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ABSTRACT

Disk performance is increasingly limited by its head positioning
latencies, i.e., seek time and rotational delay. To reduce the head
positioning latencies, we propose a novel technique that dynami-
cally places copies of data in file system’s free blocks according to
the disk access patterns observed at runtime. As one or more repli-
cas can now be accessed in addition to their original data block,
choosing the “nearest” replica that provides fastest access can sig-
nificantly improve performance for disk 1/O operations.

We implemented and evaluated a prototype based on the popu-
lar Ext2 file system. In our prototype, since the file system layout
is modified only by using the free/unused disk space (hence the
name Free Space File System, or FS2), users are completely obliv-
ious to how the file system layout is modified in the background;
they will only notice performance improvements over time. For
a wide range of workloads running under Linux, FS? is shown
to reduce disk access time by 41-68% (as a result of a 37-78%
shorter seek time and a 31-68% shorter rotational delay) making
a 16-34% overall user-perceived performance improvement. The
reduced disk access time also leads to a 40-71% energy savings
per access.
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1. INTRODUCTION

Various aspects of magnetic disk technology, such as recording
density, cost and reliability, have been significantly improved over
the years. However, due to the slowly-improving mechanical po-
sitioning components (i.e., arm assembly and rotating platters) of
the disk, its performance is falling behind the rest of the system
and has become a major bottleneck to overall system performance.

To reduce these mechanical delays, traditional file systems tend
to place objects that are likely to be accessed together so that they
are close to one another on the disk. For example, BSD UNIX
Fast File System (FFS) [12] uses the concept of cylinder group
(one or more physically-adjacent cylinders) to cluster related data
blocks and their meta-data together. For some workloads, this can
significantly improve both disk latency and throughput. Unfortu-
nately, for many other workloads in which the disk access pattern
deviates from that assumed by the file system, file system perfor-
mance can significantly degrade. This problem occurs because
the file system is unable to take into account of runtime access
patterns when making disk layout decisions. This inability to use
the observed disk access patterns for data placement decisions of
the file system will lead to poor disk utilization.

1.1 Motivating Example

Using a simple example, we now show how traditional file sys-
tems can sometimes perform poorly even for common workloads.
In this example, we monitored disk accesses during the execution
of a CVS update command in a local CVS directory containing
the Linux 2.6.7 kernel source tree. As Figure 1(a) shows, almost
all accesses are concentrated in two narrow regions of the disk,
corresponding to the locations at which the local CVS directory
and the central CVS repository are placed by the file system on
the disk. By observing file directory structures, the file system
is shown to do well in clustering files that are statically-related.
Unfortunately, when accesses to files from multiple regions are
interleaved, the disk head has to move back and forth constantly
between the different regions (as shown in Figure 1(b)), result-
ing in poor disk performance in spite of previously-known efforts
made for reasonable placements. Consequently, users will expe-
rience longer delays and disks will consume more energy. In our
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experiment, the CVS update command took 33 seconds to com-
plete on an Ext2 file system with an anticipatory 1/0 scheduler. By
managing the disk layout dynamically, the update command took
only 22 seconds to complete in our implementation of FS2.
Traditional file systems perform well for most types of work-

263



1.5e+08 |- Disk Sector Accessed  + 7
9]
Ko} + ¥
1S 1e+08 B
5
Z +
S
kst S
8 N
w P +
] 5e+07 |- B
[a) .

0 1 1 |
0 10000 20000 30000 40000
Runtime (msec)
(@)

1.5e+08 [ pisk Head Movement ——— I 7
@
Qo
£ le+08 —
>
z
o)
O
5]
n
% 5e+07 s
a
0 1 1 1 1
8000 8200 8400 8600 8800 9000
Runtime (msec)
(b)

Figure 1: Part (a) shows disk sectors that were accessed when executing a cvs -q update command within a CVS local directory
containing the Linux 2.6.7 source code. Part (b) shows the disk head movement within a 1-second window of the disk trace shown

in part (a).

loads and not so well for others. We must, therefore, be able to
first identify the types of workloads and environments that tradi-
tional file systems generally perform poorly (listed below), and
then develop good performance-improving solutions for them.

Shared systems: File servers, mail servers, and web servers are
all examples of a shared system, on which multiple users
are allowed to work and consume system resources inde-
pendently of each other. Problems arise when multiple users
are concurrently accessing the storage system (whether it is
asingle disk or an array of disks). As far as the file system is
concerned, files of one particular user are completely inde-
pendent of those of other users, and therefore, are unlikely
to be stored close to those of other users on disk. Thus,
having concurrent disk accesses made by different users
can potentially cause the storage system to become heav-
ily multiplexed (therefore less efficiently utilized) between
several statically-unrelated, and potentially-distant, disk re-
gions. A PC is also a shared system with similar problems;
its disk, instead of being shared among multiple users, is
shared among concurrently-executing processes.

Database systems: In database systems, data and data indices are
often stored as large files on top of existing file systems.
However, as file systems are well-known to be inefficient in
storing large files when they are not sequentially accessed
(e.g., transaction processing), performance can be severely
limited by the underlying file system. Therefore, for many
commercial database systems [15, 22], they often manage
disk layout themselves to achieve better performance. How-
ever, this increases complexity considerably in their imple-
mentation. For this reason, many database systems [31, 40,
15, 22] still rely on file systems for data storage and re-
trieval.

Systems using shared libraries: Shared libraries have been used
extensively by most OSs as they can significantly reduce the
size of executable binaries on disk and in memory [32]. As
large applications are increasingly dependent on shared li-
braries, placing shared libraries closer to application images
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on disk can result in a smaller load time. However, since
multiple applications can share the same set of libraries, de-
termining where on disk to place these shared libraries can
be problematic for existing file systems as positioning a li-
brary closer to one application may increase its distance to
others that make use of it.

1.2 Dynamic Management of Disk Layout

Many components of an operating system—those responsible
for networking, memory management, and CPU scheduling—will
re-tune their internal policies/algorithms as system state changes
so they can most efficiently utilize available resources. Yet, the
file system, which is responsible for managing a slow hardware
device, is often allowed to operate inefficiently for the entire life
span of the system, relying only on very simple heuristics based
on static information. We argue, like other parts of an OS, the file
system should also have its own runtime component. This allows
the file system to detect and compensate for any poorly-placed
data blocks. To achieve this, various schemes [36, 44, 2, 16] have
been proposed in the past. Unfortunately, there are several major
drawbacks with these schemes, which limited their usefulness to
be mostly within the research community. Below, we summarize
these drawbacks and discuss our solutions.

e In previous approaches, when disk layout is modified to im-
prove performance, the most frequently-accessed data are
always shuffled toward the middle of the disk. However, as
frequently-accessed data may change over time, this would
require re-shuffling the layout every time the disk access
pattern changes. We will show later that this re-shuffling
is actually unnecessary in the presence of good reference
locality and merely incurs additional migration overheads
without any benefit. Instead, blocks should be rearranged
only when they are accessed together but lack spatial lo-
cality, i.e., those that cause long seeks and long rotational
delays between accesses. This can significantly reduce the
number of replications we need to perform to effectively
modify disk layout.

