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Abstract— Packet buffering-and-forwarding is a simple but es-
sential mechanism and has been widely used with other mecha-
nisms to provide seamless handoffs in many wireless/mobile net-
works. However, some undesirable side effects of this mechanism,
if not managed appropriately, can easily diminish its effective-
ness in providing seamless inter-cell transitions during a hand-
off. We first examine these side effects and show how inappropri-
ate buffer management by a mobility agent could affect the TCP
performance. The throughput of TCP is then studied with spe-
cial emphasis on the effects of a handoff. We enhance the con-
ventional buffering-and-forwarding by proposing the Last-Come-
First-Drop (LCFD) buffer management policy (to be employed by
mobility agents) and post-handoff acknowledgement suppression
(to be used by mobile nodes). Our enhancements are backward
compatible and suitable for the gradual/incremental deployment.
By deriving an analytical model and conducting numerical analy-
sis, we show that our scheme can improve the TCP throughput up
to 30%. Finally, we conduct the ns-2 based simulation to confirm
these numerical results, and demonstrate the applicability of the
analytic model for predicting TCP throughput in other handoff
schemes.

Index Terms—Smooth handoff, MobileIP, TCP congestion con-
trol, retransmission timeout, fast retransmit

I. INTRODUCTION

Most of the current Internet applications, such as HTTP,
FTP, email, and telnet, use TCP for reliable transfer of data.
The dominant usage of TCP in the wired Internet calls for
smooth and transparent migration of TCP to the emerging wire-
less/mobile networks. As a prevailing transport-layer protocol,
the TCP uses two different strategies for end-to-end reliable
data transfer: timeout-based and duplicate-ACK-based packet
retransmissions. The TCP assumes every packet loss to have
resulted from network congestion, and uses these retransmis-
sion mechanisms to recover from packet losses. This assump-
tion is reasonable because transmission errors occur rarely in
wired networks. However, packet loss in a wireless network
occurs much more frequently than in its wired counterpart due
mainly to transmission errors over a wireless link or temporary
disconnection from the network caused by user mobility. The
TCP may misinterpret these packet losses as a result of network
congestion and then invoke the TCP congestion control. This
“over-triggering” of TCP congestion control, together with the
accompanying reduction of TCP congestion window size, de-
grades the TCP throughput significantly.

Many variations of TCP have been proposed to avoid TCP
congestion control triggered by packet losses over a wireless
link. In the Indirect-TCP [1] and Snoop TCP [2], packet loss
is concealed from the TCP sender by the base station (BS),
and packet retransmission is handled by the BS. Some TCP op-
tions, such as Explicit-Congestion-Notification (ECN) [3] and
Selective-Acknowledgment (SACK) [4], are also adopted such
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that the TCP sender can recover from packet losses more ef-
ficiently. Along with these transport-layer solutions, one may
also rely on reliable link-layer transmission mechanisms, such
as Forward Error Correction (FEC) and Automatic Repeat re-
Quest (ARQ), to make packet loss invisible to the TCP. A
scheme that uses Delayed-Duplicate-ACKs [5] along with link-
layer retransmission, was proposed to hold the third duplicate
ACK such that the TCP sender will not fast retransmit the lost
packet.

With these proposals to improve TCP performance over lossy
wireless links, the remaining challenge will be to solve the
problems caused by user mobility, which is the main intent
of this paper. Let us consider the handoff in a MobileIP net-
work as an example. The mobile node in a MobilelP network
cannot “detect” its migration to a neighboring subnet until it
misses three consecutive agent/router advertisements from its
previous access router. The default advertisement period in
the MobilelP draft is 1 second, implying that the temporary
disconnection (namely, the handoff latency) could last for at
least 3 seconds. Such a handoff latency can be long enough to
cause many packet losses and trigger TCP retransmission time-
out(s). In general, there are two ways to alleviate this prob-
lem: (1) using fast handoff to avoid TCP timeouts and (2) using
smooth handoff to eliminate packet losses. Most fast-handoff
schemes rely on different forms of “triggers” from link-layer
handoffs [6], [7], [8], [9]. Since the link-layer handoff latency,
typically ranging from 300 to 500 ms, is much smaller than the
IP-layer handoff latency, one can reduce the IP-layer handoff
latency and the subsequent TCP timeouts.

A smooth handoff is used to avoid packet loss during either a
MAC-layer or IP-layer handoff. It can be realized in many dif-
ferent ways. The simplest solution is to use packet buffering-
and-forwarding, in which in-flight packets are buffered in the
old BS during a handoff and then forwarded to the new BS af-
ter the handoff is completed [9], [10], [11]. The concept of
multicast can also be used to achieve a smooth handoff [2],
[12]. The packets destined for a mobile node are multicast to
its neighboring BSs before the mobile node actually moves into
the coverage of a neighboring BS. This way, the packets that
cannot reach the mobile node during a handoff can be ready for
transmission to the mobile node via the new BS immediately
after the handoff. The “persistent mode” of TCP is also used
to improve the TCP performance. Either the mobile node [14]
or the BS on behalf of the mobile node [15], will advertise a
zero window size to the TCP sender before a handoff. Once the
TCP sender receives an ACK indicating that the receiver win-
dow size is equal to zero, it will cancel the retransmission timer
and stop transmission until the receiver’s window is open again
after the handoff.

