
Priority Refinement for Dependent Tasks in Large Embedded Real-Time Software

Jeffrey R. Merrick, Shige Wang, Kang G. Shin

Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122
email: {jmerrick, wangsg, kgshin}@eecs.umich.edu

Jing Song, William Milam

Ford Motor Company
email: {jsong, wmilam}@ford.com

Abstract

In a large embedded real-time system, priority

assignment can greatly affect the timing behavior--which
can consequently affect the overall behavior--of the

system. Thus, it is crucial for model-based design of a

large embedded real-time system to be able to
intelligently assign priorities such that tasks can meet

their deadlines. In this paper, we propose a priority-

refinement method for dependent tasks distributed
throughout a heterogeneous multiprocessor environment.

In this method, we refine an initial priority assignment

iteratively using the simulated annealing technique with
tasks’ latest completion times (LCT). Our evaluations,

based on randomly-generated models, have shown that
the refinement method outperforms other priority-

assignment schemes and scales well for large, complex,

real-time systems. This method has been implemented in
the Automatic Integration of Reusable Embedded

Software (AIRES) toolkit and has been successfully

applied to a vehicle system control application.

1. Introduction

Software for large embedded systems has become

complex, containing many software components

distributed throughout a multiprocessor environment. At

the same time, minimizing the hardware cost is also

highly desired. Such a combination of needs creates a

situation where careful software design can make a

heavily-loaded system function correctly on a resource-

limited platform. Recent model-based software

development has shown much promise with the ability to

The work reported in this paper was supported in part by DARPA under

the US AFRL contracts F30602-01-02-0527 and F3615-00-1706, and by

Ford Motor Company under a University Research Partnership grant.

abstractly represent the system so that high-level design

decisions can be explored and evaluated effectively. In

model-based software development, the software

architecture is first modeled as interacting components

without consideration of the target platform model. It is

then translated into a runtime model by strategically

allocating the components to the platform and forming OS

processes, or tasks, from these software components. As

most of today’s OSs support only priority-based task

scheduling, the thus-formed tasks must be assigned

priorities for execution. Once the priorities are assigned

for all tasks, the system can be analyzed using real-time

scheduling theories to verify the effects of the assignment

on meeting the system-level timing constraints.

It has been shown that the problem of allocating

software components to computational devices in a

platform and the problem of assigning task priorities to

meet system-level timing constraints are both NP-hard [1,

3]. Solutions of the component-allocation problem have

already been proposed by many researchers [1, 4, 6], and

therefore, we assume it has already been solved. In this

paper, we focus on the priority assignment after all

components have been allocated. The design goal of our

priority-assignment method is that it should be able to

find a feasible assignment quickly and it should be

scalable for a model with a large number of components

and interactions. In our approach, we first determine an

initial priority assignment for a task based on the latest

completion time (LCT) of the task with which all of its

successors are schedulable. To refine this priority

assignment we developed an algorithm based on

simulated annealing. The refinement algorithm also uses

LCT values to constrain the options of assignments and

alternates between a random swap of task priorities,

which adjusts priorities randomly, and a strategic swap,

which adjusts priorities based on analysis. Our

evaluations, using a set of randomly-generated software

models, show that this method finds a feasible priority

assignment quickly and scales well to large systems.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Finally, we apply the method to a vehicle system control

used at the Ford Motor Company to demonstrate its

effectiveness.

The rest of the paper is organized as follows. Section 2

describes the software architecture and platform models,

and formally states the priority-assignment problem.

Section 3 defines the LCT of a task and discusses the

method to calculate and use it in priority assignment.

Section 4 presents the simulated annealing algorithm and

our heuristics for priority refinement. Section 5 provides

an example of applying the method to a vehicle system

control. Section 6 shows the evaluation results of our

algorithm based on randomly-generated system models.

Section 7 discusses related work. The paper concludes in

Section 8.

2. System Models and Problem Statement

To assign priorities to tasks, the models of both the

software architecture and the platform are essential. In

this paper we model the software architecture in a runtime

model and the platform in a platform model, which are,

respectively, modified versions of the structural model
and the platform model presented in [4]. Informally, a

runtime model consists of a set of tasks connected by

directed links which signify data passing from one task to

the next. Each task in the runtime model is allocated to

one of the computational devices in the platform for

execution. The platform model can informally be defined

as a set of computational devices connected by a single

shared communication link. The formal definitions of

these models are given as follows.

Definition 1 A task t = (C, I, O, B, e, d, p, pr) is a port-
based object where

C is a set of software components [4, 8] which

perform certain actions and define the functionality
of the task;

I is a set of input ports through which a task receives

data and/or is triggered to execute;

O is a set of output ports through which a task sends

data and/or triggers other tasks to execute where I

O = ;

B defines the behavior of the task where B (E I

c O) where E defines a set of events and c C;

e is the worst-case computation resource
consumption which is defined by the behavior of B

and the computation resource consumption of the

components in C;

d is the time by which the task must complete relative

to the release time of its input task;

p is the minimum time interval between consecutive

invocations of t;

pr is the priority of t and is initially undefined.