When blocks are moved from their original locations they
may lose useful data sequentiality. Instead, blocks should



be replicated so as to improve both random and sequen-
tial accesses. Improving performance for one workload
at the expense of another is something we would like to
avoid. However, replication consumes additional disk ca-
pacity and introduces complexities in maintaining consis-
tency between original disk blocks and their replicas. These
issues will be addressed in the next section.

Using only a narrow region in the middle of the disk to re-
arrange disk layout is not always practical if the rearrange-
ment is to be done online, because interference with fore-
ground tasks has to be considered. Interference can be sig-
nificant when foreground tasks are accessing disk regions
that are far away from the middle region. We will demon-
strate ways to minimize this interference by using the free
disk space near current disk head position.

Some previous techniques reserve a fixed amount of stor-
age capacity just for rearranging disk layout. This is in-
trusive, as users can no longer utilize the full capacity of
their disk. By contrast, using only free disk space is com-
pletely transparent to users, and instead of being wasted,
free disk space can now be utilized to our benefit. To hide
from users the fact that some of their disk capacity is being
used to hold replicas, we need to invalidate and free repli-
cated blocks quickly when disk capacity becomes limited.
As the amount of free disk space can vary, this technique
provides a variable quality of service, where the degree of
performance improvement we can achieve depends on the
amount of free disk space that is available. However, em-
pirical evidence shows that plenty of free disk space can be
found in today’s computer systems, so this is rarely a prob-
lem.

Most of previous work is either purely theoretical or based
on trace analysis. We implemented a real system and
evaluated it using both server-type workloads and com-
mon day-to-day single-user workloads, demonstrating sig-
nificant benefits of using FS2.

Reducing disk head positioning latencies can make a significant
impact on disk performance. This is illustrated in Figure 2, where
the disk access time of 4 different disk drives is broken down to
various components: transfer time, seek time, and rotational de-
lay. This figure shows that transfer time—the only time during
which disk is doing useful work—is dwarfed by seek time and
rotational delay. In a random disk workload (as shown in this fig-
ure), seek time is by far the most dominating component in a disk
access. However, the rotational delay will become the dominating
component when the disk access locality reaches 70% (Lumb et
al. [28] studied this in detail). In addition to improving perfor-
mance, reduction in seek time (distance) also saves energy as disk
dissipates a substantial amount of power when seeking (i.e., when
accelerating and decelerating disk heads at 30-400).

The rest of the paper is organized as follows. Section 2 gives
an overview of our system design. Section 3 discusses implemen-
tation details of our prototype based on the Ext2 file system. Sec-
tion 4 presents and analyzes experimental results of FS? and com-
pares it with Ext2. Related work is discussed in Section 5. Future
research directions are discussed in Section 6, and the paper con-
cludes with Section 7.
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Figure 2: Breakdown of the disk access time in 4 drives, rang-
ing from a top-of-the-line 15000-RPM SCSI drive to a slow
5400-RPM IDE laptop drive.

2. DESIGN

This section details the design of FS? on a single-disk system.
Most techniques used in building FS? on a single-disk system can
be directly applied to a disk array (e.g., RAID), yielding a per-
formance improvement similar to that can be achieved on a sin-
gle disk (in addition to the performance improvements that can
be achieved by using RAID). More on this will be discussed in
Section 6.

FS? differs from other dynamic disk layout techniques due
mainly to its exploitation of free disk space, which has a profound
impact on our design and implementation decisions. In the next
section, we first characterize the availability of free disk space in
a large university computing environment and then describe how
free disk space can be exploited. Details on how to choose can-
didate blocks to replicate and how to use free disk space to fa-
cilitate the replication of these blocks are given in the following
section. Then, we describe the mechanisms we used to keep track
of replicas both in memory and on disk so that we can quickly find
all alternative locations where data is stored, and then choose the
“nearest” one that can be accessed fastest.

2.1 Availability of Free Disk Space

Due to the rapid increase in disk recording density, much larger
disks can be built with a fewer number of platters, reducing their
manufacturing cost significantly. With bigger and cheaper disks
being widely available, we are much less constrained by disk ca-
pacity, and hence, are much more likely to leave a significant por-
tion of our disk unused. This is shown from our study of the 242
disks installed on the 22 public servers maintained by the Univer-
sity of Michigan’s EECS Department in April 2004. The amount
of unused capacity that we have found on these disks is shown
in Figure 3. As we have expected, most disks had a substantial
amount of unused space—60% of the disks had more than 30%
unused capacity, and almost all the disks had at least 10% unused
capacity. Furthermore, as file systems may reserve additional disk
space for emergency/administrative use, which we did not account
for in this study, our observation only gives a lower bound of how
much free disk space there really is.

Our observation is consistent with the study done by Douceur
et al.[9] who reported an average use of only 53% of disk space
among 4801 Windows personal computers in a commercial envi-
ronment. This is a significant waste of resource because, when
disk space is not being used, it usually contributes nothing to
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Figure 3: This figure shows the amount of free disk space on 242 disks from 22 public server machines.

users/applications. So, we argue that free disk space can be used
to dynamically change disk layout so as to increase disk /O per-
formance.

Free disk space is commonly maintained by file systems as a
large pool of contiguous blocks to facilitate block allocation re-
quests. This makes the use of free disk space attractive for several
reasons. First, the availability of these large contiguous regions
allows discontiguous disk blocks which are frequently accessed
together, to be replicated and aggregated efficiently using large se-
quential writes. By preserving replicas’ adjacency on disk accord-
ing to the order in which their originals were accessed at runtime,
future accesses to these blocks will be made significantly faster.
Second, contiguous regions of free disk blocks can usually be
found throughout the entire disk, allowing us to place replicas to
the location closest to the current disk head’s position. This min-
imizes head positioning latencies when replicating data, and only
minimally affects the performance of foreground tasks. Third, us-
ing free disk space to hold replicas allows them to be quickly in-
validated and then their space to be converted back to free disk
space whenever disk capacity becomes tight. Therefore, users can
be completely oblivious to how the “free” disk capacity is used,
and will only notice performance improvements when more free
disk space becomes available.

However, the use of free disk space to hold replicas is not with-
out costs. First, as multiple copies of data may be kept, we will
have to keep data and their replicas consistent. Synchronization
can severely degrade performance if for each write operation, we
have to perform additional writes (possibly multiple) to keep all
its replicas consistent. Second, when the user demands more disk
space, replicas should be quickly invalidated and their occupied
disk space returned to the file system so as to minimize user-
perceived delays. However, as this would undo some of the work
done previously, we should try to avoid it, if possible. Moreover,
as the amount of free disk space can vary over time, deciding how
to make use of the available free disk space is also important, espe-
cially when there is only a small amount of free space left. These
issues will be addressed in the following subsections.
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Figure 4: Files are accessed in the order of 0, 1, and 2. Due to
the long inter-file distance between File 1 and the other files,
long seeks would result if accesses to these files are interleaved.
In the bottom figure, we show how the seek distance (time)
could be reduced when File 1 is replicated using the free disk
space near the other two files.

