
Early-Stage Performance Modeling and Its Application for
Integrated Embedded Control Software Design*

Shige Wang and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

1301 Beal Avenue
Ann Arbor, MI 48109-2122

{wangsg,kgshin}@eecs.umich.edu

ABSTRACT
Most of current embedded control software (ECSW) development
techniques deal only with performance specifications during the
early software design phase and delay the modeling and analysis
until the detail design has been completed. In this paper, we pro-
pose a new approach to modeling and analysis of the performance
of the designed ECSW without knowing the platform configuration
and the software deployment. The functional model is assumed - -
as is commonly the case in practice - - to be constructed by inte-
grating existing (reusable) software components. The performance
of components and connections in the model are modeled using an-
notated requirements and virtual resource demands. Our algorithm
then computes the system performance such as end-to-end delays
of transactions and workloads by traversing the model. The re-
sults can be applied to the platform design and runtime architecture
generation. To demonstrate the usefulness of the proposed method
in real world applications, we present the analysis of automotive
vehicle-to-vehicle control software as an example.

Keywords
performance modeling, performance-aware design, embedded soft-
ware, integrated system

1. INTRODUCTION
Performance modeling and analysis at early design stages is cru-

cial to the runtime correctness of embedded control software (ECSW),
which typically runs in a resource-limited environment and must
meet stringent performance constraints. At an early design stage,
the implementation details of a designed ECSW and its execution
decisions are not fully determined. The early-stage performance
modeling and analysis can serve the purposes of: (1) evaluating the
completion and satisfiability of performance specifications for the

*The work reported in this paper was supported in part by DARPA
under AFRL contracts F3615-00-1706 and F30602-01-02-0527.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP'04 January 14-16, 2004, Redwood City, California.
Copyright 2004 ACM 1-58113-673-0/04/0001 ...$5.00.

designed software architecture, (2) verifying and assisting platform
design/configuration for sufficient resources for the ECSW execu-
tion, and (3) guiding the runtime model design such as the allo-
cation and scheduling of components. Existing research results of
both performance modeling [5, 7, 1] and real-time scheduling [3,
6] are not applicable to the early design stage since implementa-
tion details such as components' execution locations and schedul-
ing policies are essential to the application of these techniques.

In this paper, we present a new method for early design-stage
performance modeling and analysis without the implementation de-
tails. In this method, the designed ECSW is modeled as a graph
of software components and their connections, called structural
model. The software components in the structural model have an-
notated domain-specific performance parameters, whose values rep-
resent the resource demands and performance requirements of the
components. We introduce virtual resources to map the measured
platform-dependent resource demands of the components to platform-
independent virtual resource demands. The performance of the
structural model can then be derived by tracing the graph with per-
formance annotated modeling elements. The designer can use the
obtained performance to design and verify the platform, and gener-
ate a runtime model for implementation.

The rest of this paper is organized as follows. Section 2 describes
the software structural model, based on which we develop our per-
formance modeling and analysis method. Section 3 presents our
performance modeling method, including performance annotations
of modeling elements, and algorithms to derive the system perfor-
mance. Section 4 discusses the application of the modeling results,
especially to platform design and runtime model generation. Sec-
tion 5 shows an example of the performance modeling and analysis
of automotive vehicle control software using the proposed method.
The paper concludes with Section 6.

2. SOFTWARE STRUCTURAL MODEL
A software structural model defines the software architecture that

implements the system functional behaviors. In current ECSW de-
velopment, the software is usually constructed by synthesizing soft-
ware components, including device drivers, data processing algo-
rithms, and control algorithms.

A software component in a structural model is formally defined
as a pair c = < Bc,Pc 3>. Bc is a set of actions to transform the
component's inputs to outputs under control of a behavior specifi-
cation. Pc defines a set of ports for inputs (Ic) and outputs (Oc) with
Pc = I¢ [.J Oc and Ic N Oc = O. A port specifies an external inter-
face through which a component communicates with other software

l lO

component(s). Here we assume that the components are process-
oriented, each containing a single operation to react its inputs for
each mode. 1 A model constructed with object-oriented compo-
nents like UML classes can be converted to the one with process-
oriented components using port dependency graphs [2].

