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Abstract—Small low-cost sensor devices, each equipped with limited resources, are networked and used for various critical

applications, especially those related to homeland security. Making such a sensor network secure is challenging mainly because it

usually has to operate in a harsh, sometimes hostile, and unattended environment, where it is subject to capture, reverse-engineering,

and manipulation. To address this challenge, we present a Program-Integrity Verification (PIV) protocol that verifies the integrity of the

program residing in each sensor device whenever the device joins the network or has experienced a long service blockage. The heart

of PIV is the novel randomized hash function tailored to low-cost CPUs, by which the algorithm for hash computation on the program

can be randomly generated whenever the program needs to be verified. By realizing this randomized hash function, the PIV protocol

1) prevents manipulation/reverse-engineering/reprogramming of sensors unless the attacker modifies the sensor hardware (e.g.,

attaching more memory), 2) provides purely software-based protection, and 3) triggers the verification infrequently, thus incurring

minimal intrusiveness into normal sensor functions. Our performance evaluation shows that the PIV protocol is computationally

efficient and incurs only a small communication overhead, hence making it ideal for use in low-cost sensor networks.

Index Terms—Tamper-proofing, program-integrity verification, a randomized hash function, sensor networks.
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1 INTRODUCTION

Asensor network is usually built with a large number of
small devices, each of which has limited battery

energy, memory, computation, and communication capa-
cities. Such sensor networks can be used for various critical
applications such as the safeguarding of and early warning
systems for the physical infrastructure that includes
buildings, transportation systems, water supply systems,
waste treatment systems, power generation and transmis-
sion, and communication systems. Despite the critical role
in their intended applications, sensor networks are vulner-
able to various security attacks, especially because they are
deployed in a hostile and/or harsh environment. In such an
environment, a captured sensor may be reverse-engineered,
modified, and abused by the adversary. That is, the
adversary can 1) acquire (via analysis of the sensor
memory) detailed knowledge of what the sensor’s program
is supposed to do and what the master secret is, 2) modify
the program with a malicious code, and 3) produce and
deploy multiple copies of the manipulated sensor device in
the network. This is a serious problem, as sensor devices,
once compromised, can subvert the entire network, e.g.,
blocking nodes within its communication range from
receiving and/or sending/relaying any information. Con-
sequently, it is essential to make a sensor device tamper-
proof.

Traditionally, the tamper-proofing of programs or a

master secret relies on tamper-resistant hardware [1], [2].

However, this hardware-based protection will likely fail to

provide acceptable security and efficiency because 1) strong

tamper-resistance is too expensive to be implemented in

resource-limited sensor devices and 2) the tamper-resistant

hardware itself is not always absolutely safe due to various

tampering techniques [1], [3], [4] such as reverse-engineer-

ing on chips, microprobing, glitch and power analysis, and

cipher instruction search attacks. Existing approaches to

generating tamper-resistant programs without hardware

support can be classified as:

. code obfuscation [5], [6], [7], [8] that transforms the
executable code to make analysis/modification
difficult,

. result checking [9], [10], [11] that examines the validity
of intermediate results produced by the program,

. self-decrypting programs [12], [13] that store the
encrypted executables and decrypt them before
execution, and

. self-checking [12], [14], [15] that embeds, in programs,
codes for hash computation as well as correct hash
values to be invoked to verify the integrity of the
program under execution.

However, for the following reasons, these approaches are

unsuitable for sensor networks where a program runs on a

slow, less-capable CPU in each sensor device. First, in the

case of code obfuscation, it becomes easier to tamper with

the program code as the code size in low-cost sensor

devices shrinks, let alone the theoretical difficulty of

obfuscation [16]. Moreover, just making it difficult to

tamper with program code is not sufficient as it cannot

protect against “determined” attackers. Second, techniques

based on result-checking or self-decryption are too “ex-

pensive” to be employed in resource-limited sensor devices

because they continuously incurs the overhead of verifica-

tion or decryption, shortening the sensor’s battery lifetime
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and degrading the network throughput. Third, the security
of self-decrypting programs can be easily broken unless the
decryption routines are protected from reverse-engineering,
for example, by means of hardware. Likewise, self-checking
techniques become defenseless once the hash computation
code and/or the hash values have been identified/analyzed
by the adversary.

In spite of these threats, little has been done on tamper-
proofing tailored to resource-limited sensor devices. To
defend the sensor network against the above-mentioned
attacks, the following security conditions should be met:
1) The program residing in a sensor is not modified
(integrity) and, optionally, 2) the sensor identifier (ID) is
unique in a network (uniqueness). The second condition is
needed only if certain services rely on unique IDs for their
proper operation as the adversary may deploy cloned
sensors to sabotage the services. However, these conditions
are difficult to meet due mainly to the usually hostile
operational environment, as well as the very large size of
sensor networks, under which it is easy for an adversary to
capture and compromise sensors. We, therefore, need an
approach that creates a network of mutually trusted
sensors, i.e., each sensor can trust that the rest of the
network has not been tampered with. To achieve this, we
require each sensor to register itself with a dedicated server
after verification of its program.

In this paper, we propose a protocol, called Program-
Integrity Verification (PIV), that verifies the integrity of the
program residing in each sensor device when it 1) joins the
network or 2) has experienced a long service blockage. The
latter is based on the fact that an adversary may have to
disrupt the sensor’s normal function for an extended period
in order to capture/reverse-engineer/reprogram a sensor
device and deploy the manipulated sensor in the network.
Examining and verifying the program itself is easy to do for
small, low-cost devices: The verification of a small program
is fast and occurs only infrequently. The PIV protocol is
very attractive because it:

. prevents manipulation/reverse-engineering/repro-
gramming of sensors,

. does not degrade normal sensor functions since PIV
is triggered infrequently and relies on neither self-
decryption nor result checking,

. is purely software-based (and, thus, can be used
with/without tamper-resistant hardware), and

. is tailored to the sensor devices with severe resource
limitation (e.g., Motes with an 8-bit CPU and 4 KB
RAM each [17]).

Moreover, the verification of each program incurs a very
small overhead as it only defines/uses cryptographic hash
functions, which are orders-of-magnitude cheaper and faster
than nontrivial cryptography like public-key algorithms.