2.2 Block Replication

We now discuss how to choose which blocks to replicate so as
to maximize the improvement of disk 1/0 performance. We start
with an example shown in Figure 4, describing a simple scenario
where three files—0, 1, and 2—are accessed, in that order. One
can imagine that Files 0 and 2 are binary executables of an ap-
plication, and File 1 is a shared library, and therefore, may be
placed far away from the other two files, as shown in Figure 4.
One can easily observe that File 1 is placed poorly if it is to be
frequently accessed together with the other two files. If the files
are accessed sequentially, where each file is accessed completely
before the next, the overhead of seeking is minimal as it would
only result in two long seeks—one from 0 to 1 and another from
1 to 2. However, if the accesses to the files are interleaved, per-
formance will degrade severely as many more long-distant seeks
would result. To improve performance, one can try to reduce the
seek distance between the files by replicating File 1 closer to the
other two as shown in the bottom part of Figure 4. Replicating
File 1 also reduces rotational delay when its meta-data and data
are placed onto the disk consecutively according to the order in



which they were accessed. This is illustrated in Figure 5. Reduc-
ing rotational delay in some workloads (i.e., those already with
a high degree of disk access locality) can be more effective than
reducing seek time in improving disk performance.

DB
Dup Dup
Data0 | Data1

A
Dup File1

Figure 5: This figure shows a more detailed disk layout of File
1 shown in Figure 4. As file systems tend to place data and
their meta-data (and also related data blocks) close to one an-
other, intra-file seek distance (time) is usually short. However,
as these disk blocks do not necessarily have to be consecutive,
rotational delay will become a more important factor. In the
lower portion of the figure, we show how rotational delay can
be reduced by replicating File 1 and placing its meta-data and
data in the order that they were accessed at runtime.
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In real systems, the disk access pattern is more complicated than
that shown in the above examples. The examples are mainly to
provide an intuition for how seek time and rotational delay can be
reduced via replication. We present more practical heuristics used
in our implementation in Section 3.

2.3 Keeping Track of Replicas

To benefit from replication of disk blocks, we must be able
to find them quickly and decide whether it is more beneficial to
access these replicas or their original. This is accomplished by
keeping a hash table in memory as shown in Figure 6. It occupies
only a small amount of memory: assuming 4KB file system data
blocks, a 4MB hash table suffices to keep track of 1GB of replicas
on disk. As most of today’s computer systems have hundreds of
megabytes of memory or more, it is usually not a problem to keep
all the hash entries in memory. For each hash entry, we maintain
4 pieces of information: the location of the original block, the lo-
cation of its replica, the time when the replica was last accessed,
and the number of times that the replica was accessed. When free
disk space drops below a low watermark (at 10%), the last two
items are used to find and invalidate replicas that have not been
frequently accessed and were not recently used. At this point,
we suspend the replication process. It is resumed only when a
high watermark (at 15%) is reached. We also define a critical
watermark (at 5%), which triggers a large number of replicas to
be invalidated in a batched fashion so a contiguous range of disk
blocks can be quickly released to users. This is done by group-
ing hash entries of replicas that are close to one another on disk
so that they are also close to one another in memory, as shown
in Figure 6. When the number of free disk blocks drops below
the critical watermark, we simply invalidate all the replicas of an
entire disk region, one region at a time, until the number of free
disk blocks is above the low watermark or when there are no more
replicas. During the process, we could have potentially invali-

dated more valuable replicas and kept less valuable ones. This is
acceptable since our primary concern under such a condition is to
provide users with the needed disk capacity as quickly as possible.

Given that we can find replicas quickly using the hash table, de-
ciding whether to use an original disk block or one of its replicas
is as simple as finding the one closest to the current disk head lo-
cation. The location of the disk head can be predicted by keeping
track of the last disk block that was accessed in the block device
driver.

As aresult of replication, there may be multiple copies of a data
block placed at different locations on disk. Therefore, if the data
block is modified, we need to ensure that all of its replicas remain
consistent. This can be accomplished by either updating or inval-
idating the replicas. In the former (updating) option, modifying
multiple disk blocks when a single block is modified can be ex-
pensive. Not only it generates more disk traffic, but it also incurs
synchronization overheads. Therefore, we chose the latter option
because both block invalidation and block replication can be done
cheaply and in the background.
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Figure 6: A detailed view of the hash data structure used to
keep track of replicas. Hashing is used to speed up the lookup
of replicas. Replicas that are close to one another on disk also
have their hash entries close to one another in memory, so a
contiguous range of replicas can be quickly invalidated and
released to users when needed.

3. PROTOTYPE

Our implementation of FS? is based on the Ext2 file system [4].
In our implementation, the functionality of Ext2 is minimally al-
tered. It is modified mainly to keep track of replicas and to main-
tain data consistency. The low-level tasks of monitoring disk ac-
cesses, scheduling 1/Os between original and replicated blocks,
and replicating data blocks are delegated to the lower-level block
device driver. Implementation details of that in the block device
driver and the file system are discussed in Section 3.1 and Sec-
tion 3.2, respectively. Section 3.3 describes some of the user-level
tools we developed to help users manage the FS? file system.

3.1 Block Device Implementation

Before disk requests are sent to the block device driver to be
serviced, they are first placed onto an 1/0 scheduler queue, where



they are queued, merged, and rearranged so the disk may be bet-
ter utilized. Currently, the Linux 2.6 kernel supports multiple 1/0
schedulers that can be selected at boot time. It is still highly de-
batable which 1/0 scheduler performs best, but for workloads that
are highly parallel in disk 1/Os, the anticipatory scheduler [23] is
clearly the winner. Therefore, it is used in both the base Ext2 file
system and our FS? file system to make a fair comparison.

In our implementation, the anticipatory 1/0O scheduler is slightly
modified so a replica can be accessed in place of its original if the
replica can be accessed faster. A disk request is represented by a
starting sector number, the size of the request, and the type of the
request (read or write). For each read request (write requests are
treated differently) that the 1/0 scheduler passes to the block de-
vice driver, we examine each of the disk blocks within the request.
There are several different cases we must consider. In the simplest
case, where none of the blocks have replicas, we have no choice
but to access the original blocks. In the case where all disk blocks
within a request have replicas, we access the replicas instead of
their originals when (i) the replicas are physically contiguous on
disk, and (ii) they are closer to the current disk head’s location
than their originals. If both criteria are met, to access the repli-
cas instead of their originals, we would need to modify only the
starting block number of that disk request. If only a subset of the
blocks has replicas, they should not be used as it would break up
a single disk request into multiple ones, and in most cases, would
take more time. For write accesses, replicas of modified blocks
are simply invalidated, as it was explained in Section 2.3.

