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Abstract

In a large embedded real-time system, priority 

assignment can greatly affect the timing behavior--which 
can consequently affect the overall behavior--of the 

system. Thus, it is crucial for model-based design of a 

large embedded real-time system to be able to 
intelligently assign priorities such that tasks can meet 

their deadlines. In this paper, we propose a priority- 

refinement method for dependent tasks distributed 
throughout a heterogeneous multiprocessor environment. 

In this method, we refine an initial priority assignment 

iteratively using the simulated annealing technique with 
tasks’ latest completion times (LCT). Our evaluations, 

based on randomly-generated models, have shown that 
the refinement method outperforms other priority- 

assignment schemes and scales well for large, complex, 

real-time systems. This method has been implemented in 
the Automatic Integration of Reusable Embedded 

Software (AIRES) toolkit and has been successfully 

applied to a vehicle system control application. 

1. Introduction

Software for large embedded systems has become 

complex, containing many software components 

distributed throughout a multiprocessor environment. At 

the same time, minimizing the hardware cost is also 

highly desired. Such a combination of needs creates a 

situation where careful software design can make a 

heavily-loaded system function correctly on a resource-

limited platform. Recent model-based software 

development has shown much promise with the ability to 
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abstractly represent the system so that high-level design 

decisions can be explored and evaluated effectively. In 

model-based software development, the software 

architecture is first modeled as interacting components 

without consideration of the target platform model. It is 

then translated into a runtime model by strategically 

allocating the components to the platform and forming OS 

processes, or tasks, from these software components. As 

most of today’s OSs support only priority-based task 

scheduling, the thus-formed tasks must be assigned 

priorities for execution. Once the priorities are assigned 

for all tasks, the system can be analyzed using real-time 

scheduling theories to verify the effects of the assignment 

on meeting the system-level timing constraints. 

It has been shown that the problem of allocating 

software components to computational devices in a 

platform and the problem of assigning task priorities to 

meet system-level timing constraints are both NP-hard [1, 

3]. Solutions of the component-allocation problem have 

already been proposed by many researchers [1, 4, 6], and 

therefore, we assume it has already been solved. In this 

paper, we focus on the priority assignment after all 

components have been allocated. The design goal of our 

priority-assignment method is that it should be able to 

find a feasible assignment quickly and it should be 

scalable for a model with a large number of components 

and interactions. In our approach, we first determine an 

initial priority assignment for a task based on the latest 

completion time (LCT) of the task with which all of its 

successors are schedulable. To refine this priority 

assignment we developed an algorithm based on 

simulated annealing. The refinement algorithm also uses 

LCT values to constrain the options of assignments and 

alternates between a random swap of task priorities, 

which adjusts priorities randomly, and a strategic swap, 

which adjusts priorities based on analysis. Our 

evaluations, using a set of randomly-generated software 

models, show that this method finds a feasible priority 

assignment quickly and scales well to large systems.
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Finally, we apply the method to a vehicle system control 

used at the Ford Motor Company to demonstrate its 

effectiveness. 

The rest of the paper is organized as follows. Section 2 

describes the software architecture and platform models, 

and formally states the priority-assignment problem. 

Section 3 defines the LCT of a task and discusses the 

method to calculate and use it in priority assignment. 

Section 4 presents the simulated annealing algorithm and 

our heuristics for priority refinement. Section 5 provides 

an example of applying the method to a vehicle system 

control. Section 6 shows the evaluation results of our 

algorithm based on randomly-generated system models. 

Section 7 discusses related work. The paper concludes in 

Section 8. 

2. System Models and Problem Statement 

To assign priorities to tasks, the models of both the 

software architecture and the platform are essential. In 

this paper we model the software architecture in a runtime 

model and the platform in a platform model, which are, 

respectively, modified versions of the structural model
and the platform model presented in [4]. Informally, a 

runtime model consists of a set of tasks connected by 

directed links which signify data passing from one task to 

the next. Each task in the runtime model is allocated to 

one of the computational devices in the platform for 

execution. The platform model can informally be defined 

as a set of computational devices connected by a single 

shared communication link. The formal definitions of 

these models are given as follows. 

Definition 1 A task t = (C, I, O, B, e, d, p, pr) is a port-
based object where 

C is a set of software components [4, 8] which 

perform certain actions and define the functionality 
of the task;

I is a set of input ports through which a task receives 

data and/or is triggered to execute; 

O is a set of output ports through which a task sends 

data and/or triggers other tasks to execute where I 

O = ;

B defines the behavior of the task where B  (E I

c O) where E defines a set of events and c C;

e is the worst-case computation resource 
consumption which is defined by the behavior of B 

and the computation resource consumption of the 

components in C;

d is the time by which  the task must complete relative 

to the release time of its input task; 

p is the minimum time interval between consecutive 

invocations of t;

pr is the priority of t and is initially undefined.

