
Energy-efficient Self-adapting Online Linear

Forecasting for Wireless Sensor Network

Applications

Jai-Jin Lim and Kang G. Shin

Real-Time Computing Laboratory, Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109–2122, USA

Email: {jjinlim,kgshin}@eecs.umich.edu

Abstract— New energy-efficient linear forecasting methods are
proposed for various sensor network applications, including in-
network data aggregation and mining. The proposed methods are
designed to minimize the number of trend changes for a given
application-specified forecast quality metric. They also self-adjust
the model parameters, the slope and the intercept, based on
the forecast errors observed via measurements. As a result, they
incur O(1) space and time overheads, a critical advantage for
resource-limited wireless sensors. An extensive simulation study
based on real-world and synthetic time-series data shows that
the proposed methods reduce the number of trend changes by
20%∼50% over the existing well-known methods for a given
forecast quality metric. That is, they are more predictive than
the others with the same forecast quality metric.

I. INTRODUCTION

Forecast or prediction is of fundamental importance to all

sensor network applications and services, including network

management, data aggregation and mining, object tracking,

and environmental surveillance. Thus, it should be designed

as a middleware component that is predictive, energy-efficient,

and self-manageable: (1) being predictive, a forecast method

should predict as many future measurements as possible with

the required forecast quality; (2) being energy-efficient, which

is a networked version of being predictive when the prediction

logic is shared across networked sensors, a forecast method

should reduce the number of measurements to be transmitted

through the network for given forecast quality requirements;

(3) being self-manageable, a forecast method should self-

adjust the model parameters based on the forecast errors

observed during actual measurements.

There are a wide variety of prediction algorithms available

in the literature. For example, the Kalman and Extended

Kalman Filters [1] (KF/EKF) based predictors have been

widely used by many researchers. Selection of a prediction

algorithm, however, should be based on the characteristics of

application domain and problem at hand. For example, the

authors of [2] use double exponential smoothing [3] to build a

linear forecast method for predictive tracking of a user position

and orientation. Their results showed that when compared

against KF/EKF-based predictors, the constructed predictor

runs much faster with equivalent prediction performance and

simpler implementations.

In this paper, we focus our attention on linear forecast, as it

is not only popular (due mainly to its simple implementation

and intuitive prediction), but also it has been widely used to

characterize the time-series data for many data mining and

feature extraction algorithms [4]–[6], which work on a series

of piece-wise linear representations (PLRs) extracted from the

underlying time-series data.

Main contributions of this paper with respect to the linear

forecast are as follows.

• We evaluate the performance of existing well-known

linear forecast methods in terms of the number of trend

changes for a given forecast quality requirement. Specifi-

cally, we analyze the applicability of existing methods in

the application context that trades forecast accuracy for

the lifetime of sensors.

• We propose new linear forecast methods that outperform

the existing methods with respect to the performance

metric used above, making themselves more energy-

efficient or predictive than the others. Moreover, the

proposed methods are designed for online use and self-

adjust the model parameters of a linear trend based on

the forecast errors observed via actual measurements

The paper is organized as follows. Section II discusses the

related work. Section III describes the motivations behind our

algorithms development and states the associated problem.

Section IV presents our linear forecast methods, as well as

existing linear forecast methods, to solve the problem. In

Section V, we describe an extensive simulation study of both

real-world time series data and synthetic data. Finally, the

paper concludes with Section VI.

II. RELATED WORK

Distributed in-network aggregation and approximate

monitoring in sensor networks. To reduce the number of

transmissions involved in a distributed in-network aggregation,

the authors of [7] rely on an aggregation tree rooted at an

aggregator. On the other hand, the authors of [8], [9] tackle

the same problem in a different way called the approximate

monitoring, by assuming a new class of error-tolerant applica-

tions that can tolerate some degree of errors in the aggregated

results.

The authors of [10] extend the latter by defining a way of

mapping the user-specified aggregation error bound to the per-

0-7803-9466-6/05/$20.00 ©2005 IEEE MASS 2005

group quality constraint for hierarchically-clustered networks

with more than one level. Similar work [11] was also reported

to dynamically redistribute the aggregation error bound based

on local statistics through which the most beneficiary node

from the redistribution is decided.

However, the aggregated result is affected lot by packet loss

over a lossy wireless channel; so are all the above-mentioned

approaches. To remedy this problem, the authors of [12]

proposed a new robust aggregation tree construction algorithm

against packet loss over a wireless channel, and designed

energy-efficient computation for some classes of aggregation

such as SUM and AVG. Delivery of the linear trend information

across networked sensors in our approach is also susceptible to

such loss. While the result in [12] can be applied to ensure the

robust delivery of the linear trend information in the network,

the solution guaranteeing robust trend delivery and recovery

from any packet loss would be fully developed in future.