A naive way of ensuring program integrity is to use
digital signatures [18], [19], [20], [21], [22] as follows: During
the predeployment stage, the digest of the original program
is computed using an agreed-on hash function and then a
signature is derived from the digest. The verifier (i.e., a
server in charge of verification) processes the signature with
a trapdoor one-way function (OWF) and compares the result
with the digest for the current program. However, this

digital signature-based scheme will likely fail, regardless of

the cryptographic strength of the OWF, since (part of) the

verification procedure should be executed on a remote,

untrusted sensor. For instance, the malicious sensor can

deceive the verifier either by tampering with the digest or by

faking/replaying messages (conveying the digest and/or

verification results) to the verifier. One cannot avoid this

type of attacks due mainly to 1) fixed and agreed-on

algorithms for hashing and signature verification and

2) short lengths of the digest/signature. Applying public-

key algorithms on the entire program (similarly to that in

[45]) may solve these attacks, but it is too costly to employ

public-key algorithms in severely resource-constrained

sensor devices.
We, therefore, need an efficient way of protecting the

verification process from being replayed/forged in which

the verifier randomly generates the hash computation

algorithm for each verification. Keyed hash functions (e.g.,

[23], [24]) with randomly chosen keys [47] could compute

random hash values. Unfortunately, they are not feasible for

sensor networks because they stress both the sensor (into

computing 32-bit operations) and the verifier (into storing/

processing the entire programs). The scheme in [47] also

randomly “traverses” program contents in order to slow

down the hash calculation by a malicious device. However,

this scheme guarantees detection of malicious programs

only probabilistically, thus requiring a large number of

memory accesses to achieve a high detection probability.

Thus, we need a random hash computation algorithm that

meets the following requirements:

. the hash computation optimized for embedded
CPUs (e.g., 8 or 16-bit CPUs),

. examination of every location in both volatile and
nonvolatile memory, and

. incurring low processing/storage overheads to the
verifier.

To meet these requirements, we propose the concept of a

randomized hash function (RHF) which provides 1) random

encoding of the hashing algorithm over a finite field

GF ð2nÞ, where n is typically equal to 8, and 2) two ways

of computing the hash value, i.e., from the program (for

sensors) and the digest (for the verifier). We also enforce

PIV to process both code (in the nonvolatile memory) and

data (in RAM or EEPROM) initialized to uncompressible

values, ensuring no room left for the attacker to copy the

malicious code in. Based on RHFs, we realize PIV by

constructing the security framework, the sensor pre-

deployment scheme, and the verification protocol. We

finally analyze the security and performance of the PIV

protocol and evaluate the RHF on Motes.
The remainder of the paper is organized as follows:

Section 2 gives an overview of sensor networks and possible

security attacks. Section 3 describes the proposed protocol.

Section 4 evaluates the performance for the PIV protocol.

Section 5 describes the related work. Finally, the paper

concludes with Section 6.
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2 OVERVIEW OF SENSOR NETWORKS

Wireless sensor networks are deployed to collect informa-
tion for various applications ranging from physical infra-
structure [25], [26], [27] to habitat monitoring [28]. The
success of their intended applications hinges on their own
security, protecting individual sensors from compromise/
reverse-engineering, detecting intrusions, and securing
communications. In what follows, we briefly present a
system architecture for sensor networks and possible
security attacks.

2.1 System Architecture

For cost and size reasons, sensors are designed to minimize
resource requirements, e.g., Motes [17] are built with an
8-bit CPU running at 4 MHz, 128 KB of program memory,
4 KB of RAM, 512 KB of serial flash memory, and two AA
batteries. That is, sensors are usually built with limited
battery energy, computation, memory, and communication
capabilities.

The sensor network under consideration consists of a
number of sensors and several better-equipped devices. The
sensor network typically covers a wide area, requiring
thousands or even millions of sensors, each of which is
capable of, for example, reading temperature or detecting
(part of) an object moving nearby. Moreover, the sensor
network is usually deployed in a hostile and/or harsh
environment and removal (due to device failures or
depletion of battery energy) and addition of sensor nodes
are not uncommon. Sensors coordinate with one another to
achieve a higher-level sensing task, e.g., reporting with
accuracy the characteristics of a moving object such as the
speed and direction of movement. The sensor network
consists of 1) sensors, 2) data-collection nodes, which process
and make the sensed information available to data sinks,
and 3) control nodes, which coordinate (multihop) data
routing among sensors and broadcast commands to
sensors. Each group or cluster of sensors—which is formed
dynamically around moving objects to aggregate and/or
route sensor data—elects a data-collection node as in [29],
[30]. Clusters in a two-tier hierarchical system rely on
control nodes, called cluster-heads, for managing the cluster
topology, routing information, etc.

2.2 Security Attacks

Adversaries can be classified as passive or active. Passive
attackers only eavesdrop on conversations in the network,
while active attackers own keys of compromised sensors and
inject packets into the network in addition to eavesdropping.
Attacks on the sensor network can be classified as:

1. physical attacks on sensor devices, e.g., destroying,
analyzing, and/or reprogramming sensors,

2. service disruption attacks on routing, localization, and
time synchronization,

3. data attacks, e.g., traffic capture, replaying, and
spoofing, and

4. resource-consumption and denial-of-service (DoS) attacks.

One of the serious attacks to the sensor networks
deployed in an unattended environment is physical
tampering with sensors. An adversary can easily 1) capture

one or more sensors, 2) reverse-engineer/alter the program
and/or master-secret in the sensor, and 3) create/deploy
(multiple clones of) manipulated sensors. The compromised
sensors will then be exploited by the adversary to mount
actual attacks, e.g., initiating DoS attacks or sabotaging
certain services of the sensor network, which will, in turn,
facilitate the subversion of the entire network.

3 PROGRAM-INTEGRITY VERIFICATION

We propose a protocol for program-integrity verification
(PIV) in sensor networks which prevents the compromised
sensors from joining the network, without relying on the
tamper-resistance of hardware. The PIV protocol aims to
form a closed network among those sensor devices that
have a correct (uncompromised) program. To achieve this,
we require each sensor device to prove the integrity
(authenticity) of its program via a verification server before
gaining access to the network resources. In other words,
each sensor must register itself with a verification server by
having its program checked by the server. Otherwise, it
cannot acquire any meaningful information from the
network. This approach is particularly suitable for use in
sensor networks for both security and performance reasons.
For security, the network becomes more robust to physical-
level attacks in that it attempts to proactively prevent
attacks rather than just detecting them afterward. Accord-
ingly, existing services are free from the fault tolerance
(Byzantine generals) problem in the presence of faulty/
misbehaving devices. For performance, the latency to
examine the entire program will be reasonably low because
the program in a sensor is relatively small as compared to
the software for PCs/workstations. Moreover, it does not
degrade normal sensor functions since PIV is triggered only
infrequently and the program will remain unencrypted.

In this section, we present an attack model and the PIV
goal, the rationale behind the PIV protocol and the
randomized hash function, and describe the components
for PIV and security and performance analyses.

3.1 The Attack Model and the PIV Objective

3.1.1 The Attack Model

Evaluating the degree of tamper-proofing is an important
problem. Abraham et al. [31] discussed this issue in the
design of tamper-resistant hardware and classified attack-
ers as clever outsiders, knowledgeable insiders, and funded
organizations. However, the degree of tamper-proofing in
the networked sensor devices should be defined differently,
i.e., in terms of preserving the availability of the network.
We claim that the strength of a given tamper-proofing
solution be evaluated by the cost (e.g., time and effort) that
the adversary should pay to acquire the adequate number
of compromised sensors necessary to subvert the network.
The degree of tamper-proofing is, therefore, categorized
according to the complexity of (re)producing malicious
sensors (in the order of increasing strength) as follows:

. Level 1. The attacker may convert a sensor to a
malicious slave by simply reprogramming the
sensor without modifying its hardware. After secur-
ing the first slave, the attacker can subvert others
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very easily, for example, by cloning the compro-
mised sensor.