As defined in Definition 1, a task performs a series of 

computations and actions with the components in C. A 

task’s input and output interfaces are defined by the input 

ports in I and output ports in O, respectively. The exact 

behavior of a task, defined by B, depends on the inputs 

received by I and the interactions between the 

components in C where this interaction could possibly 

generate output to O. The execution of the components 

will require a computational resource and the worst case 

consumption of this resource is defined by e. Furthermore, 

a task must complete its execution by a deadline defined 

by d. In this paper we consider hard real-time systems so 

we assume the results of missing this deadline could 

possibly cause a critical failure. We also assume that 

every task is periodic or is triggered by an outside event 

that occurs no faster than a certain rate. The period of the 

task or the minimum time between consecutive 

invocations is defined by p. Finally, we assume that tasks 

are scheduled based on a fixed priority pr which is 

initially left undefined. 

Along with this formal definition a task also has 

certain characteristics which define properties of a task 

that are not necessarily captured by its model. The 

characteristics of a task t required in this work include the 

latest completion time LCTt, the higher relative priority 

task set Ht, and the lower relative priority task set Lt. LCTt

is defined as the latest time that t can complete so that  t

and all of its successors complete before their deadlines. 

Ht and Lt are the sets of tasks that have higher and lower 

relative priorities than t, respectively. These three 

characteristics are detailed in Section 3. 

Definition 2 A runtime model MR = (T, LA, LS) is a 
weighted directed task graph where 

T is a set of nodes for the tasks in MR;

LA u TOu v TIv (u  v) is a set of asynchronous 
links which may form loops with nodes in T; 

LS u TOu v TIv (u  v) is a set of synchronous 
links which may not form loops with nodes in T 

where LS LA =  and t T, ¬( u,v (u  v) u (It

LS) and v (It LS)).

A runtime model defined in Definition 2 is a weighted 

directed graph where the nodes are tasks and the edges 

represent data flowing from the output interface of one 

task to the input interface of another. Data can be passed 

along an asynchronous link in LA or a synchronous link in 

LS. Asynchronous traffic differs from synchronous traffic 

in that a task is triggered to execute when it receives a 

synchronous message. However, when an asynchronous 

message is received it is buffered and then read when the 

task next executes. 

Synchronous links in the runtime model also have a 

few constraints. First, synchronous links should not form 

cycles in the graph. This is because a cycle in the graph 
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would be viewed as an infinite loop in the software 

architecture. Cycles in a runtime model, describing 

control functions such as closed-loop feedback and multi-

rate control, should be eliminated using techniques such 

as those described in [8]. Second, each task can have at 

most one synchronous input link. If a task in the runtime 

model has more than one synchronous link, it must be 

converted to one with a single input link. We assume that 

the relationship of these multiple links is either AND or 

OR, and thus, can be converted to a single link using 

techniques for transforming AND [8] and OR [7] 

relationships. After such transformations a task in the 

runtime model will either be an input task or will be 

triggered (directly or indirectly) by a single input task. 

A task in this model is either an input task or is 

triggered by some event that passes along a link in LS. We 

define an input task as a task that does not have any input 

synchronous links. Conversely, an output task can be 

defined as a task that does not have any output 

synchronous links. An input task is periodically or 

sporadically released based on a timer or an external 

event at a rate defined by p. For simplicity we assume that 

all input tasks are initially released at the same time. 

In this model a task’s successors and predecessors are 

defined only by the synchronous links. A successor to a 

task t is then the one that directly or indirectly is triggered 

for execution by t through synchronous links. Likewise, a 

predecessor to t is the one that directly or indirectly 

triggers the execution of t through synchronous links. 

Definition 3 A platform model MP = (P, N, V, R) is an 
undirected graph where  

P is a set of computational devices; 

N is a single shared communication device for all 

computational devices in P; 

V is a mapping of tasks to a single computational 
device in P given a runtime model M where for all 

tasks t TM , V t = u P;

R is a conversion from communication resource 

consumption to an equivalent computation resource 
consumption for N. 

A platform model, as defined in Definition 3, is an 

undirected graph where the nodes are the computational 

devices in P which are all connected by a single link that 

represents the shared communication device N. This 

definition of the platform model assumes that all tasks 

have been allocated to a single computational device, 

which is defined by V. N is assumed to pass data at some 

non-trivial rate R from one computational device to 

another. With such a rate R, we can convert the 

communication resource consumption for a message from 

one task to another across N into an equivalent 

computation resource consumption.  

The schedulability test that we run for the task set is a 

modified version of the classical rate-monotonic 

scheduling algorithm [9, 11]. The input for the test is a 

Timing Analysis Graph (TAG), which is equivalent to the 

runtime model except (i) all tasks are assigned priorities 

and (ii) there are concurrent links between the nodes. A 

concurrent link is an unweighted, directional link. It 

signifies that the source task has the potential to preempt 

the destination task. These concurrent links are, thus, 

between two tasks satisfying the following conditions:    

(i) both are allocated to the same computational device, 

(ii) one task is not the predecessor (directly or indirectly) 

of the other, and (iii) the source task has a higher priority 

than the destination task. 