Even though the link-layer-assisted fast handoff schemes can
reduce the IP-layer handoff latency, it has been shown that
packet losses can still occur because of the nonzero link-layer
handoff latency [13]. It alone cannot solve the problem without
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Fig. 1. The smooth handoff in a Mobile IP network

the help of some smooth handoff mechanism. Among the ap-
proaches to achieving a smooth handoff, the “persistent mode’’-
based schemes require the BSs or mobile nodes to send out
zero window-size advertisements before a handoff. Neverthe-
less, detecting an upcoming handoff is difficult and relying on
signal strength could be very risky. The signal strength may
fall simply due to channel fading or “ping-pong” effects near
the cell boundary. Any “false alarm” will force the TCP sender
to cease its transmission, thus reducing the overall throughput.
The multicast-based smooth handoff schemes consume more
network bandwidth and buffer spaces in the BSs. In view of
these facts, we focus our discussion on the relatively simple ap-
proach — packet buffering-and-forwarding. The simplicity and
effectiveness (in avoiding packet losses) makes itself an essen-
tial element in the emerging high-speed, high-mobility wire-
less/mobile networks. Despite these advantages, such a sim-
ple approach may introduce some new problems. For example,
buffer overflow may occur in the BS during a handoff in high-
speed networks. In this paper, we will first show how a buffer
management policy can affect the TCP throughput. Then, we
propose two enhancements to fix these problems such that the
TCP throughput can be improved.

The rest of this paper is organized as follows. Section II
states the assumptions used in this paper and thoroughly inves-
tigates the TCP performance problem resulting from the packet
buffering-and-forwarding. Section III presents our solution and
provides a mathematical model for the TCP throughput analy-
sis. The numerical results based on the analytical model are pre-
sented in Section IV, while in Section V, the numerical results
are verified by the ns-2-based simulation. Finally, conclusions
are drawn and the direction of our future work is discussed in
Section VI.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Figure 1 shows a smooth handoff using packet buffering-and-
forwarding in a wireless/mobile network. The Mobility Agents
(MAs) take charge of packet buffering and forwarding for a mo-
bile node. The MAs can “reside” in the BSs of a cellular net-
work, the Access Routers (ARs) in a MobilelP network, or the
Access Points (APs) in wireless LANs. The old MA will buffer
in-transit packets and all other packets that cannot be transmit-
ted during a handoff. The packet buffering could be initiated
by the old MA when it receives the link-layer signal indicating
a link-down. The packet forwarding is triggered either by (1)
a link-layer signal indicating a link-up, or (2) a forwarding re-
quest from the mobile node via the new MA. The link-layer trig-
ger helps speed up the resumption of data transfer when a pre-
vious link-down was due to channel fading, not a handoff. The
packet forwarding for (1) actually means that the old MA re-
sumes its packet transmission to the mobile node directly. The
forwarding request of (2) simply performs packet forwarding
via the connection between the MAs. This forwarding request
may follow right after the mobile node’s reconnection to the
new subnet, e.g., after an association with a new AP or a bind-
ing update in a MobileIP network. This way the movement-
detection algorithm in the original MobilelP can be preserved.

Other than this packet buffering-and-forwarding, BSs, ARs and
APs work as usual and are assumed to be TCP-unaware.

Since the MA may need to simultaneously handle many TCP
sessions from many mobile nodes, the buffer could become a
bottleneck. Thus, a buffer overflow may occur [16]. If the aver-
age end-to-end transmission capacity is high and the maximum
TCP congestion window size is large, the old MA may have
to buffer many packets for the mobile nodes, which is likely to
result in a buffer overflow. Without appropriate buffer manage-
ment, the buffer overflow can easily offset the benefits gained
from packet buffering-and-forwarding. One of our goals in this
paper is to study the impact of buffer overflow on the TCP per-
formance and propose a better buffer management policy.

A. Retransmission Timeout with Buffer Overflow

As mentioned in the Introduction, an immediate problem as-
sociated with a handoff is the potential retransmission timeout.
For example, the MobileIP handoff latency can be up to 3 sec-
onds, which can easily force the TCP to time out. Even though
this handoff latency can be reduced by using some link-layer
enhancements, some experiments show that TCP can still time
out during a link-layer handoff [13]. This is because many oper-
ating systems have finer TCP timer granularity' so that the link-
layer handoff latency is long enough to cause TCP retransmis-
sion time out. These handoff-induced timeouts, which should
not trigger the TCP congestion control, will reduce the current
TCP congestion window size (cwnd) to 1, and reset the slow
start threshold (ssthresh) to %. Consequently, it reduces the
TCP throughput. To make it even worse, the exponential back-
off of retransmission timeout (RTO) after consecutive timeouts
may cause the TCP to stall for a longer period of time. As
shown in Figure 2, the TCP sender will retransmit the first un-
acknowledged packet at time A and double the RTO. Without
the packet buffering-and-forwarding, the TCP will wait for the
second timeout and thus remain idle between time B and D
even though the handoff is completed at time B. Fortunately, the
old MA will forward the buffered packets to the mobile node.
These packets will generate ACKs such that the TCP sender can
resume transmission at time C. However, if the buffer overflow
occurs during the handoff, inappropriate buffer management
will cause new problems. For example, an intuitive buffer man-
agement policy is proposed in [17], where packets are replaced
on a First-Come-First-Drop (FCFD) basis when the buffer al-
located to the mobile node is full. According to this policy,
the packets at the head of the buffer will be dropped first. The
idea is that the TCP receiver can receive out-of-order packets
right after a handoff, and then generate duplicate ACKs for
such packets. Therefore, the TCP sender can resume transmis-
sion without waiting any longer. The same mechanism can be
found in [14], [18] where three “spurious” duplicate ACKs are
generated upon completion of a handoff such that the sender
can fast retransmit the packet immediately without waiting for
another timeout. Together with a retransmission timeout, this
invocation of fast retransmission adversely reduces ssthresh to
a half of the current window size (= 1 because of the timeout)
and ends up with ssthresh=2.2 This means that TCP will restart
with a very small window size and enter the congestion avoid-
ance almost right away.

