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Abstract
Multi-homed mobile hosts situated in physical proximity may
spontaneously team up to run high-bandwidth applications by
pooling their low wireless wide-area network (WWAN) band-
widths together for communication with a remote application
server and utilizing their high-bandwidth wireless local-area net-
work (WLAN) in ad-hoc mode for aggregation and distribution
of application contents among the participating mobile hosts.
In this paper, we first describe the need for such a mobile col-
laborative community, or a community, in which multi-homed
mobile hosts exploit the diversity of WWAN connections to im-
prove a user-perceived bandwidth and network utilization. Then,
we show that existing one-to-one communication protocols like
TCP suffer significant performance degradation due to frequent
packet reordering and heterogeneity of WWAN links in the com-
munity.

To address the above TCP problem, we propose a proxy-
based inverse multiplexer, called PRISM, that enables TCP to ef-
ficiently utilize the community members’ WWAN connections.
PRISM runs at a proxy’s network layer as a routing component
and stripes each TCP flow over multiple WWAN links by ex-
ploiting the transport-layer feedback information. Moreover, it
masks variety of adverse effects specific to each WWAN link via
intelligent ACK-control mechanism. Finally, PRISM includes a
sender-side enhancement of congestion control, enabling TCP to
respond correctly to dynamically-changing network states.

We have evaluated the PRISM protocol using both experimen-
tation and ns-2-based simulation. Our experimental evaluation
has shown PRISM to improve TCP’s performance by up to 310%
even with two collaborative mobile hosts. Our in-depth simula-
tion study also shows that PRISM delivers a near-optimal ag-
gregated bandwidth in the community formed by heterogeneous
mobile hosts, and improves network utilization significantly.

1 Introduction
As wireless networks become omnipresent, mobile users
are gaining access to the Internet via a variety of wireless
networks. To keep pace with the trend, a mobile host is
equipped with multiple wireless network interfaces (e.g.,
GPRS, IEEE 802.11x, and Bluetooth). Based on such di-
versity, several researchers attempted to enhance network
availability, focusing on concurrent (or alternative) use of
multiple wireless technologies available on a host, a mo-
bile user or a designated mobile center [8, 12, 17]. That
is, they have attempted to improve network availability

within a single individual multi-homed entity.
It is important to note that collaboration among multi-

homed mobile hosts significantly improves both user-
perceived bandwidth and overall wireless network utiliza-
tion. Mobile hosts in close proximity can spontaneously
form a “community,” connected via a high-speed WLAN
interface, and share their WWAN link bandwidths with
other members in the community. Possible applications
of this include (i) contents sharing where each host with
same interests receives a subset of contents from an Inter-
net server and share the contents with other hosts, and (ii)
bandwidth sharing where one host in a community needs
more bandwidth than its own WWAN link for applications
like video-on-demand or Hi-Definition TV live cast.

We, therefore, advocate formation of a mobile collab-
orative community that is a user-initiated network service
model and that allows bandwidth sharing/pooling among
multi-homed mobile users to make the best of their di-
verse WWAN links. The mobile community is different
from a current WWAN service model, which forces a mo-
bile host to use a single WWAN link at a time, causing
capacity, coverage, and hardware limitations. By con-
trast, the community helps mobile users initiate new vir-
tual WWANs that overcome such limitations by sharing
their WWAN interfaces. Moreover, by adopting an inverse
multiplexer [9], the mobile community effectively aggre-
gates its members’ WWAN bandwidths.

However, the existing transport protocols, such as the
Transmission Control Protocol (TCP), are not aware of
existence of multiple and parallel intermediate links, and
thus, cannot exploit multiple available WWAN links in
the community. Even with the help of a multi-path rout-
ing protocol, frequent out-of-order packet delivery due to
the heterogeneity of WWAN links significantly degrades
TCP’s performance.

There are several transport-layer solutions for band-
width aggregation of a single multi-homed mobile host
such as those in [11–13], but their basic design considers
aggregation of the interfaces of only a single host or user,
and requires support from the network layer to route traf-
fic to/from a group of multi-homed mobile hosts. Further-
more, the development and deployment of a whole new
transport protocol requires significant efforts on both con-
tent servers and mobile clients, and also incurs a high com-



putational overhead to resource-scarce mobile hosts.
To solve these problems, we propose a proxy-based in-

verse multiplexer, called PRISM, that enables each TCP
connection to utilize the entire community’s aggregate
bandwidth. As a TCP’s complementary protocol, PRISM
consists of (i) an inverse multiplexer (PRISM-IMUX) that
handles TCP’s data and acknowledgment (ACK) traffic
at a proxy, and (ii) a new congestion control mechanism
(TCP-PRISM) that effectively handles, at a sender side,
packet losses over the community’s WWAN links.

The first component stripes TCP traffic intelligently
over multiple WWAN links using up-to-date link utiliza-
tion information and each packet’s expected time of arrival
at a receiver. Also, it masks the effects of out-of-order
delivery by identifying spurious duplicate ACKs and re-
sequencing them so that a TCP sender receives correctly-
sequenced ACKs.

The second component in PRISM is a sender-side con-
gestion control mechanism (TCP-PRISM) that reduces the
loss recovery time and accurately adjusts a congestion
window size of TCP by using the loss information pro-
vided by PRISM-IMUX. It immediately dis-ambiguates
real packet losses from out-of-order deliveries through
negative loss information, and reduces the loss recovery
time. Its proportional adjustment strategy of the conges-
tion window size further improves link utilization by min-
imizing the effects of partial congestion on un-congested
links.

We evaluate the performance of PRISM using both ex-
perimentation and ns-2-based simulation. PRISM is im-
plemented as a Linux kernel loadable module and exten-
sively evaluated on a testbed. Our experimental evalua-
tion has shown PRISM to improve TCP’s performance by
208% to 310% even with two collaborative mobile hosts
with heterogeneous link delays, loss rates and bandwidths.
Moreover, our simulation study shows that PRISM effec-
tively reduces the need for packet reordering and delivers
the near-optimal aggregated bandwidth in the community
that is composed of heterogeneous mobile hosts.

The rest of this paper is organized as follows. Section 2
presents the motivation and the contributions of this work,
and Section 3 provides an overview of the PRISM archi-
tecture. Sections 4–6 give detailed accounts of PRISM.
Section 7 describes our implementation and experimenta-
tion experiences. Section 8 evaluates the performance of
PRISM using ns-2-based simulation. Related work is dis-
cussed in Section 9. Finally, Section 10 discusses a few
remaining issues with PRISM and concludes the paper.

2 Motivation
We first describe the motivation of a mobile community.
Then, we discuss basic functions for the community to
work. Finally, we identify the problem of TCP in the com-
munity and introduce our approach to the problem.
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Figure 1: Target environment. The environment includes vari-
ous WWAN network services available and multi-homed mobile
hosts equipped with both WWAN and WLAN interfaces. Mobile
hosts in a WLAN range form a mobile community and collabo-
rate to simultaneously use multiple WWANs.