. Level 2. The attacker should pay a similar amount of
time and effort each time (but without augmenting
the sensor hardware) for an individual compromise,
i.e., the attacker does not exploit the knowledge
gained from previous subversions.

. Level 3. The attacker subverts a sensor by modifying
the sensor hardware, for example, attaching more
memory, a more powerful CPU, and/or another
device via a secondary RF interface.

Clearly, if the captured sensor is modified with more
memory that can store both the original and malicious code
(an attack of Level 3), it can deceive any defense mechan-
ism, e.g., by feeding the original program to the verifier. No
software-only schemes can defeat such an attack because
they cannot tell if the sensor hardware is modified or not.

3.1.2 The PIV Objective

We would like to support the tamper-proofing of sensors as
strong as Level 2, making it extremely difficult for the
adversary to modify the program without changing the
sensor hardware. Here, we do not consider Level-3 attacks
for the following reasons: First, it is too costly to manipulate
an adequate number of sensors for the intended attack due
mainly to the large network size. Second, the PIV serves as a
first line of defense even in the presence of Level-3 attacks
because it stresses the adversary into either manually
modifying individual sensors or designing/manufacturing
sensors of increased storage capacity. To completely protect
the network against the above-mentioned attacks, one may
use the PIV protocol together with network intrusion
detection systems [32], [33], [34], [35], [36] that uncover
suspicious sensors by monitoring network activities.

3.2 How to Secure PIV?

The proposed protocol uses PIV Servers (PIVSs), distributed
over the entire network, so as to examine each sensor’s
program and check if it is the same as the original one.
PIVSs are equipped with more computation and storage
capacities than sensors. We also employ a special-purpose
mobile agent, called a PIV Code (PIVC), which is generated
by a PIVS and executed on a sensor being verified to read/
process the program. We need the following two types of
security on each verification:

. sensor security that protects the sensor from a
malicious server/code disguised as a PIVS/PIVC
and

. code security that protects the PIVC from a malicious
sensor.

The sensor security is achieved by using a conventional
authentication server (AS) that acts as a trusted third party
by which the sensor can make sure that the PIVS is
authentic and, hence, it is safe to execute the PIVC.
Ensuring code security is more complicated than sensor
security, mainly because the PIVC is almost defenseless
when it is running on a remote sensor. Hence, we will
develop a protocol that does not require the guarantee of
code security.

Conventionally, data integrity is ensured by using digital
signatures. Digital signatures can be applied to verify
program integrity as follows: Each sensor has been
programmed with a program x and a signature sp, where
sp has been computed from x by compressing x into a
digest dp with an agreed-on hash function and then
processing dp with a signature function. Then, the PIVS
restores dp by applying a trapdoor one-way function to sp,
computes another digest dv for the program to be verified,
and checks if the two digests match. However, this digital
signature-based scheme will likely fail as the computation
of dv and the transmission of sp and dv to the PIVS should
be done on a remote, untrusted sensor device that has not
yet been verified. In particular, a malicious sensor can
1) reverse-engineer and modify the code for dv computation
(PIVC), 2) read/change data of dv computation, and 3) fake
messages (containing sp and dv) from the PIVC to the PIVS.
We should, therefore, assume that adversaries can arbitra-
rily modify x, sp, and dv. In particular, the adversary who
attempts to reprogram the sensor with a malicious program
~xx (a program with malicious codes appended to, or inserted
into, the original program) may mount the following
attacks:

A1. Tampering with the digest computation into calcu-
lating dv, instead of ~ddv, on ~xx: Since ~ddv is computed
via a well-known cryptographic hash function and
the length of ~ddv is very short (e.g., 16 bytes in the
case of MD5), the adversary can easily deceive the
PIVS without knowledge of the underlying signature
function.

A2. Intercepting the message exchanged between PIVC
and PIVS to replace ~ddv with dv: The adversary can
experiment with the PIVS and an unaltered sensor to
get the value of dv; once dv has been identified, it can
be repeatedly replayed.

Clearly, these attacks are difficult to defend against when
the algorithm for hash computation is fixed and the length
of the digest is short. Creating a secure channel between
PIVC and PIVS does not help because key materials and
encryption/decryption routines can also be reverse-engi-
neered. Making it just difficult to reverse-engineer them
(e.g., via conventional code obfuscation techniques) is not
enough, because, once they are compromised, the same
method can be applied for subsequent break-ins (Level-1
attack). Applying public-key algorithms directly on the
program, instead of the digest, may solve these attacks.
However, it is very costly for severely resource-constrained
sensor devices to process the entire program with the
public-key algorithm.

We, therefore, propose an efficient way of protecting the
verification process from being replayed or tampered with.
To meet this need, we enforce that the PIVS randomly
generate a hash calculation algorithm for each PIVC
creation. Keyed hash functions with randomly chosen keys
could produce random hash values. However, they are not
suitable for low-cost embedded devices like sensors because
1) they are based on 32-bit operations, thus performing
poorly in 8-bit CPUs, which are currently the most
commonly-used CPUs in low-cost sensor devices, and
2) the PIVS is required to store/process the programs,
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instead of digests, incurring high processing and memory
overheads; although PIVSs are more capable than sensors, it
still severely limits scalability. What is needed is a special
class of cryptographic hash functions, called randomized hash
functions (RHFs) which, in addition to random hash
computation, provide two ways of computing dv, i.e.,
1) from x and 2) from dp. By using RHFs, the PIVS can
randomly encode the hash computation algorithm for each
PIVC it creates. That is, while keeping dp internally, the
PIVS randomly chooses an RHF to generate the PIVC and
allows the PIVC executed on the sensor to compute dv.
Then, it is possible for the PIVS to check if dv agrees with dp

via the same RHF. Using this idea, we can successfully
defend against the above-mentioned attacks, thus achieving
highly secure tamper-proofing on sensor-resident pro-
grams, i.e., sensors with modified programs cannot pass
the PIV test.

3.3 The Randomized Hash Function

To design RHFs, we apply multivariate quadratic (MQ)
polynomials over F ¼ GF ð2nÞ, where n is typically 8 to
allow for byte-oriented processing. The use of small finite
fields does not degrade the level of security and, if designed
properly, it can achieve both strong security and fast
processing. In fact, public-key signature schemes [37], [38],
[39], [40] that belong to the category of multivariate
cryptography rely on small finite fields (e.g., GF ð27Þ or
GF ð28Þ) for their faster and shorter signatures. MQ
polynomials have been used successfully to realize trap-
door one-way functions in the above-mentioned multi-
variate signature schemes and, hence, it is reasonable to
characterize them as a one-way hash function.

