
Synthesis of Real-Time Implementations from Component-Based
Software Models

Zonghua Gu
Hong Kong University of Science and Technology

Kowloon, Hong Kong, China
zgu@cs.ust.hk

Kang G. Shin
The University of Michigan

Ann Arbor, MI 48109-2122, U.S.A.
kgshin@umich.edu

Abstract

Component-based software development is an effective
technique for tackling the increasing complexity of large-
scale embedded software systems. After building a logi-
cal software model, the designer must make design deci-
sions, including choosing a multi-threading strategy and
assigning priorities to threads, to ensure that the final
implementation on the target execution platform satisfies
non-functional requirements. Code generators for soft-
ware design tools produce functional code, but typically
ignore concurrency and timing issues. In this paper, we
describe techniques for real-time scheduling and design-
space exploration and optimization, with the goal of help-
ing the designer synthesize efficient real-time implemen-
tations from component-based software models. Experi-
mental evaluation shows that our techniques yield high-
quality implementations with reasonable running time of
the optimization algorithm.

1 Introduction

Component-Based Software Development (CBSD) is
gaining popularity as an effective technique for tackling
the increasing complexity of large-scale Real-Time Em-
bedded (RTE) software systems. Most companies have
some type of in-house software component libraries. The
CBSD process can be divided into two stages: component
development, where a domain expert develops software
components, and component integration, where a system
integrator picks components from the component library
and assembles them into a complete application. Each
component should be developed once and reused many
times. Our research focuses on the component integra-
tion stage, since it is the stage that presents the most
number of issues and challenges in the software develop-
ment lifecycle.

Even though CBSD has been around for a long time
and widely applied in the enterprise computing arena,
it has met with limited success in the RTE domain
due to unique challenges caused by resource constraints

and non-functional requirements such as real-time, low-
power, fault-tolerance, etc. In this paper, we focus on
a class of Component-Based Event-Driven (CBED) soft-
ware models with interaction style of buffered asynchro-
nous message passing between components with ports.
This programming style is well-suited for large-scale dis-
tributed RTE systems. It offers a number of benefits
from a software engineering perspective, such as modu-
larity, encapsulation and decoupling of interactions, and
hence, it is scalable to larger systems than the time-
triggered, synchronous approach, which often have much
smaller size due to strict requirements for clock synchro-
nization. One representative example that follows this
interaction style is UML-RT, a UML Profile based on
Real-Time Object-Oriented Modeling [1] and supported
by CASE Tools from IBM Rational. The main con-
cepts of UML-RT have been incorporated into the new
UML 2.0 standard. Other examples include the Speci-
fication and Description Language (SDL) [2], a popular
design language in the telecommunications domain, and
the Quantum Framework [3], a programming discipline
that achieves the same goals as UML-RT without expen-
sive CASE tools.

This class of software systems typically has enormous
size and complexity. They often adopt object-oriented
design patterns and abstractions that make code-based
analysis difficult, and necessitates building and analyzing
higher-level models at early design stages. The asynchro-
nous, event-driven interaction style makes it difficult to
guarantee system timing properties. In this paper, we ad-
dress the implementation synthesis problem: given a log-
ical software design model, how do we synthesize a multi-
threaded implementation that runs on a target hard-
ware platform and satisfies timing constraints? Com-
mercial code generators typically yield functional code,
but largely ignore para-functional requirements [4] such
as real-time, low-power, fault-tolerance, etc. It is up to
the designer to make design decisions such as allocat-
ing components to processors, choosing a multi-threading
strategy, and assigning priorities to threads, etc., to en-
sure that the final implementation on the target plat-
form satisfies these para-functional requirements. We fo-

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

cus on real-time requirements in this paper, and leave
the other requirements to future work. We first compare
alternative multi-threading strategies from CBED soft-
ware models, and then describe real-time scheduling and
design-space exploration techniques for implementation
synthesis. We use the Critical Scaling Factor (CSF) [5, 6]
as our optimization objective, which is defined as the
largest coefficient by which Worst-Case Execution Time
(WCET) of all threads can be simultaneously multiplied
while preserving feasibility. For example, if a system has
CSF of 1.17, then if we multiply the WCET of all threads
by a number n ≤ 1.17, the system would still be schedu-
lable. However, any n > 1.17 would render the system
unschedulable. It is desirable to adopt scheduling algo-
rithms and attribute assignments to maximize the CSF.
A system with larger CSF is more robust to timing faults
caused by inaccuracies in WCET estimation or transient
runtime overload. It also has more room to grow from the
perspective of system evolution and upgrading. A system
with CSF not much larger than 1 is “barely feasible”, and
a minor perturbation can cause it to miss deadlines [5].
A system with CSF less than 1 is not schedulable, and
WCET of all tasks needs to be scaled down by a factor
of CSF in order to make it schedulable.

Mapping

Task Graph

Acceptable

END

CSF
Acceptable

Not

Scheduling Analysis

Component Graph

Priority Assignment

Figure 1. The workflow for implementation syn-
thesis.

As shown in Figure 1, we start from the component de-
pendency graph, and perform component-to-thread map-
ping and priority assignment to get a task graph. We
then perform scheduling analysis on the task graph to get
the CSF. If it is acceptable, then the workflow ends; oth-
erwise, this process is repeated. The iterative optimiza-
tion algorithm is based on Simulated Annealing (SA),
and uses the real-time scheduling algorithm as a subrou-
tine.