Aside from scheduling 1/0s between original and replicated
blocks, the block device driver is also responsible for monitoring
disk accesses so it can decide which blocks we should replicate
and where the replicas should be placed on disk. We first show
how to decide which blocks should be replicated. As mentioned
earlier, good candidates are not necessarily frequently-accessed
disk blocks, but rather, temporally-related blocks that lack good
spatial locality. However, it is unnecessary to replicate all the
candidate blocks. This was illustrated previously by the exam-
ple shown in Figure 4. Instead of replicating all three files, it is
sufficient to replicate only File 1—we would like to do a min-
imal amount of work to reduce mechanical movements. To do
so, we first find a hot region on disk. A hot region is defined as
a small area on disk where the disk head has been most active,
and it can change from time to time as workload changes. To
minimize disk head positioning latencies, we would like to keep
the disk head from moving outside of the hot region. This is ac-
complished by replicating outside disk blocks that are frequently
accessed together with blocks within the hot region and placing
them there, if possible. This allows similar disk access patterns to
be serviced much faster in future; we achieve shorter seek times
due to shorter seek distances and smaller rotational delays because
replicas are laid out on disk in the same order that they were pre-
viously accessed. In our implementation, we divide a disk into
multiple regions,* and for each we count the number of times the
blocks within the region have been accessed. From the reference
count of each disk region, we can approximately locate where the
disk head has been most active. This is only an approximation
because (i) some disk blocks can be directly accessed from/to the
on-disk cache, thus not involving any mechanical movements, and

!For convenience, we simply define a region to be a multiple of
Ext2 block groups.
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(ii) some read accesses can trigger 2 seek operations if it causes
a cache entry conflict and that the cache entry is dirty. However,
in the disk traces collected from running various workloads (de-
scribed in Section 4), we found this heuristic to be sufficient for
our purpose.

Although the block device driver can easily locate the hot re-
gion on disk and find candidate blocks to replicate, it cannot per-
form replication by itself because it cannot determine how much
free disk space there is, nor can it decide which blocks are free and
which are in use. Implicit detection of data liveness from the block
device level was shown by Sivathanu et al. [13] to be impossible
in the Ext2 file system. Therefore, replication requests are for-
warded from the block device driver to the file system, where free
disk space to hold replicas can be easily located. Contiguous free
disk space is used if possible, so that the replicated blocks can be
written sequentially to disk. Furthermore, since disk blocks can
be replicated more efficiently to regions with more free space, we
place more weight on these regions when deciding where to place
replicas.

3.2 File System Implementation

Ext2 is a direct descendant of BSD UNIX FFS [12], and is com-
monly chosen as the default file system by many Linux distribu-
tions. Ext2 splits a disk into one or more block groups, each of
which contains its own set of inodes (meta-data) and data blocks
to enhance data locality and fault-tolerance. More recently, jour-
naling capability was added to Ext2, to produce the Ext3 file sys-
tem [43], which is backward-compatible to Ext2. We could have
easily based our implementation on other file systems, but we
chose Ext2 because it is the most popular file system used in to-
day’s Linux systems. As with Ext3, FS? is backward-compatible
with Ext2.

First, we modified Ext2 so it can assist the block device driver
to find free disk space near the current disk head’s location to
place replicas. As free disk space of each Ext2 block group is
maintained by a bitmap, large regions of free disk space can be
easily found. We also modified Ext2 to assist the block device
driver in maintaining data consistency. In Section 3.1, we dis-
cussed how data consistency is maintained for write accesses in
the block device level. However, not all data consistency issues
can be observed and addressed in the block device level. For ex-
ample, when a disk block with one or more replicas is deleted or
truncated from a file, all of its replicas should also be invalidated
and released. As the block device driver is completely unaware
of block deallocations, we modified the file system to explicitly
inform the block device driver of such an event so it can invalidate
these replicas and remove them from the hash table.

To allow replicas to persist across restarts, we flush the in-
memory hash table to the disk when system shuts down. When the
system starts up again, the hash table is read back into the mem-
ory. We keep the hash table as a regular Ext2 file using a reserved
inode #9 so it cannot be accessed by regular users. To minimize
the possibility of data inconsistency that may result from a sys-
tem crash, we flush any modified hash entries to disk periodically.
We developed a set of user-level tools (discussed in Section 3.3)
to restore the FS? file system back to a consistent state when data
consistency is compromised after a crash. An alternative solution
is to keep the hash table in flash memory. Flash memory pro-
vides a persistent storage medium with low-latency so the hash
table can be kept consistent even when the system unexpectedly



crashes. Given that the size of today’s flash memory devices usu-
ally ranges between a few hundred megabytes to tens of gigabytes,
the hash table can be easily stored.

Ext2 is also modified to monitor the amount of free disk space
to prevent replication from interfering with user’s normal file sys-
tem operations. We defined a high (15%), a low (10%), and a crit-
ical (5%) watermark to monitor the amount unused disk space and
to respond with appropriate actions when a watermark is reached.
For instance, when the amount of free disk space drops below the
low watermark, we will start reclaiming disk space by invalidating
replicas that have been used neither recently nor frequently. If the
amount of free disk space drops below the critical watermark, we
start batching invalidations for entire disk regions as described in
Section 2.3. Moreover, replication is suspended when the amount
of free disk space drops below the low watermark, and it is re-
sumed only when the high watermark is reached again.

3.3 User-level Tools

We created a set of user-level tools to help system administra-
tors manage the file system. mkfs2 is used to convert an existing
Ext2 file system to an FS? file system, and vice versa. Normally,
this operation takes less than 10 seconds. Once an FS? file sys-
tem is created and mounted, it will automatically start monitor-
ing disk traffic and replicating data on its own. However, users
with higher-level knowledge about workload characteristics can
also help make replication decisions by asking mkfs2 to statically
replicate a set of disk blocks to a specified location on disk. It
gives users a knob to manually tune how free disk space should be
used.

As mentioned earlier, a file system may crash, resulting in data
inconsistency. During system startup, the tool chkfs2 restores the
file system to a consistent state if it detects that the file system was
not cleanly unmounted, similarly to what Ext2’s e2fsck tool does.
The time to restore an FS? file system back to a consistent state is
only slightly longer than that of Ext2, and depends on the number
of replicas in the file system.

4. EXPERIMENTAL EVALUATION

We now evaluate FS? under some realistic workloads. By
dynamically modifying disk layout according to the disk access
pattern observed at runtime, seek time and rotational delay are
shown to be reduced significantly, which translates to a substantial
amount of performance improvement and energy savings. Sec-
tion 4.1 describes our experimental setup and Section 4.2 details
our evaluation methodology. Experimental results of each work-
load are discussed in each of the subsequent subsections.

4.1 Experimental Setup

Our testbed is set up as shown in Figure 7. The IDE device
driver on the testing machine is instrumented, so all of its disk ac-
tivities are sent via netconsole to the monitoring machine, where
the activities are recorded. We used separate network cards for
running workloads and for collecting disk traces to minimize in-
terference. System configuration of the testing machine and a de-
tailed specification of its disk are provided in Table 1.

Several stress tests were performed to ensure that the system
performance is not significantly affected by using netconsole to
collect disk traces. We found that the performance was degraded
by 5% in the worst case. For common workloads, performance is
usually minimally affected. For example, the time to compile a
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Figure 7: The testbed consists a testing machine for run-
ning workloads and a monitoring machine for collecting disk
traces. Each machine is equipped with 2 Ethernet cards—one
for running workloads and one for collecting disk traces using
netconsole.

Linux 2.6.7 kernel source code was not impacted at all by record-
ing disk activities via netconsole. Therefore, we believe our trac-
ing mechanism had only a negligible effect on the experimental
results.