We partition the program into multiple program blocks.
Let � denote the size of the entire program in bytes and � the
length (in bytes) of an element in F , i.e., � ¼ dn8e. We build,
from the original program x, B program blocks, x1; . . . ;xB,
where xl ¼ ½xl;1 . . . xl;m�T is an m� 1 vector and xl;i 2 F .1

Likewise, the program ~xx to be verified consists of ~xx1; . . . ; ~xxB,
where ~xxl ¼ ½~xxl;1 . . . ~xxl;m�T and ~xxl;i 2 F . We define a digest
for xl as an m�m matrix Xl, which consists of all quadratic
terms, xl;i xl;j. That is, Xl ¼ xlx

T
l ¼ xl;i xl;j

� �
. The PIVS will

process and store Xls in its database. The size of this
database will be much smaller than that of storing all sensor
programs since there exist program blocks common to all, or
at least a group, of sensors (for the homogeneity of their
missions) and multiple digests can be combined into one.
That is, the more common program blocks or combined
digests they have, the smaller the database gets.

The RHF computes the same hash value from both 1) the
program block xl (for hash computation in PIVC) and 2) the
digest Xl (for hash verification in PIVS) and possesses the
following algebraic structure. The RHF is specified over
spaces of program blocks P ¼ Fm, digests D ¼ Fm�m,
random keys G ¼ FB and H ¼ F k�m, and hash values Y ¼
F k�k (k2 � m), and consists of

. a hash computation algorithm, Hash : G �H� PB !
Y and

. a verification algorithm,

Vrfy : G �H�DB � Y ! fpass; failg;

such that VrfyðG;H; fXlg; HashðG;H; f~xxlgÞÞ ¼ pass, if xl ¼
~xxl for all l ¼ 1; . . . ; B. Note that k is a parameter determining

the complexity of Hash and the size of Hash output

accordingly. Let G ¼ ðglÞ 2 G and H ¼ ðhijÞ 2 H, where

gl; hij 2 F , denote randomly chosen keys for each verifica-

tion. The two ways to compute a hash value Y ¼ ðyijÞ 2 Y,
yij 2 F are as follows: First, the algorithm Hash computes Y

from x1; . . . ;xB as:

Y ¼
XB
l¼1

gl ðH xlÞ ðH xlÞT : ð1Þ

Second, the algorithm Vrfy hashes Xl; . . . ; XB into Y as:

Y ¼ H
XB
l¼1

glXl

" #
HT : ð2Þ

Clearly, Y can be represented as a set of MQ polynomials.

Rewriting (1) and (2) yields

yij ¼
XB
l¼1

Xm
i0¼1

Xm
j0¼1

glhii0hjj0xl;i0xl;j0 ; ð3Þ

where 1 � l � B and 1 � i; j � k. So, the RHF evaluates

k2 MQ equations in m�B variables.
Fig. 1 shows how PIVS and the sensor interact with each

other to cooperatively execute Hash and Vrfy. The PIVS

and the sensor exchange the following messages:

M1.Sensor ! PIVS: IDsensor.
M2.PIVS ! Sensor: G, H.
M3.Sensor ! PIVS: HashðG;H; f~xxlgÞ.
M4.PIVS ! Sensor: pass or fail.

Accordingly, PIVC and PIVS proceed as follows:

PIVC initializes ~YY to 0 then computes ~YY from ~xx1; � � � ; ~xxB,

i.e., for each 1 � l � B, it calculates

1. ~zzl ¼ H ~xxl,
2. ~YYl ¼ ~zzl ~zz

T
l , and

3. ~YY ¼ ~YY þ gl ~YYl.

PIVS retrieves Xl; . . . ; XB corresponding to the target

sensor, generates a PIVC with G, H, and the Hash
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algorithm, lets the PIVC to be executed on the sensor,

and receives ~YY . It then executes Vrfy as follows:

1. X ¼
PB

l¼1 glXl for 1 � l � B and
2. Y ¼ HXHT .

Finally, it checks if Y ¼ ~YY .
As will be described in Section 3.4.6, Xls can be

combined into a few digest values, reducing the PIVS’s

processing and memory requirements.

3.4 Realization of PIV

In what follows, we describe how to realize the PIV protocol

based on RHFs. We discuss all aspects of the protocol,

including the security framework, the PIV architecture, the

predeployment phase of sensors, the state transition

diagram for sensors, the verification protocol, and the

realization of PIVS and PIVC.

3.4.1 The Security Framework

Fig. 2 shows how to construct, based on PIV, the security

framework of a sensor network. The three core building

blocks of this framework are detailed below.

. PIV consists of PIVSs that interact with PIV-
compliant sensors to verify programs in the sensors.
PIV is triggered only 1) when a new sensor joins the
network or 2) when an existing sensor is removed
from the network and, optionally, 3) if a sensor is
suspected to have been compromised. Upon verify-
ing the sensor, the PIVS either activates or locks the
sensor.

. Key management [48] typically hinges on a cluster-
based architecture,2 in which a cluster-head distri-
butes/renews a cluster-specific key periodically or
whenever a sensor within its cluster is found (via
PIV) to have been compromised.

. Intrusion detection, running on each cluster-head,
continuously monitors/probes network activities
(e.g., BEACON packets between neighbors) to detect
malfunctioning devices (activities of which deviate
significantly from those of agreed-on services/
protocols) and, upon finding a suspicious device,
requests its reverification.

It is crucial to deny network access from those sensors
blacklisted or unverified. To achieve this (as well as
checking the uniqueness of the ID in the sensor being
verified), PIV maintains a database, called PIV_DB, of all
successfully verified IDs; it inserts into (deletes from) the
PIV_DB the ID upon activation (removal) of the sensor.
Moreover, each ID in the PIV_DB is associated with certain
attributes like the sensor’s location. This is to make it
impossible for a malicious sensor to spoof the IDs of the
verified sensors, as those IDs will be easily traced back to
inconsistent attributes. Hence, the only feasible way to gain
access to the network is to execute and pass the PIV test. We
also offer ways of actually locking a sensor, say f, that failed
to register itself in the PIV_DB: 1) The PIVS asks all
neighbors of f not to relay packets from f, 2) the key
manager of a cluster for f refreshes the cluster key, thus
disallowing f to access/eavesdrop packets, and 3) other
services like routing may look up PIV_DB (via PIV) to
ensure that the sensors are indeed genuine. The overheads
of these operations are fairly small because they incur local
traffic only.