The rest of this paper is structured as follows. Sec-
tion 2 discusses and compares different multi-threading

strategies. Section 3 describes real-time scheduling
analysis techniques for the component-based multi-
threading strategy. Section 4 presents application of sim-
ulated annealing for design-space exploration and opti-
mization. Section 5 experimentally evaluates our tech-
niques. Section 6 discusses related work, and Section 7
draws conclusions and discusses future research direc-
tions.

2 Multi-Threading Strategies

We first introduce some definitions.

• A component is a logical entity that provides one or
more event handlers that can be triggered by exter-
nal events.

• An end-to-end scenario is an ordered sequence of
event handlers with an end-to-end (e2e) deadline. A
scenario typically spans multiple components, and
may traverse one component multiple times, each
time invoking a possibly different event handler.

It is important to differentiate between the concept
of design-level concurrency and that of implementation-
level concurrency [7]. At the design level, each compo-
nent conceptually contains its own logical thread that
handles incoming events, but each logical thread is not
necessarily mapped into an OS thread at the implementa-
tion level. Although it is possible for each component to
have its own OS thread, it may incur too much context-
switching overhead if there is a large number of compo-
nents. There are a number of possible multi-threading
strategies at the implementation-level, as discussed be-
low.

50ms Timer

S3

S2

S1

C6

C3

C5

C2

C4

C1

100ms Timer

Figure 2. An example application with 6 com-
ponents C1 to C6, and three e2e application
scenarios, denoted by solid arrows.

Suppose we have an application as shown in Figure 2,
consisting of 6 components and 3 e2e scenarios. Each
scenario consists of multiple subtasks, which are triggered
actions executed by the components. Given this logical
model, how do we implement it on a multi-threaded real-
time OS? We consider two alternatives: Scenario-Based
Multi-Threading (SBMT), where each application sce-
nario is mapped into a separate thread with uniform pri-
ority, and Component-Based Multi-threading (CBMT),
where one or more components are grouped into a thread
with uniform priority.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Saksena et al. [7] and Kim et al. [8] advocated an ap-
proach that we call Component-Based Multi-threading,
Scenario-Based Priority-Assignment, where one or more
components are grouped into the same thread, but pri-
orities are associated with the e2e scenarios, and the
thread priorities are adjusted dynamically to reflect the
priority of the currently-executing e2e scenario, in or-
der to maintain a uniform priority across each e2e sce-
nario. This approach involves runtime system-call over-
heads that may or may not be acceptable to certain
resource-constrained embedded systems. Certain small
real-time operating systems may not even provide APIs
to dynamically change thread priorities. From a real-
time scheduling perspective, this approach is similar to
SBMT except for overhead associated with thread con-
text switching. Therefore, we classify this approach as
the same category as SBMT, and hence do not consider
it separately.

For the CBMT approach, the number of threads needs
to be managed carefully. If there are too few threads,
the blocking time may be too much due to insufficient
parallelism; on the other hand, if there are too many
threads, the context-switching overheads may be ex-
cessive. Two extreme cases are thread-per-system and
thread-per-component. The thread-per-system approach
is to have a single thread of execution for the entire sys-
tem. It is generally not suitable for real-time systems,
since it eliminates all concurrency and turns the system
into a sequential program. The thread-per-component
approach assigns each component its own thread, which
results in high CPU and memory runtime overheads if
there is a large number of components. In most situa-
tions, we would like to adopt an intermediate configura-
tion that achieves sufficient parallelism without incurring
too much runtime overhead.

50ms Timer

D2

D1

100ms Timer

50ms Timer

T3

T2

T1

Figure 3. Map each e2e scenario into its own
thread.

Figures 4, 5 and 6 show some of the many possibili-
ties for grouping components into threads. If we adopt
SBMT, then we get a runtime model as shown in Fig-
ure 3, with three periodically-triggered threads accessing
shared data. Since multiple scenarios cut through the
same component, it is necessary to use mutual exclu-
sion mechanisms such as mutex and monitor to protect
shared data. In this case, the designer does not have

50ms Timer

T6

T3

T5

T2

T4

T1

100ms Timer

Figure 4. Map each software component into its
own thread.

100ms Timer

T5

T3

T2

T4

T1

50ms Timer

Figure 5. Map C2 and C5 into the same thread
T2.

any choice for component-to-thread mapping, which is
deterministic. However, he does have some freedom for
priority assignment. Priorities are usually, but not nec-
essarily, assigned rate-monotonically, i.e., a thread with
faster execution rate will be assigned a higher priority.
But for CBMT, there is a large design space for assign-
ing priorities to threads, since there is a large number of
design choices in terms of component-to-thread mapping
and priority assignment.