4.2 Evaluation Methodology

For each request in a disk trace, we recorded its start and end
times, the starting sector number, the number of sectors requested,
and whether it is a read or a write access. The interval between the
start and end times is the disk access time, denoted by T4, which
is defined as:

714 = 7; + 11“% 1}7

where T’ is the seek time, T’ is the rotational delay, and T3 is
the transfer time. Decomposing T4 is necessary for us to under-
stand the implications of FS? on each of these components. If the
physical geometry of the disk is known (e.g., number of platters,
number of cylinders, number of zones, sector per track, etc.), this
can be easily accomplished with the information that was logged.
Unfortunately, due to increasingly complex hard drive designs and
fiercer market competition, disk manufacturers are no longer dis-
closing such information to the public. They present only a logical

[ Components | Specification |
CPU Athlon 1.343 GHz
Memory 512MB DDR2700
Network cards 2x3COM 100-Mbps
Disk Western Digital

Bus interface IDE
Capacity 78.15 GB
Rotational speed 7200 RPM
Average seek time 9.9 ms
Track-to-track seek time 2.0 ms
Full-stroke seek time 21ms
Average rotational delay 4.16 ms
Average startup power 17.0wW
Average read/write/idle power 80w
Average seek power 140W

Table 1: System specification of the testing machine.



view of the disk, which, unfortunately, bears no resemblance to
the actual physical geometry; it provides just enough information
to allow BIOS and drivers to function correctly. As a result, it is
difficult to decompose a disk access into its different components.
Various tools [37, 42, 14, 1] have been implemented to extract
the physical disk geometry experimentally, which usually takes a
very long time. Using the same empirical approach, we show that
a disk can be characterized in seconds for us to accurately decom-
pose T4 into its various components.
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Figure 8: This figure shows logical seek distance versus access
time for a Western Digital SE 80GB 7200 RPM drive. Each
point in the graph represents a recorded disk access.

Using the same experimental setup as described previously, a
random disk trace is recorded from the testing machine. From
this trace, we observed a clear relationship between logical seek
distance (i.e., the distance between consecutive disk requests in
unit of sectors) and T'a, which is shown in Figure 8. The vertical
band in this figure is an artifact of the rotational delay’s variabil-
ity, which, for a 7200 RPM disk, can vary between 0 and 8.33
msec (exactly the height of this band). A closer examination of
this figure reveals an irregular bump in the disk access time when
seek distance is small. This bump appears to reflect the fact that
the seek distance is measured in number of sectors, but the num-
ber of sectors per track can vary significantly from the innermost
cylinder to the outermost cylinder. Thus, the same logical distance
can translate to different physical distances, and this effect is more
pronounced when the logical seek distance is small.

As T4 is composed of T, T, and T%, by removing the variation
caused by T;., we are left with the sum of Ts and T3, which is
represented by the lower envelope of the band shown in Figure 8.
As T; is negligible compared to T’ for a random workload (shown
previously in Figure 2), the lower envelope essentially represents
the seek profile curve of this disk. This is similar to the seek profile
curve, in which, the seek distance is measured in the number of
cylinders (physical distance) as opposed to the number of sectors
(logical distance). As shown in Figure 8, the seek time is usually
linearly related to the seek distance, but for very short distances,
it can be approximated as a third order polynomial equation. We
observed that for a seek distance of x sectors, T’ (in unit of msec)
can be expressed as:

7.~ {

8E-21z3 — 2E-1322% 4+ 1E-6z + 1.35

9E-8x + 4.16 otherwise.
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As seek distance can be calculated by taking the difference be-
tween the starting sector numbers of consecutive disk requests,
seek time, T, can be easily computed from the above equation.
With the knowledge of T, we only have to find either 7' or T} to
completely decompose T'4. We found it easier to derive T} than
T,. To derive T}, we first measured the effective 1/0 bandwidth
for each of the bit recording zones on the disk using large sequen-
tial 1/Os (i.e., so we can eliminate seek and rotational delays). For
example, on the outer-most zone, the disk’s effective bandwidth
was measured to be 54 MB/sec. With each sector being 512 bytes
long, it would take 9.0 pusec to transfer a single sector from this
zone. From a disk trace, we know exactly how many sectors are
accessed in each disk request, and therefore, the transfer time of
each can be easily calculated by multiplying the number of sec-
tors in the request by the per-sector transfer time. Once we have
both T, and T, we can trivially derive T’.. Due to disk caching,
some disk accesses will have an access time below the seek profile
curve, in which case, since there is no mechanical movement, we
treat all of their access time as transfer time.

The energy consumed to service a disk request, denoted as F 4,
can be calculated from the values of T, T’ and T; as:

EA:TSXPS+(TT+Tt)><Pi7

where P; is the average seek power and P; is the average
idle/read/write power (shown in Table 1). The total energy con-
sumed by a disk can be calculated by adding the sums of all E4’s
to the idle energy consumed by the disk.

4.3 The TPC-W Benchmark

The TPC-W benchmark [5], specified by the Transaction Pro-
cessing Council (TPC), is a transactional web benchmark that sim-
ulates an E-commerce environment. Customers browse and pur-
chase products from a web site composed of multiple servers in-
cluding an application server, a web server and a database server.
In our experiment, we ran a MySQL database server and an
Apache web server on a single machine. On a separate client ma-
chine, we simulated 25 simultaneous customers for 20 minutes.
Complying with the TPC-W specification, we assume a mean ses-
sion time of 15 minutes and a mean think time of 7 seconds for
each client. Next, we compare FS? with Ext2 with respect to per-
formance and energy consumption.

4.3.1 Ext2: Base System

Figure 9(al) shows a disk trace collected from running the TPC-
W benchmark on an Ext2 file system. Almost all disk accesses are
concentrated in several distinct regions of the disk, containing a
mixture of the database’s data and index files, and the web server’s
image files. The database files can be large, so a single file can
span multiple block groups. Because Ext2 uses a quadratic hash
function to choose the next block group from which to allocate
disk blocks when the current block group is full, a single database
file is often split into multiple segments with each being stored at
a different location on the disk. When the file is later accessed, the
disk head may have to travel frequently between multiple regions.
This is illustrated in Figure 9(a2), showing a substantial number
of disk accesses with long seek times.

We observed that the average response time perceived by clients

x < 1.1 x 107 is 750 msec when the benchmark is ran on an Ext2 file system.

The average disk access time is found to be 8.2 msec, in which 3.8



Disk Sector Number

1.5e+08 m—e—="" . 1 &

1e+08 ;

5e+07

Disk Sector Number

0 e o
0 300000 600000 900000 1.2e+06

Runtime (msec)

(al) Ext2

w
S

n
o

20

Access Time (msec)

L |

I

i

0 5e+07

1e+08

1.5e+08

Seek Distance (sector)

(a2) Ext2

1.5e+08 k- T o . oo 156408 = oot % i e o Lo H
o}
Qo
1e+08 E  1es08
z
S
Q
Q
n
5e+07 1 % 5e+07 .
a
ok ) EERTEFLTE I L KL AL N | 0 CICINLRLUI RPN LY (5 il BRI 1
0 300000 600000 900000 1.2e+0¢€ 300000 600000 900000 1.2e+06
Runtime (msec) Runtime (msec)
(b1) FS2-static (c1) FS2-dynamic
o | o |
s s
3 i 3 i
() ()
£ g € |
F F
i i
Q T Q T
8 8
< | < |
L ‘ 1 1 L ' o | 1
5e+07 1e+08 1.5e+08 5e+07 1e+08 1.5e+08

Seek Distance (sector)

(b2) FS2-static

Seek Distance (sector)

(c2) FS2-dynamic

Figure 9: Plots (al—c1) show the disk sectors that were accessed for the duration of a TPC-W run. Plots (a2—c2) show the measured
access times for each request with respect to the seek distance for the TPC-W benchmark. Plots a, b, and ¢ correspond to the

results collected on Ext2, FS?-static, and FS2-dynamic file systems.
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Static  Dynamic
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@) (b) (©
Figure 10: For the TPC-W benchmark, part (a) shows the av-
erage response time of each transaction perceived by clients.
Part (b) shows the average disk access time and its breakdown.
Part (c) shows the average energy consumed by each disk ac-
cess and its breakdown.

msec is due to seek and 4.3 msec is due to rotation. The average
energy consumed by each disk access is calculated to be 90 mJ,
in which 54 mJ is due to seek and 36 mJ is due to rotation. These
results are plotted in Figure 10 and then summarized in Table 2.