Data mining and piece-wise linear representation. The

authors of [6] compare different time-series representations

over many real-world data in terms of reconstruction accuracy.

They concluded that there is little difference among all well-

known approaches in terms of the root mean square error.

They also claimed that the choice of an appropriate time-series

representation should be made by other features like flexibility,

incremental calculation, rather than approximate fidelity.

The authors of [4], [13], [14] studied the use of piece-wise

linear representation as the underlying representation of time-

series data to allow fast and accurate classification, clustering

and relevance feedback. The authors of [5] undertook extensive

review and empirical comparison of a variety of algorithms to

construct a piece-wise linear representation from time-series

data stored in data base systems.

They also proposed the on-line bottom up piece-wise linear

segmentation technique, called SWAB (Sliding Window And

Bottom-up), that produces high-quality approximations. If

SWAB were used in the network, our online linear forecast

method can be used as a means to replace the bottom half of

the algorithm that produces initial linear segments.

III. MOTIVATION AND PROBLEM

A. Motivation

Initially, our desire for an energy-efficient self-adapting

linear forecast method is generated by the need to design a

unified in-network data aggregation and mining service, which

extends the in-network data aggregation service in such a way

that data mining queries are issued and processed within the

same network.

Other than the in-network data aggregation service [7], [15]

to prolong the lifetime of sensor networks, it may need to

develop an energy-efficient in-network data mining service.

For example, the following networked version of data mining

queries [16] can be issued and processed in the network.

(1) Distributed pattern identification: Given a query time-

series and a similarity measure, find the most similar or

dissimilar time-series and any relevant areas in the network. (2)

Summarization: Given a time-series of measurements, create

and report its approximate but essential features. (3) Anomaly

detection: Given a time-series and some model of normal

behavior, find segments showing anomalies and any relevant

areas in the network.

Note that both in-network aggregation service and in-

network data mining service need to collect continuous mea-

surements, typically at periodic intervals, about various net-

work states such as the temperature of some region and

position/orientation of moving targets. So, a natural question

arises about the representation of the network state, whose

data type is, in most cases, numeric in sensor networks.

Obviously, aggregation results like AVG, SUM, MIN, and

MAX, hide key information on gradual trends or patterns in

measurements. However, PLR, used by many data mining

applications, not only holds such patterns, but can also re-

construct the original time-series within some error bound,

which is then used to produce approximate values of various

aggregation functions. Thus, PLR will be appropriate as a

basic representation of the network state for a unified in-

network aggregation and data mining service.

Other high-level time-series representations can also be

used, but comparisons [6] of several time-series represen-

tations1 over many real-world datasets show that there is

little difference among these approaches in terms of the root

mean square error. Then, as claimed in [6], the choice of

an appropriate time-series representation should be made by

other features like flexibility, incremental calculation, rather

than approximation fidelity.

Using PLR as the network state representation has the

following main advantages. First, it is intuitive and easy to

calculate. Second, it is one of the most frequently-used repre-

sentations that support various data mining operations [4]–[6],

[17]. Third, it allows distributed incremental computation so

that a new linear segment may be built from existing linear

segments [4]–[6], [18], without resorting to the original data.

Fourth, it can also be used to compute traditional aggregation

queries as approximate results, with no delay, through the

prediction.

The distributed incremental computation allows initial linear

segments to be collected across the network, without collecting

all the raw measurements to get initial linear segments. The

thus-collected linear segments can later be used to build a

new linear segment as needed2 at resource-abundant sensors,

or will be used to produce the approximate aggregation results

as needed.

1Such representations include Discrete Fourier Transformation (DFT), Sin-
gular Value Decomposition (SVD), Discrete Wavelet Transformation (DWT),
Piecewise Constant Approximation, Piecewise Aggregate Approximation
(PAA), and Piecewise Linear Representation (PLR). They have been proposed
in [5], [17] and references thereof.

2Much work has been reported in the literature, allowing a new linear
segment to be built from existing linear segments [4]–[6], [18], without
resorting to the original data. For example, the bottom-up algorithm or SWAB
(Sliding Window And Bottom-up) in [5] (or others such as Theorems 3.2 and
3.3 in [18], merging operation in [4], or Theorems 1 and 2 in [6]) enables a
new linear segment to be constructed from existing segments with some error
metric. To best serve our purpose without any modification, the bottom-up
algorithm or SWAB is appropriate.

10 20 30 40 50 60 70 80 90 100
0

20

40

Fig. 1. Illustration of piece-wise linear segmentation with a maximum
permissible forecast error ε = 10. Solid circles mean the forecast estimates
and empty circles mean actual measurements. Bars at the bottom represent
trend-change points.