Even though it is possible to adopt a dynamic prior-
ity scheduling algorithm such as Earliest Deadline First
(EDF), we focus on static priority scheduling, since it is
the most widely adopted scheduling algorithm in com-
mercial real-time operating systems, and has a number
of advantages over EDF, including low runtime overhead,
overload protection of high-priority tasks, etc. For fixed
priority scheduling, Rate Monotonic Analysis (RMA) [9]
is a well-known technique for analyzing the schedulability
of a set of real-time tasks or threads (we use the words
task and thread interchangeably in this paper). One of
the assumptions of RMA is that each task must have a
static, uniform priority value. For SBMT, this assump-
tion is satisfied, since each e2e scenario can be viewed
as a task with uniform priority. But it is not satisfied

50ms Timer

T4

T2

T3

T1

100ms Timer

Figure 6. Map C2 and C3 into the same thread
T2, and C5 and C6 into the same thread T4.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

for CBMT, since each e2e task consists of multiple sub-
tasks of varying priority. We present real-time scheduling
analysis techniques for CBMT in Section 3.

Aside from the real-time scheduling perspective,
CBMT has certain advantages over SBMT from a soft-
ware engineering perspective, such as modularity, encap-
sulation, decoupling of interactions, mature tool support,
etc. SBMT creates shared data and necessitates error-
prone concurrency control mechanisms. This destroys
a key advantage of the component-based, event-driven
interaction style, which is to use buffered asynchronous
message passing as the primary communication mecha-
nism among components instead of shared data in order
to minimize the need for concurrency control. CBMT is
the default runtime model implemented in CASE tools,
e.g., that from IBM Rational, which provides options for
creating multiple threads, each containing one or more
components and assigned a fixed priority. SBMT is gen-
erally not directly supported by commercial CASE tools,
but requires manual customizations [8]. Table 1 summa-
rizes key differences between SBMT and CBMT.

SBMT CBMT
RMA Applicable yes no

Direct CASE Tool Support no yes
Design Space small large

Table 1. Comparison between SBMT and CBMT.

3 Scheduling Analysis for CBMT

Consider a software model consisting of m components
O1, O2, . . . , Om, and n e2e scenarios, where each scenario
is mapped into an e2e virtual thread, forming the task
set τ1, τ2, . . . , τn. Here we use the word virtual to denote
the fact that each e2e scenario may consist of multiple
subtasks distributed over different OS threads. Each e2e
scenario τi, i = 1, . . . , n cuts through one or more com-
ponents, and triggers an action within each component,
forming a chain of subtasks τi1, . . . , τim(i). We use O(τij)
to denote the component that the subtask τij belongs
to, and PO(τij) to denote the (possibly multiple) passive
objects that τij accesses. Each subtask τij is actually an
event-triggered action within a component O(τij), and is
characterized by parameters (Cij , Pij), where Cij is its
worst-case execution time, and Pij is its priority. Each
e2e thread τi has an e2e deadline Di.

The task model is similar to the task model of e2e
threads with subtasks with varying priority, as described
by Harbour, Klein, Lehoczky in [10]. We call the schedul-
ing analysis algorithm introduced in [10] the HKL algo-
rithm. However, in order to be applicable to CMBT,
the HKL algorithm needs to be adapted to consider the
blocking time caused by multiple subtasks sharing com-
mon components and the Run-To-Completion (RTC) se-

mantics, which states that, once triggered by a message
at its input port, the component must execute the trig-
gered action to completion before processing the next
message. RTC is useful for reducing the number of con-
currency bugs when a component can take part in mul-
tiple e2e scenarios. Messages can be assigned priorities
and queued in priority order instead of FIFO order. Each
OS thread processes incoming messages for the compo-
nents assigned to it in a priority-based, non-preemptive
manner, consistent with the RTC semantics. However,
there can be preemptions between different threads in a
multi-threaded system, that is, a component executing
in the context of a higher-priority thread can preempt
another component executing in a lower-priority thread.

A component may be involved in multiple subtasks
within one e2e thread, or in multiple e2e threads. Due
to RTC, a subtask may suffer a blocking time equal to
the largest execution time of other subtasks sharing the
same component. Blocking time can also be caused by
sharing of passive objects among multiple e2e threads.
We do not model method invocations to passive objects
as separate subtasks, since a passive object can be viewed
as an extension of the invoking component, and inherits
the thread and priority from it. But we do need to ac-
count for the blocking time caused by sharing of passive
objects.

We first briefly describe the HKL algorithm1. The
canonical form of a task τi is a new task τ ′

i with the same
sequence of subtasks as τi, but with strictly increasing
priorities. Now, we define Pmin(i) to be the minimum
priority of all subtasks of τi. The next step is to classify
all tasks τj , j �= i according to their relative priority levels
with respect to Pmin(i). For example, if the canonical
form of τi consists of a single segment of priority 18, and
τj consists of priority sequence (19, 10, 19, 10, 25, 10),
then τj is classified as (H, L,H, L,H, L), where H stands
for higher and L stands for lower.

There are five types of tasks:

• Type 1, or H+, tasks, with all subtask priorities
higher than or equal to τi. These tasks can preempt
task τi multiple times.

• Type 2, or (H+L+)+, tasks. The first subtask has
higher priority than τi, but it can only preempt τi

once, since it is followed by subtasks of lower pri-
ority. Multiple tasks of this type may preempt τi,
but only for the first segment. The non-first high-
priority segments cause a blocking effect.

• Type 3, or ((HL)+H), tasks. They differ from type-
2 tasks since they end with a high priority segment.

