms
of packet size, flow rate, and burst ratio. In addition, the simula-
tion results also showed that, in most scenarios, a nonwork-con-
serving aggregator performs worse than a work-conserving ag-
gregator, since it does not take advantage of the spare bandwidth
in the network. Also, the deterministic bounds are shown to be
rather pessimistic. Although the simulation may not capture the
worst case e2e delay, it implies that the probability for the worst
case to happen be very small.

Note that resource reservation and admission control were not
covered in this paper, but techniques in the literature (e.g., [11])
can be used for this purpose. We also assumed that the e2e path
in an aggregation region can be set up by traffic engineering
mechanisms similar to the way the label switched path (LSP) is
set up in an MPLS network.

The large gap between the deterministic delay bound and the
worst case delay found from the simulations suggests the need
for investigation into the stochastic behavior of aggregate sched-
uling. We are currently exploring ways to find statistical delay
bounds for traffic aggregates. With such bounds, one can admit
more flows and enhance network utilization.

REFERENCES

[1] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: An Overview,” IETF, RFC 1633, June 1994.

[2] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
Oct. 1995.

[3] S. Blake et al., “An Architecture for Differentiated Services,” IETF, RFC
2475, Dec. 1998.

[4] B. Davie et al., “An Expedited Forwarding PHB (Per-Hop Behavior),”
IETF, RFC 3246, Mar. 2002.

[5] A. Charny and J.-Y. Le Boudec, “Delay bounds in a network with ag-
gregate scheduling,” in Proc. QofIS, Oct. 2000, pp. 1–13.

SUN AND SHIN: END-TO-END DELAY BOUNDS FOR TRAFFIC AGGREGATES UNDER GUARANTEED-RATE SCHEDULING ALGORITHMS 1201

[6] F. Baker et al., “Aggregation of RSVP for IPv4 and IPv6 Reservation,”,
RFC 3175, Sep. 2001.

[7] J. Ehrensberger, “Resource demand of aggregated resource reserva-
tions,” in Proc. ECUMN, Oct. 2000, pp. 56–61.

[8] O. Schelén and S. Pink, “Aggregating resource reservation over multiple
routing domains,” in Proc. IEEE IWQoS, May 1998, pp. 29–32.

[9] A. Terzis, L. Zhang, and E. L. Hahne, “Reservations for aggregate
traffic: Experiences from an RSVP tunnels implementation,” in Proc.
IEEE IWQoS, May 1998, pp. 23–25.

[10] B.-K. Choi et al., “Scalable QoS guaranteed communication services for
real-time applications,” in Proc. IEEE ICDCS, Apr. 2000, pp. 180–187.

[11] H. Fu and E. W. Knightly, “Aggregation and scalable QoS: A perfor-
mance study,” in Proc. IEEE IWQoS, June 2001, pp. 39–50.

[12] S. Berson and S. Vincent, “Aggregation of internet integrated services
state,” in Proc. IEEE IWQoS, May 1998, pp. 26–28.

[13] H. Zhang and S. Keshav, “Comparison of rate-based service disciplines,”
in Proc. ACM SIGCOMM, Aug. 1991, pp. 113–121.

[14] T. Li and Y. Rekhter, “A Provider Architecture for Differentiated Ser-
vices and Traffic Engineering (PASTE),” IETF, RFC 2430, Oct. 1998.

[15] J. A. Cobb, “Preserving quality of service guarantees in spite of flow
aggregation,” in Proc. IEEE ICNP, Oct. 1998, pp. 90–97.

[16] , “Preserving quality of service guarantees in spite of flow aggre-
gation,” IEEE/ACM Trans. Netw., vol. 10, no. 1, pp. 43–53, Feb. 2002.

[17] P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay
bounds in heterogeneous networks,” in Proc. NOSSDAV, Apr. 1995, pp.
287–298.

[18] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol.
6, no. 4, pp. 611–624, Aug. 1998.

