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Abstract

As complexity of real-time embedded software grows, it is de-
sirable to use formal verification techniques to achieve a high
level of assurance. We discuss application of model-checking to
verify system-level concurrency properties of component-based
real-time embedded software based on CORBA Event Service,
using Avionics Mission Computing software as an application ex-
ample. We use the process algebra FSP to formalize specification
of software components and system architecture, previously only
available in the form of natural language and prone to misinter-
pretation and misunderstanding, and use model-checking to ver-
ify system-level concurrency properties. We also discuss effec-
tive techniques for coping with the state-space explosion problem
by exploiting application domain semantics. We have applied our
analysis techniques to realistic application scenarios provided by
our industry partner to demonstrate their utility and power.

1. Introduction

The publish/subscribe model of computation, as implemented
in CORBA Event Service [1], has been widely adopted in a va-
riety of application domains, including both real-time embed-
ded systems and enterprise distributed systems. One example is
the Avionics Mission Computing (AMC) [2] software, which is
the embedded software onboard a military aircraft for control-
ling mission-critical functions, such as navigation, target tracking
and identification, weapon firing, etc. The software architecture of
AMC is also commonly referred to as the Bold Stroke Framework.
It is modeled with UML, but manually coded with C++. The
UML models mainly serve in a documentation role that the en-
gineer refers to while writing code manually. Therefore, the link
between model and code is easily broken in the process of system
maintenance and evolution, when code is modified or enhanced
without making the corresponding changes of the model, or vice
versa. Furthermore, UML has little support for analysis that is rel-
evant for embedded systems, such as real-time and concurrency
properties, such as schedulability and deadlock freedom. As part
of the DARPA Model-Based Integration of Embedded Software
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(MoBIES) Program, an end-to-end tool-chain [3, 4, 5] has been
developed collaboratively by researchers from Vanderbilt Univer-
sity, Southwest Research Institute, and University of Michigan.
The MoBIES tool-chain covers the entire systems development
life-cycle, including modeling, code generation and analysis, and
provides a more automated and integrated development process
than the current industry practice. The central repository of in-
formation in the tool-chain is the Embedded Systems Modeling
Language (ESML) [6], a domain-specific language for modeling
component-based, event-driven software using the Generic Mod-
eling Environment (GME) [7] from Vanderbilt University. ESML
is designed to be a comprehensive modeling language that cap-
tures essential aspects of embedded systems, including software
architecture, timing and resource constraints, execution threads,
execution platform (processors and network) information, allo-
cation of components to threads/processors, etc. We have devel-
oped a tool AIRES [8] to perform various static analysis tasks on
ESML models, such as dependency, timing, schedulability and
automated component allocation.

ESML and AIRES mainly focus on the static structural as-
pects while largely ignoring the dynamic behavioral aspects of
the embedded software. As a result, ESML models are not exe-
cutable. In order to perform deeper semantic analysis, it would
be necessary to construct executable models, which enables the
use of simulation or model-checking to verify system correctness.
One prominent example of executable models is Harel’s State-
chart [9]. Model-checking can be viewed as exhaustive simula-
tion, i.e., exhaustively exploring the system state space to prove
certain correctness properties.

Documentation provided by our industrial partner Boeing (not
available to the public) describes the application components and
scenarios with natural language, which is prone to misunderstand-
ing and misinterpretation. In this paper, we use the process al-
gebra Finite State Processes (FSP) [10] to provide formal spec-
ifications of dynamic behavioral aspects of the AMC software,
and use the model-checker Labeled Transition System Analyzer
(LTSA) [10] to analyze the resulting FSP specification and verify
concurrency properties such as deadlock freedom, event reacha-
bility, sequencing constraints and progress property. We also ex-
ploit application domain semantics to cope with the state-space
explosion problem. First, we reduce the call-return two-way syn-
chronization into a one-way synchronization, thus reducing the
number of states of each component. Second, we take advantage
of inherent modularity within the application scenario, and use
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the divide-and-conquer approach to compose the system hierar-
chically. These techniques showed significant benefits in reduc-
ing system state-space, and allowed us to check relatively com-
plex application scenarios on a PC workstation with a relatively
modest memory size of 512MB. When the system size is too large
for the model-checker to handle, the designer can at least use sim-
ulation to gain some insight into system behavior.