As defined in Definition 1, a task performs a series of

computations and actions with the components in C. A

task’s input and output interfaces are defined by the input

ports in I and output ports in O, respectively. The exact

behavior of a task, defined by B, depends on the inputs

received by I and the interactions between the

components in C where this interaction could possibly

generate output to O. The execution of the components

will require a computational resource and the worst case

consumption of this resource is defined by e. Furthermore,

a task must complete its execution by a deadline defined

by d. In this paper we consider hard real-time systems so

we assume the results of missing this deadline could

possibly cause a critical failure. We also assume that

every task is periodic or is triggered by an outside event

that occurs no faster than a certain rate. The period of the

task or the minimum time between consecutive

invocations is defined by p. Finally, we assume that tasks

are scheduled based on a fixed priority pr which is

initially left undefined.

Along with this formal definition a task also has

certain characteristics which define properties of a task

that are not necessarily captured by its model. The

characteristics of a task t required in this work include the

latest completion time LCTt, the higher relative priority

task set Ht, and the lower relative priority task set Lt. LCTt

is defined as the latest time that t can complete so that t

and all of its successors complete before their deadlines.

Ht and Lt are the sets of tasks that have higher and lower

relative priorities than t, respectively. These three

characteristics are detailed in Section 3.

Definition 2 A runtime model MR = (T, LA, LS) is a
weighted directed task graph where

T is a set of nodes for the tasks in MR;

LA u TOu v TIv (u v) is a set of asynchronous
links which may form loops with nodes in T;

LS u TOu v TIv (u v) is a set of synchronous
links which may not form loops with nodes in T

where LS LA = and t T, ¬(u,v (u v) u (It

LS) and v (It LS)).

A runtime model defined in Definition 2 is a weighted

directed graph where the nodes are tasks and the edges

represent data flowing from the output interface of one

task to the input interface of another. Data can be passed

along an asynchronous link in LA or a synchronous link in

LS. Asynchronous traffic differs from synchronous traffic

in that a task is triggered to execute when it receives a

synchronous message. However, when an asynchronous

message is received it is buffered and then read when the

task next executes.

Synchronous links in the runtime model also have a

few constraints. First, synchronous links should not form

cycles in the graph. This is because a cycle in the graph

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

would be viewed as an infinite loop in the software

architecture. Cycles in a runtime model, describing

control functions such as closed-loop feedback and multi-

rate control, should be eliminated using techniques such

as those described in [8]. Second, each task can have at

most one synchronous input link. If a task in the runtime

model has more than one synchronous link, it must be

converted to one with a single input link. We assume that

the relationship of these multiple links is either AND or

OR, and thus, can be converted to a single link using

techniques for transforming AND [8] and OR [7]

relationships. After such transformations a task in the

runtime model will either be an input task or will be

triggered (directly or indirectly) by a single input task.

A task in this model is either an input task or is

triggered by some event that passes along a link in LS. We

define an input task as a task that does not have any input

synchronous links. Conversely, an output task can be

defined as a task that does not have any output

synchronous links. An input task is periodically or

sporadically released based on a timer or an external

event at a rate defined by p. For simplicity we assume that

all input tasks are initially released at the same time.

In this model a task’s successors and predecessors are

defined only by the synchronous links. A successor to a

task t is then the one that directly or indirectly is triggered

for execution by t through synchronous links. Likewise, a

predecessor to t is the one that directly or indirectly

triggers the execution of t through synchronous links.

Definition 3 A platform model MP = (P, N, V, R) is an
undirected graph where

P is a set of computational devices;

N is a single shared communication device for all

computational devices in P;

V is a mapping of tasks to a single computational
device in P given a runtime model M where for all

tasks t TM , V t = u P;

R is a conversion from communication resource

consumption to an equivalent computation resource
consumption for N.

A platform model, as defined in Definition 3, is an

undirected graph where the nodes are the computational

devices in P which are all connected by a single link that

represents the shared communication device N. This

definition of the platform model assumes that all tasks

have been allocated to a single computational device,

which is defined by V. N is assumed to pass data at some

non-trivial rate R from one computational device to

another. With such a rate R, we can convert the

communication resource consumption for a message from

one task to another across N into an equivalent

computation resource consumption.

The schedulability test that we run for the task set is a

modified version of the classical rate-monotonic

scheduling algorithm [9, 11]. The input for the test is a

Timing Analysis Graph (TAG), which is equivalent to the

runtime model except (i) all tasks are assigned priorities

and (ii) there are concurrent links between the nodes. A

concurrent link is an unweighted, directional link. It

signifies that the source task has the potential to preempt

the destination task. These concurrent links are, thus,

between two tasks satisfying the following conditions:

(i) both are allocated to the same computational device,

(ii) one task is not the predecessor (directly or indirectly)

of the other, and (iii) the source task has a higher priority

than the destination task.

The schedulability test can use the concurrent links

along with the synchronous links to accurately determine

the response time of each task. This can be done through

techniques that consider how many invocations of

concurrent tasks could preempt a chain of tasks instead of

only considering tasks individually. The test also

considers scheduling messages sent from one

computational device to another across N. This is done by

modeling N as a computational device and using R to

model each message as a task, as shown in [10].