B. Problem Statement

The problem we want to solve is formally stated as follows.

Problem 1: : Design an energy-efficient self-adaptive

online linear forecast method: Given an infinite time-series

xi, i = 1, 2, . . . and an application-specified forecast quality

threshold ε, design an energy-efficient self-adapting online

linear forecast method that minimizes the number of trend

changes under a given quality measure. It will produce a

sequence of piece-wise linear segments, where each piece-

wise linear fit to the underlying original time-series data

xT , xT+1, . . . , xT+lT −1 is represented by x̂T (T + τ), such

that

x̂T (T + τ) = â1(T) + τ b̂2(T), τ = 0, . . . , lT − 1

f(< xT , . . . , xT+lT −1 >,< x̂T , . . . , x̂T+lT −1 >) ≤ ε

where x̂T+τ is an estimate for the actual measurement

xT+τ from the linear fit x̂T (T + τ) built at time T , f is

the application-specified forecast quality measure governing

piece-wise linear segmentation. Note that lT , the length of the

linear segment, is not a decision parameter, but automatically

decided as a result of segmentation.

Figure 1 illustrates the application of a piece-wise linear

forecast method to real-world data, with the maximum forecast

error 10. As can be seen from the figure, the segmentation

of actual time-series data is governed by the forecast quality

metric ε. Thus, a linear segment can grow unbounded as long

as it satisfies the forecast quality measure.

However, a thus-constructed linear segment may degener-

ate to a single point if it predicts badly or the underlying

time-series show random fluctuations, which are unexpected

outliers. Figure 1 shows this; some forecasts at the sampling

interval between 40 and 65. Depending on the forecast quality

measure, such random noises can be ignored with some loss

of information about the original time-series data.

In general, the specification of the forecast quality measure

depends largely on various application requirements. For in-

stance, the segmentation problem can be defined to produce

the best representation such that the maximum error for any

segment does not exceed a user-specified threshold [5], [19],

or the cumulative residual errors are bounded [20], or the

dynamic confidence band can be defined [21].

Although these examples are not exhaustive, they are fre-

quently addressed by many data mining and aggregation

applications that deal with time-series data. Especially, the first

two specifications are so widely used that we may incorporate

them as our forecast quality measures. For ease of exposition,

X and X̂ denote two n vectors of the underlying time-series

data and the estimated time-series by the corresponding linear

fit. Each element of the two is denoted by X(i) and X̂(i),
respectively.

L∞ metric. This quality metric, defined as maxn

i=1 |X(i)−
X̂(i)|, specifies that the maximum forecast error of any

segment should not exceed a user-specified threshold. It is

probably the most popular metric in various applications

such as data-mining (see Table 5 in [5]) or data-archiving

applications to compress time-series data [19]. A similar

concept of bounded error-tolerance is also used in approximate

monitoring and aggregation applications [8], [9]. Due to the

same accuracy constraint, the L∞ metric can serve both in-

network data aggregation and in-network data mining services

simultaneously.

Using L∞ we have the segmentation governed by:

f(X, X̂) , L∞(X, X̂)

,
n

max
i=1

|X(i) − X̂(i)| ≤ ε

where ε is a user-specified threshold.

C∞ metric. This quality metric, defined as
∑n

i=1(X(i) −
X̂(i)), specifies that the cumulative residual errors of any

segment should not exceed a user-specified threshold. This

metric is in fact a CUSUM (cumulative sum) metric, one

of the most frequently-used metrics for quality control in

environmental and manufacturing process management [22].

This metric is even used in a continuous patient monitoring

application in an intensive care unit [20]. These areas will

become one of major sensor network applications, as explored

by the CodeBlue project [23].

Using the C∞ metric, which is typically controlled from

both below and above, we have the segmentation governed

by:

f(X, X̂) , |C∞(X, X̂)|

, |

n
∑

i=1

(X(i) − X̂(i))| ≤ ε

where ε is a user-specified threshold.

Since the method is intended to be used as a middleware

component of distributed wireless sensors, the solution should

be energy-efficient, lightweight, adaptive, and online:

• Energy-efficient: It states that a solution should minimize

the number of trend changes, i.e., the number of piece-

wise linear segments, given the quality metric.

• Lightweight: It states that a solution should incur O(1)
space and time overheads in extracting a linear trend

information.

• Adaptive: It states that a solution should self-adjust the

model parameters, the slope and the intercept, of a linear

trend according to the forecast errors observed.

• Online: It states that there should be no time lag between

the availability of a linear trend fit and the underlying

time-series data. This means that a new linear trend

information is available as soon as the current linear trend

violates the forecast quality measure.