Although our work is initially targeted towards the AMC soft-
ware, it is applicable to more general component-based event-
driven real-time embedded software. The AMC software architec-
ture is very similar to the CORBA Component Model (CCM) [11],
which was originally designed for enterprise applications, but has
been recently extended to be real-time and QoS-enabled by re-
searchers from Washington University to produce Component-
Integrated ACE ORB (CIAO) [12]. In fact, there are plans to mi-
grate the next-generation of AMC software to the CIAO plat-
form. Vanderbilt University has developed a model-based toolset
Component Synthesis with Model Integrated Computing (CoS-
MIC) [13] for design and configuration of applications based on
the CIAO platform. Our approach could be easily adapted to ap-
ply to general CCM applications, for example, by generating FSP
models from CoSMIC instead of ESML.

This paper is structured as follows. Section 2 provides a brief
introduction to FSP. Section 3 provides a brief introduction to
AMC. Section 4 describes modeling of AMC with FSP. Section 5
discusses the specification of correctness properties for verifica-
tion. Section 6 presents techniques for improving model-checking
scalability. Section 7 discusses related work, and Section 8 draws
conclusions.

2. Introduction to Finite State Processes

We only provide a very brief description of FSP, and refer the
interested reader to [10] for more details.

Primitive processes are defined as finite-state processes using
event prefix ->, choice | and recursion. If x is an event and P a
process, then (x->P) describes a process that initially synchro-
nizes with the event x and then behaves exactly as process P. If x
and y are events, then (x->P|y->Q) describes a process which
initially synchronizes with either x or y, and the subsequent be-
havior is described by P or Q, respectively. Primitive processes
can be composed with the parallel composition operator || to
form a composite process. Processes interact via synchronization
on common event labels in the traditional style of process alge-
bra. That is, if processes in a composition have a common shared
event, all processes must synchronize on the shared event at the
same step.

3. Introduction to Avionics Mission Computing

The AMC software consists of components interacting with
each other using the publish/subscribe paradigm with Real-Time
CORBA Event Service [1] as its underlying communications
substrate. Event publisher components push events through the
event channel to event consumer components, whose execution
is triggered by the arrival of events. The system runs at a num-
ber of different rates driven by timer event publishers, such as

40Hz, 20Hz, 10Hz, 5Hz, and 1Hz. Thread priorities are assigned
rate-monotonically, that is, higher frequency threads are assigned
higher priorities. Rate Monotonic Analysis [14] is used to make
real-time guarantees.

Components are composite objects with ports, interacting with
one another either through event triggers or method invocations.
Some terminologies from CORBA Component Model (CCM) are
adopted. Each component can have the following types of ports:

• Publish Port to publish events.

• Subscribe Port to subscribe to events.

• Receptacle to issue method invocations.

• Facet to accept method invocations.

Subscriber

Event

Publisher

Component

ReceptacleFacet

Subscribe PortPublish Port

Invocation

Component

Figure 1. The control-push/data-pull style of inter-
action.

Component interaction typically (but not always) follows the
control-push/data-pull style, as shown in Figure 1. The data pro-
ducer component publishes a DataAvailable event from its
publish port indicating that it has fresh data; when the data con-
sumer component receives the event from its subscribe port, it is-
sues a GetData() call from its receptacle to the producer’s facet
to retrieve the data.

4. Modeling AMC with FSP

4.1. Modeling of Component Types

The AMC software is component-based with many different
types of components, each with its unique functionality and in-
terfaces, acting as basic building blocks of a complete system.
The documentation provided by our industrial partner contains
detailed descriptions of the various component types in natural
language. We use FSP to provide an unambiguous, formal de-
scription for each component type based on the natural language
descriptions, and instantiate each component instance to form a
system architecture. In what follows, we describe each compo-
nent type by excerpting its description from the Boeing documen-
tation, and then presenting its corresponding FSP specification.
Note that this is not an exhaustive list of all component types,
but only includes a few interesting ones from a modeling view-
point.