[19] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The single node
case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, Jun. 1993.

[20] L. Zhang, “Virtual clock: A new traffic control algorithm for
packet-switched networks,” ACM Trans. Computer Syst., vol. 9,
no. 2, pp. 101–124, May 1991.

[21] W. Sun and K. G. Shin, “End-to-End Delay Bounds for Traffic Ag-
gregates Under Guaranteed Rate Scheduling Algorithms,” Dept. Elect.
Eng. Comput. Sci., Univ. of Michigan, Ann Arbor, Tech. Rep. CSE-TR-
484-03, 2003.

[22] S. Vutukury and J. Garcia-Luna-Aceves, “A scalable architecture for
providing deterministic guarantees,” in Proc. IEEE IC3N, Oct. 1999, pp.
534–539.

[23] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing algo-
rithms,” in Proc. ACM SIGCOMM, Aug. 1996, pp. 143–156.

[24] , “WF Q: Worst-case fair weighted fair queueing,” in Proc. IEEE
INFOCOM, Mar. 1996, pp. 120–128.

[25] J.-Y. Le Boudec, “Application of network calculus to guaranteed service
networks,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1087–1096, May
1998.

[26] H. Zhang and D. Ferrari, “Rate-controlled service disciplines,” J. High
Speed Networks, vol. 3, no. 4, pp. 389–412, 1994.

[27] S. Keshav, An Engineering Approach to Computer Net-
working. Reading, MA: Addison Wesley, 1997.

[28] K. Dolzer, W. Payer, and M. Eberspächer, “A simulation study on traffic
aggregation in multi-service networks,” in Proc. IEEE Conf. High Per-
formance Switching and Routing, Jun. 2000, pp. 157–165.

[29] ns2 Simulator [Online]. Available: http://www.isi.edu/nsnam/ns/
[30] A. Popescu, “Traffic Self-Similarity,” Blekinge Institute of Technology,

Karlskrona, Sweden, white paper, 1999.
[31] R. Jain, The Art of Computer Systems Performance Analysis. New

York: Wiley, 1991.

[32] F. Fitzek and M. Reisslein, “MPEG-4 and H.263 video traces for net-
work performance evaluation,” IEEE Network, vol. 15, no. 6, pp. 40–54,
Nov./Dec. 2001.

[33] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi, “Hardware-efficient
fair queueing architectures for high-speed networks,” in Proc. IEEE IN-
FOCOM, Mar. 1996, pp. 638–646.

[34] J. C. R. Bennett, D. C. Stephens, and H. Zhang, “High speed, scalable,
and accurate implementation of packet fair queueing algorithms in ATM
networks,” in Proc. IEEE ICNP, Oct. 1997, pp. 7–14.

[35] J. Schmitt et al., “Aggregation of guaranteed service flows,” in Proc.
IEEE IWQoS, Jun. 1999, pp. 147–155.

Wei Sun (S’99) received the B.S. degree in math-
ematics from Nankai University, Tianjin, China, in
1992, the M.S. degree in computer science from
Tsinghua University, Beijing, China, in 1995, and
the M.S. degree in computer science from The Ohio
State University, Columbus, in 1999. He is currently
working toward the Ph.D. degree in computer
science at the University of Michigan, Ann Arbor.

His research interests include Quality of Service,
packet scheduling, and Internet routing.

Mr. Sun has been a member of the Association for
Computing Machinery since 1999.

Kang G. Shin (S’75–M’78–SM’83–F’92) received
the B.S. degree in Electronics Engineering from
Seoul National University, Seoul, Korea in 1970,
and both the M.S. and Ph.D. degrees in Electrical
Engineering from Cornell University, Ithaca, New
York in 1976 and 1978, respectively.