IV. DESIGN OF ENERGY-EFFICIENT SELF-ADAPTING

ONLINE LINEAR FORECAST

A. Preliminary

Least-Square-Error based Linear forecast method

(LSEL). An intuitive approach to extracting linear trend

information is to apply the linear regression method. Fore-

casting with the linear regression needs to identify the model

parameters from past W measurements. Although the thus-

constructed linear trend is guaranteed to minimize the sum of

the squared errors over the past measurements, it is unclear

if the thus-constructed linear trend can still produce a good

predictive linear fit to future measurements. The constructed

linear trend holds as long as it satisfies the quality constraint

specified by L∞ or C∞ metrics. Otherwise, a new trend

should be derived by re-applying the linear regression method.

A W -period moving linear regression with O(W) space

and time requirements is built as follows. Suppose the current

linear trend is no longer valid at time t ≡ te. Then, past W
measurements of xi, i ∈ [tb, te],W ≡ te − tb +1, will be used

to extract the parameters of a new liner trend.

The intercept â0 and the slope b̂2 are calculated as fol-

lows [3], [18]:

slope: b̂2(t) =

te
∑

i=tb

(

i − t̄

νt

)

(xi − x̄)

intercept: â0(t) = x̄ − b̂2t̄

where t̄ =
∑te

i=tb
i/W , x̄ =

∑te

i=tb
xi/W , νt =

∑te

i=tb
(i−t̄)2.

The intercept at the shifted origin to the time t, â1(t), is given

by â0(t) + tb̂2(t).
Thus, the τ -step ahead linear forecast x̂t(τ) into future

measurements after t is given by â1(t) + τ b̂2(t) = (â0(t) +
tb̂2(t)) + τ b̂2(t), τ = 0, 1, . . .

Non-seasonal Holt-Winters Linear (NHWL) forecast.

A commonly-used linear trend forecast algorithm with O(1)
space and time overheads is NHWL [24]. It uses exponen-

tial smoothing to extract the model parameters of a linear

trend. It has been applied widely to detect aberrant network

behavior [21], [25] for its simplicity. NHWL uses separate

smoothing parameters, α, β (0 < α, β < 1), for the intercept

and the slope updates at time t as follows:

intercept: â1(t) = αxt + (1 − α)
(

â1(t − 1) + b̂2(t − 1)
)

slope: b̂2(t) = β (â1(t) − â1(t − 1)) + (1 − β)b̂2(t − 1)

where the determination of smoothing parameters is left to the

user or application.

Thus, the τ -step ahead linear forecast x̂t(τ) into future

measurements after t is then given by â1(t) + τ b̂2(t), τ =
0, 1, . . .

Double-Exponential-Smoothing based Linear (DESL)

forecast. Another O(1) space and time linear forecast algo-

rithm that uses exponential smoothing is DESL [3]. It has two

major differences from the above two algorithms. First, unlike

NHWL, it has only one single smoothing parameter. Second,

it is shown in [3] that DESL minimizes the weighted sum of

the squared errors, unlike LSEL minimizing the sum of the

squared errors.

Given a smoothing constant α, DESL requires that the

following exponential smoothing statistics St and S
[2]
t are

updated at every sampling period [3]:

St = αxt + (1 − α)St−1

S
[2]
t = αSt + (1 − α)S

[2]
t−1

where the notation S
[2]
t implies double exponential smoothing,

not the square of a single smoothed statistic. Then, the

following relations are known [3]:

intercept: â1(t) = 2St − S
[2]
t

slope: b̂2(t) =
α

1 − α
(St − S

[2]
t)

Equivalently [3]:

slope: b̂2(t) = α (St − St−1) + (1 − α)b̂2(t − 1)

intercept: â1(t) = St +
1 − α

α
b̂2(t).

Note that the slope is first computed in an equivalent form,

which is then used to calculate the intercept.

Thus, the τ -step ahead linear forecast x̂t(τ) into future

measurements after t is then given by â1(t) + τ b̂2(t), τ =
0, 1, . . .

B. The Proposed Linear Forecast Methods

Directly Smoothed Slope based Linear (DSSL) forecast.

DSSL is logical and intuitive, but is not based on sound criteria

like the least square errors or the weighted least square errors.

Recall that in NHWL the estimate of the slope is simply

the smoothed difference between two successive estimates

of the intercept. Similarly, DESL estimates the slope by

calculating the smoothed difference between two successive

smoothed inputs. In some sense, the difference between two

successive estimates in NHWL or DESL can be considered as

an estimate for the instantaneous slope between two successive

measurements in the sampling period.