B. Receipt of Duplicate Packets

The packet buffering-and-forwarding in the MA could intro-
duce some other new problems. If those packets that had al-
ready been received by the mobile node before a handoff are

Lt could be 200 msecs in many Linux machines.
2Unless the bug-fix version of TCP [19] is implemented, this will be the case.
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forwarded to the new MA,? the mobile node has to generate
duplicate ACKs as it has to assume that ACKs before the hand-
off are lost. This will again trigger the TCP congestion control
and result in throughput reduction. One way to avoid this prob-
lem is that the mobile node provides the old MA (via the new
MA) some information about the received packets. In IPv4,
the 16-bit ID field in the IP header may be used for this pur-
pose [10]. Since there is no such packet identifier in the IPv6
packet header, we will need the link-layer acknowledgement
(e.g., in the IEEE 802.11 wireless LAN) between the old MA
and the mobile to provide the old MA with the information
needed for avoiding the mobile’s receipt of duplicate packets
after a handoff.

C. Retransmission Ambiguity

The last problem associated with the packet buffering-and-
forwarding is the retransmission ambiguity. Let us consider the
previous example and assume packets 1-8 are buffered in the
old MA. Packet 1 times out at t = A and the TCP sender re-
transmits the packet. After all the packets are forwarded to the
new MA (and then to the mobile node) at ¢t = C, the TCP
sender will receive an ACK for packet 1, which is the ACK for
the original buffered packet 1, not the retransmitted one. Since
the TCP sender is unable to distinguish them, it will just in-
crease the window size by 1, and send packets 2 and 3 (i.e., the
slow start after a timeout). This procedure will continue until
packet 8 is retransmitted again. At the receiver end (i.e., the mo-
bile node), receiving the duplicate packets 1-8 makes the mo-
bile node generate duplicate ACKs for packet 8. This, in turn,
invokes the fast retransmission at the TCP sender side and con-
sequently, reduces cwnd and ssthresh again. A similar situation
has been found in wired networks, where a severely-congested
node may cause “spurious” timeouts such that the TCP sender
unnecessarily retransmits packets causing the TCP receiver to
generate duplicate ACKs. The TCP-Eifel [20] used a timestamp
for every timed packet such that the TCP sender can determine,
without ambiguity, which of the transmitted segments an ACK
belongs to. However, a timestamp will occupy 12 bytes in each
TCP packet and requires modification to the TCP sender. In
our case, since this retransmission ambiguity occurs during a
handoff, we use post-handoff acknowledgement suppression to
solve this problem without the need of using a timestamp in
each packet.

III. ENHANCED PACKET BUFFERING-AND-FORWARDING
FOR SMOOTH HANDOFF

In order to solve the aforementioned problems caused by the
packet buffering-and-forwarding, two enhancements are pro-
posed: one for the MA and the other for the mobile node. In
what follows, we will introduce this proposed approach, and

3Note that MAs are TCP-unaware and may have no idea which packets have
been received by the mobile node.
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Fig. 3. The evolution of TCP congestion window size for 2 consecutive hand-
offs: W = 24, B = 20, and Wyqz = 32

present a mathematical model to analyze the TCP throughput
under the proposed handoff scheme.

A. Last-Come-First-Drop Policy

The Last-Come-First-Drop (LCFD) policy is used for man-
aging the buffered packets in a MA, instead of the intuitive
FCFD policy. If no retransmission timeout occurs during
a handoff, both policies have similar performance since any
dropped packet results in duplicate ACKs. The TCP sender will
simply invoke the fast retransmission after the handoff. If there
are a handoff-caused retransmission timeout and some packet
drops due to buffer overflow, the LCFD policy will outperform
the FCFD policy. Let W;, = w be the congestion window
size at the k-th handoff. As shown in Figure 2, packet 1 times
out at time A and the TCP sender retransmits that packet (now
the TCP sender is in the slow start with cwnd=1 and ssthresh
= %). The handoff is completed at time B, and the buffered
packets are forwarded to the mobile node via the new MA at
time C. If packet 1 was dropped in case of buffer overflow un-
der the FCFD policy, duplicate ACKs are generated upon re-
ceipt of packets 2—-8. The duplicate ACKs will then invoke
the fast retransmission of packet 1. This invocation of fast
retransmission further reduces ssthresh to its minimum value
(ie., min(2,5) = 2, where w = 1 is the window size after
the first timeout). So, the TCP will restart with a small win-
dow size and then immediately enter the linear increase region,
resulting in severe throughput degradation. Using LCFD, on
the other hand, will not generate duplicate ACKs, because the
older packets are kept in the buffer such that no “gap” exists.
The resulting ssthresh is much higher (=%).
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B. Post-handoff Acknowledgement Suppression