• “DisplayComponent is used to display information to the
console window. It is used to simulate any output device in
a system. Upon receiving a Push(), this component does a
Get() on each component specified in its receptacles. It then
displays the results on the console.”
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DisplayComp =
(inEvt->issueGDCall->receiveGDReply->display
->DisplayComp).

• “LazyActiveComponent is used to simulate delayed response
to acquiring data. As an optimization strategy, if a compo-
nent is updated more often than it is read, the Lazy Active
pattern may be used to only update the data when a request
is made. Upon receiving a Push(), this component flags its
data as invalid. When this component’s Get() is called, this
triggers the LazyActiveComponent to call Get() on the com-
ponents attached to its receptacles.”

LazyActiveComp = (inEvt->outEvt->DataStale
|receiveGDCall->issueGDReply->LazyActiveComp),

DataStale=
(receiveGDCall->issueGDCall->receiveGDReply
->issueGDReply->LazyActiveComp).

• “ModalComponent is used to alter the flow of events. The
component can be enabled and disabled via the facet method
ChangeMode(). When it is enabled, it will update and gen-
erate an event when it receives an event. When it is disabled,
it will not update or generate an event.”

ModalComp = Enabled,

Disabled = (enable->Enabled|disable->Disabled
|inEvt->Disabled),

Enabled = (enable->Enabled|disable->Disabled
|inEvt->issueGDCall->receiveGDReply->outEvt
->Enabled
|receiveGDCall->issueGDReply->Enabled).

4.2. Modeling of Component Interactions

4.2.1. Control-Push/Data-Pull Below is the FSP model for the
control-push/data-pull interaction style as shown in Figure 1.

Publisher = (outEvt->Publisher |
receiveCall->issueReply->Publisher).

Subscriber = (inEvt->issueCall->receiveReply
->Subscriber).

||ControlPushDataPull =
(pub:Publisher||sub:Subscriber)
/{pub.outEvt/sub.inEvt,
sub.issueCall/pub.receiveCall,
sub.receiveReply/pub.issueReply).

This modeling approach treats the interaction between an event
publisher and an event subscriber as synchronous, that is, the
outEvt of the publisher synchronizes with the inEvt of the
subscriber directly. In the real system, the published events go
through the CORBA event service and are buffered at the input
port of the subscribe component. We can obtain a more accurate
model by using separate processes to model the queues/buffers
in the middleware infrastructure, and decouple the interactions to
make them asynchronous, but that will have a significant impact
on scalability in terms of the maximum size of the system that

the model-checker can handle. Note that our focus is on verifica-
tion of application-level concurrency properties when the applica-
tion is operating under normal conditions assuming that the mid-
dleware behaves correctly, with no buffer overflows or deadline
misses (see Section 4.2.3 for more details on this assumption).
This synchronous modeling style has turned out to be at an ade-
quate level of abstraction for the types of concurrency properties
we are interested in, e.g., deadlock freedom, event reachability,
sequencing constraints, and progress property. That is, adopting a
more detailed modeling approach would not change the verdict of
the model-checker on these properties. This may not be generally
true if we expand the range of properties to include other prop-
erties involving the middleware, for example, buffer overflow de-
tection.

The words synchronous and asynchronous are overloaded
terms with different meanings to different people. Here we
use the word synchronous to mean that pairwise interac-
tions, such as event delivery and method invocation, between
components happen instantaneously without the delays intro-
duced by the middleware infrastructure. This is very different
from its meaning in synchronous formalisms such as Es-
terel, which describes a time-triggered system with a global
clock tick, commonly found in hardware and safety critical soft-
ware systems.