DSSL extends this interval of instantaneous slope calcula-

tion from between two successive sampling measurements to

between two successive linear segments. In other words, DSSL

estimates the slope by anchoring a base to the intercept of

the current linear trend. Specifically, suppose that the current

linear trend was built at time to with the intercept â1(to).
Then, at any time t after to in the sampling period, a slope

estimate st is defined by

st ,
1

t − to
(xt − â1(to)).

Then, DSSL applies the same update procedures for the

slope and the intercept as in NHWL, except for using st rather

than the successive difference of two intercept estimates:

intercept: â1(t) = αxt + (1 − α)
(

â1(t − 1) + b̂2(t − 1)
)

slope: b̂2(t) = βst + (1 − β)b̂2(t − 1).

Thus, the τ -step ahead linear forecast x̂t(τ) into future

measurements after t is then given by â1(t) + τ b̂2(t), τ =
0, 1, . . .

Directly Averaged Slope based Linear (DASL) forecast.

A common problem with any exponential smoothing system

is that it is difficult to determine an appropriate smoothing

parameter under which a system is expected to yield better

performance. To circumvent such difficulty, DASL uses an-

other incremental relationship using st

intercept: â1(t) = xt

slope: b̂2(t) ,
1

t − to

t
∑

i=to+1

si

= b̂2(t − 1) +
1

t − to
(st − b̂2(t − 1)).

Thus, the τ -step ahead linear forecast x̂t(τ) into future

measurements after t is then given by â1(t) + τ b̂2(t), τ =
0, 1, . . .

C. Intercept correction under the quality metric

All the algorithms described above are susceptible to violate

the L∞ metric constraint, especially when the new intercept

estimate is either above or below the actual measurement

by more than the specified L∞ constraint ε. To avoid this

problem, we set the current measurement xt to the new

intercept estimate, implying that a new linear trend always

starts with the actual measurement that causes the violation of

the specified forecast quality metric. Moreover, we adhere to

the same policy even in the case of using the C∞ metric in

order to make algorithms simple.

V. EVALUATION

We now evaluate the proposed linear forecast methods over

various real-world and synthetic time-series data. Some of data

used in our evaluation are obtained from the following sites.

• The SensorScope [26] which is an indoor wireless sen-

sor network testbed at the EPFL (École Polytechnique

Fédérale de Lausanne) campus. The network currently

consists of around 20 TinyOS mica2 and mica2dot motes,

equipped with a variety of sensor boards such as light,

temperature, and acoustic sensors.

• The tsunami, i.e., tidal waves due to seismic activity,

research program at PMEL (Pacific Marine Environ-

mental Laboratory) of NOAA (National Oceanic and

Atmospheric Administration) [27]. The PMEL tsunami

research program seeks to mitigate tsunami hazards to

Hawaii, California, Oregon, Washington and Alaska. The

program focuses on improving tsunami warning and

mitigation.

TABLE I

STATISTICAL PROPERTIES OF SAMPLES

mean std range msd stdsd

Temperature 553.44 19.37 159.00 0.9431 1.28
Light 359.08 418.56 1023.00 6.3778 45.64
Water-level 1.73 1.32 10.60 0.0077 0.06
Random-walk 254.53 254.37 1160.00 2.5075 1.44

In addition to the above, synthetic random walk time-series

data are generated by the relation: x1 = 20, xt+1 = xt +
U(−5, 5).

A total of 100,000 temperature and light readings are

collected from the SensorScope project during the period of

Nov. 25 through Dec. 31, 2004. As for water-level samples,

the archived measurement data [28] from several sites par-

ticipating in the tsunami research program are used. These

100,000 samples per each category are then grouped into non-

overlapping 200 sub-groups of size 500 samples each.

Figure 2 shows snapshots of 10,000 readings for both real-

world data and synthetic data. Table I summarizes statistical

properties of a total of 100,000 samples used in our evaluation.

The statistics like mean, std, and range are defined as

usual, representing the mean, the standard deviation, and

the range in samples. The msd statistic, short for the mean

successive difference, is defined as
∑n

i=2 |xi −xi−1|/(n−1).
Finally the stdsd statistic represents the standard deviation

of the successive difference between samples.

Using these 500 samples per each group we evaluate our

algorithm and get results on the performance metrics below.

The results are then averaged from 200 independent runs.

• Communication overhead: the number of trend changes

under the user-specified L∞ or C∞ metrics. This mea-

sure is calculated as a fraction of sampling points that

trigger the linear trend change. By definition, this per-

formance measure is directly related to the energy con-

sumption in the communication, a major source of energy

consumption in wireless sensor networks.

• The mean absolute deviation: the accuracy of the

predicted value as compared to the actual value. Notice

that any linear trend fit will be valid and equivalent to

each other as long as it satisfies the user-specified L∞

or C∞ metrics. Nonetheless, a linear trend construction

algorithm minimizing the mean absolute deviation is

preferred in that it can produce a better linear fit to

underlying time series data.