2.1 Why a Mobile Community?
Wireless network services become available anywhere and
anytime. 2.5G and 3G wide-area cellular networks (e.g.,
GPRS, UMTS, and CDMA) are being deployed for more
bandwidth and wider coverage. Moreover, WLANs (e.g.,
IEEE 802.11x) can now provide high-speed wireless net-
work services in small areas. At present, different wire-
less Internet Service Providers (ISPs) are co-located with
different network technologies or frequency channels, and
end-users are equipped with various wireless interfaces
(e.g., WWAN, WLAN, and Bluetooth) and can select the
best interface/channel available at a given place/time.

Although there exist many choices (i.e., different ISPs,
technologies, and channels) in the current wireless net-
work environment, they are not utilized efficiently due to
the current ISP-centric service model. That is, most mo-
bile users should use the same network, technology, or a
single frequency channel to get a common service. As a
result, they suffer from various service limitations as fol-
lows.

L.1 Capacity limitation: Mobile users may experience a
low data rate from its own ISP while other ISP net-
works in the same area are idle or under-utilized.

L.2 Coverage limitation: A user may find no service
nearby from his own ISP while the other ISPs’ ser-
vices are available.

L.3 Hardware limitation: A user cannot access a new ser-
vice through his own interfaces while other users can
access the service by their new interfaces.

Let us consider the following scenario to have a feel for
the above limitations. Sam is waiting at an airport for his
flight, and wants to download his favorite movies to watch
during his flight. First, he tries to use his own WWAN in-
terface, but finds that it will take longer than his waiting



time for the flight (capacity limitation). Next, he decides
to use his WLAN interface. However, the nearest WLAN
hot-spot is too far away for him to return in time for the
flight (coverage limitation). Finally, he finds another ac-
cess network with high capacity, but his device does not
support the access network’s technology (hardware limita-
tion). Therefore, Sam will not be able to watch the movies.
Instead, Sam searches other nearby mobile users who are
willing to share their interfaces for certain “rewards.” He
finds several mobile hosts whose interfaces have capacity,
use different frequency channels, or support a high-rate
wireless technology like IEEE 802.16. With the help of
other mobile hosts, Sam can download movie files in time,
and enjoy them during his flight.

To realize a scenario like this, we construct a user-
initiated collaborative wireless network model, called a
mobile collaborative community (MC2). As shown in
Figure 1, the community is composed of multi-homed
mobile hosts in physical proximity. Community mem-
bers are connected to the Internet via different WWAN
ISPs (m1,m2) or different channels1 of the same ISP
(m3,m4), and forward packets via WLAN interfaces in
ad-hoc mode.

2.2 How Does a Mobile Community Work?
As basic building blocks, a mobile community has three
functions: collaboration, multiplexing, and indirection.

2.2.1 Collaboration Among Mobile Hosts
The mobile community requires users to collaborate by
sharing/pooling their communication channels. However,
what are the incentives for users to collaborate? When
only one host or a small set of members want to receive
the content at others’ expenses, will the other members be
willing to contribute their bandwidth to enable the small
set of members to achieve statistical multiplexing gains?

A somewhat related debate is underway with regard
to “forwarding incentives” in ad hoc network routing
[7, 18, 23]. In ad hoc networks, the communication be-
tween end-points outside of the radio transmission range
relies on intermediate nodes on the path to forward pack-
ets for them. Some researchers suggest use of credit-
based, or reputation-based, schemes to stimulate coopera-
tion [7, 14]. Game-theoretic arguments have been used to
show that collaboration on packet forwarding among all
participating nodes will yield maximum network through-
put.

Forwarding in ad hoc networks, however, is somewhat
different from the collaboration we consider here. In ad
hoc networks, nodes rely on each other to communicate
amongst themselves. In a mobile community, nodes rely
on each other not for basic connectivity, but for perfor-
mance improvements. As we will see in Section 3, a node
completely controls access to its shared communication
resources, and revokes access if its communication needs

are not met by the community. Ultimately, it is the abil-
ity to opt-in to achieve better performance and the ability
to opt-out when necessary, making link sharing a viable
option.

2.2.2 Multiplexing
Given shared links, how can the mobile community aggre-
gate link bandwidths for a higher throughput? An inverse-
multiplexer is a popular approach that aggregates individ-
ual links to form a virtual high-rate link [9]. For example,
an inverse multiplexer stripes the traffic from a server over
multiple wireless links of the community members, each
of which then forwards the traffic to the receiver. Finally,
the forwarded packets are merged in the receiver at the
aggregate rate.

Then, an issue is where to put the inverse multiplexer.
The inverse multiplexer can be placed at a performance-
enhancing proxy by a network access provider, a wireless
telecommunication service provider, or a content distribu-
tion network operator. Furthermore, it can be placed in
a network layer as one routing component with an effi-
cient traffic filtering function as in the Network Address
Translation (NAT) service. On the other hand, the inverse
multiplexer might run as an application like in an overlay
network. However, multiplexing inherently requires re-
sponsive network state information, and additional packet
processing overheads at the application layer limit the per-
formance of the inverse multiplexer [12].

2.2.3 Indirection
Traffic from an inverse multiplexer to community mem-
bers is tunneled via Generic Routing Encapsulation (GRE)
[10]. The inverse multiplexer encapsulates the traffic via
GRE and routes it to the community members. Each mem-
ber de-capsulates the tunneled traffic, upon its reception,
and forwards it to a destination via WLAN. Since the des-
tination is oblivious to which member forwarded the data
packets, no additional data reassembly functionality is re-
quired at the receiver. Furthermore, because GRE tunnel-
ing is supported by most operating systems (e.g., Linux,
FreeBSD, the Windows), no system modification of mo-
bile hosts is required.

2.3 Challenges in MC2’s Use of TCP
Our primary contribution in this paper is that in an MC2,
we enable one-to-many-to-one communication for a TCP
connection to achieve high-speed Internet access. While
traditional one-to-one communication of TCP limits its
bandwidth to a single link’s capacity, in an MC2, we en-
able a TCP connection to achieve the members’ aggre-
gate bandwidth by inverse-multiplexing its packets over
all available links.

In this communication model, however, we encounter
several challenges. First, scheduling traffic over wireless
links requires exact link state information such as data
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Figure 2: PRISM architecture. PRISM consists of an inverse multiplexer at the proxy (PRISM-IMUX) and a sender-side congestion
control mechanism (TCP-PRISM). PRISM-IMUX captures each data packet in the middle of a sender and a receiver. After selecting
the best WWAN link for each packet’s next hop using the Adaptive Scheduler (ADAS), PRISM-IMUX forwards the packet to the
WWAN link after encapsulating it via GRE. The encapsulated packet arrives at a community member via the WWAN link, and the
member de-capsulates and forwards the packet to the receiver. Next, the receiver receives and processes the packet as a normal packet,
and then returns an ACK packet to the sender. PRISM-IMUX again captures the in-transit ACK and decides whether the ACK is
a spurious duplicate ACK or not, using the Reverse Path Controller (RPC). If PRISM-IMUX detects packet losses from duplicate
ACKs, it releases the ACK with loss information to the sender, and TCP-PRISM at the sender uses the delivered loss information for
fast loss recovery. If there is no loss, PRISM-IMUX holds or releases the ACK in a sequenced order.

rate and delay, which varies with time and is usually ex-
pensive to obtain in mobile environments. Second, be-
cause WWAN links suffer from high and variable round
trip times (RTTs), burstiness and outages, the large num-
ber of out-of-order packet deliveries, which generate spu-
rious duplicate ACKs, degrade TCP’s end-to-end perfor-
mance significantly. Finally, TCP’s congestion control
mechanism does not fully utilize multiple links’ band-
widths because it interprets a packet loss as the overall
links’ congestion, making over-reduction of its conges-
tion window size. Also, frequent spurious duplicate ACKs
with positive ACKs cause the sender to delay loss detec-
tion/recovery.