• Type 4, or (L+H+)+L+, tasks. The first subtask
has lower priority than τi. Any one of the following

1One limitation of the HKL algorithm is that it can only handle
linear task-chains, but not more general task trees or graphs. It is
an open research issue as to how to extend the HKL algorithm to
deal with task-trees or graphs.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

subtask segments can have a blocking effect on τi,
but only one such segment among all tasks of type
4 can have such a blocking effect.

• Type 5, or L+, tasks. They have no effect on com-
pletion time of τi, and can be ignored for response
time calculation.

Suppose we need to calculate response time of task
ti. To simplify the discussion, let’s assume the canonical
form of ti consists of subtasks of uniform priority Pi.
Define H1(i),H2(i), H4(i) to be the indices of all tasks of
type 1, 2, and 4, respectively.

For each j ∈ H2(i), let B2(i, j) be the execution time
of the first H+ segment of task τj . B2(i, j) denotes the
preemption time caused by τj to τi. Then, the total
preemption time suffered by τi is:

B2(i) =
∑

j∈H2(i)

B2(i, j)

For each j ∈ H2(i)∪H4(i), let B4(i, j) be the blocking
time suffered by τi, caused by all H+ segments of task τj

of type 4, and all (but the first) H+ segments of task τj

of type 2. Then, the total blocking time suffered by τi is:

B4(i) = max{B4(i, j)|j ∈ H4(i) ∪ H2(i)}.

For a type-2 task, only the first higher priority segment
should be counted in B2(i), while the remaining segments
should be counted in B4(i). Since multiple type-2 tasks
can use their first segments to preempt ti, B2(i) is the
sum of B2(i, j); since only one type-2 or 3 task can use
any of its segments other than the first segment to pre-
empt ti, B4(i) is the maximum of B4(i, j).

In order to adapt the HKL algorithm to CMCP, we
need to take into account an additional blocking time
term:

B(i) = max{Ckl|∀k, l, j, (k! = i)&(O(τkl) = O(τij))}
+ max{Cmn|∀m,n, j, (m! = i)&(Pmn < Pij , PO(τmn) ∩
PO(τij)) �= φ},
where the first term denotes the blocking time caused by
other subtasks sharing the same component with some
subtask of thread i due to the RTC semantics, and the
second term represents the blocking time caused by other
lower-priority subtasks accessing shared passive objects.

The equation for calculating the Worst-Case Response
Time (WCRT) of task τi is:

WCRT(i) = WCET(i) + B2(i) + B4(i) + B(i)

+
∑

j∈H1(i)

�WCRT(i)
Period(j)

	 · (WCET(j) + 2*CS) (1)

where WCET(i) is the worst-case execution time of τi,
and Period(j) is the execution period of τj if it is a peri-
odic task, or the minimum inter-arrival time of execution
triggers for τj if it is a sporadic task. The last term is

preemption time caused by type-1 tasks. CS refers to
the OS overhead for thread context-switching. This is
a recursive equation that can be solved iteratively. τi

is schedulable if the calculated WCRT(i) is less than its
deadline. Given this equation for calculating WCRT, the
CSF can be easily calculated using the techniques de-
scribed in [6].

3.1 The Elevator Control Application

We use the single-processor elevator control appli-
cation taken from [11] as a example to illustrate our
scheduling analysis techniques. As shown in Figure 7,
the system consists of 8 components and 1 passive data
object. (Components are drawn with thick borders, and
shared data objects are drawn with thin borders.) There
are three e2e scenarios:

1. Stop Elevator at Floor: The elevator is equipped
with arrival sensors that trigger an interrupt to the
component arrival sensors interface when the ele-
vator approaches a floor, which, in turn, sends a
message approaching floor to the component ele-
vator controller. The elevator controller invokes a
synchronous method call on the passive data object
elevator status and plan to determine whether the
elevator should stop or not.

2. Select Destination: The user presses a button in
the elevator to choose his destination, which trig-
gers an interrupt to the component elevator buttons
interface, which in turn sends a message elevator
request to the component elevator manager. The
elevator manager receives the message and records
destination in the passive object elevator status and
plan.

3. Request Elevator: The user presses the up or
down button at a floor, which triggers an interrupt
to the component floor buttons interface, which in
turn sends a message service request to the compo-
nent scheduler. The scheduler receives message and
interrogates the passive object elevator status and
plan to determine if an elevator is on its way to this
floor. If not, the scheduler selects an elevator and
sends a message elevator request to the component
elevator manager. The elevator manager receives
the message and records destination in the passive
object elevator status and plan.

Consider a building with 10 floors and 3 elevators. All
e2e scenarios are driven by external interrupts. We es-
timate the worst-case arrival rate of the interrupts and
use them as approximations for periods assigned to each
task. For example, the Request Elevator scenario is
assigned a period of 100ms by assuming that all 18 floor
buttons (up and down buttons for each floor, except for
the top and bottom floors) are pressed within 1.8 seconds,

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

ElevatorStatusPlan

Interface
ArrivalSensors

ElevatorButtons
Interface Manager

Elevator

Elevator
Controller

t22t21

t2:Select Destination

t12t11

t1:Stop Elevator at Floor

Scheduler

DirectionLamps
Monitor

Monitor
FloorLamps

Interface
FloorButtonst33

t3:Request Elevator

t31t32

t41

t51

t4

t5

Figure 7. Collaboration diagram for the elevator control application.