Such a schedulability test shows several advantages.

First, it is less pessimistic on the number of times that a

task can preempt another task because it considers the

task chains instead of individual tasks. Second, since the

tasks’ casual relationship is known, if a change is made to

the system, a minimal number of affected tasks can be

determined according to the casual relationships, and only

those need to be rescheduled. A drawback, however, is

that this schedulability test incurs overheads. Before the

test can be run, a TAG must be created. Furthermore, the

TAG needs to update the concurrent links whenever a task

modifies its priority, which can occur frequently.

Using the definitions of the runtime model, the

platform model, and the TAG schedulability test, the

priority assignment problem can be concisely stated as

follows:

Given a runtime model MR and a platform model

MP where t TMR VMP maps t to PMP, assign a

one-to-one mapping prt {1, 2, … , |TMR|} such

that the TAG is schedulable.

3. LCT-Based Priority Assignment

Our priority assignment scheme is based on the latest

completion time (LCT) of each task. The LCT of a task is

defined as the latest time at which the completion of the

task allows all of its successors to meet their timing

constraints. In our LCT-based priority assignment, tasks’

priorities are assigned in a reverse order of their LCTs (i.e.,

a task with a smaller LCT is assigned a higher priority).

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

inputs: T: a list of tasks where each t T only has

successors that are output tasks.

 P: a list of all computational devices

while(T is not empty) loop

 t = Pop(T)

 for all successors ts of t loop

 St = MergeSchedule(t, ts)

 end loop

 LCTt = min(LCT[pj] | pj P)

 add time interval for t to St

 for all predecessors tp of t loop

 if(all successors of tp are assigned an LCT) then

 Push(T, tp)

 end loop

end loop

Figure 1: LCT Assignment Algorithm

 The first step of the LCT-based priority assignment

algorithm is to calculate the LCT for each task. The

algorithm to calculate tasks’ LCTs is given in Figure 1.

The input to the algorithm is a list of computational

devices and a list of tasks whose successors are output

tasks. The task list represents the tasks that are ready to

have their LCT assigned. A task is ready to have its LCT
assigned only when all of its successors have their LCTs

assigned. Furthermore, the LCT of an output task is

trivially assigned as its deadline since it does not have any

successors. At each step, the algorithm takes a task ready

for schedule, and merges it to the schedule of all its

successors. Such a schedule thus determines the execution

order of the task and its successors. The LCT for the task

can then be found by taking the minimum LCT for each

computational device, where the LCT for the task on a

computational device, denoted LCT[pj] for some pj P, is

defined to be the start time of the first task in the schedule

on that computational device. Once the LCT has been

calculated, the start time for the task can be found and the

task can be added to the schedule. The next step is to

check if any of the task’s predecessors are ready to have

their LCT calculated. Since the LCT of a task depends on

the LCT and schedule of its successors, only those tasks,

whose successors’ LCTs and schedules have been

assigned, can have their LCT calculated. This process

should be repeated until all tasks have a LCT assigned.

The core of the LCT calculation is the MergeSchedule
function given in Figure 2. The inputs to this function are

two tasks t1 and t2 which have corresponding schedules S1

and S2. The output of the function is the schedule

corresponding to S1 merged with S2. A schedule, S, is

defined to have individual schedules for each processor

denoted by S[p] for some processor p. Each individual

schedule is an ordered, non-overlapping list of time

intervals where a time interval is simply a time where the

processor would be busy. A time interval has a start time,

inputs: t1, t2: two tasks to have their schedules merged

outputs: S: the merged schedule

for all processors pj P loop

 time block blast =

 time block b1 = PopBack(S1[pj])

 time block b2 = PopBack (S2[pj])

 while(S1[pj] and S2[pj] are not empty) loop

 if(S2[pj] is empty or b1.ct > b2.ct) then

 time block bmax = b1

 b1 = PopBack (S1[pj])

 else

 time block bmax = b2

 b2 = PopBack (S2[pj])

 end if-else

 if(bmax.ct > blast.st) then

 bmax.st = blast.st – (bmax.ct - bmax.st)

 bmax.ct = blast.st

 end if

 Push (S[pj], bmax)

 blast = bmax

 end loop

end loop

return S

Figure 2: MergeSchedule Function

st, and a completion time, ct. The schedule for an output

task, t, is defined to be a single time interval for the

processor which it is allocated to that has a ct equal to dt

and an st equal to dt – et. All other tasks begin with an

empty schedule.

The MergeSchedule function begins by looping

through all of the processors and merging all of the

schedules on each individual processor. This is done by

first removing the last time block from each of the

schedules. These two time blocks are compared to find

which one has a later completion time, bmax, and removes

the last time block from the corresponding schedule so it

can be used on the next loop. If bmax has a ct that is before

the st of the last block that was added to the schedule, blast,

then these two time blocks do not overlap and bmax can be

added to the schedule. However, if they do overlap bmax

needs to be shifted such that bmax.ct is equal to blast.st before

it can be added to the schedule. This process is then

repeated until all of the time blocks from the two

schedules have been added to the merged schedule.