2.4 Improving TCP Performance in an MC2

To overcome the above challenges, we propose a proxy-
based inverse multiplexer, called PRISM, that effectively
aggregates members’ WWAN links bandwidths for a TCP
connection. Specifically, we

C.1 devise an adaptive scheduling mechanism that stripes
traffic with the least cost while maintaining full links
utilization;

C.2 construct an ACK-control mechanism that effectively
shields the effects of out-of-order delivery without
sacrificing end-to-end performance; and

C.3 propose a new congestion-control mechanism that
is a sender-side optimization technique and that im-
proves links utilization by expediting loss recovery.

The rest of this paper provides a detailed account of
PRISM. The following assumptions are made for the basic

design of PRISM and mobile community: (i) each mobile
host has multiple (especially WWAN and WLAN) inter-
faces that can be used simultaneously for a single appli-
cation connection; (ii) a mobile community is formed via
an application-layer daemon; (iii) GRE is enabled as a de-
fault; and (iv) all hosts support TCP-SACK.

3 PRISM Architecture
Figure 2 depicts the architectural overview of PRISM
and its operational environment. PRISM consists of a
network-layer inverse multiplexer (PRISM-IMUX) at the
proxy and a network-assisted congestion-control mech-
anism (TCP-PRISM) at the sender side. PRISM inter-
acts with a mobile community that is composed of multi-
homed mobile hosts.

3.1 PRISM-IMUX
PRISM-IMUX is the routing component in a proxy that
handles both the forward (data) and backward (ACKs)
traffic of a TCP connection using up-to-date wireless links
state information. PRISM-IMUX captures data traffic
from a sender in the proxy’s network layer, and decides
the best WWAN link as a next-hop through the Adap-
tive Scheduler (ADAS). It also captures and controls ACK
packets to shield the adverse effects of striping over mul-
tiple WWAN links via the Reverse Path Controller (RPC).
Finally, PRISM-IMUX maintains a WWAN links’ state ta-
ble, has a buffer that temporarily stores ACKs which need
to be re-sequenced, and supports GRE for indirection. We
will detail ADAS in Section 4, and RPC in Section 5.



3.2 TCP-PRISM
TCP-PRISM is a new sender-side congestion-control
mechanism that works with PRISM-IMUX to expedite
loss recovery, thus improving network utilization. TCP-
PRISM reduces the loss recovery time via using the neg-
ative ACK information shipped by RPC at the proxy to
detect a packet loss. Also, it adjusts the congestion win-
dow size according to the congested link bandwidth only,
thus preventing waste of uncongested links’ bandwidth.
We will detail this in Section 6.

3.3 Mobile Community
A mobile community is formed voluntarily and incremen-
tally. When a new mobile node wants to join an exist-
ing mobile community, it first searches for communities
nearby using the Service Location Protocol [19]. After
determining the community of most interest to itself, the
mobile node/host joins the community and works as either
a relay node or a receiver. The node receives packets from
PRISM-IMUX via its WWAN link, and forwards pack-
ets to the receiver, through its WLAN interface in ad-hoc
mode. Or, the node receives packets via multiple com-
munity members’ WWAN links, and sends ACKs to the
sender through one of the WWAN links.

4 Scheduling Wireless Links: ADAS

4.1 Overview
Scheduling TCP packets over heterogeneous wireless
links requires exact link state information for a receiver
to achieve the optimal aggregate bandwidth, and obtain-
ing the information is expensive, especially in mobile en-
vironments due to dynamic traffic rate and wireless links’
dynamics. As shown in Figure 3, the typical TCP traf-
fic rate fluctuates as a result of its congestion and flow
control. Similarly, the output rate varies due to the het-
erogeneity of wireless links and/or the processing power
of each member. Although it is possible to measure a
channel’s condition and report it to the proxy, frequent
changes in the channel condition will incur significant
overheads (e.g., message processing overhead and trans-
mission power consumption) to resource-limited mobile
hosts.

ADAS is a new packet-scheduling algorithm that is
adaptive to dynamic input/output rates, and is flexible
enough to deal with the lack of rate information. ADAS
maintains up-to-date links state which is inexpensively ob-
tained by RPC (see Section 5), and adaptively schedules
traffic over the best available links using the state infor-
mation. Also, it uses packets’ expected arrival times over
each link not only to reduce out-of-order packet deliveries,
but also to increase the end-to-end throughput. Finally,
ADAS adaptively reacts to a link’s congestion via a TCP’s
AIMD-like traffic control mechanism.

Algorithm 1 ADAS Scheduling (Packet)
hRTTi RTT from a proxy to a receiver over WWAN linki

lnext Next link which a packet is assigned to
Ni The number of in-flight packets on linki

S A set of community members’ WWAN links
Snext A set of links with the minimum utilization
Ui Link utilization of linki

1: if Packet is a retransmission then
2: // Rule.1: send the retransmission over a fast link
3: lnext is the link with minimum hRTT in S

4: else
5: // Choose links with the most available bandwidth
6: Snext = {li: links with minimum Ui from S}
7: if |Snext| == 1 then
8: // Rule.2: use link utilization (Ui)
9: lnext is the link (in S) with minimum Ui

10: else
11: // Rule.3: use an expected time of arrival and Ui

12: lnext is the link with minimum hRTT in Snext

13: end if
14: end if
15: Update Ni, Ui for lnext // update channel information
16: Update S // apply new Ui to the set S

17: return lnext

4.2 Algorithm
ADAS consists of three scheduling rules, and dynamic
link-weight adjustment mechanism. Algorithm 1 de-
scribes ADAS’s scheduling rules. Rule.1 is to give retrans-
missions priority. Under Rule.2, ADAS chooses the link
with the most available bandwidth by using link utilization
(Ui). Under Rule.3, if there are more than two links with
the same utilization, then ADAS picks the link that has the
smallest expected arrival time (hRTT ).

4.2.1 Link Utilization (Ui)
Link utilization enables ADAS to utilize multiple links

fairly so as to maximize an aggregated bandwidth. Ui is
derived from the Weighted Round Robin (WRR) schedul-
ing for its fairness. WRR divides the time into a round,
in each of which packets are assigned to a link based on
its proportional bandwidth (or weight), and thus, all links
are utilized fairly. Likewise, ADAS uses the link-weight
for fair link utilization, thus achieving long-term fairness
as WRR does.