The interactions among components are defined as connections.
A connection specifies the information dependency between two
components. A connection is formally defined as a partial rela-
tionship l : < x,y > between components Cl and c2 that satisfies
x E Oc, Ay E lc2 A Type(x) = Type(y). Type(x) and Type(y) define
the types of port x and y. A connection can be either synchronous or
asynchronous. A connection < x,y > is synchronous if the output
from port x directly triggers the execution of actions associated to
port y. Similarly, a connection < x,y > is said to be asynchronous
if the invocations of the action associated with port y do not depend
on the output from port x. Given the definitions of components
and connections, a structural model is formally defined as a set o f
directed graphs Ms = < Cs,Ls >, where Cs is a set software compo-
nents, and Ls a set o f connections.

The system behaviors are modeled as transactions in the struc-
tural model, each of which is a directed graph for a parallel control
process. Components in a transaction are classified into input com-
ponents, output components, and processing components. An input
component models a start point o f a transaction, while an output
component models an end point o f a transaction.

Multiple connections are allowed to come from/to a component
using the same or different ports. These connections are assumed
to be AND if they run at the same rate. If the rates are different,
the component runs at either one of the rates or the combination of
some input rates according to the component's functional role. A
component running at one of its input rates is called a synchroniza-
tion component. A component running at the combination rate of
its inputs is called a shared component. In our structural model, a
copy of the shared component is created in every transaction using
it. These transactions can then be treated as independent graphs.
Data dependency cycles among components in a transaction are
also allowed to model multi-rate systems.

The activations of transactions depend on the system modes.
Some transactions may be active in multiple modes, while others
are active in only one mode. Automatic identification of concur-
rent transactions in each mode is beyond the scope of this paper,
and is discussed somewhere else [4].

We also assume that high-level performance constraints are given
for each transaction in the structural model. In this paper, we focus
only on timing performance, and assume that end-to-end deadlines,
invocation rates, and bounds of response and output jitter are given
for all transactions.

3. PERFORMANCE MODELING AND ANAL-
YSIS METHOD

In this section, we discuss the performance of modeling ele-
ments, and the method for deriving the system performance.

3.1 Component performance modeling
The performance of a modeling component may contain both

performance requirements such as activity deadlines and invoca-
tion frequencies, and the performance characteristics such as ex-
ecution times and message delays. We therefore classify the per-
formance parameters into two disjoint categories: characteristics

1Although there can be a sequence of actions performed inside a
component, these actions can be treated as a combinational one
since the sequence appears indivisible to the outside world.

and constraints. To associate the performance parameters with the
components, we choose the annotation approach. Figure 1 shows
the component structure with annotated performance parameters.
Similarly, the communication-related performance parameters and
values can be annotated to connections.

B E H A V I O R S P E C

Figure 1: Component structure with performance parameters.

In order to evaluate the performance quantitatively, the values of
the performance parameters for all constituent components must be
determined. Deriving values of performance constraints o f a com-
ponent is fairly easy and can be done using techniques like rate
propagation and deadline distribution. The values of performance
characteristics, on the other hand, vary with the platform and can-
not be determined at an early design stage before knowing the plat-
form configuration. Since we are interested in modeling the perfor-
mance values uniformly so that they are additive and comparable,
we introduce the virtual resource demands for the values of per-
formance characteristics. To obtain the virtual resource demands
of a component, we assume that a dedicated resource exist for the
execution of the component. We call such a dedicated resource a
virtual resource. The virtual resources serves the components at a
fixed rate, called virtual service rate. It is used as a scalar to uni-
form the software resource demands. The service demands of a
component is then defined as the virtual time required to complete
the component's workload on the dedicated virtual resource.