4.3.2 FS2-Static

From the TPC-W disk trace shown previously, an obvious
method to modify the disk layout would be to group all the
database and web server files closer to one another on the disk
so as to minimize seek distance. To do so, we first find all the disk
blocks that belong to either the database or the web server, and
then statically replicate these blocks (using the mkfs2 tool) toward
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< 08 g 10 e ] § 10 Wiranster Disk | Performance Improvement [ Energy

£ 06 g 89 ot D™ Busy [ Ta | Ts | 7T | !mprovement

2 04 7 ¢ 5 ® FSZ-static 23% | 24% | 53% | -1.6% 31%

s £ 4 £ . FSZ-dynamic || 17% | 50% | 72% 31% 55%

o 02 g 2 1 [ % 201
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s ° ‘ T ‘ ‘ g0 ‘ ‘ Table 2: For the TPC-W benchmark, this table shows percent-
<>( EXT2 FS2- FS2- EXT2 FS2- FS2- EXT2 FS2- FS2-

age improvement in performance and energy-consumption for
each disk access, with respect to the Ext2 file system, where the
disk was busy 319% of the time.

the middle of the disk.? After the disk layout is modified, we ran
the TPC-W workload again, and the resulting disk trace and the
access time distribution are plotted in Figures 9(b1) and (b2), re-
spectively. One can see from these figures that as replicas can now
be accessed in addition to their originals, most disk accesses are
concentrated within a single region. This significantly reduces the
range of motions of the disk head for most disk accesses.

As shown in Figure 10, by statically replicating, the average re-
sponse time perceived by TPC-W clients is improved by 20% over
Ext2. The average disk access time is improved by 24%, which
is completely due to having shorter seek time (53%). Rotational
delay remains mostly unchanged (-1.6%) for reasons to be given
shortly. Due to having shorter average seek distance, the energy
consumed per disk access is reduced by 31%.

2We could have chosen any region, but the middle region of the
disk is chosen simply because most of the relevant disk blocks
were already placed there. Choosing this region, therefore, would
result in the fewest number of replications.
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4.3.3 FS2-Dynamic

We call the technique described in the previous section FS?-
static because it statically modifies the disk layout. Using FS2-
static, seek time was significantly reduced. Unfortunately, as
FS2-static is not effective in reducing rotational delay, disk ac-
cess time is now dominated more by rotational delay (as shown
in Figure 10(b)). This ineffectiveness in reducing rotational de-
lay is attributed to its static aggregation of all the disk blocks of
database and web server files. It makes the relevant disk blocks
much closer to each other on disk, but as long as they are not
placed on the same cylinder or track, rotational delay will remain
unchanged.
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Figure 12: Plots (a) and (b) show the zoom-in section of Fig-
ures 9 (bl) and (cl), respectively.

As discussed in Section 2.2, replicating data and placing them
adjacent to one another according to the order in which they were
accessed, not only reduces seek time but also can reduce rota-
tional delay. This is called FS2-dynamic as we dynamically mon-
itor disk accesses and replicate candidate blocks on-the-fly. It is
implemented as described in Sections 2 and 3. Starting with no
replication, multiple runs were needed for the system to determine
which blocks to replicate before observing any significant benefit.
The replication overhead was observed to be minimal. Even in
the worst case (the first run), the average response time perceived
by the TPC-W clients was degraded by only 1.7%. In other runs,
the replication overhead is almost negligible. The 7" run of FS2-
dynamic is shown in Figures 9(c1) and (c2). To illustrate the pro-
gression between consecutive runs, we show disk access time dis-
tributions of the 1°¢, the 2¢, and the 7** run in Figure 11. During
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each run, because the middle region of the disk is accessed most,
those disk blocks that were accessed in other regions will get repli-
cated here. Consequently, the resulting disk trace looks very sim-
ilar to that of FS2-static (shown in Figures 9(b1) and (b2)). There
are, however, subtle differences between the two, which enable
FS2-dynamic to significantly outperform its static counterpart.

Figures 12(a) and (b) provide a zoom-in view of the first 150
seconds of the FS?-static disk trace and the first 100 seconds of
the FS2-dynamic disk trace, respectively. In these two cases, the
same amount of data was accessed from the disk, giving a clear
indication that the dynamic technique is more efficient in replicat-
ing data and placing them onto the disk than the static counterpart.
As mentioned earlier, the static technique indiscriminately repli-
cates all statically-related disk blocks together without any regard
to how the blocks are temporally related. As a result, the distance
between temporally-related blocks becomes smaller but often not
small enough for them to be located on the same cylinder or track.
On the other hand, as the dynamic technique places replicas onto
the disk in the same order that the blocks were previously ac-
cessed, it substantially increases the chance for temporally-related
data blocks to be on the same cylinder, or even on the same track.
From Figure 12, we can clearly see that under FS2-dynamic, the
range of the accessed disk sectors is much narrower than that of
FS2-static.

As a result, FS?-dynamic makes a 34% improvement in the av-
erage response time perceived by the TPC-W clients compared to
Ext2. The average disk access time is improved by 50%, which
is due to a 72% improvement in seek time and a 31% improve-
ment in rotational delay. FS2-dynamic reduces both seek time and
rotational delay more significantly than FS2-static. Furthermore,
it reduces the average energy consumed by each disk access by
55%. However, because the TPC-W benchmark always runs for
a fixed amount of time (i.e., 20 minutes), faster disk access time
does not reduce runtime, and hence, the amount of savings in total
energy is limited to only 6.7% as idle energy still dominates. In
other workloads, when measured over a constant number of disk
accesses, as opposed to constant time, the energy savings is more
significant.

We introduced FS2-static and compared it with FS2-dynamic
mainly to illustrate the importance of using online monitoring in
reducing rotational delay. As the dynamic technique was shown
to perform much better than the static one, we will henceforth
consider only FS2-dynamic and refer to it simply as FS? unless



specified otherwise. Moreover, only the 7¢" run of each workload
is used when we present results for FS? as we want to give enough
time for our system to learn frequently-encountered disk access
patterns and to modify the disk layout.
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Figure 13: Results for the CVS update command: (a) total
runtime, (b) average access time, and (c) energy consumed per
access.
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44 CVS

CVS is a versioning control system commonly used in software
development environments. It is especially useful for multiple de-
velopers who work on the same project and share the same code
base. CVS allows each developer to work with his own local
source tree and later merge the finished work with a central repos-
itory.