One observation of the LCT-based priority assignment

is that if all tasks are independent, then it is equivalent to

deadline monotonic scheduling and, thus, is optimal under

the conditions that make deadline monotonic scheduling

optimal. However, it is also true that under certain

conditions LCT priority assignment is optimal for a task

set that includes dependent tasks.

One case that the LCT-based priority assignment is

optimal for a dependent task set T is when all t T are

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

allocated to the same computation device. This is because

the task precedence constraints can be ignored in this case

since such constraints will be enforced by the task

priorities. Since the LCT of a task is dependent on the

schedules and LCTs of its successors, the LCT of a task

must be less than that of its successors. Thus, the priority

of a task will always be higher than that of its successors.

Therefore, the task set can be viewed as an independent

task set and since a task must complete by its LCT for all

of its successors to be able to meet their deadlines the

LCT can be viewed as the task’s deadline. Under these

assumptions there is no difference between LCT priority

assignment and deadline monotonic scheduling.

Furthermore, since deadline monotonic scheduling has

been proven to be optimal for independent tasks, LCT

priority assignment must also be optimal.

Another observation is that if all tasks have the same

period LCT-based priority assignment is very likely to be

the optimal priority assignment for the task set. This is

intuitive because tasks can directly compare LCT values.

The reason that two tasks with the same period can

compare LCT values directly is because a task’s LCT is

relative to the release time of the task’s input task. Since

we assume that all input tasks have the same phasing all

input tasks with the same period will always be released

at the same times. However, if two tasks have different

periods their LCTs most likely will not be based on the

same release time so it may appear that one task can

complete later than the other when this might not actually

be the case.

However, if all tasks do not have the same period or

not all tasks are located on the same computational device,

there may be another priority assignment algorithm that

will find a solution better than that of the LCT priority

assignment. We propose that in such cases it is

advantageous to find groups of tasks where all of the tasks

in each of these groups satisfy one or both of these

conditions. Groups can be formed between tasks that (i)

all have the same period or (ii) where all of the tasks in

the group and all of their predecessors (direct or indirect)

are allocated to the same computational device. The tasks

in group (ii) satisfy the condition that all tasks are on the

same computational device and it can be viewed that all

tasks in this group are released at the same time.

Since these groups satisfy one of the conditions, we

can assign priorities to these tasks relative to the other

tasks in the group based on their LCTs. These relative

LCT priorities can be used as constraints when assigning

the global priorities, thus greatly reducing the number of

possible priority assignments. We use these constraints to

define H and L in the task model in Section 2. H can be

defined for task t to be the set of all tasks with a higher

relative LCT priority than t. Similarly, L can be defined

for task t to be the set of all tasks with a lower relative

LCT priority than t.

4. Priority Refinement Using Simulated

Annealing

Our priority-refinement algorithm uses the relative

LCT constraints in simulated annealing to quickly find a

feasible schedule. Simulated annealing is a general global

optimization algorithm. It attempts to find the lowest

point of energy in an energy landscape, where this point

corresponds to the best solution for the given problem.

This technique has been used successfully for many

different optimization problems that have been shown to

be NP-complete including task allocation and priority

assignment by Tindell et al [1]. Differently, we use

simulated annealing only for priority assignment since we

have assumed that all tasks have already been allocated to

processors.

The general simulated annealing algorithm is fairly

simple. An initial starting point, p, is chosen as a possible

solution and the energy at this point, Ep, is evaluated

where the lower the energy the better the solution. A

neighbor, t, of p is chosen as an alternative solution and

the energy at this point, Et, is evaluated. If Et < Ep then t is

chosen as the next p otherwise t is chosen as the next p
with a probability of ex where x = (Ep - Et) / c and c is

some control temperature. This algorithm repeats

periodically decreasing c until a stopping criterion is met.

In our refinement algorithm, a point, p, corresponds to

a priority assignment to all tasks. A neighbor to p is a

different priority assignment where two tasks have

swapped priorities. The energy of a point is defined to be:

E =
Tt

max(0, respt – dt)

where respt is the response time of t for the given priority

assignment. This definition of E directs the simulated

annealing algorithm search for an assignment that reduces

the total time that the task set misses its deadlines by. The

initial value of the control temperature c can be chosen in

many different ways. Our selection is based on the energy

of the original point p. This results in almost all

neighboring points originally being accepted. c is

periodically reduced after a number of steps so that after

each reduction a neighboring point corresponding to a

worse priority assignment has less of a probability of

being accepted.

Incorporating the LCT relative priority constraints in

the simulated annealing algorithm restricts which tasks

are allowed to swap priorities. If a task t would have its

priority raised then the swap is allowed only if the new

priority is not higher than that of the lowest priority task

in Ht. Likewise, if a task would have its priority lowered

then the swap is allowed only if the new priority is not

less than that of the highest priority task in Lt. This

ensures that a task cannot raise its priority above another

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

inputs: TMD: the set of tasks that do not meet their

deadlines

outputs: a pair of tasks to swap priorities with or if no

valid pair is found

t = random task from TMD

P = list of all direct predecessors of t
while(P is not empty) loop

 i = prt + 1

 while(i < prtl, tl = lowest priority task in Ht) loop

 if(t and task with priority i is a valid swap) then

 return t and task with priority i

 i = i + 1

 end loop

 for(all tasks tp that preempt t) loop

 i = prtp – 1

 while(i > prth, th = highest priority task in Ltp) loop

 if(tp and task with priority i is a valid swap)then

 return tp and task with priority i

 i = i + 1

 end loop

 end loop

 t = Pop(P)

PushBack(P, all direct predecessors of t)

end loop

return

Figure 3: StrategicSwap Function

task that has a higher relative priority and a task cannot

lower its priority below another task with a lower relative

priority. In other words, a task can only swap priorities

with another task where there is no relative priority

relationship between the two and the priorities of each

task are within the correct ranges.