To generate the virtual resource demands reflecting the compo-
nent's workload on a real platform, we first need to measure the
component's workload on a reference target. Given the measured
execution time e~ of a component on a reference target p, the plat-
form service rate of the target rp, and the virtual service rate of the
resource rR, the virtual resource demand ei of the component can

then be computed as e i = ~-~.
• r R . .

Further, since the commumcatlon and computation resources are
different possibly with different virtual service rates, we define a

computation-communication service ratio 8 as ~ = ~;,,mm • m order to
treat the virtual resource demands of different resources uniformly
during modeling and analysis.

3.2 Performance computation
Our performance computation is based on the graph traversal al-

gorithm. Before using the graph traversal algorithm, we need to
transform the structural model to a directed acyclic graph with sin-
gle input and single output. A cycle in a model represents an inner
control loop inside a transaction. Its rate must be an integral multi-
ple of the rate of the transaction• To remove the cycle, we can sepa-
rate the original transaction into two: one represents the cycle with
the feedback connection eliminated, and the other represents the
original transaction with the cycle replaced by an aggregate node.
The rate of the transaction of the cycle is assigned to be the rate
of the inner control loop. The resource demands of the aggregate

111

node is assigned to be the resource demand bounds of the cycle.
To eliminate multiple inputs and outputs of a transaction, we intro-
duce a pseudo start and end node with a connection between the
start node to every input node and a connection between every out-
put node to the end node. The resource demands of start and end
nodes are both assigned to be zero. The connection delays between
start-input and output-end can be assigned as the input and output
jitter bounds.

After the model is transformed to an acyclie, single-input single-
output directed graph, the performance computation can be done
based on the weighted graph search. In this paper, the end-to-end
processing delay (response time) of each transaction and total sys-
tem resource demands of the system are used as performance met-
tics.

3.2.1 End-to-end delay
The end-to-end delay of a transaction is the time taken to com-

plete all its components' executions. The end-to-end delay is evalu-
ated based on bound estimations [5] of transactions in our analysis.
The bound estimations are computed using best-case and worst-
case scenarios under the assumption of sufficient resources without
contention among concurrent transactions.

In the bound estimation, the best-case bound is of the most in-
terest as it is useful for checking the satisfiability of the constraints
and sufficiency of platform resources. A best-case scenario is the
scenario with the minimum weight of the longest path in the trans-
action graph among all possible allocations of its parallel paths,
where the weight of each component/connection is assigned as its
virtual resource demand. This transforms the problem into a com-
ponent allocation problem, i.e., finding an optimal allocation of the
transaction's components that maximizes the benefit of parallel ex-
ecution. To find the optimal allocation, we first need to differentiate
the resource demand of a connections as local and remote, denoted
by el(local) and el(remote), respectively. Then for a given transac-
tion with multiple concurrent paths, we examine the weight of the
longest path under different allocations of concurrent paths using
local or remote communications. An allocation that yields lhe min-
imum weight of the longest path is the optimal one. The best-case
end-to-end delay bound can then be computed as the weight of the
longest path in the optimal allocation.

Finding the optimal allocation leading to minimum end-to-end
delay is an NP-hard problem. In this paper, we use a simple heuris-
tic algorithm to find a best-case scenario: if a parallel remote path
with the maximum weight (fully parallel) has greater weight than a
path of merging the remote paths with a local one to execute on the
same virtual resource (sequentially), we allocate the components of
both paths to the same virtual resource. Otherwise, we keep them
on different resources for parallel execution. Figure 2 shows the
algorithm to compute the best end-to-end delay of a given transac-
tion.

3.2.2 System resource demands
The system resource demands include the resource demands of

all concurrently active transactions and all their instances. Since
the connections and computations consume different types of re-
sources, their demands are computed separately.