The schedulability test can use the concurrent links 

along with the synchronous links to accurately determine 

the response time of each task. This can be done through 

techniques that consider how many invocations of 

concurrent tasks could preempt a chain of tasks instead of 

only considering tasks individually. The test also 

considers scheduling messages sent from one 

computational device to another across N. This is done by 

modeling N as a computational device and using R to

model each message as a task, as shown in [10]. 

Such a schedulability test shows several advantages. 

First, it is less pessimistic on the number of times that a 

task can preempt another task because it considers the 

task chains instead of individual tasks. Second, since the 

tasks’ casual relationship is known, if a change is made to 

the system, a minimal number of affected tasks can be 

determined according to the casual relationships, and only 

those need to be rescheduled. A drawback, however, is 

that this schedulability test incurs overheads. Before the 

test can be run, a TAG must be created. Furthermore, the 

TAG needs to update the concurrent links whenever a task 

modifies its priority, which can occur frequently. 

Using the definitions of the runtime model, the

platform model, and the TAG schedulability test, the 

priority assignment problem can be concisely stated as 

follows:   

Given a runtime model MR and a platform model 

MP where t TMR VMP maps t to PMP, assign a 

one-to-one mapping prt  {1, 2, … , |TMR|} such 

that the TAG is schedulable. 

3. LCT-Based Priority Assignment 

Our priority assignment scheme is based on the latest 

completion time (LCT) of each task. The LCT of a task is 

defined as the latest time at which the completion of the 

task allows all of its successors to meet their timing 

constraints. In our LCT-based priority assignment, tasks’ 

priorities are assigned in a reverse order of their LCTs (i.e., 

a task with a smaller LCT is assigned a higher priority).  
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inputs: T: a list of tasks where each t T only has   

successors that are output tasks. 

 P: a list of all computational devices

while(T is not empty) loop 

     t = Pop(T)

     for all successors ts of t loop 

          St = MergeSchedule(t, ts)

     end loop 

     LCTt = min(LCT[pj] | pj P)

     add time interval for t to St

     for all predecessors tp of t loop 

          if(all successors of tp are assigned an LCT) then

               Push(T, tp)

     end loop 

end loop 

Figure 1: LCT Assignment Algorithm 

 The first step of the LCT-based priority assignment 

algorithm is to calculate the LCT for each task. The 

algorithm to calculate tasks’ LCTs is given in Figure 1. 

The input to the algorithm is a list of computational 

devices and a list of tasks whose successors are output 

tasks. The task list represents the tasks that are ready to 

have their LCT assigned. A task is ready to have its LCT
assigned only when all of its successors have their LCTs

assigned. Furthermore, the LCT of an output task is 

trivially assigned as its deadline since it does not have any 

successors. At each step, the algorithm takes a task ready 

for schedule, and merges it to the schedule of all its 

successors. Such a schedule thus determines the execution 

order of the task and its successors. The LCT for the task 

can then be found by taking the minimum LCT for each 

computational device, where the LCT for the task on a 

computational device, denoted LCT[pj] for some pj P, is 

defined to be the start time of the first task in the schedule 

on that computational device. Once the LCT has been 

calculated, the start time for the task can be found and the 

task can be added to the schedule. The next step is to 

check if any of the task’s predecessors are ready to have 

their LCT calculated. Since the LCT of a task depends on 

the LCT and schedule of its successors, only those tasks, 

whose successors’ LCTs and schedules have been 

assigned, can have their LCT calculated. This process 

should be repeated until all tasks have a LCT assigned. 

The core of the LCT calculation is the MergeSchedule
function given in Figure 2. The inputs to this function are 

two tasks t1 and t2 which have corresponding schedules S1

and S2. The output of the function is the schedule 

corresponding to S1 merged with S2. A schedule, S, is 

defined to have individual schedules for each processor 

denoted by S[p] for some processor p. Each individual 

schedule is an ordered, non-overlapping list of time 

intervals where a time interval is simply a time where the 

processor would be busy. A time interval has a start time,  

inputs: t1, t2: two tasks to have their schedules merged 

outputs: S: the merged schedule 

for all processors pj P loop 

     time block blast = 

     time block b1 = PopBack(S1[pj]) 

     time block b2 = PopBack (S2[pj]) 

     while(S1[pj] and S2[pj] are not empty) loop

          if(S2[pj] is empty or b1.ct  > b2.ct) then 

               time block bmax = b1

               b1 = PopBack (S1[pj]) 

          else 

               time block bmax = b2

               b2 = PopBack (S2[pj]) 

          end if-else  

          if(bmax.ct > blast.st) then

               bmax.st = blast.st – (bmax.ct - bmax.st)

               bmax.ct = blast.st

          end if 

          Push (S[pj], bmax)

          blast = bmax

     end loop 

end loop 

return S

Figure 2: MergeSchedule Function

st, and a completion time, ct. The schedule for an output 

task, t, is defined to be a single time interval for the 

processor which it is allocated to that has a ct equal to dt

and an st equal to dt – et. All other tasks begin with an 

empty schedule. 