Since it chooses a neighboring point to evaluate

randomly, the classical simulated annealing algorithm

does not predict what might be a ‘good’ neighbor.

Although such randomness helps to keep the algorithm

from getting stuck at local minimums, it may also cause

the algorithm to take a long time to find a solution due to

blindly searching through the many possible neighboring

points. We would like to take advantage of the

randomness of the classical simulated annealing algorithm

while also accelerating it by guiding it to ‘good’

neighboring points. This is achieved by alternating

between a random swap of priorities and a strategic swap

of priorities.

The strategic swap that we develop is based on the fact

that a task t has a better probability of completing before

its deadline if either: (i) its priority is raised, (ii) a task

that is preempting it has its priority lowered, or (iii) one of

the task’s predecessors has its priority raised. Although

this does not guarantee that the system as a whole will

yield a better schedule, it gives t a better chance at

meeting its deadline. The strategic swap function that

inputs: T: task set

outputs: Success or Failure depending if a valid priority

assignment was found

Calculate LCTs for all tasks in T
Assign LCT priorities

Determine H and L for all tasks in T

Choose a starting temperature C
Assign initial priorities to all tasks in T

if(Schedulability test returns Success) then

 return Success

loop

 loop

 E = energy for current priority assignment

 if(random swap was performed last) then

 ti, tj = StrategicSwap()

 if(strategic swap was performed last pass or

 StrategicSwap() just returned) then

 ti, tj = RandomSwap()

 Swap the priorities of ti and tj

 if(Schedulability test returns Success) then

 return Success

 Eswap = energy for the swapped priority assignment

 if(Eswap E) then

 x = (E - Eswap) / C
 if(ex < random(0, 1)) then

 Swap back the priorities of ti and tj

 end if

 while(thermal equilibrium has not been reached)

 C = update C

while(some stopping criterion has been met)

return Failure

Figure 4: Simulated Annealing Priority
Assignment

attempts to perform one of these actions is given in Figure

3.

The entire priority-assignment algorithm using

simulated annealing, LCT relative priority constraints, and

alternating between the random priority swap and the

strategic priority swap is given in Figure 4. This algorithm

begins by calculating LCT values for all of the tasks and

using these values to assign LCT priorities for each task.

Tasks are formed into groups where relative priorities can

be assigned and H and L are determined for each task. An

initial control temperature is chosen and each task is

assigned an initial priority assignment (e.g., by deadline

monotonic or LCT priority assignment). If this priority

assignment yields a successful schedule then a success

can be returned right away. Otherwise, the energy, E, is

calculated for the current priority assignment. The

priorities of two tasks are then swapped either randomly

or through the strategic swap function depending on what

was performed in the previous step. The schedulability

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

test is run for this priority assignment at each step. If a

successful schedule has been found, the function returns a

success. Otherwise, the energy of the new priority

assignment, Eswap, is computed and compared with E. If

Eswap is less than E, it indicates a better schedule has been

found, and the priority swap is accepted. Otherwise, the

swap is accepted with a probability of ex where x = (E -

Eswap) / C and if the swap is not accepted then the

priorities are swapped back to their original values. This

process repeats until it is determined that thermal

equilibrium is reached where C is updated accordingly.

The algorithm continues until some stopping criterion has

been met (e.g., the number of steps without lowering E
has crossed a threshold) where it can be said that the

algorithm failed to find a solution.

5. Example: Vehicle System Control

To show the effectiveness of our priority refinement

algorithm, we applied it to a vehicle system control (VSC)

application used by the Ford Motor Company. Vehicle

system control is the high-level control that coordinates

different subsystems in a vehicle. For example, in a

hybrid gas/electric vehicle one function of the VSC may

determine the operating mode of the gas- powered engine

or the battery-powered motor. The structure of the VSC

application is given in Figure 5 where the black links

indicate synchronous messages and the gray links indicate

asynchronous messages. The model contains components

for sensor system control (Ssc), actuator system control

for the engine module (AscEm), actuator system control

for the transmission module (AscTm), vehicle system

control for driver / traffic / vehicle / coordination input

fusion (VscDif, VscTif, VscVif, and VscCif respectively),

and vehicle system control for driver / traffic / vehicle /

coordination layer (VscDl, VscTl, VscVl, and VscCl,

respectively). This is a simplified version of the

application where the actual model had over 40

components in multiple layers of hierarchy. The platform

consists of two computational devices P1 and P2

connected by a shared link N. Using the allocation

algorithm given in [4] Ssc, AscEm, AscTm, and VscCl

are allocated to P1 and VscDif, VscTif, VscVif, VscCif,

VscDl, VscTl, and VscVl are allocated to P2. For

simplicity we do not consider link scheduling in this

example.