However, ADAS uses a different definition of link uti-
lization; while WRR keeps track of how many packets have
been scheduled so far on each outgoing link, ADAS con-
siders how many packets are currently in-flight on the link.
Because existing static scheduling algorithms (e.g., WRR)
assume accurate and stable links state information, the link
utilization based on the algorithm might not be accurate
due to network dynamics. ADAS exploits the actual num-
ber of in-flight packets, which can be derived from sched-
uled packets’ information and ACK-control information,
and which automatically reflect unexpected delay or loss
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Figure 3: Three ADAS scheduling snapshots in different input/output rates. The left graph shows the fluctuation of input rate from
a TCP sender. The right three wide figures are snapshots of ADAS scheduling in different input/output rates. Case A shows Rule.2
(based on link utilization), Case B shows Rule.3 (based on RTT as well as Ui), and Case C shows dynamic weight adjustment.

of a link, in order to determine the utilization of each link.
Therefore, we define “link utilization” as Ui =

⌊

Ni

Wi

⌋

,
where Ni is the number of in-flight packets over link i,
and Wi (link weight) is the ratio of the link bandwidth to
the least common denominator/factor of all links’ band-
widths.

Let’s consider Case A in Figure 3 to see the effective-
ness of U . The ratio of the weight of link `1 to that of
link `2 is assumed to be 1:2. ADAS schedules the third
packet (p3) on `2 because when p3 arrives at the proxy,
ADAS knows from an ACK packet (a2) that p2 has left
`2, so `2 still has more available bandwidth than `1. In
case of WRR, it assigns p3 to `1 because the quantum of
`2 has already exhausted by p1 and p2, wasting available
bandwidth of `2.

4.2.2 Expected Arrival Time (hRTT )
ADAS uses expected arrival time (half RTT or hRTT )
along with U to further improve overall link utilization
and minimize the need for packet reordering. When more
than one link (S) have the same lowest link utilization,
ADAS selects the link that has the smallest expected ar-
rival time in that subset of links (Rule.3). Due to a WWAN
link’s varying transmission delay or forwarding nodes’ un-
expected processing delay, links with similar utilization
might experience different short-term rates or delay fluc-
tuations which might not be immediately reflected into
U . Using hRTT ensures that ADAS transmits packets
on the fastest link in a greedy fashion, and thus, not only
increases the overall short-term links utilization, but also
reduce out-of-order packet deliveries at a receiver.

Let’s consider Case B in Figure 3 to illustrate the effec-
tiveness of hRTT . Until p7, ADAS has packets sched-
uled on each link with the same sequence as WRR does.
However, at t1, hRTT of `2 increases and at the point of
scheduling p8, the expected arrival time of p8 via `2 be-
comes longer than that via `1. Besides, since the U values
of both links are same, ADAS schedules p8 on `1. If the

packet is scheduled on `2 as WRR does, then p8 might ar-
rive later than p9, and `1 could waste its bandwidth until
the transmission of p9 begins.

4.2.3 Dynamic Link-Weight Adjustment
ADAS adapts to each link’s congestion without separate
links state probing or congestion notification messages
from networks by dynamically adjusting the congested
link’s weight. ADAS uses the loss information obtained
by RPC (to be explained in the next section), and adjusts
the link weight to approximate its instantaneous band-
width by adopting the TCP’s Additive Increase and Mul-
tiplicative Decrease (AIMD) strategy. If the link experi-
ences congestion, ADAS cuts the congested link’s weight
by half. Subsequently, the link’s Ui becomes larger, and
new packets are not assigned to the link until it recovers
from the congestion. This link weight increases additively
each time an ACK arrives on that link, without exceeding
the original weight. This way, ADAS adaptively reacts to
partial links’ congestion and controls the amount of traf-
fic to be allocated to each link without requiring expensive
instantaneous bandwidth information.

Case C in Figure 3 depicts ADAS’s reaction to both de-
lay fluctuations and packet losses. When p6 is scheduled at
t0, `1 experiences an increased hRTT . However, ADAS
schedules p6 on `1 based on U to maintain maximum
network utilization even though it might cause packet re-
ordering. On the other hand, right before scheduling p11,
ADAS identifies a packet loss on `2. It adaptively reduces
the `2’s weight, and assigns p11 to `1 based on the new
computed link utilization.

4.3 Complexity
The main computational complexity of ADAS comes from
the sorting of links to find the best link. Since ADAS uses
an ordered list, it requires O(log n) time complexity where
n is the number of available links. Usually, n is less than
10, so its overhead is not significant. ADAS requires con-
stant space complexity. ADAS maintains a link-state ta-



ble as shown in Figure 2. It independently stores per-link
information which includes only four variables (i.e., Ui,
hRTTi, Wi and Ni).

5 Handling Spurious Duplicate ACKs: RPC
5.1 Overview
Even though ADAS tries to minimize the need for packet
reordering, data packets are sometimes scheduled out-of-
sequence explicitly to fully utilize networks (e.g., Case C
in Figure 3). Moreover, due to the delay fluctuations re-
sulting from the aggressive local retransmission mecha-
nism of 3G networks or a community member’s process-
ing delay, there could be unexpected out-of-order packets.
In both cases, a receiver blindly generates duplicate ACKs,
which we call ‘spurious’ duplicate ACKs, as a false sign of
link congestion, and these ACKs, unless handled properly,
significantly degrade TCP performance.

The Reverse Path Controller (RPC) is an intelligent
ACK-control mechanism that hides the adverse effects
of out-of-order packet deliveries to the receiver. RPC
exploits TCP’s control information which is carried by
ACKs, to determine the meaning of duplicate ACKs and
correct them, if necessary. Moreover, along with the
scheduling history, RPC also infers the link condition such
as its packet loss, delay, and rate. Finally, because RPC
maintains each link’s state information (including loss and
instantaneous capacity), it provides such information to
the sender’s congestion-control mechanism so as to pre-
vent one pipe from stalling other uncongested pipes, thus
enhancing network utilization.

5.2 Algorithm
RPC consists of three different mechanisms: ACK iden-
tification, ACK re-sequencing, and loss detection. RPC
accepts ACKs as input, and then holds or releases them
based on the above three mechanisms. RPC first identifies
the meaning of an arrived ACK. Then, it decides whether
this ACK is normal or spurious. Finally, it differentiates
duplicate ACKs caused by real packet losses from spuri-
ous duplicate ACKs, and detects any packet loss.

5.2.1 ACK Identification
In order to determine the meaning of ACKs, this mech-
anism identifies the sequence number of a data packet
that actually arrives at the receiver and causes an ACK
to be generated. Assuming that the receiver supports the
TCP-SACK mechanism, RPC traces the meta-state of the
receiver buffer through SACK blocks and a cumulative
ACK number, and finds the latest updated sequence num-
ber of the receiver buffer via the newly-arrived ACK. Be-
cause TCP-SACK conveys information of up to three data
blocks when there are holes in the receiver buffer, and its
first block2 contains the sequence number of the recently-
arrived data packet [15], RPC can infer the state of the
receiver’s buffer via following two ways.
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Figure 4: Snapshots for ACK identification and loss detec-
tion mechanism in RPC. RPC identifies the meaning of each
ACK through SACK blocks (Snapshot I, II, and IV) or cumu-
lative ACK numbers (Snapshot III, V). Also, it detects packet
losses using identified sequence numbers and scheduling his-
tory (Snapshot VI).

A.1 SACK block matching: If an ACK delivers SACK in-
formation, RPC simply matches the SACK block(s)
with the meta-state buffer and finds sequence num-
ber(s) that is newly covered by this SACK block.