In plotting the performance results, we use the relative

performance since we are interested in deciding which method

is a better fit to the underlying time series. As for the commu-

nication overhead, all the performance results are normalized

with that of NHWL, whereas the tolerance bound ε in unit of

the mean absolute deviation is used for evaluating the relative

performance of the mean absolute deviation per each method.

In addition, in specifying the smoothing parameters for

forecast methods other than LSEL and DASL, we use the

relationship between an exponential smoothing system with

0 2000 4000 6000 8000 10000

500

520

540

560

580

sample

v
a

lu
e

 (
ra

w
)

(a) Temperature

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

sample

v
a

lu
e

 (
ra

w
)

(b) Light

0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

3.5

sample

v
a

lu
e

 (
ra

w
)

(c) Water-level

0 2000 4000 6000 8000 10000

0

100

200

300

400

500

sample

v
a

lu
e

 (
ra

w
)

(d) Random-walk

Fig. 2. Snapshots of time series (raw) data used in our evaluation

a smoothing parameter α and a W -period moving window

system. For instance, making the average age of data in both

system equal gets the following result [3]: α = 2/(W + 1).

A. Communication overhead

Figure 3 shows the relative communication overhead of

all forecast methods, normalized with NHWL, under the L∞

metric. The results are obtained with the parameters W = 2
(LSEL), α = 2/(W + 1) = 0.67 (DSEL, NHWL, DSSL)

and β = 0.67 (NHWL, DSSL). The tolerance bound ε in

the L∞ metric is specified in unit of the integer times the

mean absolute deviation (msd). We leave out any evaluation

result for methods whose relative performance with respect to

NHWL exceeds 150%. For instance, LSEL is not plotted in

Figure 3(a) and Figure 3(c) since its relative performance is

almost always beyond 150% in the two cases evaluated.

From the figure, we can draw the following conclusions.

First, the forecast method based on the linear regression shows

the worst performance in all the cases evaluated, challenging

the adequacy of it as a good forecast method in our context.

Second, NHWL and DESL, when the same single smoothing

parameter is used, show almost the same performance due

to their similarity in the slope estimation. Third, DSSL shows

the best performance in almost all the cases evaluated, making

itself promising for an energy-efficient linear forecast method

in wireless sensor networks. It turns out that the proposed

DSSL and DASL save the communication overhead by up to

50% as compared to NHWL or DESL. Fourth, DASL, without

any hassle of determining smoothing parameter, performs as

good as and even better than DSSL in a particular data set.

Similar results are also observed with the C∞ metric, as

shown in Figure 4. DSSL performs fairly well as compared

to the best method in each data set, contributing up to about

20% energy savings as compared to NHWL. For some method,

the overhead shown in both Figure 3 and Figure 4 appears to

be increasing as the tolerance bound ε gets larger. However,

it does not mean that actual absolute overhead increases

proportionally. Instead, it just shows the relative performance

among the forecast methods.

The evaluation of the communication overhead shows that

the proposed DSSL outperforms the other methods in almost

all data set evaluated, regardless of the quality metric, resulting

in saving more energy up to 20% ∼ 50%. Notice that a

very short-term memory or a way of weighing more recent

measurements is used for the forecasting evaluation in both

figures. However, a long-term memory does not overturn the

conclusion drawn above. This will be shown later in the

sensitivity analysis, where we perform the sensitivity of DSSL

to different smoothing parameters – but the same conclusion

will be drawn as can be seen later.

B. The mean absolute deviation

Any forecast method is equivalent as long as it satisfies the

user-specified L∞ or C∞ metrics. Thus any method described

in the paper will be used as a valid forecast method. However,

it is still worth investigating how good a fit each method

is to underlying time series. Figure 5 and Figure 6 show

evaluation results, measuring the msd of each method with

respect to the input tolerance bound ε. As can be seen in both

figures, all the forecast methods show similar features. Under

the L∞ metric, the msd’s stay between 30%∼40%, whereas

the deviation gets small below 20% under the C∞ metric.

Such difference between under two forecast quality measures

relates to the communication overhead. The more often a trend

change occurs, the closer the forecast is the underlying time

series and the smaller deviation.

C. Sensitivity to the smoothing parameters

Finally, we perform the sensitivity analysis of DSSL to the

smoothing parameters α and β. Note that in the DSSL method

α is used as the intercept smoothing parameter whereas β as

the slope smoothing parameter. Figure 7 and Figure 8 show

evaluation results under the L∞ metric. Another evaluation

was conducted for the C∞ metric, but due to both the space

limit and the similar features, its result is omitted in the paper.