The MergeSchedule function begins by looping 

through all of the processors and merging all of the 

schedules on each individual processor. This is done by 

first removing the last time block from each of the 

schedules. These two time blocks are compared to find 

which one has a later completion time, bmax, and removes 

the last time block from the corresponding schedule so it 

can be used on the next loop. If bmax has a ct that is before 

the st of the last block that was added to the schedule, blast,

then these two time blocks do not overlap and bmax can be 

added to the schedule. However, if they do overlap bmax

needs to be shifted such that bmax.ct is equal to blast.st before 

it can be added to the schedule. This process is then 

repeated until all of the time blocks from the two 

schedules have been added to the merged schedule. 

One observation of the LCT-based priority assignment 

is that if all tasks are independent, then it is equivalent to 

deadline monotonic scheduling and, thus, is optimal under 

the conditions that make deadline monotonic scheduling 

optimal. However, it is also true that under certain 

conditions LCT priority assignment is optimal for a task 

set that includes dependent tasks. 

One case that the LCT-based priority assignment is 

optimal for a dependent task set T is when all t T are 

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05) 
1080-1812/05 $ 20.00 IEEE 



allocated to the same computation device. This is because 

the task precedence constraints can be ignored in this case 

since such constraints will be enforced by the task 

priorities. Since the LCT of a task is dependent on the 

schedules and LCTs of its successors, the LCT of a task 

must be less than that of its successors. Thus, the priority 

of a task will always be higher than that of its successors. 

Therefore, the task set can be viewed as an independent 

task set and since a task must complete by its LCT for all 

of its successors to be able to meet their deadlines the 

LCT can be viewed as the task’s deadline. Under these 

assumptions there is no difference between LCT priority 

assignment and deadline monotonic scheduling. 

Furthermore, since deadline monotonic scheduling has 

been proven to be optimal for independent tasks, LCT

priority assignment must also be optimal. 

Another observation is that if all tasks have the same 

period LCT-based priority assignment is very likely to be 

the optimal priority assignment for the task set. This is 

intuitive because tasks can directly compare LCT values. 

The reason that two tasks with the same period can 

compare LCT values directly is because a task’s LCT is 

relative to the release time of the task’s input task. Since 

we assume that all input tasks have the same phasing all 

input tasks with the same period will always be released 

at the same times. However, if two tasks have different 

periods their LCTs most likely will not be based on the 

same release time so it may appear that one task can 

complete later than the other when this might not actually 

be the case.  

However, if all tasks do not have the same period or 

not all tasks are located on the same computational device, 

there may be another priority assignment algorithm that 

will find a solution better than that of the LCT priority 

assignment. We propose that in such cases it is 

advantageous to find groups of tasks where all of the tasks 

in each of these groups satisfy one or both of these 

conditions. Groups can be formed between tasks that (i) 

all have the same period or (ii) where all of the tasks in 

the group and all of their predecessors (direct or indirect) 

are allocated to the same computational device. The tasks 

in group (ii) satisfy the condition that all tasks are on the 

same computational device and it can be viewed that all 

tasks in this group are released at the same time.  

Since these groups satisfy one of the conditions, we 

can assign priorities to these tasks relative to the other 

tasks in the group based on their LCTs. These relative 

LCT priorities can be used as constraints when assigning 

the global priorities, thus greatly reducing the number of 

possible priority assignments. We use these constraints to 

define H and L in the task model in Section 2. H can be 

defined for task t to be the set of all tasks with a higher 

relative LCT priority than t. Similarly, L can be defined 

for task t to be the set of all tasks with a lower relative 

LCT priority than t.

4. Priority Refinement Using Simulated 

Annealing

Our priority-refinement algorithm uses the relative 

LCT constraints in simulated annealing to quickly find a 

feasible schedule. Simulated annealing is a general global 

optimization algorithm. It attempts to find the lowest 

point of energy in an energy landscape, where this point 

corresponds to the best solution for the given problem. 

This technique has been used successfully for many 

different optimization problems that have been shown to 

be NP-complete including task allocation and priority 

assignment by Tindell et al [1]. Differently, we use 

simulated annealing only for priority assignment since we 

have assumed that all tasks have already been allocated to 

processors. 

The general simulated annealing algorithm is fairly 

simple. An initial starting point, p, is chosen as a possible 

solution and the energy at this point, Ep, is evaluated 

where the lower the energy the better the solution. A 

neighbor, t, of p is chosen as an alternative solution and 

the energy at this point, Et, is evaluated. If Et < Ep then t is 

chosen as the next p otherwise t is chosen as the next p
with a probability of ex where x = (Ep - Et) / c and c is 

some control temperature. This algorithm repeats 

periodically decreasing c until a stopping criterion is met. 