CVS update command is one of the most frequently-used com-
mands when working with a CVS-managed source tree. In this
benchmark, we ran the command cvs -q update in a local CVS di-
rectory containing the Linux 2.6.7 kernel source tree. The results
are shown in Figure 13. On an Ext2 file system, it took 33 seconds
to complete. On FS?, it took only 23 seconds to complete, a 31%
shorter runtime.

The average disk access time is improved by 41% as shown in
Figure 13(b). Rotational delay is improved by 53%. Seek time
is also improved (37%), but its effect is insignificant as the disk
access time in this workload is mostly dominated by rotational
delay.

In addition to the performance improvement, FS? also saves
energy in performing disk 1/0s. Figure 13(c) plots the average
energy-consumption per disk access for this workload. As shown
in Table 3, FS? reduces the energy-consumption per access by
46%. The total energy dissipated on Ext2 and FS? during the
entire execution of the CVS update command is 289 J and 199 J,
respectively, making a 31% energy savings.

4.5 Starting X Server and KDE

The startx command starts the X server and the KDE windows
manager on our testing machine. As shown in Figure 14(a), the
startx command finished 4.6 seconds faster on FS? than Ext2,
yielding a 16% runtime reduction. Even though the average disk
access time in this workload is significantly improved (44%),
which comes as a result of a 53% shorter average seek time and
47% shorter rotational delay (shown in Table 4), the runtime is
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Figure 14: Results for starting X server and KDE windows
manager: (@) total runtime, (b) average access time, and (c)
energy consumed per access.

Disk | Performance Improvement | Energy
Busy | Ta | Ts ] Ty | Improvement
[FS® [ 26% | 44% [ 53% | 4% | 6% |

Table 4: A summary of results for starting X server and KDE
windows manager. The disk was busy 37% of the time on
Ext2.

only moderately improved and much less than what we had ini-
tially expected. The reason is that this workload is not disk 1/0-
intensive, i.e., much less than the CVS workload. For the CVS
workload, the disk was busy for 82% of the time, whereas for this
workload, the disk was busy for only 37% of the time.

In addition to improving performance, FS? also reduces the en-
ergy consumed per disk access for the startx command as shown
in Figure 14(c). Starting the X server is calculated to dissipate a
total energy of 249 J on Ext2 and 201 J on FS?, making a 19%
savings in energy.

46 SURGE

SURGE is a network workload generator designed to simu-
late web traffic by imitating a collection of users accessing a web
server [3]. To best utilize the available computing resources, many
web servers are supporting multiple virtual hosts. To simulate this
type of environment, we set up an Apache web server supporting
two virtual hosts servicing static contents on ports 81 and 82 of
the testing machine. Each virtual host supports up to 200 simulta-
neous clients in our experiment.

FS? reduced the average response time of the Apache web
server by 18% compared to Ext2 as illustrated in Figure 15(a).
This improvement in the average response time was made pos-
sible despite the fact that the disk was utilized for only 13% of
the time. We tried to increase the number of simultaneous clients
to 300 per virtual host to observe what would happen if the web
server was busier, but the network bandwidth bottleneck on our
100 Mb/sec LAN did not allow us to drive up the workload. With
more simultaneous clients, we expect to see more performance
improvements by FS2. However, we show that even for non-disk-
bound workloads, performance can still be improved reasonably
well.

On average, a disk access takes 68% less time on FS? than on
Ext2. In this particular workload, reductions in seek time and rota-
tional delay contributed almost equally in lowering the disk access
time, as shown in Table 5.

The total energy consumed was reduced by merely 1.9% on
FS? because this workload always runs for a fixed amount time
like the TPC-W workload. There might be other energy-saving
opportunities. In particular, FS? allows disk to become idle more
often—in the TPC-W workload, the disk was idle 70% of the time



9 25 ﬁ 8 W Transfer ﬂm) 80 — WTransfer

o o DRotational | o DRotational

E 2 — 261 OSeek 2 60— OSeek

v 15 = =

0 [2) n E=

e g4 g

aQ

8 05 g2 E § 071 =

= =

% 0 ‘ 0 ; g o ‘

< EXT2 FS2-Dynamic EXT2 FS2-Dynamic EXT2 FS2-Dynamic
(a) (b) (c)

Figure 15: Results for SURGE: (a) average response time, (b)
average access time, and (c) energy consumed per access.

Disk [ Performance Improvement | Energy
Busy [ Ta | Ts | T, | Improvement
[FS® T 42% [ 69% | 78% | 68% | 1% |

Table 5: A summary of results for running SURGE. The disk
was busy 13% of the time on Ext2.

on Ext2 and 83% on FS?, while in the CVS workload, the disk
was idle 18% of the time on Ext2 and 27% on FS?. Combined
with traditional disk power-management techniques, which save
energy during idle intervals, more energy-saving opportunities can
be exploited.

5. RELATED WORK

File System: FFS [12] and its successors [4, 43] improve disk
bandwidth and latency by placing related data objects (e.g., data
blocks and inodes) near each other on disk. Albeit effective in
initial data placement, they do not consider dynamic access pat-
terns. As a result, poorly-placed disk blocks can significantly
limit the degree of performance improvements [2, 36]. Based on
FFS, Ganger et al. [17] proposed a technique that improves per-
formance for small objects by increasing their adjacency rather
than just locality. Unfortunately, they also suffer from the same
problem as FFS.

In the Log-structured File System (LFS) [35], disk-write per-
formance can be significantly improved by placing blocks that are
written close to one another in time to large contiguous segments
on disk. Similarly, FS? places (replicas of) blocks that are read
close to one another in time to large contiguous free disk space.
Tuning LFS by putting active segments on higher-bandwidth outer
cylinders of the disk can further improve write performance [45].
However, due to segment cleaning overheads and LFS’s inability
to improve read performance (and most workloads are dominated
by reads), there is no clear indication that it can outperform the
file systems in the FFS family.

The closest work related to FS? are Hot File Clustering used
in the Hierarchical File System (HFS) [16] and the Smart File
System [41]. These file systems monitor file access patterns at
runtime and move frequently-accessed files to a reserved area on
disk. There are several major advantages of FS? over these other
techniques. First, the use of block granularity allows us to opti-
mize for all files as opposed to just the small ones. It also gives
us opportunities to place meta-data and data blocks adjacent to
one another according to the order that they were previously ac-
cessed, which, as we have shown and also as indicated in [17], is
very important to the reduction of rotational delay. Second, mov-
ing data can potentially break sequentiality. Instead, we replicate
disk blocks, so both sequential and random disk 1/Os can benefit.
Third, using a fixed location on disk to rearrange disk layout will
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have benefit only under light load [25]. Using free disk space, we
show that even under heavy load, significant benefits can be ob-
tained while keeping replication overhead low. Fourth, reserving
a fixed amount of disk space to rearrange disk layout is intrusive,
which can be prevented by using only the free disk space as we
have done in this paper.