Task Period WCET Priority WCRT
t1
t11 25 2 9 -
t12 25 5 6 19
t2
t21 50 3 8 -
t22 50 6 5 38
t3
t31 100 4 7 -
t32 100 12 4 -
t33 100 6 5 46
t4, t5
t41 200 5 3 43
t51 200 5 2 48

Table 2. Task set of the single-processor eleva-
tor control system. Time is measured in ms.
Larger priority number denotes higher priority.

which is likely to be the worst-case arrival rate. We adopt
CBMT, and apply the scheduling analysis technique dis-
cussed in Section 3.

Table 2 shows the task set of the elevator control
system, assuming that all tasks run on a single proces-
sor. Priorities are assigned rate-monotonically. In addi-
tion, the interrupt-handlers, or the Interface subtasks, are
given priority over the other subtasks in order to avoid
missing any interrupts [9]. Other priority-assignment
schemes are also possible. We only address the schedul-
ing analysis problem given an existing priority assign-
ment here, and leave the priority assignment problem to
Section 4.

As an example, let’s consider the e2e task t2 Se-
lect Destination, which consists of two subtasks with
WCET 3 and 6, priorities 8 and 5, respectively. Its canon-
ical form is a single task with execution time 9 and pri-
ority 5. Other tasks can be classified as follows.

• t1 is a type-1 task, with a single higher-priority seg-
ment with WCET 7.

• t3 is a type-2 task, with a higher-priority segment

t31 followed by lower-priority segments t32 and t33.

• t4 and t5 are type-5 tasks, with all segments having
priorities lower than 5.

The blocking time B2(2) caused by type-2 tasks is
WCET(t31) = 4. There are no type-4 tasks. To keep
it simple, we assume the context-switching overhead
is zero. The blocking time due to RTC semantics is
WCET(t33) = 6, and that due to shared passive objects
is max(WCET(t12),WCET(t32)) = max(5, 12). We use
Eq. (1) to get:

WCRT(2) = WCET(2) + B2(2) + B4(2) + B(2)

+
∑

j∈H1(2)

�WCRT(2)
Period(j)

	 · WCET(j)

= 9 + 4 + 6 + max(5, 12) + �WCRT(2)
50

	 · 7 = 38.

We can calculate WCRT for all the e2e scenarios based
on Eq. (1), as shown in the WCRT column of Table 2.
(We associate WCRT of e2e scenarios with the last seg-
ment of the task in the table.) No deadlines are missed,
hence the system is schedulable. Note that t4 and t5 have
relatively small WCRT despite the fact that they have
the lowest priority, since they do not suffer from blocking
time caused by RTC semantics or shared passive objects.

4 Optimization with Simulated Anneal-
ing

Having considered the problem of scheduling analy-
sis given a certain configuration of component-to-thread
mapping and priority assignment, we now address the is-
sue of how to arrive at a configuration that optimizes
a system design objective by performing design space
exploration, including choosing multi-threading strate-
gies and assigning priorities to threads. There are cer-
tain constraints on component-to-thread mapping. Some
components are mutually-exclusive, and cannot be allo-
cated to the same thread. For example, a component
with a large WCET should not be allocated to the same

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

thread as another component that needs to finish its work
within a short deadline. There may also be application-
level semantic reasons for mutual-exclusion. For exam-
ple, certain components are safety-critical and should not
be allocated to the same thread with certain non-safety-
critical components in order to achieve a certain degree
of isolation. Also, thread precedence relationships can-
not contradict component precedence relationships. For
example, if there is a component precedence relationship
C1 → C2 → C3, we cannot allocate C1 and C3 to T1 and
C2 to T2. This is a useful constraint that reduces the
search space considerably.

Given these design constraints and the optimization
objective of maximizing the CSF, we have a constrained
optimization problem. It is generally infeasible to explore
the design space exhaustively except for small systems,
since the size of the design space grows exponentially with
the number of components. Note that this is not a con-
vex optimization problem, since we do not have a smooth
analytic relationship between the optimization objective
(CSF) and the tunable parameters (component-to-thread
mapping and priority assignment). Instead of analytic
solutions, we resort to heuristic optimization techniques
such as Simulated Annealing (SA), Genetic Algorithms
(GA), Tabu Search and Branch-and-Bound, which often
work well even without deep insight into the underlying
problem. SA and GA are stochastic algorithms while
branch-and-bound and tabu search are deterministic al-
gorithms. Since global optimization problems are gener-
ally NP-complete, none of these techniques can guarantee
to find the optimal solution. Conceptually, most opti-
mization problems can be solved with any one of these
techniques, but certain problems can be formulated and
solved more naturally in one approach than in others. We
choose SA as our optimization approach due to its sim-
plicity and ease of problem formulation. SA is a global
optimization method that tries to find the global optimal
point in the design space by jumping over local optimal
points. The basic idea works as follows. From current
state, pick a random successor state. If it has a better
value than current state, then accept the transition, that
is, use the successor state as current state. Otherwise,
do not give up, but instead flip a coin and accept the
transition with a given probability, which is lower as the
successor is worse. So we sometimes “un-optimize” the
value function a little with a non-zero probability in or-
der to avoid being stuck in a local optimal point. The
SA algorithm works similarly to random search at high
temperatures, and to greedy steepest-descent at low tem-
peratures.