In this example the input tasks are Ssc and VscCif

which are triggered by timers at 100 ms and 110 ms

respectively (these times and those in Figure 6 have been

slightly modified to highlight the different features of the

priority refinement algorithm). The successors to these

two tasks form two different groups where the relative

LCT priorities can be assigned since each member of

these groups has the same rate of invocation. The

algorithm begins by determining LCT, H, L, and pr for

Figure 5: Structure of vehicle system

control application.

each task and determining if this priority assignment

passes the schedulability test. These results are given in

Figure 6 where it can be seen that VscDl misses its

deadline by 5 ms.

The priority refinement algorithm begins by randomly

selecting two tasks to swap priorities which turn out to be

VscCif and VscDif. This swap is a legal swap since the

new priorities for both VscCif and VscDif are still in the

proper ranges given their respective H and L. As shown in

Figure 7, this priority swap does not affect the response

times of any tasks positively or negatively. This results in

an energy value, Eswap, that is equivalent to the previous

energy value, E. In the case that the two energy levels are

the same the simulated annealing algorithm always

accepts the swap so the tasks switch priorities.

The second step is to choose two tasks to swap

priorities using the strategic swap. First, the algorithm

tries to increase the priority of VscDl, but this cannot be

done since this would raise the priority to be greater than

VscDif which would violate the relative LCT priority

constraints. Next, the algorithm tries to increase the

priority of the predecessor of VscDl, VscDif. This would

swap the priorities of VscDif and VscCif, which is a legal

swap, and since this is a reversal of the first step we are

back to the original priority assignment.

The third step in the algorithm chooses a valid random

swap between VscCl and AscTm. This swap again does

not affect the response times of the tasks and results in an

equivalent energy value.

The fourth step of the algorithm again tries to increase

the priority of VscDl through the strategic swap function.

However, since the previous strategic swap increased the

priority of VscDif VscDl can now increase its priority

without violating its relative LCT constraints. The

increase in priority for VscDl results in it finishing by 90

ms and increases the response time of VscCl to be 110 ms,

both of which are at or below their respective deadlines.

At this point the algorithm terminates since all tasks have

a worst case response time that is earlier than their

respective deadlines.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

task d/pt et LCTt prt respt Ht / Lt

Ssc 100 10 20 11 10 {-} / { VscTif, VscVif, VscTl, VscVl, VscDif, VscDl, AscEm, AscTm}

VscDif 100 10 90 6 80 {Ssc, VscTif, VscVif, VscTl, VscVl} / {AscTm, AscEm, VscDl}

VscDl 100 10 100 4 105 {Ssc, VscTif, VscVif, VscTl, VscVl, VscDif} / {AscTm, AscEm}

VscTif 100 10 60 10 20 {Ssc} / {AscTm, AscEm, VscDl, VscDif, VscVl, VscTl, VscVif}

VscTl 100 20 80 8 50 {Ssc, VscTif, VscVif} / {AscTm, AscEm, VscDl, VscDif, VscVl}

VscVif 100 10 60 9 30 {Ssc, VscTif} / {AscTm, AscEm, VscDl, VscDif, VscVl, VscTl}

VscVl 100 20 80 7 70 {Ssc, VscTif, VscVif, VscTl} / {AscTm, AscEm, VscDl, VscDif}

VscCif 110 25 90 5 90 {-} / {VscCl}

VscCl 110 10 110 1 100 {VscCif} / {-}

AscEm 100 20 100 3 70 {Ssc, VscTif, VscVif, VscTl, VscVl, VscDif, VscDl} / {AscTm}

AscTm 100 20 100 2 95 {Ssc, VscTif, VscVif, VscTl, VscVl, VscDif, VscDl, AscEm} / {-}

Figure 6: Initial priority assignment configuration for Vehicle System Control.

step E swap tasks Eswap C ex rand(0,1) TMD

1 5 VscCif, VscDif - Random 5 10 1 ..676 VscDl

2 5 VscDif, VscCif - Strategic 5 10 1 .197 VscDl

3 5 VscCl, AscTm - Random 5 10 1 .231 VscDl

4 5 VscDl, VscCif – Strategic 0 - - - -

Figure 7: Steps for refining priority for Vehicle System Control.

6. Evaluation

Our evaluation focused on how well the priority

assignment algorithm performed for varying the average

utilizations of the computational devices. The

performance metrics that we used to evaluate this were

the average sum of excessive execution time after

deadline (i.e. the average final value of E in the simulated

annealing algorithm) and the failure rate. In the

experiments, we terminated the simulated annealing

algorithm if there was no improvement on the overall

schedulability of the task set over 150 consecutive steps.

This prevents the algorithm from repeating infinitely for

task sets where no feasible priority assignment exists. The

failure rate is then simply the number of experiments

where a solution was not found over the total number of

experiments performed. The average sum of excessive

execution time after deadline can be used to determine

which priority assignment schemes yielded a better

schedule among those tests that fail. Thus, we can

determine which algorithm was closer to finding a

solution and, thus, more likely to find a solution given

another task set with the same attributes.