The LCFD policy alone cannot solve the entire problem
because of the potential retransmission ambiguity mentioned
earlier. In order to improve the TCP performance further, a
Post-Handoff Acknowledgement Suppression (PHAS) module
is added to the mobile node. Here, we assume that the TCP re-
ceiver acknowledges every received packet. After a successful
handoff, the PHAS module will delete all ACKs for the for-
warded packets, except when it is a duplicate ACK or the ACK
for the last forwarded packet. If it is a duplicate ACK, there
must be some packet losses during the handoff and the TCP
sender should receive such duplicate ACKs as soon as possi-
ble for error recovery. If it is the ACK for the last forwarded
packet, the TCP sender need not care which TCP packets this
received ACK belongs to, because the ACK sequence number
must be no less than the sequence number of the retransmitted
packet, which is the first packet buffered in the old MA during
a handoff. This way, no retransmission ambiguity occurs. It
is possible that TCP sender receives more than one ACK that
acknowledges the last forwarded packet. This can occur if the
TCP sender times out during a handoff. For example, if pack-
ets 1-8 are buffered during a handoff but packet 1 times out
due to the handoff latency, packet 1 will be retransmitted by the
TCP sender. In this case, the TCP receiver will generate two
ACKs for packet 8: the first for receiving the forwarded packet
8 and the second for receiving the retransmitted packet 1. But
a single duplicate ACK (i.e., the second ACK for packet 8) will
not invoke any fast retransmission at the TCP sender side. In-
stead, this duplicate ACK helps ensure that the TCP sender will
receive at least one of these important ACKs (since the ACK ac-
knowledges all buffered packets) in case of transmission loss.
In fact, one more duplicate ACK can even be sent by the PHAS
to make sure that TCP sender will receive this important ACK.
The PHAS can function properly even though some encryption
like IPsec [21] is enforced for security reasons. One implemen-
tation is to install the PHAS module between the TCP agent
and the port demultiplexer in the mobile node so that the PHAS
module can update the TCP ACK number easily without com-
promising the end-to-end security.* At the end of packet for-
warding, the old MA only needs to notify the mobile node, via
the new MA, such that PHAS can know the last forwarded TCP
packet.

With these two enhancements, the packet retransmission due
to inadequate buffer management or retransmission ambiguity
can be eliminated. Figure 3 illustrates the evolution of TCP
congestion window under the conventional and the enhanced
packet buffering-and-forwarding schemes. Let B be the buffer
size in the old MA. We assume 1 < B < W, since a smooth
handoff cannot be achieved if B using too small. In Figure 3,
we assume that the RTT is about 200 ms, the RTO is 2 secs, and
the average sojourn time of a mobile node in each subnet is 10
secs. Further, we assume that the handoff takes 3 secs, trigger-
ing a timeout. Under the proposed scheme, since no more than
3 duplicate ACKs are generated by the mobile node upon re-
ceiving the buffered packets, the TCP will enter the congestion
avoidance about 1 sec after resuming the transmission and will
reach Wi, at ¢ = 8. In contrast, the TCP under the conven-
tional packet buffering-and-forwarding will enter the conges-
tion avoidance with ssthresh=2 after the fast retransmission and
fast recovery. The resulting throughput is significantly higher:
about 800 packets are sent under our enhanced scheme while
only about 680 packets are sent under the conventional one.
The difference gets larger in the second handoff because the
cwnd value before the second handoff is even larger under our
scheme than that under the conventional one. Of course, the im-
provement depends on the current window size W, buffer size

4We will show in Section V how this can be done easily in the ns-2 simulator.

B, the mobile node’s mobility (i.e., the average sojourn time),
and also the probability of retransmission timeout due to the
handoff. One can expect that, if user mobility is high, or the
buffer overflow occurs more frequently, the improvement will
be more pronounced.

C. Analytical Model for the TCP Throughput

We now develop a mathematical model for the evolution of
TCP NewReno congestion window size in a wireless/mobile
network. Based on this model, we can analyze the average
throughput of a TCP session when a mobile node undergoes
frequent handoffs. We will use this model to show the TCP
improvement under the proposed scheme. We will also show
how this model can be applied to other handoff schemes such
as multicast-based smooth handoff or link-layer-assisted fast
handoff.

The basic idea of our model is simple — since the TCP con-
gestion window determines the number of packets that a TCP
sender can transmit within a packet round-trip time (RTT), the
TCP throughput can be computed based on the congestion win-
dow size and the RTT. Let 7" be the mobile node’s sojourn time
in a cell and R the packet RTT. Here, the sojourn time is re-
ferred to as the time interval starting when the mobile node
establishes a connection with the AP until that connection is
torn down. Obviously, both 7" and R are random variables.
We can compute the total number of TCP packets transmitted
between two consecutive handoffs if we have the probability
density functions of 7" and R. For example, the TCP conges-
tion window size is incremented by 1 every RTT if the TCP is
in the congestion avoidance. Let S be the normalized sojourn

time and S = L. The number of packets transmitted during
Sx(2w+S)

R
the mobile’s stay in a cell is N = , assuming that the
TCP is in the congestion avoidance after the handoff and w is
the contention window size right before the handoft.

In reality, the TCP could be in the slow start phase in case of
a retransmission timeout during a handoff or in the fast retrans-
mission phase in case of buffer overflow. Therefore, the num-
ber of TCP packets transmitted within the mobile’s stay in a
cell depends on the probability of TCP retransmission timeouts
and the buffer-management policy. The probability of retrans-
mission timeout, p, depends on the TCP retransmission timeout
(RTO) value, the packet RTT and the handoff latency, and can
be obtained as

RIT, cw RTT,
p=P(RTO < Tiar + —"" + = 4y

where 17, is the handoff latency and RT T}, (RT1,14) is the
packet RTT before (after) the handoff. Figure 4 shows how the
TCP congestion window size evolves under different circum-
stances. For example, the TCP retransmission timeouts occur
during the first and third handoffs so the TCP needs to restart
with the slow start. For the second handoff, neither a retrans-
mission timeout nor a packet loss occurs. The TCP congestion
window size keeps increasing linearly as the TCP is already
in the congestion avoidance when a handoff takes place. Dur-
ing the fourth handoff, some packets are dropped due to buffer
overflow, so the fast retransmission kicks in. Let W/}, be the con-
gestion window size right before the k-th handoff. The process
{W : k=1,2,---} can be modeled as a discrete-time Markov
chain. Given the p.d.f. of S, S(s) and p, we can compute the
transition probability as follows:

1) B > w: Since the buffer is larger than the current
congestion window size, no packet in the current congestion
window gets dropped during the handoff. Let Wy, be the
congestion window size right before the next handoff. For
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w < Wiy1 = § < Winaa, the transition probability under
the proposed scheme can be computed as