A.2 Cumulative ACK number scanning: If an ACK se-
quence number is greater than the meta-buffer’s cu-
mulative sequence number, RPC scans a region be-
tween the two numbers, and finds the sequence num-
ber(s) that has not been covered before.

Figure 4 shows a series of snapshots that describe the
two schemes of identifying a sequence number. For ex-
ample, the snapshot I, II, and IV show the SACK block
matching scheme. The snapshot III and V illustrate how
cumulative ACK numbers are scanned. Each snapshot
contains the circular buffer representing the meta-state of
the receiver buffer.

5.2.2 ACK Re-sequencing
After identifying the meaning of ACKs, RPC determines
whether to release this ACK to the sender or to hold it
for re-sequencing based on Algorithm 2. If the identified
sequence number proceeds towards a new unACKed se-
quence number, RPC starts releasing ACKs-on-hold in-
cluding the one just arrived.

If arrived ACK packets are duplicates (line 8), then RPC
re-sequences them in two different ways. First, if there



Algorithm 2 ACK re-sequencing (Packet)
1: // N is the size of circular ACK re-sequencing buffer
2: wSeqNum = (cumulative ACK sequence number) mod N

3: if wSeqNum > left then
4: left = wSeqNum // in-sequence, new ACK
5: put ACK at the end of the re-sequencing buffer
6: release held ACK(s) up to left point with a peak rate
7: end if
8: if wSeqNum == left then
9: switch RPC state // duplicate ACK

10: case NORMAL // re-sequencing
11: hold ACK with an identified number, break
12: case LOSS // no re-sequencing
13: release ACK to a sender, break
14: end switch
15: end if

is not any congested link (i.e., all links are in NORMAL
state), then RPC holds the ACK packet in the slot of the
wrapped-around re-sequence number (wSeqNum) in the
circular ACK buffer. Since RPC knows the meaning of an
ACK, it corrects the cumulative ACK sequence number
with the identified number of the ACK packet and stores
it in the buffer. Second, if RPC is in the LOSS state, it re-
leases ACKs-on-hold in their original form because dupli-
cate ACKs have really resulted from packet loss(es), and
because released duplicate ACKs can help the sender cal-
culate the number of packets that have left the network.

5.2.3 Loss Detection
The remaining questions on the ACK re-sequencing mech-
anism are how to detect packet losses from congestion,
and how to differentiate out-of-order packet arrivals from
real packet losses. Assuming that packets scheduled on
a link are delivered to a receiver in order, RPC detects
packet losses if there are holes that are not sequentially ac-
knowledged in a list of scheduled packets on the link. The
snapshot VI shows an example of loss detection of RPC.
Since packets 26, 28 were sent back-to-back via link 1,
RPC determines, from the arrival of ACK 28, that packet
26 is lost. This is different from the loss detection mecha-
nism of TCP whose duplicate ACKs’ threshold is 3. How-
ever, a more sensitive reaction on each link is desirable
since it helps all connections avoid disrupting one another.
Moreover, any threshold can be set based on the network
characteristics.

5.3 Complexity
RPC’s complexity heavily relies on the number of dupli-
cate ACKs. When there is no duplicate ACKs, RPC does
not incur any overhead except for updating link-state vari-
ables (U , N ). However, if there are duplicate ACKs result-
ing from either out-of-order delivery or a packet loss, then
RPC needs to figure out (compute) the ACK’s sequence
number and space to re-sequence ACKs.

Given duplicate ACKs, RPC only requires constant time

��������	


���

�������
��

�����	�
����

����
��

�������
�	���	��

����


�	�	�����


�����	
����
�����


��	��
����
�	���	��

���������

������	�	��	
��

������	
��  

���	
�


!	��
����
����"

�����	
����
����	�

���������

�	�	��	
�	��
��

����
���
���

����

Figure 5: State machine of RPC. Boxes with capital letters in-
dicate states of RPC, and boxes with small letters list operations
in each state.

complexity and 3KB space complexity per connection in
the worst case. The most computation-intensive mecha-
nism in RPC is ACK identification which requires exten-
sive sequence comparison. However, this overhead can
be minimized using such optimization techniques as a
bit-operation, and thus requires constant time complexity.
RPC may have to store all ACKs of a flow in the worst
case. Since the number of ACKs is limited by the num-
ber of outstanding packets in the network, BDP

MSS × SACK

is the maximum required ACK re-sequencing buffer size.
For example, assuming that an aggregated bandwidth and
average RTT are 5 Mbps and 120 ms, respectively, and
MSS is 1.5 KB and the size of ACK (SACK) is 60 bytes,
a maximum space requirement is 3 KB.

6 Expediting Loss Recovery: TCP-PRISM
6.1 Overview
Along with ACK re-sequencing and loss detection, fast
recovery from loss(es) and appropriate congestion control
at the sender side are critical to the overall performance
of a TCP connection. Although many congestion control
mechanisms, such as Reno, New-Reno and SACK, have
been proposed for a single path congestion control, they
are not optimized for multiple paths mainly for the follow-
ing two reasons. First, TCP’s positive ACK mechanism
(e.g., SACK block) consumes more time to detect/recover
packet loss or out-of-order delivery from multiple hetero-
geneous paths, resulting in frequent timeouts. Second,
they over-reduce the window size upon congestion of one
of multiple paths, reducing the overall links utilization.

PRISM addresses these problems by using two
mechanisms. The first mechanism provides exact
loss/congestion information in a negative form to a TCP
sender. The second is a sender-side congestion control
mechanism (TCP-PRISM), which understands negative
ACK information from networks and expedites loss recov-
ery upon congestion of a link in one of multiple paths.

6.2 Algorithm
This algorithm is invoked by RPC and the sender-side TCP
when there is a packet loss(es). On detection of any packet
loss, RPC ships loss information on ACKs. Using this
delivered information at the sender, its congestion control
mechanism quickly reacts to packet losses.



6.2.1 Delivery of Loss Information
Figure 5 shows the state machine of RPC that describes
loss information delivery in each state. In NORMAL and
OUTOFLOSS states, RPC updates state variables as de-
scribed in Section 5. In LOSSDETECT state, RPC sends
the loss information to the sender, and switches to LOSS
state. RPC in LOSS state releases all duplicate ACKs until
all losses are recovered.

RPC provides loss information to the sender that in-
cludes: (i) which data packet is lost, (ii) which channel
is congested to adjust the congestion window size, and
(iii) how many packets have left the network. Once a
packet loss is detected, RPC sends the lost packet’s se-
quence number to the sender in the form of negative ACK.
In addition, RPC ships the congested link’s bandwidth in-
formation which can be computed by p = 1 − Bi

2
P

n
j=1

Bj

where i is the congested channel ID, Bj the bandwidth of
channel j, and n the total number of active channels. Fi-
nally, after sending loss information, RPC begins releas-
ing ACKs-on-hold, if any, so that the sender can calculate
the exact in-flight packet number, inflate the congestion
window size, and send more data packets via other uncon-
gested links.

6.2.2 Congestion Control Mechanism
TCP-PRISM makes two major enhancements of existing
congestion control mechanisms. First, it reduces the fast
retransmit time given partial link’s congestion by using the
loss information delivered from the proxy. TCP-PRISM
just extracts lost packets’ sequence numbers and retrans-
mits the corresponding data packets immediately. It does
not wait for more duplicate ACKs, nor does retransmit all
packets which are ambiguously believed to have been lost.