To perform our experiments we used a set of randomly

generated models. In the task graphs 100 tasks were

generated each of which had a link output degree of 1 to 5.

Each of the links that connected the tasks could be either

synchronous or asynchronous. The number of bytes that

was passed along each of these links varied randomly

from 10 to 200 bytes. The computational resource

consumption for each task was set so that the average

utilization of each computational device varied between .5

and 1 in increments of .05. The platform model consisted

of 5 computational devices all connected by a single

communication device. Each of the tasks is randomly

allocated to one of these computational devices with an

attempt to balance the computational loads.

To evaluate our modified simulated annealing priority

assignment algorithm, we compared it with a selected set

of other priority assignment algorithms. The baseline

algorithm that we tested had an initial priority assignment

using deadline monotonic (with deadlines assigned using

a deadline distribution algorithm) and standard simulated

annealing was used for adjusting the priority (DM/SA).

The next priority assignment algorithm tested used the

LCT priority assignment for the initial priority assignment

along with standard simulated annealing for refinement

(LCT/SA). We then added to the previous test the LCT

priority constraints to determine valid priority swaps

(LCT/SA+LCT). The final test is our proposed algorithm

which adds the strategic swap alternated with the random

swap (LCT/SA+LCT+SS).

In our experiments, we varied the average utilization

of the computational devices from .5 to 1 with increments

of 0.05. This range was chosen because initial

experiments showed that if the average utilization was

below 0.5 almost all tests found a solution often right

away with the initial priority assignment. Likewise, once

the average utilization gets close to 1 almost all tests fail.

However, we can still get meaningful data from these

tests by seeing how close they were to finding a solution.

Figure 8 shows the failure rate for the different priority

assignment algorithms. The DM/SA and the LCT/SA

algorithms performed very similarly and had the highest

failure rates. The similarity between these two tests is not

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Average Processor Utilization

F
a
il

u
re

 R
a

te

DM/SA

LCT/SA

LCT/SA+LCT

LCT/SA+LCT+SS

Figure 8: Failure rate for different
average processor utilizations.

0

5

10

15

20

25

30

35

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Average Processor Utilization

S
u

m
 o

f
E

x
c
e
s

s
iv

e
 E

x
e

c
u

ti
o

n
 T

im
e
 A

ft
e
r

D
e
a
d

li
n

e

DM/SA

LCT/SA

LCT/SA+LCT

LCT/SA+LCT+SS

Figure 9: The average sum of excessive

execution time after deadline for
different average processor utilizations.

surprising since the only difference between the two is the

initial priority assignment. The LCT/SA+LCT priority

assignment algorithm had the next lowest failure rate

showing that the LCT relative priority constraints help to

move towards a better solution. Among all the

experiments, our priority assignment algorithm

(LCT/SA+LCT+SS) resulted in the lowest failure ratio.

When compared with the DM/SA priority assignment

algorithm, LCT/SA+LCT+SS on average found a

successful solution 1.8 times as often.

Figure 9 shows the average sum of excessive execution

time after deadline. The DM/SA and LCT/SA algorithms

performed similarly and missed the tasks’ deadlines by

the most. Again, this is due to the only difference being

their initial priority assignment. The LCT/SA+LCT

priority assignment algorithm missed its deadlines by the

next lowest amount followed by LCT/SA+LCT+SS. It

can also be seen that DM/SA misses its deadlines on

average by 3.4 times as much as our LCT/SA+LCT+SS.

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Number of Tasks

W
a
ll

 C
lo

c
k

 C
o

m
p

le
ti

o
n

 T
im

e
 (

s
)

LCT/SA+LCT+SS

Figure 10: Wall clock time for algorithm

to complete.

Finally, we wanted to show that our algorithm is

scalable for large systems consisting of a high number of

tasks. For this we randomly generated systems varying

the number of tasks from 100 to 1000 and allocated them

to 5 computational devices each with an average

utilization of 0.7. The LCT/SA+LCT+SS algorithm was

run 20 times for each case and the average wall clock

time that the algorithm took to complete was recorded.

The results of this test are given in Figure 10 where the

tests were run on a PC using a 1.5 GHz Intel Pentium 4

processor with 256 MB of RAM using the Windows 2000

Professional Operating System. This graph shows that the

completion time of the LCT/SA+LCT+SS algorithm

increases approximately linearly with an increase in the

number of tasks and, thus, scales well to large task sets.

6. Related Work

Priority assignment is a classic problem that has been

the focus of much research. Liu and Layland introduced

rate monotonic scheduling [9] and this was extended to

deadline monotonic scheduling by Leung and Whitehead

[12]. These well-known approaches have been shown to

be optimal under certain assumptions one of which is that

the task set is independent. However, if the task set is

comprised of dependent tasks the problem becomes NP-

complete [6]. Heuristic based algorithms to solve this

problem have been given in [2, 3] but these approaches

only consider simple transactions (i.e., the transactions do

not revisit a processor or create subtransactions). Wu et al

present another priority assignment algorithm in [5], but it

enforces the precedence constraints by setting deadlines

for each “row” of tasks which introduces extra

unnecessary constraints. The problem of task allocation

combined with priority assignment has also been

considered [1, 6]. However, this approach combines two

NP-complete problems into one [1, 3] and in doing so

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

makes assumptions that oversimplify one or both of the

problems.