PWiy1 = jIWi =w) =

J—w+l log2 3 +j—%+1
(1 *p)/ S(s)ds +p/ S(s)ds. (2)

=j—w s=logs ¥ +j—%

The first integral represents the case when no retransmission
timeout occurs during a handoff such that the TCP will not
be affected by the handoff. Here we assume that the TCP is
already in the congestion avoidance at the k-th handoff (i.e.,
Wy > ssthresh). Unless the mobile node’s sojourn time in a
cell is small (e.g., only several RTTs long), this assumption is
reasonable. If the sojourn time is very small, the mobile node
will be handed off immediately after completion of the current
handoff, so it is almost impossible to achieve a smooth hand-
off. The second integral accounts for the case when a timeout
occurs (with probability p). The TCP will restart with the slow
start and enter the congestion avoidance after logs % RTTs. For

2
Wi
f2k < Wk+1 < Wk,

PWiyr = jIWe =w) =

log2 3 +j—5+1
p/ S(s)ds, (3)

=log2 9 +j—%
because the congestion window size will not shrink without a
retransmission timeout. These equations can be applied to both
the FCFD and LCFD policies since a buffer-management pol-
icy does not have any effect on the TCP if no buffer overflow
occurs. For Wi 1 = Wi,4q, the transition probability can be
obtained from Egs. (2) and (3) as

Wmae—1

1- Z P(Wiy1 = jIWi = w). “)

w

J=%

2) B < w: Some packets will get dropped according to the
buffer-management policy when the buffer is smaller than the
current congestion window. Under the proposed LCFD policy,
the transition probabilities for § < Wiy1 < Wi, can be
computed as

P(Wit1 = j|Wy, = w) =

Ta1+j—ws1+1 Taz+j—ws2+1
(1 fp)/ S(s)ds +p/ S(s)ds.

=Ta1+j—ws1 s=Ta2+j—ws2
Q)

The first integral considers the case when no retransmis-
sion timeout occurs. Since the packet loss invokes the TCP
NewReno’s fast retransmission, it takes 751 = (w — B) RTTs
for loss recovery before resuming transmission in the conges-
tion avoidance ws; = 3. The second integral represents the
case of concurrence of retransmission timeout and buffer over-
flow. Using the LCFD and PHAS policies makes the TCP re-
duce cwnd and ssthresh only once as explained in the previ-
ous subsection. In this case, it takes Ty2 = loga5 RTTs be-
fore leaving the slow start and entering the congestion avoid-
ance wsz = 3. If the FCFD policy is applied, the transition
probabilities for % < Wit1 < Winae takes the same form
as Eq. (5) except that the TCP will enter the congestion avoid-
ance wgo = 2 (ssthresh=2) within Tys = 1 RTT due to the
double reduction of cwnd and ssthresh as explained earlier. For
2< Wiy < %, the transition probabilities can be obtained by

the second term of Eq. (5)
P(Wii1 = j|Wk = w) =

"Tao+j—ws2+1
p*/ S(s)ds, (6)

s=Taz+j—ws2

because only the concurrence of buffer overflow and retrans-

mission could make Wy less than %. The transition prob-
w) can be obtained as in

2
ability, P(Wi41 = Winaa| Wi =
Eq. (4).

The next step is to compute the average number of packets
transmitted between two consecutive handoffs. Here, we do not
include the packets transmitted during the slow start, nor those
during the fast recovery. The number of packets transmitted
during the fast recovery is usually less than the current conges-
tion window size, and are negligible. For the packets transmit-
ted during the slow start, since the congestion window grows
exponentially before the TCP enters the linear-increase region,
the TCP stays in the slow start phase only for a short period
of time (several RTTs). Moreover, the packets transmitted in a
RTT during the slow start is far less than W, ... Therefore, the
total number of packets transmitted during the slow start phase
is very small as compared to that in the linear-increase region.
For example, let W4, = 36, W, = 32 and E[S] = 25. If
a retransmission timeout occurs, the total number of packets
transmitted during the slow start is 15 (in 4 RTTs) while the
number of packets transmitted thereafter is about 520. That is,
the slow start only accounts for less than 3% of the total trans-
mitted packets. Of course, this ratio increases when the mobile
node’s sojourn time decreases. However, as we pointed out ear-
lier, the smooth handoff is really difficult, if not impossible, to
achieve under such frequent handoffs.

Let N, be the average number of packets transmitted be-
tween ¢y and tx1, given W), = w. N,, can be obtained by the
following equation:

Ny =p { / o Jo =T | 2;”“) 5= Tl g 5)as

+ / [s — Tin1] * Winae * S(s)ds}
s>Tip

va-p{ [ leteltfuelltelg,,

+ / [s — Tyn2| * Winax * S(s)ds} . (D
s>Tin2

Eq. (7) appears very complicated but it simply computes dif-
ferent areas under the curve of congestion window size shown
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in Figure 4. First, let us consider the case when there is no
buffer overflow during a handoff (i.e., w < B). If a timeout
occurs (with probability p), the number of transmitted pack-
ets between handoffs can be calculated by the first term of
Eq. (7). In case the normalized sojourn time is less than
Tint = (Wiae — 5) + logay, the congestion window at
t = ti4+1 cannot reach its maximum value W,,,,. The num-
ber of transmitted packets is equal to the area of the trapezoid
A-B-C-D shown in Figure 4, and can be computed by the first
integral with Ty; = loga%5. Otherwise, the congestion win-
dow size will reach W, ., and more packets can be sent. The
number of additional packets being transmitted is equal to the
area of the rectangular C-D-E-F shown in Figure 4, and can be
computed by the second integral. The total number of packets
transmitted is the sum of these two integrals. If no timeout oc-
curs (with probability 1 — p), the total number of transmitted
packets can be obtained by summing the two integrals in the
second term of Eq. (7) with Tipo = Wiee — w, wee = w, and
Ty2 = 1 since the TCP is not affected by the handoff. The same
parameters (i.e., Tix1, Tq1, etc.) can be used for the case when
the FCFD policy is applied since a buffer-management policy
does not make any difference in the absence of buffer overflow.