4.2.2. Input Event Correlation When a component subscribes
to multiple events, there may be two synchronization patterns:
AND synchronization means that the component must receive all
input events to be triggered; OR synchronization means that the
component only needs to receive one of the input events to be trig-
gered. In order to model AND synchronization, we add a new pro-
cess type called InputANDCorrelator, as shown below and
in Figure 2:

Event(ID=1) = (inEvt[ID]->GotOne),
GotOne = (inEvt[ID]->GotOne |
matched->Event).

||InputANDCorrelator(NumInputs=2) =
(if(NumInputs>0) then
(forall [i:1..NumInputs] Event(i))).

Figure 2. The correlator for two input events with
AND correlation.

It models parallel composition of NumInputs num-
ber of processes Event, which all synchronize on the same
event matched. This ensures that the matched event is emit-
ted only when all input events inEvt[i..NumInputs] occur.
The event matched event is in turn used to trigger the down-
stream subscriber component.
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Figure 3. The correlator for two input events with
OR correlation.

Input events may arrive at different rates. For example, a com-
ponent may subscribe to inEvt[1] arriving at 20Hz rate,
and inEvt[2] arriving at 1Hz rate. Only 1 out of ev-
ery 20 inEvt[1] is paired up with 1 inEvt[2] to generate
a matched event; the other 19 are silently discarded, as mod-
eled by the self loop in state 1.

Modeling of OR input correlation is simpler, shown below and
in Figure 3.

Event(ID=1) = (inEvt[ID]->matched[ID]->Event).

||InputORCorrelator(NumInputs=2) =
(if(NumInputs>0) then
(forall[i:1..NumInputs] Event(i))).

4.2.3. Real-Time Issues The typical way to model real-time in
FSP is to discretize time into uniform segments by using a global
event tick shared among all the processes in the system to pro-
vide a system-wide heartbeat. Typical component execution time
in an AMC system is fairly small, in the range of microseconds,
while the typical period of execution is fairly large, in the range
of milliseconds or even seconds. If we attempt to model quanti-
tative time by using a fine-grained partitioning of time on the mi-
crosecond scale, the system state space will quickly explode even
for trivial examples. Instead, we only ensure that the relative ex-
ecution frequencies of different rate groups are correct, e.g., the
20Hz thread should execute 20 times more frequently than the
1Hz thread. This can be achieved by using a shared event tick. If
the event timeout20hz is emitted at every tick, then the event
timeout1hz is emitted every 20 ticks.

Timer20hz = (timeout20hz->tick->Timer20hz).
Timer1hz = (timeout1hz->Delay20[1]),
Delay20[t:1..20] = (when(t==20)tick->Timer1hz
|when (t < 20) tick->Delay20[t+1]).

Note that the global event tick is only shared among all the
timers, not the application components. Therefore, even though
the periodic timer triggers synchronize to a system-wide heart-
beat, application components interact with each other in an asyn-
chronous, event-driven fashion.

Even though we cannot model quantitative time, we make the
implicit assumption that the system is schedulable, i.e., all threads
meet their deadlines. Without this assumption, we would have a
much larger state space due to deadline misses, an error condi-
tion that should never arise in a production system, without gain-
ing any additional insight into the system’s normal operation. We
can achieve separation of concerns by using AIRES to verify
the schedulability assumption, and model-checking to verify con-
currency properties. We encode this assumption in the model by

adding an explicit synchronization between the timer and the ter-
minal events, the leaf events of the event dependency graph rooted
at the timeout event, in order to ensure that the next timeout
event will not occur until all events belonging to the current ex-
ecution frame have been processed. For example, timer-triggered
sensor data may go through some processing stages and eventu-
ally trigger both the Flight Plan Display and the Navigation Dis-
play. We insert an AND correlator to make sure that both Display
components have been triggered before the next 20Hz timeout.

Timer20hz = (timeout20hz->timer20hzDone->tick
->Timer20hz).

Thread20hz = (...
||fltPlanDisplay:displayComp
||navDisplay:displayComp
||correlator:InputANDCorrelator)
/{fltPlanDisplay.display/correlator.inEvt[1],
navDisplay.display/correlator.inEvt[2],
correlator.matched/timer20hzDone
}.