In our refinement algorithm, a point, p, corresponds to 

a priority assignment to all tasks. A neighbor to p is a 

different priority assignment where two tasks have 

swapped priorities. The energy of a point is defined to be: 

E =
Tt

max(0, respt – dt)

where respt is the response time of t for the given priority 

assignment. This definition of E directs the simulated 

annealing algorithm search for an assignment that reduces 

the total time that the task set misses its deadlines by. The 

initial value of the control temperature c can be chosen in 

many different ways. Our selection is based on the energy 

of the original point p. This results in almost all 

neighboring points originally being accepted. c is

periodically reduced after a number of steps so that after 

each reduction a neighboring point corresponding to a 

worse priority assignment has less of a probability of 

being accepted. 

Incorporating the LCT relative priority constraints in 

the simulated annealing algorithm restricts which tasks 

are allowed to swap priorities. If a task t would have its 

priority raised then the swap is allowed only if the new 

priority is not higher than that of the lowest priority task 

in Ht. Likewise, if a task would have its priority lowered 

then the swap is allowed only if the new priority is not 

less than that of the highest priority task in Lt. This 

ensures that a task cannot raise its priority above another 
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inputs: TMD: the set of tasks that do not meet their 

deadlines 

outputs: a pair of tasks to swap priorities with or  if no 

valid pair is found 

t = random task from TMD

P = list of all direct predecessors of t
while(P is not empty) loop 

     i = prt + 1

     while(i < prtl, tl = lowest priority task in Ht) loop 

          if(t and task with priority i is a valid swap) then

               return t and task with priority i

          i = i + 1 

     end loop 

     for(all tasks tp that preempt t) loop 

          i = prtp – 1 

          while(i > prth, th = highest priority task in Ltp) loop

               if(tp and task with priority i is a valid swap)then

                    return tp and task with priority i

               i = i + 1 

          end loop

     end loop 

 t = Pop(P)

PushBack(P, all direct predecessors of t)

end loop 

return

Figure 3: StrategicSwap Function 

task that has a higher relative priority and a task cannot 

lower its priority below another task with a lower relative 

priority. In other words, a task can only swap priorities 

with another task where there is no relative priority 

relationship between the two and the priorities of each 

task are within the correct ranges. 

Since it chooses a neighboring point to evaluate 

randomly, the classical simulated annealing algorithm 

does not predict what might be a ‘good’ neighbor. 

Although such randomness helps to keep the algorithm 

from getting stuck at local minimums, it may also cause 

the algorithm to take a long time to find a solution due to 

blindly searching through the many possible neighboring 

points. We would like to take advantage of the 

randomness of the classical simulated annealing algorithm 

while also accelerating it by guiding it to ‘good’ 

neighboring points. This is achieved by alternating 

between a random swap of priorities and a strategic swap 

of priorities. 

The strategic swap that we develop is based on the fact 

that a task t has a better probability of completing before 

its deadline if either: (i) its priority is raised, (ii) a task 

that is preempting it has its priority lowered, or (iii) one of 

the task’s predecessors has its priority raised. Although 

this does not guarantee that the system as a whole will 

yield a better schedule, it gives t a better chance at 

meeting its deadline. The strategic swap function that 

inputs: T: task set 

outputs: Success or Failure depending if a valid priority 

assignment was found 

Calculate LCTs for all tasks in T
Assign LCT priorities 

Determine H and L for all tasks in T

Choose a starting temperature C
Assign initial priorities to all tasks in T

if(Schedulability test returns Success) then 

     return Success

loop 

     loop 

          E = energy for current priority assignment 

          if(random swap was performed last) then

               ti, tj = StrategicSwap()

         if(strategic swap was performed last pass or 

          StrategicSwap() just returned ) then

          ti, tj = RandomSwap() 

          Swap the priorities of ti and tj

          if(Schedulability test returns Success) then

               return Success

          Eswap = energy for the swapped priority assignment 

          if(Eswap E) then

               x = (E - Eswap) / C
               if(ex < random(0, 1)) then

                 Swap back the priorities of ti and tj

          end if 

     while(thermal equilibrium has not been reached) 

     C = update C

while(some stopping criterion has been met) 

return Failure

Figure 4: Simulated Annealing Priority 
Assignment

attempts to perform one of these actions is given in Figure 

3.

The entire priority-assignment algorithm using 

simulated annealing, LCT relative priority constraints, and 

alternating between the random priority swap and the 

strategic priority swap is given in Figure 4. This algorithm 

begins by calculating LCT values for all of the tasks and 

using these values to assign LCT priorities for each task. 