Next, we consider the case when the buffer overflow occurs
(w > B). Under the proposed LCFD policy, the buffer over-
flow will not invoke fast retransmission (due to the PHAS) if a
retransmission timeout occurs during a handoff. The TCP will
restart with the slow start. The number of transmitted pack-
ets can be computed as we did for the case of B > w. If
there is no retransmission timeout during a handoff, the TCP
will fast retransmit the dropped packets and the new ssthresh
will be 3. It takes one more RTT to initiate fast retransmis-
sion since only one ACK (for the entire buffered packets) is
sent back, and (w — B) RTTs to recover all dropped packets.
The number of transmitted packets can be calculated by the sec-
ond term of Eq. (7) with Typ2 = (Wiae — § +w — B + 1),
ws2 = %, and Tgz = w — B + 1. Under the FCFD policy,
if both the buffer overflow and a retransmission timeout oc-
cur during a handoff, the TCP throughput will be reduced be-
cause of the double reduction of cwnd and ssthresh. The num-
ber of transmitted packets can be obtained by using the first
term of Eq. (7) with Ty; = 1, Ting = (Wiae — 2) + 1 and
wg1 = 2. Otherwise, the buffer overflow causes the TCP to
fast retransmit the dropped packets as that under the LCFD pol-
icy, except that the fast retransmission can be detected earlier
than the LCFD policy by about one RTT, because B duplicate
packets are received immediately after the handoff. In this case,
Tiha = Winae — 5 +w — B, wee = 5 and Tgs = w — Bin
the second term of Eq. (7).

Finally, the average TCP throughput can be obtained by

TP = Zwk Twy, * ka ’
n
where 7, can be calculated by using Eqgs. (2)—(6)

The above analysis considers the case where only the
packet buffering-and-forwarding is used. The analytical model,
nonetheless, is applicable to the other handoff schemes. In the
next subsection, we will show that only minor modification is
needed to apply the model for the TCP throughput analysis un-
der different handoff schemes.

D. Applicability of the Analytical Model

To demonstrate the applicability of our analytical model
to other handoff schemes, we selected the fast handoff and
multicast-based smooth handoff schemes as examples. These
two schemes can, in fact, be regarded as the special cases of
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Fig. 5. Comparison of the TCP throughput with and without PHAS

our model. If the fast handoff is used, the handoff latency can
be reduced but buffer overflow may still be a problem. The tran-
sition probabilities can still be calculated by Eq. (2)—(6) with a
different probability of TCP transmission timeout according to
Eq. (1). Likewise, the average number of packets transmitted
between handoffs can be obtained by using Eq. (7). If the mul-
ticast is used for achieving a smooth handoff, the problem of
buffer management in the old MA is shifted to the neighbor-
ing MAs because each neighboring MA will receive a copy of
the packet. The TCP throughput can still be obtained by using
Egs. (2)—(7) with or without considering the timeout, depending
on the handoff latency.

IV. NUMERICAL EVALUATION

We compare the TCP throughput under the conventional
packet buffering-and-forwarding scheme, the conventional
scheme with the PHAS module, and the scheme with both
PHAS and LCFD. We evaluate the impact of three major factors
on the TCP throughput: (1) the probability of retransmission
timeout during a handoff, (2) the buffer size at each MA, and
(3) user mobility. The distribution of mobile node’s normalized
sojourn time S in a cell is assumed to be uniformly-distributed
within [Tin, Tinaz] With Thpq. less than 100 (or ET = 20 sec-
onds if E[R] = 200 msecs) for the following analysis because
we are interested in high-mobility cases.

Figure 5 shows the improvement of TCP throughput under
the packet buffering-and-forwarding with PHAS enhancement
over the conventional scheme, both using the FCFD buffer-
management policy. When B = 32 = W,,,., no buffer over-
flow occurs. If there is a handoff-induced timeout, cuwnd will
be halved twice under the conventional scheme (i.e., the retrans-
mission ambiguity explained earlier). With the help of PHAS,
however, such ambiguity can be resolved and the throughput
can be improved significantly, especially when p is large (e.g.,
35% when p = 0.9). Even though the PHAS may introduce
an extra delay of sending back the ACK, it only affects the
throughput when p is small and the degradation is almost negli-
gible (e.g., —0.7% when p = 0.1). If B is smaller than W, 4,
buffer overflow may occur. The concurrence of buffer over-
flow and retransmission timeout makes no difference to TCP
throughput under these two schemes, because both will invoke
the congestion control twice, resulting in the double reduction
of cwnd and ssthresh. As a result, the improvement is much
smaller than that when B = W,,,,. This calls for the need of
the LCFD buffer-management policy in each MA.