There may be aperiodic and sporadic external interrupts that
act as thread triggers in addition to periodic timers. For spo-
radic interrupts, there is a bound of minimum inter-arrival time
(MIAT) between interrupts, so we make a pessimistic assump-
tion and model the interrupt source as a periodic timer with pe-
riod equal to MIAT, as is commonly done in real-time scheduling
analysis. For aperiodic interrupts, we make the interrupt source
not synchronize with the global event tick, meaning that the in-
terrupts can happen at arbitrary points in time without any tim-
ing constraints, which is exactly the definition of aperiodic inter-
rupts.

Figure 4. The Basic Single-Processor (BasicSP)
scenario.

4.2.4. An Example Application Scenario As an illustrative ex-
ample, we consider the Basic Single-Processor (BasicSP) appli-
cation scenario in Figure 4. At a 40Hz rate, the system must
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update navigation displays with timely airframe position infor-
mation using inputs from navigation sensors. Triggered by the
40Hz timer, the gps component pushes a DataAvailable
event to the airframe component, which updates its state by
getting data from gps. The airframe component then pushes
a DataAvailable event to the navDisplay component,
which then updates the display by getting data from airframe.
(The prefix BM for the component types is a naming convention,
meaning that these component types are basic Building Block
models for any application, as opposed more application specific
components such as OM, for Operator Interface models. We omit
these prefixes in FSP specifications.) Below is the complete FSP
specification for this scenario:

Timer40hz = (timeout40hz->timer40hzDone->tick
->Timer40hz).

DeviceComp = (inEvt->outEvt->DeviceComp |
receiveGDCall->issueGDReply->DeviceComp).

ClosedEDComp =
(inEvt->issueGDCall->receiveGDReply->outEvt
->ClosedEDComp
|receiveGDCall->issueGDReply->ClosedEDComp).

DisplayComp =
(inEvt->issueGDCall->receiveGDReply->display
->DisplayComp).

||Thread40hz = (Timer40hz
||gps:DeviceComp
||airframe:ClosedEDComp
||navDisplay:DisplayComp)
/{timeout40hz/gps.inEvt,
gps.outEvt/airframe.inEvt,
airframe.issueGDCall/gps.receiveGDCall,
airframe.receiveGDReply/gps.issueGDReply,
airframe.outEvt/navDisplay.inEvt,
navDisplay.issueGDCall/airframe.receiveGDCall,
navDisplay.receiveGDReply/airframe.issueGDReply,
navDisplay.display/timer40hzDone }.

LTSA has built-in functionality to perform simulation as user-
controlled animation. Once the models are developed, we can use
interactive simulation to gain deeper understanding of the sys-
tem dynamics, or model-checking to verify concurrency proper-
ties. We will not elaborate on simulation due to space limitations.
Instead, we will focus on model-checking in the following sec-
tions.

5. Specification of System Properties

Generally, model-checking can be used to verify two types of
properties: safety and liveness. A safety property asserts that noth-
ing bad happens, and a liveness property asserts that something
good eventually happens. We consider the following safety prop-
erties: deadlock freedom, event reachability and sequencing con-
straints. We consider one liveness property related to progress.
Besides these generic properties, it is possible to specify and ver-
ify other application-specific properties, for example, a certain

component method is only invoked after a number of other com-
ponent methods are invoked for a specific number of times and in
a specific order.

5.1. Deadlock Freedom

Route

SetData()

SetData()

SetData()

SetData()

NavDisplayNavSteeringGroundPoints

Figure 5. A deadlock situation caused by a depen-
dency cycle.

The most important safety property is deadlock freedom. Let’s
take an scenario of four components forming a chain of data-
push interactions, as shown in Figure 5. For illustration purposes,
we artificially introduce a deadlock situation by adding an ex-
tra method call from navDisplay to route, as shown in Fig-
ure 5. When the route component’s SetData() call is in-
voked, it is still blocked waiting for its method invocation to
groundPoints to return. This is the classic deadlock situation
caused by a circular dependency. LTSA detects this error and pro-
duces an error trace that leads to the deadlock.