Tasks are formed into groups where relative priorities can 

be assigned and H and L are determined for each task. An 

initial control temperature is chosen and each task is 

assigned an initial priority assignment (e.g., by deadline 

monotonic or LCT priority assignment). If this priority 

assignment yields a successful schedule then a success 

can be returned right away. Otherwise, the energy, E, is 

calculated for the current priority assignment. The 

priorities of two tasks are then swapped either randomly 

or through the strategic swap function depending on what 

was performed in the previous step. The schedulability 
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test is run for this priority assignment at each step. If a 

successful schedule has been found, the function returns a 

success. Otherwise, the energy of the new priority 

assignment, Eswap, is computed and compared with E. If 

Eswap is less than E, it indicates a better schedule has been 

found, and the priority swap is accepted. Otherwise, the 

swap is accepted with a probability of ex where x = (E - 

Eswap) / C and if the swap is not accepted then the 

priorities are swapped back to their original values. This 

process repeats until it is determined that thermal 

equilibrium is reached where C is updated accordingly. 

The algorithm continues until some stopping criterion has 

been met (e.g., the number of steps without lowering E
has crossed a threshold) where it can be said that the 

algorithm failed to find a solution. 

5. Example: Vehicle System Control

To show the effectiveness of our priority refinement 

algorithm, we applied it to a vehicle system control (VSC) 

application used by the Ford Motor Company. Vehicle 

system control is the high-level control that coordinates 

different subsystems in a vehicle. For example, in a 

hybrid gas/electric vehicle one function of the VSC may 

determine the operating mode of the gas- powered engine 

or the battery-powered motor. The structure of the VSC 

application is given in Figure 5 where the black links 

indicate synchronous messages and the gray links indicate 

asynchronous messages. The model contains components 

for sensor system control (Ssc), actuator system control 

for the engine module (AscEm), actuator system control 

for the transmission module (AscTm), vehicle system 

control for driver / traffic / vehicle / coordination input 

fusion (VscDif, VscTif, VscVif, and VscCif respectively), 

and vehicle system control for driver / traffic / vehicle / 

coordination layer (VscDl, VscTl, VscVl, and VscCl, 

respectively). This is a simplified version of the 

application where the actual model had over 40 

components in multiple layers of hierarchy. The platform 

consists of two computational devices P1 and P2

connected by a shared link N. Using the allocation 

algorithm given in [4] Ssc, AscEm, AscTm, and VscCl 

are allocated to P1 and VscDif, VscTif, VscVif, VscCif, 

VscDl, VscTl, and VscVl are allocated to P2. For 

simplicity we do not consider link scheduling in this 

example. 

In this example the input tasks are Ssc and VscCif 

which are triggered by timers at 100 ms and 110 ms 

respectively (these times and those in Figure 6 have been 

slightly modified to highlight the different features of the 

priority refinement algorithm). The successors to these 

two tasks form two different groups where the relative 

LCT priorities can be assigned since each member of 

these groups has the same rate of invocation. The 

algorithm begins by determining LCT, H, L, and pr for  

Figure 5: Structure of vehicle system 

control application. 

each task and determining if this priority assignment 

passes the schedulability test. These results are given in 

Figure 6 where it can be seen that VscDl misses its 

deadline by 5 ms. 

The priority refinement algorithm begins by randomly 

selecting two tasks to swap priorities which turn out to be 

VscCif and VscDif. This swap is a legal swap since the 

new priorities for both VscCif and VscDif are still in the 

proper ranges given their respective H and L. As shown in 

Figure 7, this priority swap does not affect the response 

times of any tasks positively or negatively. This results in 

an energy value, Eswap, that is equivalent to the previous 

energy value, E. In the case that the two energy levels are 

the same the simulated annealing algorithm always 

accepts the swap so the tasks switch priorities.  

The second step is to choose two tasks to swap 

priorities using the strategic swap. First, the algorithm 

tries to increase the priority of VscDl, but this cannot be 

done since this would raise the priority to be greater than 

VscDif which would violate the relative LCT priority 

constraints. Next, the algorithm tries to increase the 

priority of the predecessor of VscDl, VscDif. This would 

swap the priorities of VscDif and VscCif, which is a legal 

swap, and since this is a reversal of the first step we are 

back to the original priority assignment. 

The third step in the algorithm chooses a valid random 

swap between VscCl and AscTm. This swap again does 

not affect the response times of the tasks and results in an 

equivalent energy value. 

The fourth step of the algorithm again tries to increase 

the priority of VscDl through the strategic swap function. 

However, since the previous strategic swap increased the 

priority of VscDif VscDl can now increase its priority 

without violating its relative LCT constraints. The 

increase in priority for VscDl results in it finishing by 90 

ms and increases the response time of VscCl to be 110 ms, 

both of which are at or below their respective deadlines. 