Second, it makes fast recovery accurately react to con-
gestion, and thus, improves network utilization. TCP-
PRISM reduces the congestion window size only by the
proportion (p) of congested link’s bandwidth over total
bandwidth—we call this adjustment Additive Increase and
Proportional Decrease. This adjusted window size allows
the sender to transmit more data via uncongested links.
If there are other congested links, TCP-PRISM performs
the same procedure as the first reduction step. Other than
the above two enhancements, TCP-PRISM works exactly
same as the way vanilla-TCP does.

6.3 Complexity
The complexity of TCP-PRISM is lower than that of the
standard TCP-SACK. TCP-SACK’s scoreboard mecha-
nism maintains positive ACK information from a receiver
and then identifies lost segments. It requires an extensive
search to construct up-to-date blocks whenever a SACK
block is delivered, and hence, may require more memory
space. In contrast, TCP-PRISM uses a simplified version
of scoreboard, which only maintains a list of lost packets
from the negative loss information.

7 Implementation
We have implemented, and experimented with, PRISM. In
this section, we first describe the implementation details of
each PRISM component. Then, we describe our testbed
setup and present the experimental results.

7.1 Implementation Details
7.1.1 PRISM-IMUX
PRISM-IMUX is implemented as a loadable kernel mod-
ule in a network layer using Netfilter [1]. Netfilter pro-
vides a hook for packet filtering at the network layer, al-
lowing users to dynamically register or un-register any
filter. Thus, PRISM-IMUX is implemented as a filter
with a back-end agent which includes such mechanisms
as ADAS, RPC, and link’s state maintenance.

Within the network layer, there are three places for
the PRISM-IMUX filter to be registered (at entrance,
NF IP PRE ROUTING; in the middle, NF IP LOCAL OUT;
and at exit, NF IP POST ROUTING), and it is registered
at the layer’s exit because this placement minimizes the
number of functions that PRISM-IMUX should incorpo-
rate, and avoids any need for system modification. When
it transmits multiple packets stored in its buffer, PRISM-
IMUX can make a direct call to an interface function of
the link layer, and thus, it need not go through all the re-
maining network-layer functions.

Finally, there is a case where the agent of the filter needs
to store packets, and thus stop the remaining packet pro-
cessing chain in the network layer. There are two options
(NF DROP and NF STOLEN) from Netfilter to silently store
a packet, and PRISM-IMUX uses NF STOLEN because it
does not incur any overhead such as buffer-copy which is
required in NF DROP.

7.1.2 TCP-PRISM
We implemented TCP-PRISM in a Linux kernel-2.4’s
TCP protocol stack, and deployed it in a server. As de-
scribed in Section 6, TCP-PRISM is a simplified version
of TCP-SACK and easily extensible from TCP-SACK im-
plementation. TCP-SACK maintains sack-tag informa-
tion, which is initially cleared, and becomes “SACKED”
when the corresponding sack information arrives. How-
ever, determining an un-sacked packet as a lost packet
is still not an easy problem, and thus, TCP-SACK has
both a heuristic decision algorithm and an undo algorithm
to fix any incorrect decision. We modified this sack-tag
mechanism so that the exact loss information provided by
PRISM-IMUX is immediately reflected into the sack-tag
information.

7.2 Testbed Setup
To evaluate our PRISM implementation, we have built a
testbed that is composed of an Internet infrastructure, and
a mobile community.
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Figure 6: Experimental results. We run PRISM in our testbed and compare its performance with that of vanilla-TCP. In the experi-
ment (a), we measure the throughput achieved by both PRISM and vanilla-TCP while increasing the bandwidth disparity of WWAN
links. In the experiment (b), we also measure the throughput while increasing WWAN link’s loss rates. In the experiment (c), we
conduct the same experiment in a community consisting of heterogeneous members. Member 1 (M-I) with a slow link (360 Kbps)
and member 2 (M-II) with fast but a lossy link (1080 Kbps, 0.6%) initially collaborate, then M-II leaves the community (at 40s), and
member 3 (M-III) with a fast link (1800 Kbps) joins (at 60s) and collaborates with M-I.

For the Internet infrastructure, we use one server
(Pentium-IV 1.64 GHz CPU with 512 MB memory), one
proxy, one WWAN emulator (both are a Pentium-III 865
MHz CPU with 256 MB memory), and one Ethernet
switch. The server and the proxy have TCP-PRISM and
PRISM-IMUX installed, respectively. The emulator has
NISTnet [2] to emulate WWAN networks (the proxy and
the emulator each have two Ethernet interfaces to con-
struct different networks). The Ethernet switch works as
WWAN access networks and splits traffic from the emula-
tor to each community member. The server, the proxy, the
emulator, and the switch in a row are connected via 100
Mbps Ethernet cables between successive components.

For the mobile community, we use three Dell latitude
laptops (Pentium-III 865 MHz CPU with 256 MB mem-
ory) which have both built-in Ethernet interfaces (Realtek)
and IEEE 802.11b interfaces (Orinoco). Each Ethernet in-
terface is connected to Ethernet switch’s 100 Mbps cables
and is used as WWAN links. A WLAN interface in ad-hoc
mode is used for communication within the community.

All machines in the testbed use Redhat 9.0, and an ftp
application between a server and a receiver is used to mea-
sure end-to-end throughput by transferring a 14MB file.

7.3 Experimental Results
7.3.1 Effects of delay disparity
We evaluated the performance tolerance of PRISM to
the WWAN links delay disparity. We use two commu-
nity members which have different bandwidths (1800, 600
Kbps) but initially have the same link delay, 500ms (aver-
age delay from the UMTS trace with the packet size of 1.4
KB).3 While increasing one link’s delay up to 1000 ms in
increments of 50 ms, we measure end-to-end throughput.
For better comparison, we also run vanilla-TCP with and

without SACK.
PRISM effectively masks the delay disparity of WWAN

links and provides an aggregated bandwidth through
RPC’s re-sequencing mechanism. Figure 6(a) shows that
PRISM achieves 95% throughput of total aggregate link
capacity when the delay disparity is less than 400 ms. Be-
yond that point, it shows a little degradation because of
deep-buffering for increasing duplicate ACKs. Vanilla-
TCP suffers significant performance degradation due to
spurious duplicate ACKs. Furthermore, vanilla-TCP with
SACK shows worse performance than that without SACK
because detailed SACK information delivered to a sender
causes significant false retransmissions.

7.3.2 Effects of loss-rate disparity
We measured the performance tolerance of PRISM to the
WWAN links loss-rate difference. In the community with
two members (whose bandwidths are 1080, 360 Kbps),
we fix the link delay of both members at 300 ms (average
delay from the UMTS trace with the packet size of 1 KB)
and measure end-to-end throughput as we vary the loss-
rate from 0.001% to 1% of the second member (1% is a
typical maximum loss-rate of WWAN links).