An important part of SA is the definition of the en-
ergy function, and the annealing schedule. The energy
function determines the optimization objective, which is
defined as the negation of CSF. Therefore, minimization
of the energy function amounts to maximization of CSF.
The annealing schedule has an important impact on op-
timization quality. It is measured with temperature step

size, the size of temperature drop at each iteration of the
SA algorithm. Intuitively, the slower the temperature
cools down, the better the optimization quality, but the
algorithm running time also gets longer. Hence there is
a tradeoff between optimization quality and amount of
time spent during the optimization procedure. Our an-
nealing schedule is chosen such that the algorithm run-
ning time is generally within minutes or tens of minutes.

Algorithm 1 The Simulated Annealing algorithm.
Parameters
δt; /*Temperature step size*/
Tthreshold; /*Lower bound on temperature*/
Initialization
T := T0; /*Initial temperature*/
Config := InitConfig; /*Initial system configuration*/
E := −CSF (Config); /*Initial system energy*/
while true do

/*Find a new system configuration and calculate Enew

using RT scheduling algorithms described in Section 3;*/
/*If we reach a system configuration with a lower energy,
then accept it.*/
if Enew < E then

Accept the new configuration
E := Enew

else
/*If we reach a system configuration with a higher
energy, then accept it with a certain probability. */
if e(E−Enew)/T < random(0, 1) then

Accept the new configuration
E := Enew

else
Reject the new configuration

end if
end if
/*Lower the annealing temperature.*/
T := T − δt
/*If we have reached the lower threshold of the annealing
temperature or the system energy, then finish.*/
if T ≤ Tthreshold then

break
end if

end while

Algorithm 1 shows the pseudo-code for the SA al-
gorithm. The initial system configuration is defined as
follows: assign each component to its own thread, and
assign thread priorities rate-monotonically. For threads
with the same execution rate, assign priority in the order
of execution precedence relationship, i.e., threads near
the head of the e2e scenario are assigned higher priority
than those near the tail. The new system configuration,
i.e., neighborhood of a given point in the design space is
found with one of the following actions: randomly swap
the priority assignments of O(τij) and O(τik) in any e2e
scenario i; randomly choose two adjacent threads in the
same e2e scenario, assign them the same priority and
merge them into one thread; randomly choose one thread
containing more than one component, and break it up
into multiple threads with different priorities. Note that

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

it does not make sense to have two adjacent threads in the
same e2e scenario assigned the same priority, since this
configuration only adds additional context switching time
without any other benefits. Therefore, we always assign
different priorities to adjacent threads, or merge them if
they are assigned the same priority. The algorithm ends
when the temperature drops below a threshold Tthreshold.

5 Experimental Evaluation

In order to stress-test our optimization algorithm with
varying workloads, we constructed artificial component
dependency graphs with the following parameters: num-
ber of components: 10–200; scenario size (the number
of components contained in each e2e scenario): 5–30;
period: 10–1000ms; WCET: 0.5–8% of period; context-
switch overhead: 30μs.

The experiments were performed on a PC with
933MHz CPU speed and 256MB of memory running Win-
dows XP. Figure 8 shows sample experimental results for
two different annealing schedules, i.e., temperature step
sizes. Results may differ depending on the characteristics
of different applications, but Figure 8 is representative of
other experimental results.

Figure 8. CSF plotted against total system uti-
lization. SS refers to temperature step size of
the annealing schedule.

As shown in Figure 8, when system utilization is low,
that is, the system is lightly-loaded, there is not much
difference between SBMT and CBMT. But when utiliza-
tion gets higher, the benefit of CBMT becomes more ap-
parent. When utilization grows to 0.8, CSF for SBMT
drops below 1.0, meaning that the system is not schedu-
lable, while CSF for CBMT is 1.30 when the temperature
step size is 1.0. The reason for this is that we are able
to find a better design by exploring a much larger design
space using CBMT. When we adopt a larger temperature
step size, i.e., a faster annealing schedule, we achieve less
optimal results. When temperature step size is 5.0 and
system utilization is 0.8, the SA algorithm was unable to

find a configuration that makes the system schedulable
(CSF ≥ 1), even though it did manage to find a config-
uration with a larger CSF value (0.93 instead of 0.84).

Figure 9. Running time of the SA algorithm for a
small application example with 30 components.

The algorithm running time for our examples generally
falls within minutes to tens of minutes, depending on the
number of components, the component connection topol-
ogy and the annealing schedule. In this paper, we have
considered application examples that are fairly small. For
realistic applications with thousands of components, the
running time can easily reach hours or days. As shown in
Figure 9, increasing the temperature step size has a con-
siderable impact on reducing algorithm running time, at
the expense of generating a less optimal system config-
uration. Since the optimization is performed offline, it
is generally acceptable to have long algorithm running
times. However, it is still desirable to keep the running
time within a certain range, since the designer may some-
times have to run the SA algorithm multiple times, each
time with a different seed for the random number genera-
tor, in order to find the configuration with an acceptable
quality metric.