The program within a sensor should be inspected as
infrequently as possible (to reduce the overhead) inasmuch
as it safeguards network resources (to maintain the required
level of security). We meet this requirement by having each
registered sensor monitor others in its neighborhood to
detect if they ceased normal operation (e.g., sending out
BEACON packets) for an extended period of time and, if
they did, request the PIV to delete their IDs from PIV_DB.
The PIV does so if sensors in the proximity of the dead
sensor had reported the same information. As a result, any
nonmember sensor must register with the PIV by verifying
its program with the PIV protocol. Note that it is impossible
for an attacker to remove a valid sensor from the network
(by falsely reporting its death) unless he compromises most
of its neighbors. This cooperative monitoring among
sensors is important for the prevention of attacks because
the adversary may turn off a sensor for a certain period of
time, during which it captures, reverse-engineers, and
reprograms the victim.

3.4.2 The PIV Architecture

The sensor network contains two types of dedicated
servers—PIVSs and ASs. The roles of these servers are as
follows:

. The PIVS performs the PIV protocol on a sensor and
cooperates with other PIVSs in the network to
update/manage PIV_DB. For scalability, we let
cluster-heads in a cluster-based hierarchical archi-
tecture serve as PIVSs. This allows each PIVS to
maintain a local PIV_DB that stores IDs of the
sensors belonging to its own cluster. Clearly, the
more PIVSs (cluster-heads) a network has, the
smaller the distance between PIVS and the sensor
and the more compact the local PIV_DB. PIVSs are
deployed as uniformly as possible to balance the
workloads among themselves.

. The AS acts as a trusted third party for the sensor in
testing the PIVS. It, therefore, maintains a list of all
legitimate PIVSs in the network and updates the list
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2. The entire network is divided into multiple clusters, each of which is
controlled by a better-equipped cluster-head. Each sensor is associated with
the cluster-head closest to itself.

Fig. 2. The security framework for sensor networks based on PIV.



whenever a PIVS is added or removed. It is
undesirable to equip only one AS in a network as
the AS becomes a single point of failure and the
performance bottleneck and, in such a case, we must
use multiple ASs deployed over the entire network.
Each AS authenticates a PIVS using either public-key
cryptography or a secret authentication key shared
with each sensor.

We assume that there exists a mechanism for a sensor to
learn how to discover, and reach, a PIVS/AS. One possible
realization of such a mechanism is as follows: The PIVS/AS
periodically floods its whereabouts (within a limited scope)
and, hence, those sensors that have already been verified
can update how to reach the closest (and active) PIVS/AS.
The newly deployed sensor will then ask nearby sensors for
the location of PIVS/AS to contact. This mechanism can
easily tolerate occasional failures of PIVS/AS. When a
sensor did not receive any packet from its chosen PIVS/AS
for a certain period of time, it switches to an alternative
PIVS/AS as follows: If it had recently heard from other
PIVSs/ASs, it chooses the closest one among them; else it
floods its PIVS/AS search request, waits for responses from
PIVSs/ASs, and then selects an alternative. Besides, the
above mechanism works seamlessly with mobile PIVSs/
ASs/sensors by simply increasing the frequency of periodic
broadcasting, which allows PIV to be applicable to mobile
environments.

Fig. 3 shows the interactions among AS, PIVS, and the
sensor during PIV. It consists of the following three tasks:
1) authentication of PIVS via AS, 2) transmission and
execution of PIVC, and 3) program verification by PIVS/
PIVC. That is, the sensor first asks one of the ASs for
authentication of a PIVS (probably the one closest to itself)
and, if authentication succeeds, requests the PIVS to verify
its program. Then, the PIVS sends the PIVC to the sensor,
receives a hash value for the current program (computed by
the PIVC with the algorithm Hash), runs Vrfy, and, finally,
determines whether the program is compromised or not. If
the sensor passes the verification test, then the PIVS
registers it in the PIV_DB.

3.4.3 Predeployment of Sensors

A sensor device contains a unique master secret and ID.
Each sensor also has two distinct programs: a boot code
(executed for bootstrapping and initiation of the verifica-
tion) and a main code (executed after the sensor has been
successfully verified). Then, it is possible to take a snapshot

of sensors’ data space (excluding the area where the PIVC
will be copied to) just before the execution of PIVC. The
data space must be initialized to random values that can
neither be predicted (e.g., all 0s or all 1s) nor compressed
into a more compact form by an adversary. This is to
prevent an attack where a tampered sensor abuses the free
data space obtained by prediction/compression, for exam-
ple, to keep a copy of the original program or the PIVC. An
alternative (and more secure) way is to let the PIVC
initialize the data space upon its execution, thus erasing
hidden data, if any. We will henceforth use the terms
“program” and “malicious program,” as defined below.

Definition 1. A (predeployed) program, x, is a collection of boot
and main codes, the master secret and ID, and the snapshot of
the data space.

Definition 2. A malicious program, ~xx, is the program containing
one or more malicious code blocks that have been inserted into,
or appended to, the predeployed program.

Predeployment of a sensor device consists of four offline
steps:

P1. Generation of a program x, i.e., compilation of boot
and main codes, selection of the master secret and
ID, and construction of a data snapshot.

P2. Population of the sensor memory with x.
P3. Computation of per-block digests Xls from x.
P4. Insertion of Xls into PIV_DB.

3.4.4 State-Transition Diagram for Sensors

Fig. 4 shows the state-transition diagram of each sensor.
Each sensor device is associated with one of three states,
namely, the “LOCKED,” “VERIFYING,” and “ACTIVATED”
states, throughout its lifetime. When a sensor is executing
the boot code, it is said to be in the LOCKED state. Similarly,
executions of the PIVC and the main code are bound to the
VERIFYING and ACTIVATED states, respectively.

Upon deploying a sensor device, it is started with the
boot code and will remain in LOCKED state until it receives
the PIVC from the PIVS. Since it is not yet a member of the
network, it can perform no other tasks but wait for the
PIVC. After receiving the PIVC, it makes a transition to the
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Fig. 3. Interactions among AS, PIVS, and the sensor during PIV.

Fig. 4. State-transition diagram for sensors.



VERIFYING state by executing the PIVC. The PIVC then

verifies the program cooperatively with the PIVS and, based

on the verification result, executes either the boot code or

the main code: If the verification fails, it returns to the

LOCKED state, causing the network to deny this sensor’s

access to the network. Otherwise, it transitions to the

ACTIVATED state, in which the main code performs normal

sensor functions. Finally, the main code responds to an

explicit request for reverification from the PIVS. If this is the

case, it will restart the boot code and make a transition to

the LOCKED state. As PIVSs bookkeep successfully verified

sensors, directly executing the main code or ignoring a

request (possibly by the adversary) will result in denial of

the sensor’s access to the network resources (see below for

details).