Adaptive Disk Layout: Early adaptive disk layout techniques
have been mostly studied either theoretically [46] or via simula-
tion [10, 30, 36, 44]. It has been shown for random disk accesses
that the organ pipe heuristic, which places the most frequently-
accessed data to the middle of the disk, is optimal [46]. However,
as real workloads do not exhibit random disk patterns, the organ
pipe placement is not always optimal, and for various reasons, far
from being practical. To adapt the organ pipe heuristic to real-
istic workloads, Vongsathorn and Carson [44] proposed cylinder
shuffling. In their approach, the access frequency of each cylin-
der is maintained, and based on this usage frequency, cylinders
are reordered using the organ pipe heuristic at the end of each
day. Ruemmler and Wilkes [36] suggested shuffling in units of
blocks instead of cylinders, and it was shown to be more effec-
tive. In all these techniques, it was assumed that the disk geome-
try is known and can be easily simulated, but due to increasingly
complex hard disk designs, disk geometry is now mostly hidden.
There are tools [1, 14, 37, 42] that can be used to extract the physi-
cal disk geometry experimentally, but the extraction usually takes
a long time and the extracted information can be too tedious to
be used practically at runtime. Our work only uses disk logical
geometry, and we have shown this to be sufficient in practice by
verifying it with the extracted disk physical geometry.

Akyurek and Salem [2] were the first to report block shuffling
in a real system. Unfortunately, other than its use of block gran-
ularity instead of file granularity, this technique is very similar to
HFS and Smart File System, and therefore, suffers from the same
pitfalls as HFS and Smart File System.

1/0 Scheduling: Disk performance can also be improved by
means of better 1/0 scheduling. Seek time can be reduced by us-
ing strategies such as SSTF and SCAN [6], C-SCAN [38], and
LOOK [29]. Rotational delay can be reduced by taking the ap-
proaches in [21, 34, 39, 24]. An anticipatory 1/O scheduler [23]
is used to avoid hasty 1/0 scheduling decisions by introducing an
additional wait time. These techniques are orthogonal to our work.

Energy Efficiency: Due mainly to higher rotational speeds and
heavier platters, disk drives are consuming more energy. Vari-
ous techniques [8, 7, 19, 26] have been developed to save energy
by exploiting disk idleness. However, due to increasing utiliza-
tion of disk drives, most idle periods are becoming too small to
be exploited for saving energy [20, 47]. Gurumurthi et al. [20]
proposed a Dynamic RPM (DRPM) disk design, and in their sim-
ulation, it was shown to be effective in saving energy even when
the disk is fairly busy. However, as DRPM disks are not currently
pursued by any disk manufacturers, we cannot benefit from this
new architecture. In this paper, we lowered power dissipation by
reducing seek distance. Similar to the DRPM design, power can
be reduced even when disk is busy. However, unlike DRPM, Fs?
does not suffer from any performance degradation. On the con-
trary, FS? actually improves performance while saving energy.

Utilization of Free Disk Space: Free disk space has been ex-
ploited by others in the past for different purposes. The Elephant
Filesystem [11] uses free disk space to automatically store old ver-
sions of files to avoid explicit user-initiated version control. In



their system, a cleaner is used to free older file versions to reclaim
disk space, but it is not allowed to free Landmark files. In Fs?,
all free space used for duplication can be reclaimed as replicas are
only used to enhance performance and invalidating them will not
compromise the correctness of the system.

6. DISCUSSION

6.1 Degree of Replication

Our implementation of FS? allows system administrators to set
the maximum degree of replication; in an n-replica system, a disk
block can be replicated at most n times. According to this defini-
tion, traditional file systems are O-replica systems. There are cer-
tain tradeoffs in choosing the parameter n. Obviously, with a large
n, replicas can potentially consume more disk space. Also, there
is a cost to invalidate or free replicas. However, allowing a larger
degree of replication can more significantly improve performance
under certain situations. One simple example is the placement of
shared libraries. Placing multiple copies of a shared library close
to each application image that make use of it, application startup
time can be reduced. It is interesting to find the “optimal” degree
of replication for a certain disk access pattern. However, in the
workloads that we have studied, due to lack of data/code sharing,
the additional benefit from having multiple replicas per disk block
would be minimal, and therefore, we simply used a 1-replica sys-
tem in our evaluation. Lo [18] explored the effect of degree of
replication in more details through a trace-driven analysis.

6.2 Reducing Replication Overhead

Replicating data in free disk space that is near the current disk
head location minimizes interference with foreground tasks. Us-
ing freeblock scheduling [27, 28], it is possible to further reduce
this overhead by writing replicas to disk only during the rota-
tional delay. However, as indicated by the experimental results,
our heuristic is already fairly effective in keeping the replication
overhead low.

6.3 Multi-Disk Issues

The most straightforward way to improve disk performance is
to spread data across more disks. Redundant Array of Inexpensive
Disks (RAID) was first introduced by Patterson et al. [33] as a way
to improve aggregated 1/O performance by exploiting parallelism
between multiple disks, and since then it has become widely used.

FS? is operating orthogonally to RAID. The techniques that
we have used to improve performance on a single disk can be
directly applied to each of the disks in a RAID. Therefore, the
same amount of performance improvement that we have seen be-
fore can still be achieved here. However, the problem gets more
interesting when free disk space from multiple disks can be uti-
lized. It can be used not only to improve performance, but also
to enhance the fault-tolerance provided by RAID. For example, a
traditional RAID-5 system can sustain only one disk failure be-
fore data loss. However, if we are able to use free disk space on
one disk to hold recently-modified data on other disks, it may be
possible that even with more than one disk failure, all data can
still be recovered—recently-modified data can be recovered from
replicas on non-faulty disks and older data can be recovered from
a nightly or weekly backup system.

This introduces another dimension where free disk space can
be utilized to our advantage. Now, we can use free space of a
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disk to hold either replicas of its own disk blocks or replicas from
other disks. Both have performance benefits, but holding replicas
for other disks can also improve fault-tolerance. These issues are
beyond the scope of this paper. We are currently investigating
these issues and building a RAID-based prototype.

7. CONCLUSION

In this paper, we presented the design, implementation and eval-
uation of a new file system, called FS?, which contains a runtime
component responsible for dynamically reorganizing disk layout.
The use of free disk space allows a flexible way to improve disk
I/0 performance and reduce its power dissipation, while being
nonintrusive to users.

To evaluate the effectiveness of FS?, we conducted experiments
using a range of workloads. FS? is shown to improve the client-
perceived response time by 34% in the TPC-W benchmark. In
SURGE, the average response time is improved by 18%. Even for
everyday tasks, FS? is shown to provide significant performance
benefits: the time to complete a CV'S update command is reduced
by 31% and the time to start an X server and a KDE windows
manager is reduced by 16%. As a result of reducing seek distance,
energy dissipated due to seeking is also reduced. Overall, FS? is
shown to have reduced the total energy consumption of the disk
by 1.9-15%.

We are currently working on an extension of this technique that
complements the level of fault-tolerance achieved by using RAID.
In such a system, not only is free disk space useful in improv-
ing performance and energy savings, it may also be possible to
provide additional fault-tolerance in addition to that provided by
RAID, which can better safeguard the data stored on a RAID sys-
tem when multiple failures occur.
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