AND
:ClosedEDComp

tacSteeringtrackSensor1
:DeviceComp

:ClosedEDComp
track1

track2
:ClosedEDComp

:DisplayComp
tacDisplay

Timeout

Figure 6. An application scenario fragment.

Another error situation arises when a component subscribes
to multiple input events with AND synchronization, i.e., all in-
put events must be received in order to trigger the component
execution, but for certain reasons not all of the input events are
available. Event propagation stops at this component, and none
of the downstream components can be triggered. This situation
is not a deadlock in the classic computer science sense, but it
causes a deadlock in the FSP model due to our modeling ap-
proaching of synchronization of the leaf component actions with
the timerdone event, discussed in Section 4.2.3.

Figure 6 shows an example application scenario. Component
trackSensor is triggered periodically by the 20Hz timeout,
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and issues an output event that is subscribed to by both track1
and track2. Component tacSteering subscribes to output
events of both track1 and track2 with AND synchronization,
and issues an event to trigger tacDisplay. LTSA reveals no
deadlocks in this scenario.

If we make a change to the system by letting trackSensor1
publish two types of events outEvt1 and outEvt2, choos-
ing non-deterministically which event to output at runtime. This
could be used to model a modal component which outputs differ-
ent events depending on its active mode. This change results in a
deadlock situation detected by LTSA, since tacSteering can
only receive one of its two input events during each execution cy-
cle.

5.2. Event Reachability

Each component should be triggered/invoked at least once dur-
ing each execution cycle. Otherwise, the component is redun-
dant, which could signal a design error or inefficiency that wastes
system resources. In order to prove that a component’s method
C.m is reachable, we introduce a property NotReachable
stating that the event C.m never occurs. If this property holds,
then C.m is indeed not reachable; otherwise, LTSA returns a
counter example showing the path of execution leading to the
event C.m. For example, if we would like to check that the ac-
tion navDisplay.display is executed/reachable, we add the
following:

property NotReachable = STOP+{reachable}.

||CheckReachability = (System || NotReachable)
/{navDisplay.display/reachable}.

Checking this property for the MultirateSP scenario
yields this chain of events that lead to the triggering of
navDisplay.display:

Trace to property violation in NotReachable:
timeout40hz
gps.outEvt
airFrame.issueGDCall
airFrame.receiveGDReply
airFrame.outEvt
navDisplay.issueGDCall
navDisplay.receiveGDReply
navDisplay.display

This means that navDisplay.display is indeed reachable,
which is the correct behavior.

5.3. Sequencing Constraints

Certain events should happen in sequence. For example, the
events in a linear chain of event triggers should happen in the or-
der of precedence relation from the head to the tail of the chain.
Below is the property specification used to check the correct or-
dering of events in the 40Hz thread:

property SeqConstraint =
(evt1->evt2->evt3->evt4->SeqConstraint).
||CheckSeqConstraint = (SYSTEM||SeqConstraint)
/{timeout40hz/evt1, gps.outEvt/evt2,

airframe.outEvt/evt3, navDisplay.display/evt4
}.

LTSA reports no violations for this property. Suppose
we change the sequencing order of gps.outEvt and
airframe.outEvt:

property SeqConstraint =
(evt1->evt2->evt3->evt4->SeqConstraint).
||CheckSeqConstraint = (SYSTEM||SeqConstraint)
/{timeout40hz/evt1, airframe.outEvt/evt2,
gps.outEvt/evt3, navDisplay.display/evt4}.

Then, LTSA produces an error trace:

Trace to property violation in SeqConstraint:
timeout40hz
gps.outEvt

If some events may happen in parallel, that is, the events form
a general graph instead of a linear chain, then we can only spec-
ify those events that do form a linear chain, since LTSA does not
allow non-determinism in property specifications.

5.4. Progress Property

The properties discussed so far are all safety properties, that is,
they can be verified by detecting if a bad state is reached given a
finite execution sequence. On the other hand, liveness properties
can only be verified for an infinite execution sequence. A gen-
eral treatment of liveness involves using temporal logic to spec-
ify liveness properties. A restricted class of liveness properties is
the progress property in the form of progress P = a1, a2, . . .,
an, which asserts that in an infinite execution of a system, at least
one of the actions a1, a2, . . ., an will be executed infinitely of-
ten. It is useful for verifying that a system does not contain star-
vation of certain actions. It is a stronger assertion than reachabil-
ity, which only requires that certain actions are executed at least
once during the system’s lifetime.