He is the Kevin and Nancy O’Connor Professor
of Computer Science and Founding Director of the
Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor. His current

research focuses on QoS-sensitive networking and computing as well as on
embedded real-time OS, middleware, and applications, all with emphasis on
timeliness and dependability. He has supervised the completion of more than
50 Ph.D. dissertations and authored or co-authored approximately 600 technical
papers and numerous book chapters. He has co-authored (with C. M. Krishna)
the textbook Real-Time Systems (New York: McGraw-Hill, 1997).

Prof. Shin was the recipient of a number of best paper awards, including
the IEEE Communications Society William R. Bennett Prize Paper Award in
2003, the Best Paper Award from the IWQoS’03 in 2003, and an Outstanding
IEEE TRANSACTIONS OF AUTOMATIC CONTROL Paper Award in 1987. He has
also coauthored papers with his students which received the Best Student Paper
Awards from the 1996 IEEE Real-Time Technology and Application Sympo-
sium, and the 2000 USENIX Technical Conference. He was also the recipient of
several institutional awards, including the Research Excellence Award in 1989,
the Outstanding Achievement Award in 1999, the Service Excellence Award in
2000, the Distinguished Faculty Achievement Award in 2001, and the Stephen
Attwood Award in 2004 from The University of Michigan, along with the Dis-
tinguished Alumni Award of the College of Engineering, Seoul National Uni-
versity in 2002 and the 2003 IEEE RTC Technical Achievement Award.

	toc
	End-to-End Delay Bounds for Traffic Aggregates Under Guaranteed-
	Wei Sun, Student Member, IEEE, and Kang G. Shin, Fellow, IEEE
	I. I NTRODUCTION

	Fig.€1. Aggregate scheduling.
	TABLE I S YMBOLS
	II. G UARANTEED -R ATE S CHEDULING A LGORITHMS
	A. GR Scheduling Algorithms
	Definition 1 (GR Clock Value): Consider a flow f associated wi
	Definition 2 (GR Scheduling Algorithm): A scheduling algorithm a

	B. LR Server
	Definition 3 (LR Server): Let τ be the starting time of a b
	Lemma 1: Suppose an incoming flow f to router S_i conforms t

	C. Relationship Between GR and LR Servers
	Theorem 1: For any flow f, an LR server S_i with latency $\t
	Proof: Without loss of generality, we consider only one busy per

	D. End-to-End Delay Bound Under Per-Flow Scheduling
	Lemma 2: Suppose routers S_i and S_{i+1} are two neighboring
	Theorem 2: If flow f conforms to the token-bucket model $(\sig

	III. W ORK -C ONSERVING A GGREGATOR
	A. Fair Aggregator
	Definition 4 (Fair Aggregator): Let router S_i be an aggregato
	Lemma 3: Suppose S_i and S_{i+1} are two neighboring GR serv
	Proof: Similar to the definition of a busy period of a single fl

	B. Delay Bound I: Stand-Alone Aggregator
	Theorem 3: Suppose S_i is an LR server, and both S_i and $S_
	Theorem 4: Suppose N flows share the same K hops of GR serve
	Proof: Let $p^{j'}_A$ be the packet in the aggregate flow A co

	C. Delay Bound II: Hierarchical Aggregator

	Fig.€2. Hierarchical scheduling.
	Fig.€3. Benefits of hierarchical scheduling.
	Theorem 5: Suppose S_i is an aggregator with a two-level H-PFQ
	Corollary 1: Using the H-WF 2 Q algorithm at the aggregator,
	D. Multiple Aggregations in a Region
	IV. N ONwORK -C ONSERVING A GGREGATOR
	A. Delay Bound III: Nonwork-Conserving Aggregator
	Definition 5 (Rate-Controlled Fair Aggregator): Server S_i is
	Lemma 4: Suppose server S_i is a rate-controlled fair aggregat
	Proof: Without loss of generality, we consider only one busy per

	Theorem 6: Suppose flow f traverses K hops of GR servers $S_
	Corollary 2: If flow f conforms to the token-bucket model $(\s