Our approach differs from all of these previous

approaches in that it considers the precedence constraints

of tasks while minimizing the number of assumptions that

need to be made. Furthermore, we consider the task

allocation and priority assignment separately so that each

problem can be considered with as much detail as is

necessary.

7. Conclusions and Future Work

In model-based embedded software design and

automation, priority assignment is a crucial step in finding

a solution that can meet all of system timing constraints.

If the priorities are assigned improperly, the software may

not behave as desired, which could lead to a complete

system failure. To solve the priority-assignment problem,

we have developed a method to iteratively refine the task

priorities. The method first finds the latest time at which a

task can complete such that all of its successors meet their

deadlines. The LCT is then used to assign initial priorities

and assign relative priorities to task groups. We then use

simulated annealing to adjust task priorities for a system

that is not schedulable. The adjustment uses the relative

priority constraints that can be found between tasks that

have certain similar characteristics. Furthermore, since we

know how to modify the priority of a task to increase

likelihood of it being schedulable, we introduce a

strategic swap method. To find a global minimum instead

of a local one, we alternate between the strategic swap

and the original random swap in the simulated annealing

algorithm. Our evaluation results show that this algorithm

performs better not only by increasing the number of

feasible assignments found but also by decreasing the

overall time past deadlines. Furthermore, the approach

also scales well in the systems with many tasks and can

find solutions to the systems with very high workloads.

There are many interesting avenues that can be taken

for future work. First, we would like to explore other

constraints that may be put on the priority of a task so that

the search space may be reduced even further. Second, we

would like to apply the priority constraints to other

incremental priority-assignment algorithms and compare

their results with those generated by simulated annealing.

Finally, we would like to incorporate other design

refinement decisions, such as task formation and

component allocation, to construct a fully-automated

design process.

References

[1] K.W. Tindell, A. Burns, and A. J. Wellings, “Allocating

Real-Time Tasks. An NP-Hard Problem Made Easy”, In

Real-Time Systems Journal, Vol. 4, No. 2, May 1992.

[2] J. G. Garcia and M. G. Harbour, “Optimized Priority

Assignment for Tasks and Messages in Distributed Hard

Real-Time Systems”, In 3rd Workshop on Parallel and

Distributed Systems, IEEE Computer Society Press, April

1995, pp. 124-131.

[3] R. Etemadi, G. Karam, and S. Majumdar, “Heuristic

Algorithms for Priority Assignment in Flow Shops”, In

Performance, Computing and Communications, IEEE

International, February 16-18, 1998, pp. 15-22.

[4] S. Wang, J. Merrick, and K. G. Shin, “Component

Allocation with Multiple Resource Constraints for Large

Real-Time Embedded Software Design”, In Proceedings of

the Tenth IEEE Real-Time and Embedded Technology and

Applications (RTAS 2004), Toronto, Canada, May 25-28,

2004, pp. 219-226.

[5] B. Wu, C. Peng, W. Qiu, and X. Sun, “Component Priority

Assignment in the Data Flow Dominated Embedded

Systems with Timing Constraints”, In The 7th International

Conference on Computer Supported Cooperative Work In

Design, 2002, pp. 385-388.

[6] D. A. L. Piriyakumar and C. S. R. Murthy, “Optimal

Scheduling of Parallel Tasks of Tracking Problem Onto

Multiprocessors”, In IEEE Transactions on Aerospace and

Electronic Systems, Vol. 32, Iss. 2, April 1996, 722-731.

[7] C. M. Krishna and K. G. Shin, Real-Time Systems,

McGraw-Hill Companies, Inc., New York, 1997.

[8] S. Wang and K. G. Shin, “Early-Stage Performance

Modeling and Its Application for Integrated Embedded

Control Software Design”, In Proceedings of the Fourth

International Workshop on Software and Performance,

Redwood Shores, California, January 14 - 16, 2004, pp.

110-114.

[9] C. L. Liu and J. W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment”, In

Journal of the ACM, Vol. 20, Iss. 1, 1973, pp 46-61.

[10] K. W. Tindell, H. Hansson, and A. J. Wellings, “Analysing

Real-Time Communications: Controller Area Network

(CAN)”, In Proceedings of the 15th Real-Time Systems

Symposium, San Juan, Puerto Rico, December 7-9, 1994,

pp 259-263.

[11] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.

Wellings, “Applying New Scheduling Theory to Static

Priority Pre-emptive Scheduling”, Software Engineering
Journal, Vol. 8, Iss. 5, September 1993, pp 284-292.

[12] J. Y. T. Leung and J. Whitehead, “On the Complexity

of Fixed-Priority Scheduling of Periodic Real-Time

Tasks”, In Performance Evaluation, Vol. 2, No. 4,

 pp. 46-61, December 1982.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