Note that SBMT is not a special case of CBMT, which
requires fixed, static priorities to be assigned to groups
of components. Instead, SBMT requires fixed priorities
to be assigned to each e2e scenario, so each component
may execute at different priority levels, depending on
which scenario it is involved in. Therefore, CBMT does
not always achieve a more optimal design than SBMT.
In fact, evaluation experiments show that for a certain
class of applications, SBMT actually results in an im-
plementation with a larger CSF despite the larger de-
sign space and more exhaustive design-space exploration
for CBMT. From observation of application characteris-
tics, we propose the following heuristics for helping the
designer choose a suitable multi-threading strategy: if
there is very little interaction between different applica-
tion scenarios, then SBMT is appropriate. However, if
there are extensive interactions among different scenar-
ios, then CBMT is more appropriate in order to avoid

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

excessive locking and unlocking of shared components.
This is the case for the elevator control application, where
the shared passive component ElevatorStatusPlan is the
main cause of close interaction among scenarios t1, t2
and t3.

6 Related Work

Merrick et al. [12] developed a priority refine-
ment method using SA for dependent tasks distrib-
uted throughout a heterogeneous multi-processor envi-
ronment. Kodase et al. [13] used SA to assign priori-
ties to components, then group all components that are
assigned the same priority into the same thread. Our
work improves upon previous work by having integrated
component-to-thread allocation and priority assignment,
and exploring additional degrees of freedom in the design
space in order to find a more optimized solution.

There has been a lot of work on model-based and
component-based design tools. Representative projects
include CoSMIC [14], VEST [15], Time Weaver [4],
the ESML-Based Tool-Chain [16], and others. CoS-
MIC [14] uses the Platform-Independent Modeling Lan-
guage (PICML) to enable developers to define compo-
nent interfaces, QoS parameters and software building
rules, and generate descriptor files that facilitate de-
ployment of applications based on CORBA Component
Model. PICML is designed to help bridge the gap be-
tween design-time tools and the actual deployed com-
ponent implementations. VEST (Virginia Embedded
Systems Toolkit) [15] is an integrated environment for
constructing and analyzing component based embedded
systems. Aspect-checks are used to check for cross-
cutting non-functional properties, and prescriptive as-
pects are used to apply cross-cutting advice to design
models. Time Weaver [4] is a real-time software compo-
sition framework that allows the designer to experiment
with different physical design/deployment decisions from
components to the physical platform. As part of Time
Weaver, de Niz et al. [17] recently developed heuristic
algorithms based on bin-packing for component alloca-
tion to distributed processors that minimize the number
of processors needed as well as the network communi-
cation load. The ESML-Based Tool-Chain [16] provides
an open and integrated development environment that
can be used to perform real-time schedulability analysis
and model-checking. There tools typically provide capa-
bilities to generate glue code, e.g., configuration files for
component assembly, and to analyze system schedulabil-
ity. However, they do not address the problem of proac-
tively searching for an optimal thread configuration that
optimizes a scheduling objective such as CSF. Also, these
tools mainly target the Avionics Mission Computing [16]
application from Boeing, which follows the SBMT run-
time model.

Regehr [5] developed a framework for robust schedul-
ing by introducing two new scheduling abstractions, task

cluster and task barrier, and using greedy randomized
search algorithms to find optimal task attribute assign-
ments that maximize the CSF. It is straightforward to
convert randomized search into simulated annealing by
adding logic to probabilistically accept inferior solutions.
Bartolini et al. [18] developed heuristic algorithms to map
from a dataflow logical model to a multi-tasking imple-
mentation using Earliest Deadline First (EDF) schedul-
ing. Fredriksson et al. [19] used genetic algorithms to
find an optimized allocation from components to tasks,
with the goal of reducing context-switching overhead
and memory consumption while respecting constraints
on allocation. None of these authors considered the
task model of each e2e scenario consisting of subtasks
with varying priorities, and the additional blocking time
caused by the RTC semantics of the component-based,
event-driven interaction style.

7 Conclusions and Future Work

In this paper, we have considered the class of
component-based software models with interaction style
of buffered asynchronous message passing between com-
ponents with ports, a prevalent interaction style for
large-scale RTE software. We consider different multi-
threading strategies for implementation synthesis, and
focus in particular on the CBMT runtime model, which
creates a large design space of different options for
component-to-thread mapping and priority assignment.
Since this runtime model does not fit the assumptions of
classic real-time scheduling theory (RMA), we have de-
veloped real-time scheduling techniques for it by enhanc-
ing the HKL algorithm with additional blocking time
caused by RTC semantics. We have also developed opti-
mization techniques based on simulated annealing to find
a system configuration with largest CSF. Experimental
evaluation shows that our techniques can synthesize high-
quality multi-threaded implementations with reasonable
running time of the optimization algorithm. Our ap-
proach helps bridge the gap between a logical software
model and its physical implementation on the target plat-
form, by giving the designer real-time scheduling analysis
techniques for evaluating different alternatives, as well
as design-space exploration techniques for generating a
multi-threaded implementation from a logical software
model. Our work focuses on para-functional issues in-
volved in implementation synthesis, and is complemen-
tary to existing code generators for component-based de-
sign tools, which focus on generating functional code in
programming languages or configuration files for compo-
nent assembly.