For example, in order to check that the display methods of
both Flight Plan Display and Navigation Display are executed in-
finitely often in any infinite execution of the MultirateSP scenario,
we can add this to its FSP model:

progress P1 = {fltPlanDisplay.display}
progress P2 = {navDisplay.display}

Note that this is different from:

progress P1 = {fltPlanDisplay.display,
navDisplay.display}

which states that at least one of fltPlanDisplay.display
and navDisplay.display are executed infinitely often.

6. Scalability Improvements

The biggest impediment to industry adoption of model-
checking is lack of scalability due to state-space explosion. We
have constructed the FSP model for the Medium Single-Processor
(MediumSP) scenario [8], which consists of two threads run-
ning at 20Hz and 1Hz. This scenario causes out-of-memory er-
ror on a state-of-the-art PC workstation. We discuss techniques
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for improving scalability of model-checking by exploiting appli-
cation domain semantics. That is, certain characteristics of the
application domain allow us to perform optimizations and reduc-
tion of the model that is input to the model-checker. After making
these improvements, we were able to compose and check this ap-
plication scenario.

6.1. Atomic Method Call/Return

Normally method calls are modeled with a two-way synchro-
nization between the caller component and the callee component.
However, for all practical purposes we can treat the GetData()
call and reply as an atomic operation, and omit the synchro-
nization action on the method call reply. This optimization may
not be generally applicable to all method calls, but only to the
GetData() call in the control-push/data-pull interaction style,
where there is no action in between the GetData() call and reply.
This involves modifying definition of each component type. Af-
ter applying this optimization, the state space of the MediumSP
scenario has been reduced considerably. However, this is still too
large for LTSA to handle on our PC workstation.

6.2. Compositional Analysis

Construction of the global state space of an application usu-
ally causes state-space explosion. AMC application scenarios of-
ten exhibit modularity, that is, certain groups of components have
intensive communication and interaction among themselves, but
relatively little interaction with components outside the group. We
can take advantage of inherent modularity within the application
to compose and check the system hierarchically, instead of com-
posing the entire system state-space all at once. After a set of
components have been checked to be correct, we can abstract and
reuse them in other contexts by hiding irrelevant events and only
exposing those events that may be of interest to other surround-
ing components, resulting in a simplified and minimized automa-
ton. We can then reuse this automaton as a module in other con-
texts. This is the typical divide-and-conquer approach. The com-
positional analysis technique allowed us to compose and check
the MediumSP scenario successfully.

However, there is one drawback of the compositional analysis
approach. Since internal events are hidden inside of each group
of components, we cannot check for end-to-end sequencing con-
straints that span multiple groups and involves internal events
from these groups. We can only check constraints that involve in-
terface events that are exposed by the component group, or those
that involve internal events of a single group. All the other prop-
erties are not impacted.

6.3. Performance Evaluation

We have applied model-checking to a number of application
scenarios. The experiments were performed on a PC worksta-
tion with 512MB of memory and Pentium IV processor run-
ning Windows XP. Obviously, using a more powerful computer
with more memory would help improve scalability. The scenar-
ios range from the BasicSP scenario with 3 components, to the
MediumSP scenario with more than 50 components. However,

scenarios larger than MediumSP are still beyond the reach of
the model-checker despite our state-space reduction techniques.
Model-checking generally finishes within seconds or at most a
few minutes when the main memory is large enough; otherwise,
the computer goes into virtual memory thrashing mode and even-
tually gives out the memory exhausted error. We believe 50+ com-
ponents is a reasonable size to make this approach useful. A re-
alistic AMC system has up to thousands of components, and at
present, no model-checker can be expected to be able to scale up
to that size. We will have to rely on the designer’s manual work
to separate out fragments of scenarios that are relatively isolated
from the rest of the system and model-check them individually.
This is a very reasonable thing to do, as the current application
scenarios are just fragments taken from a production system.