At runtime, the system resource demands vary because the num-
ber of active transactions and the number of their instances change
dynamically. For a transaction T with the arrival rate r T and the res-
ident time tT, it can be shown that the number of concurrently active
instances of the transaction T is [tr. rrJ < Ni(T) _< [tT" rr] + 1
For an instance of transaction T, given each component i and con-
nection 1 in T with resource demand ei and el, respectively, the

Algorithm l.Coraput~Delay
Input: transaction as T = < N, L >, s: the star! node, e: the end node.
Oulpat : E2E delay D between (s, e), path P = < Np, Lp > yields D
Begin

/* initialize nod= and llnk weight as resource demands */
Ol f o ~ a c h n E N , I E L d o
02 w(n) = en; w(I) = e I (Iocut);
03 end-for
04 P= findJongcsKpathls, e,w);
fi5 D - Zne~Cp "(")+ Xt~Lp ..(I):
06 for a sub-path P{i,.j) E P(s, e} that has m abemafivc paths p I (i,./)...pra (i,/) between i and .j do
07 foreuch Pk(i, j),(I < k _< m} do

10g w(lki) = elk i (remtge); 1" Iki: connection between i and the first node on p k (i~ j) *1

09 W(Ikj)=elkj (~ 'mote I* lpkj: ~nnectionbctween tbe la~t nodeonpk (I j} and j *l

It) end-for
I I
12 repeat
13 PX (i,/) = maxl<k<m(Pk(i , I) with maximum D);

14 DX(i.)~ ~ ~.nel~lx~i,j) w (n l f XlGLpx(i,]) w(l);

15 D(i, j) - Z.eNp(i , i) ..(.) + XleLp(i , i) w(I);
16
17 if {n(~,.i) + % i (I,,,:.0 + %.i (t,,,:oO) _< (~,(1~i) + ~ (t . j)) then
18 P = P+ fa (i , _O . { i , . i } ;
I g o = 0 + ~ (i, j) . w(i) - . .(i) - ~'(txi)- " f i x /) + % (h ' ~ O + ~'lxi (t,,~.t):

211 else
21 P = P-P(i, i)+P~{i,j)
22 D = D . D[i,.j) + DX(i~/);
23 end-if-clio;
24 unt i la l lPk(i , j)arecbeckedorDX(i , / ')<D{i , j) ;
25 end-for
26 re turn P, D;
End.

Figure 2: Algori thm of finding the best end-to-end delay.

resource demands to complete this instance of T can be computed
a s

wT(eomp) = EieTei, wr(comm) = EteTel

In the system resource demands computation, the worst-case work-
load of the system is of the most interest. Such workload is usually
used for platform evaluation and capacity planning as meeting the
timing constraints under the worst-case workload guarantees meet-
ing the same timing constraints for all scenarios. The worst-case
workload happens when a transaction T generates the maximum
number of its active concurrent instances that fully utilize its vir-
tual resource. Given the deadline of transaction T is DT, the virtual
resource of T is fully utilized when its resident time is its deadline
D T. Therefore, the maximum number of instance of transaction T
is Ni(T) = 1 + [rT .DT]. So, for a given transaction T with invo-
cation rate rT, resource demands in each instance WT, the deadline
DT, and the computation-communication ratio ~5, the maximum re-
source demands in the duration of D T is

[r r ' O r]

w ~ " ~ = (W r (c o m p) + r W r (c o m m)) . (l + 2 ~ (1-- i
i = 1

The resource demand of ECSW can then be computed after the
worst-case resource demand of every transaction, is obtained. For
each system mode m, the system resource demand U~s is the sum
of the resource demands of all active transactions under m. We use
the maximum resource demands among all modes as the system
resource demands. Thus, the system resource demand is computed
a s

w,ys = max{ ~ (rT " W~ax) }
allm allTG{Tm }

4. APPLICATION OF MODELING RESULTS
The obtained performance results can be used to evaluate the

performance specifications and assist design. In this paper, we fo-
cus on finding the platform configuration that provides sufficient
resource to satisfy the performance constraints.