At this point the algorithm terminates since all tasks have 

a worst case response time that is earlier than their 

respective deadlines. 
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task d/pt et LCTt prt respt Ht / Lt

Ssc 100 10 20 11 10 {-} / { VscTif, VscVif, VscTl, VscVl, VscDif, VscDl, AscEm, AscTm} 

VscDif 100 10 90 6 80 {Ssc, VscTif, VscVif, VscTl, VscVl} / {AscTm, AscEm, VscDl} 

VscDl 100 10 100 4 105 {Ssc, VscTif, VscVif, VscTl, VscVl, VscDif} / {AscTm, AscEm} 

VscTif 100 10 60 10 20 {Ssc} / {AscTm, AscEm, VscDl, VscDif, VscVl, VscTl, VscVif} 

VscTl 100 20 80 8 50 {Ssc, VscTif, VscVif} / {AscTm, AscEm, VscDl, VscDif, VscVl} 

VscVif 100 10 60 9 30 {Ssc, VscTif} / {AscTm, AscEm, VscDl, VscDif, VscVl, VscTl} 

VscVl 100 20 80 7 70 {Ssc, VscTif, VscVif, VscTl} / {AscTm, AscEm, VscDl, VscDif} 

VscCif 110 25 90 5 90 {-} / {VscCl} 

VscCl 110 10 110 1 100 {VscCif} / {-} 

AscEm 100 20 100 3 70 {Ssc, VscTif, VscVif, VscTl, VscVl, VscDif, VscDl} / {AscTm} 

AscTm  100 20 100 2 95 {Ssc, VscTif, VscVif, VscTl, VscVl, VscDif, VscDl, AscEm} / {-}

Figure 6: Initial priority assignment configuration for Vehicle System Control. 

step E  swap tasks  Eswap C ex rand(0,1)  TMD

1 5 VscCif, VscDif - Random 5 10 1 ..676  VscDl 

2 5 VscDif, VscCif - Strategic 5 10 1 .197  VscDl 

3 5 VscCl, AscTm - Random 5 10 1 .231 VscDl

4 5 VscDl, VscCif – Strategic 0 - - -  -

Figure 7: Steps for refining priority for Vehicle System Control. 

6. Evaluation 

Our evaluation focused on how well the priority 

assignment algorithm performed for varying the average 

utilizations of the computational devices. The 

performance metrics that we used to evaluate this were 

the average sum of excessive execution time after 

deadline (i.e. the average final value of E in the simulated 

annealing algorithm) and the failure rate. In the 

experiments, we terminated the simulated annealing 

algorithm if there was no improvement on the overall 

schedulability of the task set over 150 consecutive steps. 

This prevents the algorithm from repeating infinitely for 

task sets where no feasible priority assignment exists. The 

failure rate is then simply the number of experiments 

where a solution was not found over the total number of 

experiments performed. The average sum of excessive 

execution time after deadline can be used to determine 

which priority assignment schemes yielded a better 

schedule among those tests that fail. Thus, we can 

determine which algorithm was closer to finding a 

solution and, thus, more likely to find a solution given 

another task set with the same attributes. 

To perform our experiments we used a set of randomly 

generated models. In the task graphs 100 tasks were 

generated each of which had a link output degree of 1 to 5. 

Each of the links that connected the tasks could be either 

synchronous or asynchronous. The number of bytes that 

was passed along each of these links varied randomly 

from 10 to 200 bytes. The computational resource 

consumption for each task was set so that the average 

utilization of each computational device varied between .5 

and 1 in increments of .05.  The platform model consisted 

of 5 computational devices all connected by a single 

communication device. Each of the tasks is randomly 

allocated to one of these computational devices with an 

attempt to balance the computational loads. 

To evaluate our modified simulated annealing priority 

assignment algorithm, we compared it with a selected set 

of other priority assignment algorithms. The baseline 

algorithm that we tested had an initial priority assignment 

using deadline monotonic (with deadlines assigned using 

a deadline distribution algorithm) and standard simulated 

annealing was used for adjusting the priority (DM/SA). 

The next priority assignment algorithm tested used the 

LCT priority assignment for the initial priority assignment 

along with standard simulated annealing for refinement 

(LCT/SA). We then added to the previous test the LCT 

priority constraints to determine valid priority swaps 

(LCT/SA+LCT). The final test is our proposed algorithm 

which adds the strategic swap alternated with the random 

swap (LCT/SA+LCT+SS). 

In our experiments, we varied the average utilization 

of the computational devices from .5 to 1 with increments 

of 0.05. This range was chosen because initial 

experiments showed that if the average utilization was 

below 0.5 almost all tests found a solution often right 

away with the initial priority assignment. Likewise, once 

the average utilization gets close to 1 almost all tests fail. 

However, we can still get meaningful data from these 

tests by seeing how close they were to finding a solution. 