The fast-recovery mechanism in PRISM indeed expe-
dites loss recovery and increases link utilization even at
a high loss-rate. As shown in Figure 6(b), PRISM pro-
vides 94% throughput of the total links capacity when
loss rates are less than 0.8%. At the point of 0.8% or
higher, PRISM’s throughput decreases because the achiev-
able link throughput also degrades due to frequent packet
losses. Vanilla-TCP, however, experiences a severer per-
formance degradation. Even though it shows relatively
good performance (i.e., 90%) at a low loss rate, vanilla-
TCP immediately shows degraded performance as the



loss-rate increases because of the long loss-recovery time
for one congested link, blocking the uncongested link.

7.3.3 Effects of link heterogeneity
We evaluated the performance gains of PRISM even with
heterogeneous community members. We construct a mo-
bile community that consists of three members, all having
different WWAN link characteristics (bandwidth, delay,
and loss rate) as follows: Member 1 (M-I) has a reliable
but slow link (360 Kbps, 300 ms, 0%); member 2 (M-II)
has a fast but unreliable link (1080 Kbps, 100 ms, 0.6%);
and member 3 (M-III) has a faster link (1800 Kbps, 100
ms, 0%) than others, but its bandwidth difference from M-
I’s is large (5 times). Initially, M-I and M-II collaborate
until 40 seconds, but face different delays and loss-rates.
Then, M-II leaves the community (at 40s). At 60s, M-III
joins the community and collaborates with M-I, but they
have a large bandwidth disparity.

PRISM achieves the aggregated bandwidth of all
WWAN links even in case of heterogeneous link char-
acteristics. Figure 6(c) shows the sequence number pro-
gression of a sender’s transport layer for both PRISM and
vanilla-TCP. As shown in the figure, PRISM can achieve
310% more throughput than vanilla TCP in the presence
of both loss-rate and delay disparities (from 0s to 40s)
thanks to its fast loss-recovery mechanism (see the magni-
fied graph in Figure 6(c)). Furthermore, PRISM yields
208% better performance than TCP in case of a large
bandwidth disparity (ranging from 60s to 90s) from its
effective scheduling mechanism and ACK re-sequencing
mechanism.

8 Performance Evaluation
We also evaluated PRISM via in-depth simulation in di-
verse environments.We begin with a simulation model and
then evaluate PRISM with respect to bandwidth aggrega-
tion, packet reordering, and network utilization.

8.1 Simulation Models
We use the ns-2 [3] for our simulation study. The network
topology in Figure 10 is used for this study and consists of
Internet, WWAN, and WLAN networks and nodes. The
Internet is composed of fixed servers (sender Si), a proxy,
and other hosts (HostS/R) for background traffic. The
bandwidth between hosts and their edge router is 20 Mbps,
and the bandwidth between routers is 10 Mbps.

For WWANs, we use the Universal Mobile Telecom-
munication System (UMTS) ns-2 extension [5]. Bi is a
base-station node that has support for WWAN links. For
WLANs, we use the IEEE 802.11b implementation in ns-
2, and add NOAH [21] routing protocol to simulate peer-
to-peer communication among community members. For
each community member, we use an ns-2 mobile node
with extension for supporting multiple wireless interfaces.

Figure 10: Simulation network topology. Si (server), HostS,R

(background traffic generator), a Proxy, Bj (base station), mk

(community members), and R (receiver)

We set up a PRISM flow(s) between a sender(s) and
a receiver(s), and measure the end-to-end throughput be-
tween them. We implement TCP-PRISM (an extension
of TCP SACK) for the sender’s transport layer, and place
PRISM-IMUX at the proxy. We run an FTP application
between the sender and the receiver for 150–500 seconds.

8.2 Achieving Bandwidth Aggregation
We measured aggregated bandwidth gains by PRISM
while increasing the number of WWAN links. For a sce-
nario with i links, we randomly choose each link band-
width between 400 Kbps and 2.4 Mbps. We first run
an FTP application between a server (S1) and a receiver
(R1) for 300 seconds under PRISM, and then run the
same experiment without the proxy (‘No Proxy’). For bet-
ter comparison, we also run the same experiment under
a weighted-round-robin (WRR) striping agent without an
ACK-control mechanism.

PRISM achieves the aggregated bandwidth that reaches
the sum of link bandwidths, and its performance scales
well with the community size. Figure 7 plots the band-
width aggregation gain by PRISM and confirms the per-
formance gain and scalability with up to five commu-
nity members.4 By contrast, using the WRR striping
agent, TCP performance degrades to the one that is worse
than a single community member’s throughput due to fre-
quent out-of-order packet deliveries. Note that the “Ideal”
case is defined as the sum of vanilla-TCP’s throughputs
achieved in each WWAN link.

8.3 Minimizing Need for Packet Reordering
8.3.1 Bandwidth disparity
We evaluated ADAS’s performance in the presence of dis-
parity between WWAN links’ bandwidths. We use three
community members whose bandwidth difference (say d)
increases from 0% to 70%, and measure the achieved ag-
gregate throughput. We initialize the WWAN bandwidth
of all members to 1.4 Mbps. Then, we increase one mem-
ber’s bandwidth by d% of 1.4 Mbps and decrease the
bandwidth of one of the remaining members by the same
percentage. We disable RPC to isolate the performance
benefits of ADAS, and run PRISM with other existing
scheduling mechanisms as well as ADAS for comparison.
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Figure 9: PRISM performance compar-
ison under rate/delay fluctuations for dif-
ferent scheduling schemes.

ADAS reduces out-of-order packet deliveries by sens-
ing bandwidth disparity, and improves links utilization.
Figure 8 shows the performance gains on reducing the
need for packet reordering under various scheduling
mechanisms. The x axis represents the bandwidth dispar-
ity, and the y axis is an achieved throughput which is nor-
malized by the ideal total bandwidth of WWAN links. Al-
though the maximum ratio is below the half of ideal band-
width due to the absence of RPC, the figure shows that
the throughput by ADAS improves as the bandwidth dis-
parity increases by selectively using high-bandwidth link
bandwidth, meaning that ADAS reduces out-of-order de-
liveries.

On the other hand, since other scheduling mecha-
nisms such as WRR and RR blindly assign packets to
all available links without being aware of bandwidth dis-
parity, their performance is degraded by the use of low-
bandwidth links, which causes significant out-of-order de-
liveries.

8.3.2 Rate/delay fluctuation
We also evaluated ADAS’s adaptivity to rate/delay fluctu-
ations by examining end-to-end throughput given dynamic
background traffic. Having three community members
(whose WWAN bandwidths are 600, 900 and 1200 Kbps,
respectively), we run one PRISM flow and two On/Off
background traffic (one to the first member’s WWAN link
with 400 Kbps, and the other to the third with 800 Kbps).
We use a burst-time of On/Off traffic as a parameter of
rate/delay fluctuation with a Pareto distribution and a fixed
idle-time (1s). At this time, we enable RPC functions to
show the overall performance improvement.

ADAS adapts to the rate/delay fluctuation of WWAN
links and reduces the need for packet reordering. As we
will see in Section 8.4.2, reduced out-of-order packet de-
liveries makes an end-to-end throughput improvement, so
we measured the throughput achieved by several schedul-
ing algorithms while increasing rate/delay fluctuations. As
shown in Figure 9, ADAS outperforms the other schedul-
ing mechanisms by 12% to 47% in the presence of maxi-

mum background traffic.
On the other hand, WRR performs worse than random

scheduling in the presence of large fluctuations. hRTT -
only scheduling exhibits worse performance than the oth-
ers because the fast but low-bandwidth link limits the
overall performance by dropping most of packets. A
utility-only scheduling algorithm provides similar per-
formance to ADAS under stable links state. However,
as the rate/delay fluctuates more, the U -only scheduling
becomes less responsive to short-term fluctuations than
ADAS which adapts itself to the fluctuations by using
RTT, and thus achieves only 88% of ADAS’s throughput.