Not surprisingly, we have found no errors in these application
scenarios, which are fragments taken from a mature, tried-and-
true production system. However, we believe the model-checking
approach can act as a valuable debugging tool for uncovering sub-
tle concurrency bugs during the early design stage of a new sys-
tem, or the maintenance stage of a legacy system.

7. Related Work

The model-checker Bogor [15] is an extensible model-checker
with built-in support for OO structures and communication lay-
ers, integrated with Cadena [16] for verification of functional
properties, also targeting the Avionics Mission Computing soft-
ware. Garlan [17] described a model-checking framework for
publish/subscribe systems. The key feature of this framework is
a reusable, parameterized state machine model that captures pub-
sub runtime event management and dispatch policy. Generation
of models for specific systems is then handled by a translation
tool that accepts as input a set of component descriptions together
with a set of properties, and maps them into the input format of the
model-checker SMV [18]. Compared to [15] and [17], our model-
checking approach adopts a higher level of abstraction and ig-
nores details related to the internals of middleware such as queu-
ing and dispatch policies. This significantly reduces system state-
space, and has turned out to be adequate for our purpose of veri-
fying application-level concurrency properties, assuming that the
middleware behaves correctly. We also take advantage of appli-
cation domain semantics and LTSA’s compositional analysis ca-
pability to help improve scalability, which is not present in [15]
and [17]. Some of the property specifications, such as sequenc-
ing constraints and progress property, are also unique to our ap-
proach.

Madl [19] developed automated translation from ESML to
Timed Automata, and used the model-checker UPPAAL [20] to
verify real-time properties. One limitation of their approach is that
they can only model non-preemptive scheduling within a single
rate group/thread, but not preemptive scheduling between threads,
due to lack of expressive power (a stopwatch mechanism) of the
Timed Automata formalism. The preemption effects of higher-
priority threads obviously have an impact on the timing behavior
of the lower-priority threads since they share the same CPU. As
discussed in Section 4.2.3, we believe a more practical approach
is to achieve separation of concerns by using real-time schedul-
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ing theory to verify the schedulability assumption, and model-
checking to verify concurrency properties.

Karamanolis [21] used FSP to model and verify workflow
schemas by mapping workflow schemas into FSP models. There
are some similarities between the computational models of work-
flow schemas and AMC software. Both consist of components
interacting with events sent and received from output and input
ports. However, there are also important differences due to the
different application domains. For example, AMC software typ-
ically contains several threads executing periodically, while the
life-cycle of a workflow schema only consists of one execution
from start to finish. The different execution frequencies of mul-
tiple threads cause the state space of an AMC application to be
much larger than a workflow schema specification with similar
complexity. From a modeling perspective, a self-loop has to be
added to each legal terminating state in [21] in order to avoid
false alarms when checking for deadlocks, while this is not nec-
essary for AMC since it is a reactive system that should never ter-
minate.

8. Conclusions

In this paper, we have discussed application of model-checking
to verify system-level concurrency properties of component-
based real-time embedded software based on CORBA Event
Service, with Avionics Mission Computing as one applica-
tion example. Using the process algebra FSP, we were able to
formalize specification of software components and system ar-
chitecture, and use model-checking to verify concurrency prop-
erties such as deadlock freedom, event reachability, sequencing
constraints, progress property and application-specific prop-
erties. We also discussed effective techniques for coping with
the state-space explosion problem by exploiting application do-
main semantics. We have applied our analysis techniques to
realistic application scenarios provided by our industry part-
ner to demonstrate their utility and power. The publish/subscribe
architectural style of AMC is widely-adopted for large scale em-
bedded software, due to its nice property of decoupling be-
tween publishers and subscribers. Although our work is initially
targeted towards the AMC software, it has much wider appli-
cability to the general class of component-based event-driven
real-time embedded software. As part of our future work, we
plan to adapt our technique to be applicable to general applica-
tions based on the CORBA Component Model [11, 12].
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