In general, DSSL turns out to be better than NHWL no matter

what combination of the α and β smoothing parameters is

chosen.

Specifically, when experimented with the same α and β, the

result in Figure 7 shows that a short-term memory is sufficient

to get a good forecast method in most cases, except for the

Light readings. When experimented with the constant α and

the varying β, which evaluates the sensitivity of the slope

smoothing only, a short-term memory is better in all the cases.

Recall that a short-term memory in DSSL or NHWL means

that the forecast model is more responsive to recent forecast

errors.

From both figures, it is concluded that DSSL with a short

memory outperforms most of time any other methods inves-

tigated in the paper, in terms of the number of trend chanes

or the number of linear segments produced. This gets us back

to the results in Figure 3 or Figure 4. Since DASL is also

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(a) Temperature

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(b) Light

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

co
m

m
u

n
ic

a
tio

n
 o

ve
rh

e
a

d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(c) Water-level

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(d) Random-walk

Fig. 3. Communication overhead (%, with respect to the NHWL) vs. the specified tolerance error ε (in unit of the integer times msd) under the L∞ metric,
with parameters of W = 2 (LSEL), α = 2/(W + 1) = 0.67 (DSEL, NHWL, DSSL), and β = 0.67 (NHWL, DSSL).

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(a) Temperature

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(b) Light

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

co
m

m
u

n
ic

a
tio

n
 o

ve
rh

e
a

d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(c) Water-level

0 2 4 6 8 10
0

50

100

150

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DESL
NHWL
LSEL
DSSL
DASL

(d) Random-walk

Fig. 4. Communication overhead (%, with respect to the NHWL) vs. the specified tolerance error ε (in unit of the integer times msd) under the C∞ metric,
with parameters of W = 2 (LSEL), α = 2/(W + 1) = 0.67 (DSEL, NHWL, DSSL), and β = 0.67 (NHWL, DSSL).

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(a) Temperature

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(b) Light

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(c) Water-level

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(d) Random-walk

Fig. 5. The mean absolute deviation (%, with respect to the tolerance error) vs. the specified tolerance error ε (in unit of the integer times msd) under L∞

metric with parameters of W = 2 (LSEL), α = 2/(W + 1) = 0.67 (DSEL, NHWL, DSSL), and β = 0.67 (NHWL, DSSL).

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(a) Temperature

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(b) Light

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(c) Water-level

0 2 4 6 8 10
0

10

20

30

40

50

tolerance error (ε)

m
e
a
n
 a

b
so

lu
te

 d
e
vi

a
tio

n
 (

%
) DESL

NHWL
LSEL
DSSL
DASL

(d) Random-walk

Fig. 6. The mean absolute deviation (%, with respect to the tolerance error) vs. the specified tolerance error ε (in unit of the integer times msd) under C∞

metric with parameters of W = 2 (LSEL), α = 2/(W + 1) = 0.67 (DESL, NHWL, DSSL), and β = 0.67 (NHWL, DSSL).

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(a) Temperature

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(b) Light

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(c) Water-level

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(d) Random-walk

Fig. 7. The DSSL communication overhead relative to NHWL vs. the specified tolerance error ε (in unit of the integer times msd) under L∞ metric with
parameters of W = 2, 4, 6, 8 and α = β = 2/(W + 1) = 0.67, 0.40, 0.28, 0.22.

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(a) Temperature

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(b) Light

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(c) Water-level

0 2 4 6 8 10
0

20

40

60

80

100

120

tolerance error (ε)

c
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

DSSL / NHWL,w=2
DSSL / NHWL,w=4
DSSL / NHWL,w=6
DSSL / NHWL,w=8

(d) Random-walk

Fig. 8. The DSSL communication overhead relative to NHWL vs. the specified tolerance error ε (in unit of the integer times msd) under L∞ metric with
parameters of α = 0.67, β = 2/(W + 1) = 0.67, 0.40, 0.28, 0.22.

performing as good as DSSL with a short memory, DASL

can be chosen as an alternative to DSSL without worrying

about the determination of smoothing parameters.

VI. CONCLUSION

In this paper, we proposed energy-efficient, self-adapting,

online linear forecast methods for various wireless sensor

network applications. The proposed methods self-adjust the

model parameters using the forecast errors observed via ex-

perimental measurements, and minimize the number of trend

changes for a given forecast quality metric. Moreover, the

computation involved in the self-adjustment incurs O(1) space

and time overheads, which is critically important for resource-

limited wireless sensors.

An extensive simulation study based on both real-world

and synthetic random walk time-series data shows that the

proposed methods reduce the number of trend changes by

20∼50% compared to the other existing methods. It is also

empirically shown that the performance of forecasting based

on linear regression is not suitable both qualitatively and quan-

titatively, but forecasting based on smoothing techniques can

be general solutions for various sensor network applications.