112

In order to provide sufficient resource for the ECSW execution,
the platform should have a minimum service rate that guarantees
all transactions to meet their deadlines. We call such a service rate
minimum desired service rate, and compute it as r T = w~aX/D T.
The minimum desired service rate for a system mode m can be
computed as r m = Y~VT~{r, } rr, and the desired service rate for the
system is r ~y~ = maxvm(rm). Given a platform consists o f k pro-
cessing units Ph. . . ,Pk, and n connection links L l , . . . ,Ln, the fol-
lowing equations must be held for the platform to provide sufficient
resource to guarantee the performance constraints to be met:

~m=l rp(i) > r~yS(comp), 3~n=l rl(i) >_ r~yS(comm)

After the platform configuration is determined, a runtime model
must be constructed with more design details for implementation.
A critical step in the runtime model generation is allocating soft-
ware components and connections to physical components in the
platform. Here we use the service rate to make the allocation deci-
sion. For a component c with ec under rv, if it belongs to transac-
tion T with DT, c requires the desired service rate rc = ec. rv/Dr
to allow T meeting its deadline. We then modify the traditional
utilization-based allocation algorithm by (i) substituting the utiliza-
tion bounds of a device with the service rate of the device, and (ii)
substituting the utilization introduced by a component with its min-
imum desired service rate. The new algorithm can then allocate
the components in the abstract structural model without knowing
real execution time. After the components in ECSW are allocated,
task formation and timing assignment can be done as in [4]. A
follow-up traditional timing and schedulability analysis should be
Performed to verify the satisfaction of timing constraints after the
runtime model is generated completely.

5. EXAMPLE: DESIGN AND ANALYSIS OF
VEHICLE CONTROL SOFTWARE

In this section, we present an example of vehicle control software
(VCS) to illustrate the use of our modeling method. The main func-
tionality of the vehicle control software is to perform Cooperative
Adaptive Cruise Control (CACC) with Cooperative Forward Colli-
sion Warning (CFCW). The responsibility of ECSW is to monitor
the distance between a moving vehicle and those around it, pre-
dict if collision will occur, and adjust the speed of the vehicle by
either increasing engine speed or applying brake. To simplify the
discussion, we use only two transactions that are representative and
sufficient for the discussion. The models of these transactions with
the performance parameters are shown in in Figure 3. The values
shown in the model have been artificially translated from the orig-
inal ones with the computation-communication service rate ratio
5 = 1. All rates in the model are in Hz, while the resource demands
of components and connections are based on virtual resource ser-
vice rate rv : 1. Also for simplicity, we assume the deadlines of
the transactions equal to their periods.

In the VCS ECSW structural model, transaction T! runs in all
system modes, while T2 and T3 only run in braking mode and
accelerating mode, respectively.

To compute the end-to-end delay of each transaction, we first
eliminate the cycles in Ti by separating lat_sense --~ MB1 as an-
other transaction T{ with rate r = 500, and represent T{ as a single
node in Ti. For T 2 and T3, we need to add a start node since they
both have multiple input components. We show 7] and T2 models
after transformation in Figure 4. T3 appears the same as T2 after
transformation.