Figure 8 shows the failure rate for the different priority 

assignment algorithms. The DM/SA and the LCT/SA 

algorithms performed very similarly and had the highest 

failure rates. The similarity between these two tests is not  
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Figure 8: Failure rate for different 
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Figure 9: The average sum of excessive 

execution time after deadline for 
different average processor utilizations. 

surprising since the only difference between the two is the 

initial priority assignment. The LCT/SA+LCT priority 

assignment algorithm had the next lowest failure rate 

showing that the LCT relative priority constraints help to 

move towards a better solution. Among all the 

experiments, our priority assignment algorithm 

(LCT/SA+LCT+SS) resulted in the lowest failure ratio. 

When compared with the DM/SA priority assignment 

algorithm, LCT/SA+LCT+SS on average found a 

successful solution 1.8 times as often. 

Figure 9 shows the average sum of excessive execution 

time after deadline. The DM/SA and LCT/SA algorithms 

performed similarly and missed the tasks’ deadlines by 

the most. Again, this is due to the only difference being 

their initial priority assignment. The LCT/SA+LCT 

priority assignment algorithm missed its deadlines by the 

next lowest amount followed by LCT/SA+LCT+SS. It 

can also be seen that DM/SA misses its deadlines on 

average by 3.4 times as much as our LCT/SA+LCT+SS.

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

W
a
ll

 C
lo

c
k

 C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

LCT/SA+LCT+SS

Figure 10: Wall clock time for algorithm 

to complete. 

Finally, we wanted to show that our algorithm is 

scalable for large systems consisting of a high number of 

tasks. For this we randomly generated systems varying 

the number of tasks from 100 to 1000 and allocated them 

to 5 computational devices each with an average 

utilization of 0.7. The LCT/SA+LCT+SS algorithm was 

run 20 times for each case and the average wall clock 

time that the algorithm took to complete was recorded. 

The results of this test are given in Figure 10 where the 

tests were run on a PC using a 1.5 GHz Intel Pentium 4 

processor with 256 MB of RAM using the Windows 2000 

Professional Operating System. This graph shows that the 

completion time of the LCT/SA+LCT+SS algorithm 

increases approximately linearly with an increase in the 

number of tasks and, thus, scales well to large task sets. 

6. Related Work 

Priority assignment is a classic problem that has been 

the focus of much research. Liu and Layland introduced 

rate monotonic scheduling [9] and this was extended to 

deadline monotonic scheduling by Leung and Whitehead 

[12]. These well-known approaches have been shown to 

be optimal under certain assumptions one of which is that 

the task set is independent. However, if the task set is 

comprised of dependent tasks the problem becomes NP-

complete [6]. Heuristic based algorithms to solve this 

problem have been given in [2, 3] but these approaches 

only consider simple transactions (i.e., the transactions do 

not revisit a processor or create subtransactions). Wu et al

present another priority assignment algorithm in [5], but it 

enforces the precedence constraints by setting deadlines 

for each “row” of tasks which introduces extra 

unnecessary constraints. The problem of task allocation 

combined with priority assignment has also been 

considered [1, 6]. However, this approach combines two 

NP-complete problems into one [1, 3] and in doing so 
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makes assumptions that oversimplify one or both of the 

problems. 

Our approach differs from all of these previous 

approaches in that it considers the precedence constraints 

of tasks while minimizing the number of assumptions that 

need to be made. Furthermore, we consider the task 

allocation and priority assignment separately so that each 

problem can be considered with as much detail as is 

necessary. 

7. Conclusions and Future Work 

In model-based embedded software design and 

automation, priority assignment is a crucial step in finding 

a solution that can meet all of system timing constraints. 

If the priorities are assigned improperly, the software may 

not behave as desired, which could lead to a complete 

system failure. To solve the priority-assignment problem, 

we have developed a method to iteratively refine the task 

priorities. The method first finds the latest time at which a 

task can complete such that all of its successors meet their 

deadlines. The LCT is then used to assign initial priorities 

and assign relative priorities to task groups. We then use 

simulated annealing to adjust task priorities for a system 

that is not schedulable. The adjustment uses the relative 

priority constraints that can be found between tasks that 

have certain similar characteristics. Furthermore, since we 

know how to modify the priority of a task to increase 

likelihood of it being schedulable, we introduce a 

strategic swap method. To find a global minimum instead 

of a local one, we alternate between the strategic swap 

and the original random swap in the simulated annealing 

algorithm. Our evaluation results show that this algorithm 

performs better not only by increasing the number of 

feasible assignments found but also by decreasing the 

overall time past deadlines. Furthermore, the approach 

also scales well in the systems with many tasks and can 

find solutions to the systems with very high workloads.  

There are many interesting avenues that can be taken 

for future work. First, we would like to explore other 

constraints that may be put on the priority of a task so that 

the search space may be reduced even further. Second, we 

would like to apply the priority constraints to other 

incremental priority-assignment algorithms and compare 

their results with those generated by simulated annealing. 

Finally, we would like to incorporate other design 

refinement decisions, such as task formation and 

component allocation, to construct a fully-automated 

design process. 
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