	B. Multiple Aggregations
	Theorem 7: Suppose flow f traverses K hops of GR servers. An

	Fig.€4. Comparison of deterministic delay bounds.
	V. E VALUATION

	Fig.€5. Simulation topology.
	A. Simulation Setup
	B. Simulation Results
	1) Typical Result: Fig.€6 shows a typical result of e2e delays u

	TABLE II P ARAMETERS AND T HEIR V ALUES IN an ANOVA T EST
	Fig.€6. End-to-end delay comparison.
	2) Homogeneous Case: To find the main factors that affect the de
	Fig.€7. Comparison of aggregate and per-flow scheduling. (a) Bur
	Fig.€8. Aggregation of heterogeneous flows. (a) Larger burst siz
	TABLE III D EFAULT P ARAMETER V ALUES

	3) Heterogeneous Case: After studying the effects of different p

	TABLE IV P ARAMETERS OF THE V IDEO T RACES
	Fig.€9. Delay results for video traces.
	4) Case Study With MPEG Traces: To further compare the delay per
	VI. R ELATED W ORK AND D ISCUSSIONS
	A. Diffserv and Aggregate GR Scheduling
	B. Advantages and Disadvantages of Traffic Aggregation

	VII. C ONCLUSION AND F UTURE W ORK
	R. Braden, D. Clark, and S. Shenker, Integrated Services in the
	H. Zhang, Service disciplines for guaranteed performance service
	S. Blake et al., An Architecture for Differentiated Services, IE
	B. Davie et al., An Expedited Forwarding PHB (Per-Hop Behavior),
	A. Charny and J.-Y. Le Boudec, Delay bounds in a network with ag
	F. Baker et al., Aggregation of RSVP for IPv4 and IPv6 Reservati
	J. Ehrensberger, Resource demand of aggregated resource reservat
	O. Schelén and S. Pink, Aggregating resource reservation over mu
	A. Terzis, L. Zhang, and E. L. Hahne, Reservations for aggregate
	B.-K. Choi et al., Scalable QoS guaranteed communication service
	H. Fu and E. W. Knightly, Aggregation and scalable QoS: A perfor
	S. Berson and S. Vincent, Aggregation of internet integrated ser
	H. Zhang and S. Keshav, Comparison of rate-based service discipl
	T. Li and Y. Rekhter, A Provider Architecture for Differentiated
	J. A. Cobb, Preserving quality of service guarantees in spite of
	P. Goyal, S. S. Lam, and H. M. Vin, Determining end-to-end delay
	D. Stiliadis and A. Varma, Latency-rate servers: A general model
	A. K. Parekh and R. G. Gallager, A generalized processor sharing
	L. Zhang, Virtual clock: A new traffic control algorithm for pac
	W. Sun and K. G. Shin, End-to-End Delay Bounds for Traffic Aggre
	S. Vutukury and J. Garcia-Luna-Aceves, A scalable architecture f
	J. C. R. Bennett and H. Zhang, Hierarchical packet fair queueing
	J.-Y. Le Boudec, Application of network calculus to guaranteed s
	H. Zhang and D. Ferrari, Rate-controlled service disciplines, J.
	S. Keshav, An Engineering Approach to Computer Networking . Read
	K. Dolzer, W. Payer, and M. Eberspächer, A simulation study on t

	ns2 Simulator [Online] . Available: http://www.isi.edu/nsnam/ns/
	A. Popescu, Traffic Self-Similarity, Blekinge Institute of Techn
	R. Jain, The Art of Computer Systems Performance Analysis . New
	F. Fitzek and M. Reisslein, MPEG-4 and H.263 video traces for ne
	J. L. Rexford, A. G. Greenberg, and F. G. Bonomi, Hardware-effic
	J. C. R. Bennett, D. C. Stephens, and H. Zhang, High speed, scal
	J. Schmitt et al., Aggregation of guaranteed service flows, in P