We now apply Algorithms 1 and 2 to each transaction to find

the end-to-end delays for best- and worst-case scenarios. Taking
T2 as an example. For the best-case, the longest path found in the
first round is P(s, brake) = {s, long_sense, long_cntrl, speed_cntrl,
brake_cmd} with the delay D = 179. There are 2 alternative paths
between (s, hi_cntrl), 3 between (s, long_cntrl), and 5 between (s,
speed_cntrl). To evaluate the alternative paths, the weights of con-
nections gps ~ hi_cntrl, radar_read ~ hi_cntrl, and hi_cntrl
speed_cntrl are replaced by the values for the remote communi-
cations, namely 60, 180, and 144, respectively. The longest path
between (s, speed) after such a change becomes PX(s,speed) = {s,
radar_read, hi_cntrl, speed_cntrl} with the [YC(s, speed)= 381
> 170 = D(s,speed). At this point, we need to evaluate the sce-
nario where all components on PX(s,speed) running on the same
resource with P(s, speed). The result shows that when running all
components on both paths on the same local resource, D(s, speed) =
203 < DX(s,speed). Therefore, the new path will include compo-
nents P(s, brake) = {s, long_sense, radar_read, hLcntrl, long_cntrl,
speed_cntrl, brake_cmd}. Repeating the process results in the GPS
path being allocated to the same resource. The best-case end-to-
end delay for T 2 is then D = 219. For the worst-case, long_sense,
GPS_read, and rhdar_read are merged into one node LGR with re-
source demands 56 for the new nodes. Links LGR --+ long_cntrl
and LGR----~ hi_cntrl are with resource demands 118 and 240. Al-
though there are alternative paths between hi_cntrl and speed_cntrl,
long_cntrl cannot be merged. Therefore, the longest path for the
worst-case is P(s, brake) = {s, LGR, hi_cntrl, long_cntrl, speed_cntrl,
brake_cmd} with the delay D = 935. Table 1 presents the best-case
and worst-case end-to-end delays for each transaction.

transaction best-case (comp+conn) worst-case (comp+conn)
T[69 (69+0) 131 (69+62)
Tl 124 (100+24) 295 (100+ 195)
T2 219 (157+62) 935 (157+778)
T3 224 (165+62) 943 (155+778)

Table 1: End-to-end delays of individual transactions.

Similarly, we can compute the resource demands for transactions
as well as for the overall system. The resource demands of the given
VCS example are listed in Table 2.

transaction computation localcomm. ~mote comm.
36050 1200 37450

7850 5250 52000
8250 5250 52000

system 44300 6450 89450

Table 2: Resource demands of the system.

These performance estimates can be used for design assistance
and evaluation. For example, let's assume that the end-to-end dead-
line for each transaction equals its period, the deadlines are 2ms for
T(, and 20ms for Ti, T2, and T 3 . Then, the selected platform should
have at least service rate rp for computation and rc for communi-
cation such that

69/rp < 2ms
lO0/rp +24/rc < 20ms
157/rp +62/rc < 20ms
165/rp +62/rc < 20ms.

According to the above equation, the required service rates for
computation and communication are rp >_ 38500 and rc >_ 8946,

113

6
~50 but ton road

T I
m o d e = * 50

~SO0 / a t s e n s e

~o
mS0 Iong senso

mod~T~braklng 3
r i~C] (.3PS road

3

~50 radar read

50

m 5 0 long_sense
3

73
mode=ncce lera t lng mSO GP,.~. rend

3

14128 19 2 0 5
M D I 1 0 / 8 4 __ 8teef lng_cnt r l 0 / 1 7 - - s tee t ing_cmd

O/22

O /4O

4O
23 / I 18

-- iong cnt t I ~O/280
37 7

10160 ~ speed_cnt r l 2 / 1 9 8 b r a k e - - t r o d 10 /60 17

hL_cntrl 1 0 / 1 4 4

a O / 1 8 0

4 0
2 3 / 1 1 8

- - /on~z c n t r l 2 0 / 2 8 0 ; 3 7 15
1016O ~ ~ e d c n t r ! -- t h r o f f l ~ _ c m d

1 O160 17 - - 2 /198

h ~ c n t r l I O [1 4 4

r = 5 0 r a d a ~ a d 3 0 / I 8 0

Figure 3: Software structural model with 3 transactions in the VCS system.