The effect of buffer management on the TCP throughput is
plotted in Figure 6. If the buffer size is larger than the max-
imal window size, the default buffer-management policy (i.e.,
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FCFD) will have the same throughput as the proposed LCFD
policy, because there will be no buffer overflow. Therefore,
only the case of B < W, is considered. The improvement
of throughput under the LCFD policy with PHAS is significant,
ranging from 24 to 32% when B is varied from 30 to 24 if
p = 0.9. Further improvements can be made by decreasing the
buffer size, because it is more likely to have concurrent TCP re-
transmission timeout and buffer overflow for a small buffer size,
thus doubly reducing cwnd under the FCFD policy. The differ-
ence of improvements by changing the buffer size is within 5%
for a large range of p. This shows that, when the buffer is a
limited resource in the MAs, allocating a smaller buffer space
to each mobile node will not cause any significant throughput
degradation. The only exception to the improvement by the
LCFD policy is when p is small. In this case, timeouts oc-
cur rarely, and hence, only buffer overflow will affect the TCP
throughput. The FCFD policy enables the TCP sender to detect
the packet losses resulting from buffer overflow sooner than
the LCFD policy. That is, there is no extra ACK delay under
the conventional packet buffering-and-forwarding. The buffer
overflow simply results in out-of-order packet delivery, and
forces the TCP receiver to generate duplicate ACKs for the first
dropped packet. However, using the LCFD policy forces the
TCP sender to take one more RTT to trigger the fast-retransmit
as shown in the example of Figure 7. Since the difference of
this delay is only 1 to 2 RTTs, the resulting throughput under
LCEFD is slightly lower than that under FCFD by about 5% and
it only occurs when p is very small.
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This result, together with that in Figure 5, shows that the
packet buffering-and-forwarding with both LCFD policy and
PHAS enhancement can improve the TCP throughput substan-
tially, regardless if buffer overflow occurs or not. When the
buffer is not a limited resource in ARs, the PHAS helps in-
crease the TCP throughput while the LCFD policy kicks in
when buffer overflow occurs.

Figure 8 shows the improvement of TCP throughput under
the proposed scheme, as compared to the conventional packet
buffering-and-forwarding when different user mobility is con-
sidered. Here, we convert the normalized cell sojourn time S
to the real sojourn time E[T] by using F[R]=200 msecs. It
shows that the higher the probability of retransmission time-
out, the greater the improvement of TCP throughput for a given
sojourn time. This is because the double reduction of TCP con-
gestion window size is more likely to occur under the conven-
tional scheme when p is larger. One can also observe that given
a probability of retransmission timeout during a handoff, the
improvement decreases if a mobile node stays longer in a cell.
Given a larger sojourn time, the cwnd under the FCFD pol-
icy will eventually reach its maximum value, even though the
TCP’s new ssthresh is small (i.e., 2) so that it takes more time
to reach W,,,4.. The difference between the numbers of trans-
mitted packets under the FCFD and LCFD policies only makes
up a small portion of the total packets transmitted during a mo-
bile node’s stay in a cell. Consequently, the improvement due
to our enhancements become smaller. On the other hand, if
the average sojourn time is small, the improvement may also
decreases because the mobile node may be handed off again
before its cwnd reaches W, ,,. Therefore, the advantage of
using the LCFD policy — resuming transmission with larger
ssthresh and reaching W, ., faster than the LCFD policy —
becomes less significant, and so does the improvement. In gen-
eral, the improvement ranges from 10 to 30% in many other
real scenarios. For a walking speed around 4-5 km/hour, for
example, the average time of crossing a 20 m wireless LAN is
10-15 seconds while for a driving speed around 50 km/hour, it
takes 10-15 seconds to traverse a 200-300 m micro cell. In these
cases, the improvement could be very significant, depending on
the probability of retransmission timeout.

V. SIMULATION RESULTS

To confirm the analytical results, we conducted simulation
using the ns-2 simulator. A mobile node’s handoffs between
“cells” are realized by controlling the costs of links between the
mobile node (MN) and the MAs: link-a and link-b. The packet
routing is determined by the “session” routing protocol pro-
vided in ns-2 which updates all nodes’ routing tables if a link’s
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cost changes. For example, as shown in Figure 9, let link-a’s
initial cost be 1 and link-b’s cost be 5. Packets will be transmit-
ted to MN via MA1. This way, the MN is said to be in the “first
cell.” If link-a’s cost is changed to IN_ TRANSIT = 3, the
packets are still sent to MA1, but the MA1 will actually buffer
them since the link cost indicates the MN’s handoff. If link-a’s
cost is changed again to 5 while link-b’s cost is changed to 1,
all new packets will be sent to MA2, and MA1 will also for-
ward the buffered packets to MA2. This completes the handoff
process. By repeating this procedure, we can control the MN’s
handoffs using “link-layer indication” and emulate any desired
cell sojourn time and handoff latency. The PHAS module is in-
serted between the TCP agent and the port demultiplexer of the
ns-2 simulator. For the PHAS’s operation, only one state vari-
able — the TCP sequence number of the last forwarded packet
— is needed. The PHAS can then be used with any existing
version of TCP. Throughout our simulation, we use the TCP
NewReno for its capability of recovering from multiple packet
losses. Finally, the RTT is mainly controlled by the delays of
the links between the TCP sender and MAs.

A. Trace of TCP Sequence Numbers

Figure 10 plots the trace of TCP sequence numbers when a
retransmission timeout occurs during a handoff. Att¢ ~ 7, the
packet is retransmitted. At ¢t = 7.6, the TCP sender receives
32 duplicated ACKs for the timed-out packet under the conven-
tional scheme. The packet is fast retransmitted and some other
packets are also sent because of the window inflation during
the fast recovery. Some of these packets will acknowledge the
dropped packets during the handoff, but the others will generate
duplicated ACKs for the last forwarded packet. This explains
the duplicate acknowledgements around ¢ ~ 7.7. After the
fast recovery (¢ ~ 8), the TCP enters the congestion-avoidance
phase and increases its cwnd linearly (it is not easy to see that
in the figure, but it can be inferred by the difference between
largest TCP sequence number and ACK numbers).