8.4 Maximizing Network Utilization
8.4.1 Performance gains by RPC
We evaluated the RPC’s benefits in network utilization.
We use the same setting as in the bandwidth disparity ex-
periment, and for better comparison, we compare three
cases: PRISM without RPC, PRISM with only ACK re-
sequencing (partial RPC), and PRISM with full RPC (in-
cluding loss detection and fast loss recovery).

RPC achieves maximum network utilization by which
PRISM can deliver almost ideal aggregated bandwidth.
Figure 11 shows the performance gains achieved by RPC.
PRISM with the full RPC indeed achieves maximum net-
work utilization even in the presence of large bandwidth
disparities. On the other hand, PRISM’s performance
without RPC shows less than 50% of ideal bandwidth.
PRISM with a partial RPC yields, on average, only a 50%
performance improvement since it should depend only on
timeouts for packet-loss recovery.

8.4.2 Minimizing traffic burstiness
We evaluated the ADAS’s contribution in network utiliza-
tion by measuring the degree of traffic burstiness that de-
pends on the scheduling mechanism. We use four commu-
nity members (whose WWAN bandwidths are 620, 720,
720, and 860 Kbps), and measure the size of re-sequencing
buffer in PRISM-IMUX while running a PRISM flow with
ADAS. We run PRISM with WRR for comparison.
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Figure 11: Performance gains by RPC
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Figure 12: Re-sequencing buffer size progression

ADAS reduces traffic burstiness by minimizing out-
of-order deliveries, and thus improves overall network
utilization. Figure 12 shows the progression of the re-
sequencing buffer size which is defined as the distance be-
tween left and highest of the re-sequencing buffer. The
average buffer size required by ADAS in the lower figure
is 1.5 times less than that by WRR, meaning that ADAS
generates less out-of-order packet deliveries than WRR.
Also, the ADAS’s smaller buffer size requirement im-
plies a reduced chance for bursty traffic because PRISM-
IMUX releases only a small number of stored ACKs to the
sender. Our experimental results show that the throughput
(2.9 Mbps) for less bursty traffic (scheduled by ADAS)
improves up to 16% over the throughput (2.5 Mpbs) for
bursty traffic (scheduled by WRR).

9 Related Work
Bandwidth aggregation in multi-homed mobile hosts is
considered by several researchers. pTCP [12] and R2CP
[11] are transport-layer approaches to achieving aggre-
gated bandwidth. They make a transport protocol have
multiple states so that the transport layer can open mul-
tiple connections through multiple interfaces in a single
mobile host. MOPED [8] is a framework to enable group
mobility such that a single user’s set of personal devices
appear as a single mobile entity connected to the Internet.

Packet reordering is a major problem in multi-path rout-
ing environments. DSACK [22] in TCP is a detection
mechanism of spurious retransmissions on packet reorder-
ing based on the information from a receiver via DSACK
block. TCP-Door [20] is another scheme for detecting
packet reordering in a MANET environment. This ap-
proach uses additional information, called TCP packet se-
quence number, to detect out-of-order packets. However,
these mechanisms can solve occasional (but not persistent)
out-of-order packet arrivals. TCP-PR [6] addresses this
problem using a timeout as an indication of packet loss in-
stead of duplicate ACKs, but it may still suffer from false
timeouts that result from large RTT fluctuations.

Scheduling packets across multiple links is a well-
known problem, and there are three approaches: Round-
Robin (RR), fair-queuing, and hybrid. First, the RR
scheduling guarantees long-term fairness, and is of low
complexity [4]. However, RR inherently causes traffic
burstiness which may require a large re-sequencing buffer.
Second, the fair queuing attempts to approximate the Gen-
eralized Process Sharing (GPS) to achieve fairness (e.g.,
PGPS, WFQ, WF2Q). However, these approaches assume
that the exact bandwidths of each input and output link
are known, which is expensive for resource-limited mo-
bile hosts to obtain. Finally, a hybrid approach (e.g., [16])
removes the complexity of the fair-queuing approach, but
it also assumes the known/fixed service rate.

10 Discussion and Conclusion

10.1 Discussion
PRISM can easily support upstream traffic (from a mobile
host to a server) by placing PRISM-IMUX at a mobile
node in the community. One mobile member in the com-
munity can work as the proxy and inverse-multiplex traffic
over other community members. It might incur overheads
to mobile hosts, but, as shown in Sections 4, 5, and 6,
the computational complexity of PRISM increases only
on a log-scale, and its spatial complexity is also reason-
able (3KB). Most of all, fast transmissions at an aggregate
high data rate via members’ collaboration contribute to the
savings of a base power of mobile hosts. Quantifying this
benefits is part of our future work.

We also consider two different security-related issues:
(i) what if the packet header is encrypted? and (ii) what if
a community member behaves maliciously? Since PRISM
exploits TCP information, it is critical for PRISM to ex-
tract the header information from each packet. As was
done in [18], if we consider the proxy as a trusted party
and let it hold the secret key for each connection, then the
proxy can extract the header information from encrypted
packets. This mechanism also helps prevent members’
malicious behaviors from tampering with, or extracting
data from, a packet. The other approach to the members’
malicious behavior problem is to have a reputation and



punishment system as in [7] to discourage such behaviors.

10.2 Concluding Remarks
In this paper, we first demonstrated the need for a mobile
collaborative community: it improves the user-perceived
bandwidth as well as the utilization of diverse wireless
links. Then, we addressed the challenges in achieving
bandwidth aggregation for a TCP connection in the com-
munity. Striping a TCP flow over multiple wireless WAN
links requires significant scheduling efforts due to hetero-
geneous and dynamic wireless links, creates the need for
frequent packet reordering due to out-of-order packet de-
liveries, and causes network under-utilization due to the
blind reaction of the TCP’s congestion control mecha-
nism.

To remedy these problems, we proposed a proxy-based
inverse multiplexer, called PRISM, that effectively stripes
a TCP connection over multiple WWAN links at the
proxy’s network layer, masking adverse effects of out-of-
order packet deliveries by exploiting the transport-layer
information from ACKs. PRISM also includes a new con-
gestion control mechanism that helps TCP accurately re-
spond to the heterogeneous network conditions identified
by PRISM.

Through experimental evaluation on a testbed and
in-depth simulations, PRISM is shown to opportunisti-
cally minimize the need for packet reordering, effectively
achieve the optimal aggregate bandwidth, and signifi-
cantly improve wireless links utilization.
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Notes
1We assume that the community is formed in such a way that its mem-

bers have mutually exclusive frequency channels to make bandwidth ag-
gregation practical if they subscribe to the same ISP.

2It could be the second block when a DSACK option is used.
3We use the on-line resource of [17].
4Note that we limit the maximum community size to 5 since the IEEE

802.11b provides up to 6 Mbps in terms of end-to-end throughput.