6 (6 9 , 1 3 1) 1 O / 8 4 2 0 5 • (. ~)
. - (s t e e r i n g c r m d] (buttoE.._,'~d~ ,4128 : _ _r_,~ /

' - 35 19 "
T " i ~ / a t . _ 3 " (M B ' ~ O'4Om (~)

.
5 0 4 0

_ ~ / o n g ~ " (l o n g ' ~ 3 7

- - " " ' - . 0 "~ h L c n t r l ~ / 1 0 1 1 4 4

- - r r a a d) ~

Figure 4: Transaction graph after transformation.

respectively, to meet the end-to-end deadlines for all transactions
in the best-case. Similarly, the worst-case service rates for com-
putation and communication can be derived. Then, the selected
platform should provide the maximum service rates for both re-
sources. Suppose the selected resource has the minimum service
rates (38500, 8946) for both computation and communication, then
at least 2 computation resources ([44300/38500]) and 10 connec-
tion resource ([89450/8946]) are required to provide sufficient re-
source for the ECSW to execute. We can also see in this example
that the remote communications require more resource and intro-
duce longer delays in the worst-case scenarios. Therefore, reduc-
ing the remote communication (by either changing the connection
in the structural model or providing a faster communication mech-
anism) will more likely improve the overall system performance. It
can also be seen in Table 2 that T~ consumes over 80% of the total
computation resource. Therefore, improving the performance of ~1
can potentially improve the performance of the system. It will yield
better performance to allocate T[on a computation resource with a
faster service rate if the computation resources in the platform are
asymmetric.

6 . C O N C L U S I O N S

In this paper, we presented a method to model and analyze the
ECSW performance at an early design stage with incomplete infor-
mation. The performance modeling is based on a software struc-
tural model, which is constructed by integrating reusable software
components. The structural model contains a set of graphs of trans-
actions. Each transaction implements some system behavior(s).
The performance model is constructed based on the structural model
and performance of individual components, which are classified
into parameters for constraints and for characteristics. We used
virtual resource demands to model component performance char-
acteristics, and made their values platform-independent. The per-
formance and resource demands can then be computed using the
virtual resource demands of the constitute components and connec-
tions in the model without requiring the platform and deployment
information. Specifically, we computed the end-to-end delay that

achievable in the best-case, and system resource demands. The
results can be applied to guide platform design and components'
allocation for runtime model generation. We demonstrated how the
our proposed method is used in a VCS system design. All of these
demonstrated the power and utility of our method in bringing the
performance analysis to a higher-level abstraction.

7 . R E F E R E N C E S
[1] H. Gomaa and D. A. Menasce. Design and performance

modeling of component interaction patterns for distributed
software architecture. In Proceedings of the 2nd International
Workshop on Software and Performance pages 117-126,
Ottawa, Ont, Canada., 2000.

[2] Z. Gu, S. Kodase, S. Wang, and K. G. Shin. A model-based
approach to system-level dependency and real-time analysis of
embedded software. In Proceedings of the 9th IEEE Real-Time
and Embedded Technology and Applications Symposium
(RTAS'2003), pages 78-87, Washington D.C., May 2003.

[3] M. (3. Harbour, M. H. Klein, and J. P. Lehoczky. Timing
analysis for fixed-priority scheduling of hard real-time
systems. IEEE Transactions on Software Engineering,
20(1): 13-28, January 1994.

[4] S. Kodase, S. Wang, and K. G. Shin. Transforming structural
model to runtime model of embedded software with real-time
constraints. In Proceedings of Design, Automation and Test in
Europe Conference and Exhibition, pages 170-175, Munich,
Germany, March 2003.

[5] C.U. Smith. Performance Engineering of Software Systems.
Addison-Wesley Publishing Company, 1990.

[6] J. Sun. Fixed-priority end-to-end scheduling in distributed
real-time systems. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois, 1997.

[7] M. Woodside, D. Petriu, and K. Siddiqui. Performance-related
completions for software specifications. In Proceedings of the
2nd International Conference on Software Engineering, pages
22-32, Orlando, FL., May 2002.

114