3.4.5 The Verification Protocol

Fig. 5 describes the verification protocol between the PIVS

and the sensor. The verification protocol is initiated by

either the boot code of the sensor device that wants to join

the network or the PIVS that wants to reverify the sensor

device. The PIVS located closest to the sensor will be in

charge of the verification. The verification procedure will

proceed as follows:

V1. Initialize: This step starts the verification pro-
tocol between the PIVS and the sensor by ex-
changing their IDs. The sensor, after receiving the
ID of PIVS, asks an AS for authentication of the PIVS
and, if the authentication fails, terminates the
protocol.

V2. SendPIVC: The PIVS generates a PIVC and then
sends it to the sensor. It also records the time when
PIV starts.

V3. AckPIVC: The sensor sends an acknowledgment
back to the PIVS.

V4. StartPIVC: The sensor executes the received PIVC.
V5. RequestVerification: The PIVC computes a

hash value on the program by executing and sends
it back to the PIVS.

V6. NotifyVerification: The PIVS, if it received the
hash result within a certain timeout period, exam-
ines the received hash value to check if the program
has not been tampered with. If it passes the test, the
PIVS registers the sensor in the PIV_DB. Then, the
PIVS notifies the PIVC of the verification result.

V7. Activate/lock sensor: The PIVC, based on the verifica-
tion result, either activates or locks the sensor. The
sensor state will be changed to either ACTIVATED or
LOCKED, accordingly.

The PIVS checks the latency between Steps 2 and 5 and, if
it exceeds a certain threshold, terminates the protocol. This
time-limitation will place great stress on the adversary’s
attempt to deceive the PIVS, e.g., emulating the PIVC’s
memory access or relaying the PIVC to an external machine
that holds the original program. It is possible that an
uncompromised sensor fails to verify itself due to transmis-
sion errors. Therefore, each sensor is allowed to retry the
verification up to N times.

Step 1 ensures sensor security, i.e., a malicious device can
neither pass the authentication procedure nor have its own
code executed on the sensor as far as the AS’s authentication
key is kept secret from the attacker. Thus, the attacker cannot
abuse PIV to lock the other sensors. Finally, activating the
sensor, even when the PIVS indicates a verification failure
(by the adversary), will result in denial of access to the
network resources, as described in Section 3.4.1.

3.4.6 Realization of PIVS and PIVC

Fig. 6 shows how to realize PIVS/PIVC based on the Hash

and Vrfy algorithms. In the predeployment stage, each
sensor is programmed with a program fxlg. For all the
sensors that have been successfully programmed, the PIVS
computes and stores in PIV_DB the digests for fxlg. Thanks
to the property that sensors share a portion of programs, the
total number of distinct digests to be stored in the PIV_DB

can be greatly reduced as discussed below. Each program
block (digest) is classified as being 1) common to all sensors
in the network, 2) common to a group of sensors with the
same missions, or 3) unique to a specific sensor. We,
therefore, reduce the size of PIV_DB by combining all
digests belonging to the same class with a fixed combining
factors, i.e., compute Xc;i ¼

P
ithcommon glxlx

T
l , i ¼ 1; � � � ; Nc,

and Xu ¼
P

unique glxlx
T
l , where Nc (� B) is the number of

common digests. This preprocessing also relieves the Vrfy
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Fig. 5. The verification protocol between the PIVS and the sensor.

Fig. 6. Realization of PIVS and PIVC.



algorithm from the processing load since the combining
function G simply computes X ¼

P
i gc;iXc;i þ guXu.

In the verification stage, the PIVS and PIVC coopera-
tively check the integrity of the program f~xxlg, of the sensor
under verification, according to the protocol shown in
Figs. 1 and 5. Each message in Fig. 1 triggers the following
operations:

M1.The PIVS, using IDsensor, retrieves, from PIV_DB,
Xc;is andXu that correspond to the program blocks of
the sensor under verification. It also creates a PIVC
with the Hash algorithm and random G and H.

M2.The PIVC computes ~YY ¼ HashðG;H; f~xxlgÞ by execut-
ing the Hash algorithm.

M3.The PIVS executes the Vrfy algorithm to compute Y
from Xc;is and Xu and check if Y ¼ ~YY .

M4.The PIVC either activates or locks the sensor.

3.5 Security Analysis

We would like to show that 1) the proposed RHF can
successfully defend itself against possible attacks and 2) the
only plausible attack requires modification of individual
sensor hardware.

Replay attacks on messages M1-M4 above (i.e., inter-
cepting a message and replacing it with an old message)
cannot succeed as the proposed hash computation and
verification are keyed operations and random keys are
mixed with the program blocks. Specifically, attacks on
individual messages are defeated as follows: First, reporting
a different IDsensor (in M1 above) will be caught by the PIVS
when its uniqueness is checked and, moreover, the
malicious sensor cannot pass the rest of the PIV test unless
it has the matching program which must be free of
malicious codes. Second, modifying G, H, or the Hash

algorithm will cause inconsistency between two hash
outputs and, hence, the verification will fail. Third,
replaying M3 does not work because each verification will
produce a distinct hash value even for the uncompromised
sensor and, hence, old parameters (G and H) cannot be
reused. Finally, intercepting M4 to always report “pass”
may execute the main code. However, the subsequent
requests to access the network resources will be denied, as
explained in Section 3.4.1.

We then show that it is impossible for the adversary to
forge the hash value without the knowledge of the original
program. Consider the situation where the adversary
reprograms the sensor with a malicious program fxl þ �lg,
and attempts to fake the verification process by nullifying
the effect of f�lg from the output of the Hash algorithm.
This is impossible because the Hash algorithm is inherently
a nonlinear function of program blocks. By (1), the hash
output Y yields

Y ¼ H
XB
l¼1

gl xl x
T
l þ 2xl �

T
l þ �l �

T
l

� �" #
HT ; ð4Þ

which means

HashðG;H; fxl þ �lgÞ 6¼ HashðG;H; fxlgÞ þ HashðG;H; f�lgÞ:

Therefore, to forge the hash output, the adversary must
compute xl �

T
l for all nonzero �ls as well as HashðG;H; f�lgÞ.

The only feasible attack is to store and feed either xls or
Xls to the PIVC. However, this type of attack requires an
excessively large amount of memory space, as opposed to
that of conventional hashing schemes. First, the malicious
sensor may disable the execution of PIVC and, instead,
evaluate (2) using the original Xls. But, since it cannot
predict values of both G and H in advance, it must keep
Xc;is and Xu to mimic the behavior of PIVC. The extra
memory for storing them amounts to ðNc þ 1Þm2� bytes,
e.g., 36 KB if Nc ¼ 3, m ¼ 96, and � ¼ 1. Second, the
malicious sensor may keep track of xls that differ from ~xxls.
If the malicious code is small and contiguous, it may suffice
to save only a few program blocks. However, this attack can
be defeated by applying “interleaving” on the program to
construct program blocks, e.g., Bim�-byte program space is
interleaved into Bi (e.g., Bi ¼ B

Ncþ1 ) program blocks. A
desirable property of interleaving is that the injection of a
small malicious code affects no less than Bi blocks. Hence,
the minimum requirement for the extra memory is
Bim� bytes, e.g., 36 KB if Bi ¼ 384, m ¼ 96 and � ¼ 1.