Improvement of TCP throughput: W, _ =40, B=32
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Fig. 11. comparison between numerical and simulation results

Compared to the conventional packet buffering-and-
forwarding, the trace of our enhanced scheme is much simpler.
After a handoff, the TCP sender only receives the ACK for the
last forwarded packet. This can be seen by the jump in ACK
number between ¢t = 6.9 and t = 7.6. After that, the TCP
enters the slow start at ¢ = 7.6 (note the difference between
the largest sequence number and ACK number during the time
interval [7.6, 8.6], and then enters the congestion avoidance
at t = 8.6 (note that the cwnd value is around 20, which is
the new ssthresh). This trace verifies the occurrence of the
problem discussed earlier and shows how our scheme can solve
the problem. Since the cwnd value under our enhanced scheme
is lager than that under the conventional scheme, we will show
next that a higher TCP throughput can be achieved.

B. The Improvement of TCP Throughput

Both the numerical and simulation results are plotted in Fig-
ure 11. We only consider the case when mobility is not too
high because a smooth handoff is not achievable if the node
moves too fast, as we discussed earlier. In general, the numer-
ical results match well the simulation results with the largest
error around 7% when the average cell sojourn time is 13 secs.
There are several factors contributing to this error. First, we do
not consider the packets retransmitted during the fast recovery
phase in our model. Even though the number of retransmitted
packets is usually less than cwnd, it can account for 3-5% of
the total packets for the case of cwnd = 40 and n = 10. There-
fore, the total number of packets sent under the conventional
packet buffering-and-forwarding scheme is actually larger than
our estimated value. Second, it is possible that fast retransmit
and fast recovery may occur more than once under the conven-
tional scheme (also shown in Figure 10). In our model, we do
not take this into account for simplicity of our derivation. Even
in the presence of these factors, our model is still accurate, im-
plying its applicability to the enhanced handoff schemes as sug-
gested in Section IV.

C. The Number of Retransmitted Packets

Finally, we evaluate the amount of resources that can be
wasted by an inappropriate handoff scheme. This waste of re-
sources is measured by the total number of retransmitted pack-
ets during a handoff. Figure 12 plots the number of retrans-
mitted packets normalized by the maximum congestion win-
dow size, W4z, for both high and medium probabilities of
retransmission timeout. It is surprising that the number of re-
transmitted packets when p = 0.5 is a little larger than that
when p = 0.9 if we use the enhanced packet buffering-and-
forwarding. This is because when p is small, a retransmission
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timeout is less likely to occur. If a timeout does not occur, the
ACK of the last forwarded packet (by the PHAS) will trigger
the TCP sender to transmit new packets. These packets, after
being received by the receiver, will generate duplicate ACKs
for the dropped packets during a handoff and invoke TCP fast
retransmit and fast recovery. However, if a timeout does occur,
the ACK of the last forwarded packet will not trigger the TCP
sender to transmit new packets but the first dropped packet dur-
ing a handoff. No extra retransmission except for the dropped
packets will be needed. But in both cases of p = 0.5 and
p = 0.9, the numbers of retransmitted packets are very small,
as compared to those under the conventional scheme.

Under the conventional scheme, the larger the probability of
retransmission timeout, the larger the number of retransmit-
ted packets. This is because the double reduction of cwnd is
likely to happen when p is large. As a result, the number of
retransmitted packets when p = 0.9 is larger than that when
p = 0.5. Moreover, given a probability of retransmission time-
out, the number of retransmitted packets should be smaller if
MAs are equipped with large buffers. One may notice that there
is an obvious exception shown in Figure 12 when p = 0.9 and
B = 40. In this case, no buffer overflow will occur because
of B = W,4.. After receiving the forwarded packets, the re-
ceiver will generate ACKs for all these packets. Meanwhile, the
TCP may already have timed out during a handoff and retrans-
mits the timed-out packets. The TCP sender will also transmit
all of the packets already received by the receiver again upon
receiving the ACKs after a handoff. These retransmitted pack-
ets, upon their reception by the TCP receiver, will generate du-
plicate ACKs and then make the TCP sender fast retransmit
the packets again. Therefore, the total number of retransmitted
packets when the buffer size is W4, is larger than that if the
buffer size is smaller, when p is large. If p is small, the above
situation will rarely occur since the retransmission timeout is
more unlikely to occur. This result is consistent with the plots
in Figure 5 and shows the importance of PHAS in improving
the TCP throughput.

In summary, our enhanced packet buffering-and-forwarding
not only improves the TCP throughput but also uses the network
resources more efficiently (by reducing the number of retrans-
missions). It is also shown that substantial improvements can
be achieved under many different circumstances.

VI. CONCLUSION

In this paper, we examined the problem of TCP throughput
during a handoff in a wireless/mobile network. We identified
the problem of retransmission ambiguity due to timeout dur-
ing a handoff as well as the double reduction of TCP conges-
tion window size resulting from the concurrence of timeout and

buffer overflow under the conventional packet buffering-and-
forwarding. We proposed an enhanced scheme for the TCP
throughput, using post-handoff acknowledgement suppression
with the LCFD buffer management policy. An analytical model
for the evolution of TCP congestion window is derived along
with the average TCP throughput. By using numerical evalua-
tion, the effects of buffer size, the probability of retransmission
timeout resulting from a handoff, and user mobility are stud-
ied. The results show that when the probability of timeout is
high, the proposed scheme can increase the TCP throughput
by 20 to 30%. Since the proposed scheme requires no mod-
ification of the TCP and only a different buffer-management
policy is needed in MAs, it is easy to implement and can be
deployed gradually. The ns-2 simulation confirms our find-
ings and demonstrates the applicability of our model to other
schemes. In future, we would like to compare the improvement
of the proposed scheme with that of the other schemes, such as
the fast handoff or multicast-based scheme, while considering
the complexity and extra network resources used.
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