There are a number of directions for future work.
First, in order to achieve industry acceptance, we are
considering integrating our techniques into CASE Tools
such as the Eclipse environment [20], which has a plug-
in for UML 2.0 metamodel, and possibly open-source
scheduling analysis tools such as OpenSTARS [21]. Sec-

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

ond, we would like to consider other resource constraints
and para-functional requirements besides real-time, e.g.,
memory size and power consumption, during the opti-
mization process. Third, since the running time of SA
can get very long for large systems, we would like to
develop efficient heuristic algorithms for finding feasible
and/or near-optimal solutions quickly. Fourth, we would
like to extend our current optimization techniques to ad-
dress distributed systems, which add an additional degree
of freedom to the design space, i.e., allocation of software
components or threads to different processors [17].

Abbreviations Used

CBMT Component-Based Multi-Threading

CSF Critical Scaling Factor

e2e End-to-End

RTC Run-To-Completion

SBMT Scenario-Based Multi-Threading

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

Acknowledgement

The work reported in this paper was supported in part by
the Army Research Office under Grant No. DAAD19-01-1-
0473.

References

[1] B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object
Oriented Modeling. Addison Wesley, 1994.

[2] (2005) The SDL Forum website. [Online]. Available:
http://www.sdl-forum.org

[3] (2005) The Quantum Framework website. [Online].
Available: http://www.quantum-leaps.com/qf.htm

[4] D. de Niz and R. Rajkumar, “Time weaver: A software-
throuhg-models framework for embedded real-time sys-
tems,” in Proc. ACM Conference on Languages, Com-
pilers and Tools For Embedded Systems (LCTES), 2003,
pp. 133–143.

[5] J. Regehr, “Scheduling tasks with mixed preemption re-
lations for robustness to timing faults,” in Proc. Real-
Time Systems Symposium (RTSS), 2002, pp. 315–326.

[6] S. Vestal, “Fixed-priority sensitivity analysis for lin-
ear compute time models,” IEEE Trans. Software Eng.,
vol. 20, pp. 308–317, 1994.

[7] M. Saksena and P. Karvelas, “Designing for schedula-
bility: integrating schedulability analysis with object-
oriented design,” in Proc. IEEE Euro-Micro Conference
on Real-Time Systems (ECRTS), 2000, pp. 101–108.

[8] S. Kim, S. Hong, and N. Chang, “Scenario-
based implementation architecture for real-time object-
oriented models,” in Proc. IEEE International Work-
shop on Object-Oriented Real-Time Dependable Systems
(WORDS), 2002, pp. 147–152.

[9] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza, A
Practitioner’s Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[10] M. Harbour, M. H. Klein, and J. Lehoczky, “Timing
analysis for fixed-priority scheduling of hard real-time
systems,” IEEE Trans. Software Eng., vol. 20, no. 2, pp.
13–28, 1994.

[11] H. Gomaa, Designing Concurrent, Distributed, and Real-
Time Applications with UML. Addison-Wesley, 2000.

[12] J. R. Merrick, S. Wang, K. G. Shin, J. Song, and
W. Milam, “Priority refinement for dependent tasks in
large embedded real-time software,” in Proc. IEEE Real
Time and Embedded Technology and Applications Sym-
posium (RTAS), 2005, pp. 365–374.

[13] S. Kodase, S. Wang, and K. G. Shin, “Transforming
structural model to runtime model of embedded software
with real-time constraints,” in Proc. Design, Automation
and Test in Europe Conference (DATE), 2003, pp. 170–
175.

[14] K. Balasubramanian, J. Balasubramanian, J. Par-
sons, A. Gokhale, and D. C. Schmidt, “A platform-
independent component modeling language for distrib-
uted real-time and embedded systems,” in Proc. IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2005.

[15] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis, “Vest: an aspect-based com-
position tool for real-time systems,” in Proc. IEEE Real-
Time and Embedded Technology and Applications Sym-
posium (RTAS), 2003, pp. 58–69.

[16] Z. Gu, S. Wang, S. Kodase, and K. G. Shin, “An end-
to-end tool chain for multi-view modeling and analysis
of avionics mission computing software,” in Proc. IEEE
Real-Time Systems Symposium (RTSS), 2003, pp. 78–81.

[17] D. de Niz and R. Rajkumar, “Partitioning bin-packing
algorithms for distributed real-time systems,” Interna-
tional Journal of Embedded Systems, 2005.

[18] C. Bartolini, G. Lipari, and M. D. Natale, “From func-
tional blocks to the synthesis of the architectural model
in embedded real-time applications,” in Proc. IEEE Real
Time and Embedded Technology and Applications Sym-
posium (RTAS), 2005, pp. 458–467.

[19] J. Fredriksson, K. Sandstrom, and M. Akerholm, “Op-
timizing resource usage in component-based real-time
systems,” in Proc. ACM International Symposium on
Component-Based Software Engineering (CBSE), 2005,
pp. 49–65.

[20] (2005) The eclipse website. [Online]. Available:
http://www.eclipse.org

[21] K. Bryan, T. Ren, J. Zhang, L. C. DiPippo, and V. F.
Wolfe, “The design of the OpenSTARS adaptive analyzer
for real-time distributed systems,” in International Par-
allel and Distributed Processing Symposium (IPDPS),
2005.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