The replay attack on xls can be mounted if the malicious
sensor has enough memory to maintain the original
program blocks. However, as defined in Section 3.4.3, a
program includes both code and data spaces and a snapshot
of data area (taken after initialization) is also inspected.
Therefore, there is no room left in the sensor for the
adversary to save the original xls. The adversary may attach
more memory to each sensor, but it will incur a consider-
able amount of hardware modification for each subversion.
As mentioned in Section 3.1, we do not consider this kind of
hardware-modifying attack as it is unrealistic to mount
such an attack in a large-scale network: The adversary must
compromise multiple sensors (chosen from the entire
network) with hardware modification to take control of
the PIV-enabled network, but it is too costly to do so. Note
that it does not increase the attack strength for the attacker
to create one sensor with additional hardware (along with
many reprogrammed slaves), then use it as a gateway/
leader for the rest.

3.6 Performance Analysis

We analyze the performance of the proposed protocol by
deriving the communication overhead between the PIVS
and a sensor, and the computation and memory overheads
of PIVC and PIVS. As defined earlier, k is the parameter that
determines the length of the hash value. �, m, and � refer to
the size of the program, the size of the input block, and the
size of a single word, all in bytes, respectively. Then, the
number of input blocks, B, is derived as

B ¼ �

m�

� �
’ �

m�
: ð5Þ

3.6.1 Communication Overhead

We define the communication overhead as the total
amount of the information exchanged between the PIVS
and the sensor (normalized with respect to a per-hop
value). Messages M2 and M3 dominate the communica-
tion overhead and their lengths depend on the choice of
protocol parameters. We, therefore, consider only these
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two messages. The sizes (in bytes) of G, H, the Hash

code, and Y are ðNc þ 1Þ�, km�, LHash, and k2�,
respectively. Hence, the communication overhead, C, is
given by

C ¼ ðkmþ k2Þ� þ LHash þ ðNc þ 1Þ�: ð6Þ

The communication overhead depends on both m and k.
Since m � k, we can control the communication overhead
by the choice of m.

3.6.2 Processing Overhead of PIVC

The Hash algorithm relies on GF ð2nÞ arithmetic. In finite
fields, addition and subtraction are essentially “bitwise
modulo 2,” i.e., exclusive-OR of the corresponding bits of
two operands and, hence, very fast. In contrast, multi-
plication and division operations require lookup of two
tables, each with 2n elements. Obviously, multiplication and
division are much more computationally expensive than
addition and subtraction. We thus define the processing
overhead of the PIVC as the average number of multi-
plications in GF ð2nÞ per (�-byte) input word. The Hash

algorithm iteratively evaluates 1) ~zzl ¼ H ~xxl, 2) ~YYl ¼ ~zzl ~zz
t
l ,

and 3) ~YYþ ¼ gl ~YYl, for 1 � l � B. Each step incurs km, k2, and
k2 multiplications, respectively. Hence, the algorithm
computes kðmþ 2kÞB multiplications over GF ð2nÞ for
processing the entire program. As a result, the processing
overhead PPIVC is

PPIVC ¼ �

�
kðmþ 2kÞB ’ kþ 2k2

m
: ð7Þ

For its proper operation, Hash stores ~zzl, ~YYl, and ~YY , the
sizes of which are k�, k2�, and k2� bytes, respectively.
Therefore, the PIVC allocates a buffer space of MPIVC ¼
kð1þ 2kÞ� bytes.

3.6.3 Processing Overhead of PIVS

The Vrfy algorithm also performs addition and multi-
plication over GF ð2nÞ.

Vrfy first computes X from Xc;is and Xu, then
determines Y . Since each step incurs ðNc þ 1Þm2 and km2 þ
k2m multiplications, respectively, the processing overhead
PPIVS (per input word) is

PPIVS ¼ 1

B
ðNc þ 1Þmþ kðmþ kÞ½ �: ð8Þ

Note that PPIVS is much smaller than PPIVC because
m � B. For scalability, it is desirable to have a smaller
PPIVS so that the server can handle as many concurrent
verifications as possible. Vrfy reserves k2� bytes for
storing Y . In addition, the PIVS maintains 1) Nc common
digests and 2) digests (or program blocks) unique to

individual sensors. If there are N sensors, the total
amount of memory required by the PIVS is MPIVC ¼
Ncm

2� þNm� þ k2� ’ Nm� because N � Nc.

4 IMPLEMENTATION AND EVALUATION

To evaluate the performance of our proposed approach, we
first quantify the per-hop communication overhead be-
tween a sensor and the PIVS,3 and the processing overhead
that a sensor pays for each verification. Then, we
demonstrate the strength of the proposed approach for
typical choices of the parameters.

4.1 Overview of Implementation

We implemented Hash and Vrfy algorithms, with a sensor
network of Motes and a laptop (acting as the PIVS). Because
the Hash algorithm is downloaded to each sensor via the air
medium and its execution is subject to severe resource
constraints, it is important to make the algorithm as small as
possible. In addition, for faster (byte-oriented) processing,
we fix F ¼ GF ð28Þ (and � ¼ 1, accordingly). The Hash

algorithm is comprised of two parts: arithmetic operations
over GF ð28Þ and the evaluation of (1). The code sizes and
static data areas for these two modules are given in Table 1.
The GF ð28Þ arithmetic uses two 256-byte tables for multi-
plication and division, while the module for hashing
includes tables for G (Nc þ 1 bytes) and H (km bytes).

To reduce the size of PIVC without loss of security, we
can put the GF ð28Þ-related routine in the boot code and
construct the PIVC using the hash computation routine
only. Then, LHash becomes 483 bytes.

4.2 Communication Overhead

Using (6), Fig. 7 plots the communication overhead C as a
function of m while varying k from 3 to 5. The figure shows
that C is very small (e.g., C ¼ 886 bytes when m ¼ 96 and
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TABLE 1
Sizes of Hash Components

Fig. 7. The communication overhead versus m.

3. Since we built PIV on top of the cluster-based architecture that uses a
cluster-head as PIVS in each cluster, sensors can usually reach their PIVS in
a small number of hops regardless of the network size. Hence, it suffices to
consider the communication overhead normalized with respect to a per-hop
value.



k ¼ 4) and depends on the choice of m and k. A
considerable portion of C is due to the transmission of
PIVC. If the effective data transmission rate (i.e., excluding
headers, CRCs, error correction codes, and control packets)
of each Mote is 7 Kbps (out of the 40 Kbps raw data rate),
the latency to transmit a PIVC is about 1 second per hop
(when m ¼ 96 and k ¼ 4).