We plan to augment the TinyDB, a de-facto standard data

aggregation application in the TinyOS-based sensor networks,

with our forecast capability. The augmented TinyDB is then

expected to support both in-network aggregation and data

mining with a more unified framework. We will also design a

robust linear forecast method to combat measurement noises.

Finally, we need to develop a new definition of robust fore-

cast quality metric for various sensor network applications,

especially for data aggregation and mining.

REFERENCES

[1] P. Zarchan and H. Musoff, “Fundamentals of kalman filtering: A
practical approach,” AIAA (American Institute of Aeronautics and
Astronautics, 2000.

[2] J. LaViola, “Double exponential smoothing: an alternative to kalman
filter-based predictive tracking,” in International Immersive projection
technologies workshop, 2003.

[3] D. C. Montgomery, L. A. Johnson, and J. S. Gardiner, “Forecasting and
time series analysis,” 2nd Edition, McGraw-Hill Book Company, 1990.

[4] E. Keogh and M. Pazzani, “An enhanced representation of time series
which allows fast and accurate classification, clustering and relevance
feedback,” in Fourth International Conference on Knowledge Discovery
and Data Mining (KDD’98).

[5] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani, “An online algorithm
for segmenting time series,” in Proceedings of the IEEE International
Conference on Data Mining (ICDM’01).

[6] T. P. Themis, “Online amnesic approximation of streaming time series,”
in International Conference on Data Engineering, 2004.

[7] S. Maden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networks,” in Symposium on
Operating System Design and Implementation, Dec. 2002.

[8] C. Olston, B. T. Loo, and J. Widom, “Adaptive precision setting for
cached approximate values,” in Proceedings of the 2001 ACM SIGMOD
international conference on Management of data (SIGMOD ’01).

[9] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous
queries over distributed data streams,” in Proceedings of the 2003 ACM
SIGMOD international conference on Management of data (SIGMOD
’03).

[10] X. Yu, S. Mehrotra, N. Venkatasubramanian, and W. Yang,
“Approximate monitoring in wireless sensor networks,”
http://www.ics.uci.edu/ xyu/pub/aggXYU.pdf.

[11] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Hierarchical in-
network data aggregation with quality guarantees,” in Proceedings of
the 9th International Conference on Extending DataBase Technology
(EDBT), March 2004.

[12] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for moni-
toring wireless sensor networks,” in Proceedings of the IEEE SNPA’03,
2003.

[13] E. Keogh and P. Smyth, “A probabilistic approach to fast pattern
matching in time series databases,” in Third International Conference
on Knowledge Discovery and Data Mining, 1997.

[14] E. J. Keogh, “Fast similarity search in the presence of longitudinal
scaling in time series databases,” in ICTAI, 1997, pp. 578–584.

[15] Y. Yao and J. Gehrke, “Query processing in sensor networks,” in 1st
Biennial Conference Inovative Data System Research (CIDR). ACM
Press, 2003.

[16] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery (DMKD ’03).

[17] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally adap-
tive dimensionality reduction for indexing large time series databases,”
in Proceedings of the 2001 ACM SIGMOD international conference on
Management of data.

[18] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-dimensional
regresssion analsis of time-series data streams,” in Proc. of the 28th

VLDB Conference, Oct. 2002.
[19] I. Lazaridis and S. Mehrotra, “Capturing sensor-generated time series

with quality guarantees,” in IEEE International Conference on Data
Engineering, 2003.

[20] S. Charbonnier, G. Becq, and L. Biot, “On-line segmentation algorithm
for continuously monitored data in intensive care units,” in IEEE
Transactions on Biomedical Engineering, March 2004, pp. 484–492.

[21] J. D. Brutlag, “Aberrant behavior detection in time series data for
network monitoring,” in Proceedings of the 14th USENIX Systems
Administration Conference (LISA), 2000.

[22] D. M. Hawkins and D. H. Olwell, “Cumulative sum charts and charting
for quality improvement,” Springer, 1997.

[23] CodeBlue, “Wireless sensor networks for medical care,”
http://www.eecs.harvard.edu/ mdw/proj/codeblue/.

[24] P. Broackwell and R. Davis, “Introduction to time series and forecast-
ing,” Springer, 1996.

[25] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement (IMC ’03).

[26] EPFL, “The sensorscope project,” http://sensorscope.epfl.ch/.
[27] NOAA, “The tsunami research program,”

http://www.pmel.noaa.gov/tsunami.
[28] ——, “Tsunami events and data,” http:// www.pmel.noaa.gov /ftp

/tsunami /database /t20030925hokkaido /nos.