4.3 Processing Overhead

Fig. 8 plots, using (7), PPIVC (the number of multiplications
over GF ð28Þ per byte) of the Hash algorithm as a function of
m, while varying k from 3 to 5. PPIVC is insensitive to the
variations of m, while directly affected by the choice of k,
e.g., PPIVC is around 4.33 multiplications per input byte
when k ¼ 4.

Table 2 shows the time (in seconds) for various values of
m and k that the Hash algorithm spends to process the
128 KB program memory. Clearly, this time is proportional
to the processing overhead. Moreover, since the Hash

computation is executed very infrequently, the time in the
order of tens of seconds at each sensor device is insignificant.

4.4 Trade-Offs

The communication and processing overheads of PIV
depends on the choice of k and m. The k value should be
so chosen as to make the following trade-off: A larger k
yields higher security, but incurs more computation and
processing delay. Once k is selected,m can be determined to
reduce the communication overhead while maintaining an
acceptable level of protection from replay attacks. That is, a
smaller m yields less communication overhead, but the

amount of data for the adversary to replay becomes smaller
accordingly.

Table 3 lists typical values of the various parameters for
verifying the program of length 648 KB (the total memory
size of a Mote), when k, m, and Nc are 4, 96, and 7,
respectively. This PIV setup meets the requirement of both
strong security and high performance as follows: First, it is
secure in the sense that the adversary must modify sensor
hardware (i.e., adding memory > 72 KB) to evade PIV.
Second, it takes less than 1 minute for the PIVS to verify
each Mote. Moreover, thanks to its small processing
overhead, the PIVS can verify multiple Motes in parallel
instead of sequentially and, hence, the initial network setup
can be done very quickly.

5 RELATED WORK

A number of approaches have been proposed to generate
tamper-resistant programs without any hardware support.
Most of them are intended for environments equipped with
sufficient computation power. Code obfuscation [5], [6], [7],
[8] converts the executable code into an unintelligible form
that makes analysis/modification difficult. However, the
level of difficulty to tamper with gets substantially lowered
as the program becomes smaller and, hence, it cannot
protect against determined attackers. Furthermore, as Barak
et al. [16] showed, obfuscating programs while preserving
its functionality is theoretically impossible. Result checking
[9], [10], [11] examines the validity of intermediate results
produced by the program, but it is inappropriate for use in
battery-powered devices because it continuously incurs
verification overhead. Aucsmith [12] proposed storing the
encrypted executable and decrypting it before execution.
However, this scheme suffers from very high overhead of
decryption/reencryption and the security of self-decrypting
programs can be easily broken unless the decryption
routines are protected from reverse-engineering, e.g., by
hardware. Self-checking techniques [12], [14], [15] aim at
detecting changes in the program and taking appropriate
actions against those changes, as the program is running. To
this end, they use embedded codes (e.g., testers [14] or
guards [15]) to compute a hash value on the program and
compare it with the correct value. However, similarly to the
self-decryption techniques, they become defenseless once
the hash computation code and/or the hash value have
been identified/analyzed. In summary, all of these ap-
proaches are not suitable for resource-limited devices with
small programs and slow CPUs.
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Fig. 8. The processing overhead of PIVC versus m.

TABLE 2
The Latency of Hash Computation per 128 KB

TABLE 3
The PIV Parameters



Besides protection of “stationary” software, a number of
researchers dealt with the tamper-proofing of mobile
software agents. Wilhelm et al. [41] proposed a technique
based on the tamper-resistant hardware, but the severe
resource constraints in each sensor device preclude the use
of hardware-based protection. Execution tracing [42] at-
tempts to detect unauthorized modifications of the mobile
agent through the faithful recording of the agent’s behavior
during its execution. However, this approach is inappropri-
ate for resource-limited sensor devices due to the size and
number of logs to be retained. Blackbox security [43]
scrambles the code in such a way that no one can gain a
complete understanding of its function for a certain time
interval, but it cannot protect against active attacks, e.g.,
denying the execution or returning incorrect results. Sander
and Tschudin [44] proposed the concept of computing with
encrypted functions by which mobile agents can safely
compute cryptographic primitives in untrusted computing
environments. However, they failed to offer a general
scheme for creating mobile agents that encode arbitrary
functions. Kotzanikolaou et al. [45] realized Sander’s idea
by applying the RSA public-key algorithm to the mobile
agents dealing with a small amount of data. Unfortunately,
this scheme becomes very inefficient as the size of data to be
processed increases. Also, sensors do not have enough
resources to support public-key algorithms.

While most existing tamper-proofing solutions at-
tempted to realize tamper-resistance within the program
itself, PIV differs from them in that it relies on external
servers to examine the program and check if it is identical to
the original one. Our approach is well suited to sensor
networks because examination of a small sensor program
will be fast and occurs only infrequently, and it relies on
computationally-efficient hashing algorithms.

Kennell and Jamieson [46] presented a software-based
scheme to verify authenticity of a remote computer system.
They send the checksum code to the remote system,
compute a hash via randomized memory access, and use
timing to tell its authenticity. The key to their scheme is the
randomized memory access that triggers more page faults
and cache misses on a virtual memory system of the
compromised machine, leading to a severe slowdown in
hash computation. However, their approach is not suitable
for sensor devices that do not have virtual memory support.
Seshadri et al. [47] proposed a software-based attestation
technique that verifies memory contents of embedded
devices. They also used randomized memory traversal to
force an attacker (who altered the memory) into checking if
the current memory access is made to a modified location,
causing a detectable increase in the hash calculation time.
However, this scheme is not efficient as it incurs many more
memory accesses than sequential scanning of the program,
without guaranteeing 100 percent detection of memory
modifications. Moreover, the (random) communication
latency in a networked environment may significantly
reduce the detectability of this scheme. The PIV is different
from [47] in that it accesses each memory location exactly
once and allows for byte-oriented processing of program
contents, resulting in much faster and more accurate
verification.

6 CONCLUSION

In this paper, we have proposed a soft tamper-proofing
scheme based on Program-Integrity Verification (PIV),

which offers 1) prevention of manipulation, reverse-engi-
neering, and reprogramming of sensors; 2) purely software-
based protection with/without tamper-resistant hardware;
and 3) infrequent triggering of the verification. The PIVS
plays a key role in our proposed scheme, i.e., verifying the
integrity of the program of each sensor device and
maintaining a database of digests for the original programs
and sensor registry. For verification, it remotely calculates,
via PIVC, a random hash value for the program being
verified, computes another hash value from the digest for the
original program, and checks if the two hash values match.

Our security analysis has shown that PIV effectively
defeats possible attacks like replay attacks and the only
plausible attack requires modification of sensor hardware.
Our performance analysis/evaluation has demonstrated
that the communication and processing overheads are very
small (less than 1 KB and 4.5 multiplications over GF ð28Þ
per byte, respectively), and the hash computation algorithm
has a small time overhead (5 � 9 seconds per 128 KB) in
8-bit CPUs thanks to its byte-aligned operations.
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